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Abstract

The flag geometry � = (P,L, I) of a finite projective plane ⇧ of order s is the

generalized hexagon of order (s, 1) obtained from ⇧ by putting P equal to the set of

all flags of ⇧, by putting L equal to the set of all points and lines of ⇧ and where I is

the natural incidence relation (inverse containment), i.e., � is the dual of the double of

⇧ in the sense of [8]. Then we say that � is fully (and weakly) embedded in the finite

projective space PG(d, q) if � is a subgeometry of the natural point-line geometry

associated with PG(d, q), if s = q, if the set of points of � generates PG(d, q) (and if

the set of points of � not opposite any given point of � does not generate PG(d, q)).
We have classified all such embeddings in [3, 4, 5, 6]. In the present paper, we weaken

the hypotheses in some special cases, and we give an alternative formulation of the

classification.

1 Definitions and statement of the main results

The problem we consider may be stated as follows. Let ⇧ be a (finite) projective plane
of order s. We define the flag geometry � of ⇧ as follows. The points of � are the flags
of ⇧ (i.e., the incident point-line pairs of ⇧); the lines of � are the points and lines of ⇧.
Incidence between points and lines of � is reverse containment. It follows that � is a (finite)
generalized hexagon of order (s, 1) (see (1.6) of [8]). The advantage of viewing � rather as
a generalized hexagon than as a flag geometry of a projective plane is that one can apply
results from the general theory of generalized hexagons. We will call � a thin generalized
hexagon (since there are only 2 lines through every point of �).
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Throughout, we assume that � is a thin generalized hexagon of order (s, 1) with correspond-
ing projective plane ⇡(�). We introduce some further notation. Two elements of � are called
opposite if they are at distance 6 from each other in the incidence graph of �. Two points
of � are collinear if they are incident with a common line. For any point x of �, we denote
by x?? the set of points of � not opposite x. Given a line L of �, we write L?? for the
intersection of all sets p?? with p a point incident with L (in this notation we view L as the
set of points incident with L). For an element x of � (point or line), we denote by �i(x) the
set of elements of � at distance i from x in the incidence graph of �. In this notation, we
have x?? = �0(x)[ �2(x)[ �4(x) and L?? = �1(L)[ �3(L), with x any point and L any line
of �. Furthermore, an apartment of � is a thin subhexagon of order (1, 1). It corresponds
with a triangle in ⇡(�).

Let PG(d, q) be the d-dimensional projective space over the Galois field GF(q). We say
that � is (weakly) embedded in PG(d, q) if the point set of � is a subset of the point set of
PG(d, q) which generates PG(d, q), if the line set of � is a subset of the line set of PG(d, q),
if the incidence relation in PG(d, q) restricted to � is the incidence relation in � (and if for
every point of �, the set x?? does not generate PG(d, q)). If moreover s = q, then we say
that the (weak) embedding is also full.

All weak full embeddings of thin generalized hexagons in finite projective spaces are classified
in [3, 4, 5, 6]. They are just the examples presented in the next section. The motivation for
classifying these objects is given by the fact that it is a crucial step for classifying all (weak)
embeddings of line-regular generalized hexagons; line-regular just means that the hexagon
is the dual of one of the classical examples naturally embedded in the triality quadric (these
classical hexagons were discovered by J. Tits [7]). However, in order to obtain strong results,
we need some lemmas on full embeddings of thin hexagons under slightly di↵erent hypotheses
than in the papers [3, 4, 5, 6]. More exactly, we first note that all examples of weakly fully
embedded finite thin hexagons live in d-dimensional space with d = 6, 7, 8 and that the
hexagons themselves are the duals of the doubles of Desarguesian projective planes. In the
present paper, we will show that every full embedding in PG(8, q) of a thin hexagon arising
from a Desarguesian plane is automatically weak. Further, if q is a prime, then it follows
from the classification that only for d = 6, 7, there exist weakly fully embedded thin hexagons
in PG(d, q) (and q = 3 if d = 6). The fact that d 6= 8 can easily be shown directly under
the assumption that the corresponding projective plane is Desarguesian, and we will do so
below. We will also show that, if d = 7, then every full embedding in PG(7, q), q prime,
is automatically weak (still assuming a Desarguesian plane corresponding to the embedded
thin hexagon). Hence we will show the following result.

Theorem 1.1 If the thin generalized hexagon � is fully embedded in PG(8, q), and if ⇡(�)
is Desarguesian, then � is also weakly embedded and hence the embedding is known. If � is
fully embedded in PG(7, q), with q prime (still assuming that ⇡(�) is Desarguesian), then
again it is weakly embedded and the embedding is known.

For the application to embeddings of line-regular hexagons, the case d = 7 plays a key role.
It will be convenient to have to our disposal the following equivalent condition for a weak
embedding.
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Theorem 1.2 If the thin generalized hexagon � is fully embedded in PG(d, q), d � 7, and
if for every pair {L,M} of opposite lines of � the set L??

\M?? is contained in a plane, then
d = 7 and the embedding is weak, and hence known.

We will prove these theorems in Section 3. In Section 4, we present an alternative formulation
of these results and of the results in [3, 4, 5, 6].

2 The examples

Let V be a 3-dimensional vector space over GF(q), and let V ⇤ be the dual space. We
choose dual bases. Then the vector lines of the tensor product V ⌦ V ⇤ can be seen as the
point-line pairs of the projective plane PG(2, q). Indeed, it is easily calculated that the pair
{(x0, x1, x2), [a0, a1, a2]} (we use parentheses for the coordinates of points and brackets for
those of lines) corresponds to the vector line generated by the vector (a0x0, a0x1, a0x2, a1x0,
a1x1, a1x2, a2x0, a2x1, a2x2). Hence we have a mapping ✓ of the point-line pairs of PG(2, q)
into the set of points ofPG(8, q) (and the image of ✓ is the Segre variety S2;2, seeHirschfeld
& Thas [1], §25.5). Let � be any field automorphism of GF(q). We define a twisted
version ✓� of ✓ as follows. If p is a point of PG(2, q) and L a line of PG(2, q), then
{p, L}✓� = {p�, L}✓, where p� is defined coordinatewise.

Restricting ✓� to the incident point-line pairs of PG(2, q), we obtain a weak full embedding
of the flag geometry � of PG(2, q) in PG(8, q) (if � 6= 1) or in PG(7, q) (if � = 1; in this case
the images of all flags of PG(2, q) are contained in the hyperplane PG(7, q) with equation
X00 +X11 +X22 = 0, where Xij refers to the coordinate corresponding to aixj in the above
expression); see [6]. If � = 1 and q is a power of 3, then one can project the embedded
geometry from the point with coordinates x00 = x11 = x22 = 1, xij = 0, i 6= j, onto any
hyperplane PG(6, q) of PG(7, q) to obtain a weak full embedding of � in PG(6, q) (see [3]).

3 Proofs of the main results

Throughout, we assume that � is a thin generalized hexagon, fully embedded in PG(d, q),
d = 6, 7, 8.

We will need the following basic lemma.

Lemma 3.1 Let H be any hyperplane of PG(d, q). If H contains an apartment of �, then
the set of points x of � such that both elements of �1(x) are contained in H is the point set
of a thin subhexagon �0 (and hence ⇡(�0) is a (generalized) subplane of ⇡(�)).

PROOF. Since � is thin, the embedding is flat in the sense of [2]. The result follows from
Lemma 3 of [2]. ⇤
With the notation of the lemma, we say that �0 is induced by H.
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Now assume that ⇡(�) is Desarguesian, that d = 7, and that q is prime. Let x be any
point of �. Suppose �1(x) = {L1, L2}. Choose points y1 and y2 on L1 and L2 respectively,
y1 6= x 6= y2, and put {Li,Mi} = �1(yi), i = 1, 2. Further, consider an arbitrary point
z on L1, x 6= z 6= y1. Suppose {L1, N} = �1(z). Put {x, x1, x2, . . . , xq} = M??

1 \ M??
2 .

The subspace U generated by L1, L2,M1,M2, N is at most 5-dimensional. The subspace V
generated by U and x1, x2 contains an apartment of �, three lines of � meeting L1 and three
lines of � meeting M1. It follows from 1.6.2 of [8] that the subhexagon �0 induced by V is
the dual of the double of a (thick) projective subplane ⇡(�0), which must coincide with ⇡(�)
since Desarguesian projective planes over prime fields do not admit proper subplanes. Hence
V is 7-dimensional and so U is at least 5-dimensional. It follows that U is 5-dimensional, and
that U1 = hU, x1i is 6-dimensional. Similarly, Ui = hU, xii is 6-dimensional, i 2 {1, 2, . . . , q}.
If Ui = Uj, for i 6= j, then putting, without loss of generality, i = 1, j = 2, the above
argument shows that Ui = PG(7, q), a contradiction. Hence Ui 6= Uj for i 6= j. Consequently
{Ui | i = 1, 2, . . . , q} is a set of q hyperplanes through U . Let H be the unique hyperplane
through U distinct from Ui, for all i 2 {1, 2, . . . , q}. We remark that Ui does not contain
any element of �2(L2) \ {L1,M2}, since otherwise the subhexagon induced by Ui must again
coincide with � itself by a similar argument as before.

It follows that H contains all elements of �2(L2). Considering a line N 0
2 �2(L2)\{L1,M2},

we similarly deduce that there is a hyperplaneH 0 containing all elements of �2(L1)[{N 0,M2}.
The intersection H \ H 0 together with the point x1 generates a subspace which induces a
subhexagon �0, and again �0 must coincide with �, as before. This implies that H = H 0 and
the embedding is weak. The first part of Theorem 1.1 is proved.

Now we assume that ⇡(�) is Desarguesian and that d = 8. We aim at proving that the
embedding is weak. Let x, L1, L2, y1, y2,M1,M2, z, N and xi, i 2 {1, 2, . . . , xq}, be as pre-
viously. Further, let z0 be a point on L1 such that, if we put {L1, N

0
} = �1(z0), then the

cross ratio of the points of ⇡(�) corresponding with the quadruple (M1, L2, N,N 0) of lines
in � is a primitive element of GF(q) (i.e., an element generating the multiplicative group
of GF(q)). Consequently the projective plane ⇡(�) is generated by the flags correspond-
ing with the points x, xi, xj, z, z

0 (with i, j 2 {1, 2, . . . , q}, i 6= j) of �, respectively by the
flags corresponding with the points x, xi, z, z

0, u, where u is any point on L2, x 6= u 6= y2,
and where i is arbitrary in {1, 2, . . . , q}. This implies immediately (by Lemma 3.1) that
PG(8, q) is generated by x,M1,M2, xi, xj, N,N 0 (for any i, j 2 {1, 2, . . . , q}, i 6= j) or
by x,M1,M2, xi, N,N 0, R, where {L2, R} = �1(u), u as above. As before we infer that
{Hi = hx,M1,M2, xi, N,N 0

i | i 2 {1, 2, . . . , q}} is a set of q (mutually distinct) hyperplanes,
each of them containing the 6-dimensional space U = hx,M1,M2, N,N 0

i. Further, Hi does
not contain any element of �2(L2) \ {L1,M2}. Hence the unique “missing” hyperplane H
through U contains all elements of �2(L2). Similarly, there is a hyperplane H 0 containing
M2, R,R0, with R,R0

2 �2(L2) \ {L1,M2}, and all elements of �2(L1). As in the previous
case, one deduces H = H 0 and, since x was arbitrary, the embedding is weak.

Theorem 1.1 is proved.

Finally, we assume that d � 7 and that for every pair {L,M} of opposite lines of � the set
L??

\M?? is contained in a plane of PG(d, q).

Let x be any point of � and suppose again �1(x) = {L1, L2}. Let M be any line of � opposite

4



L1. The space U1 generated by all elements of �2(L1) coincides with the space generated by
L1 and all elements of L??

1 \M?? (since every element of �2(L1) contains a point of L1 and
a point of L??

1 \ M??). Hence the dimension of U1 is at most 4. Similarly, the dimension
of U2, the subspace generated by all elements of �(L2), is at most 4. Since the intersection
U1 \ U2 contains L1 and L2, and hence has dimension at least 2, we see that the subspace
H generated by �4(x) has dimension at most 6.

Now let y be a point of � opposite x. The space U = hH, yi induces a subhexagon �0 of �,
which must coincide with � (since ⇡(�0) contains a full point row and a full line pencil of
⇡(�)). Hence H is a hyperplane, has dimension 6, d = 7, and the embedding is weak.

Theorem 1.2 is proved.

4 An alternative formulation

Our main results and the results of [3, 4, 5, 6] can be stated in a combinatorial way, without
mentioning embeddings of geometries. We first restate the final result in [6]. Therefore, we
introduce the following notation: if two lines L and M of some projective space meet, then
we write L ⇠ M .

Theorem 4.1 Let S and S

0 be two sets of q2+ q+1 mutually skew lines in PG(d, q) which
together generate PG(d, q), d � 3. Suppose that ⇡ = (S,S 0,⇠) is a projective plane, and
suppose that for every pair (L,L0) 2 S ⇥ S

0 with L ⇠ L0, the set of lines {X 2 S [ S

0
|X ⇠

L or X ⇠ L0
} does not span PG(d, q). Then, if we denote by P the set of points incident

with some member of S [ S

0, and if we denote the incidence relation in PG(d, q) by I, the
geometry � = (P ,S [ S

0, I) is a fully and weakly embedded thin hexagon and hence known.

The proof of this theorem is a straightforward translation, if one remarks that the condition
that the elements of both S and S

0 are mutually non-intersecting implies that |P| = (q +
1)(q2 + q + 1) and that any point of P is on two lines of S [ S

0. That condition cannot be
dispensed with as the following example shows.

In PG(5, q) we choose two non-intersecting planes ⇧ and ⇧0 and an isomorphism ⇥ : ⇧ ! ⇧0.
Define S to be the set of lines of ⇧, and S

0 to be the set of lines {xx⇥
| x is a point of ⇧}.

One can check that S,S 0 satisfy the conditions of Theorem 4.1, except that the elements of
S are not mutually skew. But the conclusion of Theorem 4.1 is false for this example.

To finish, we restate Theorem 1.1 of the present paper, and leave the restatement of Theo-
rem 1.2 for the interested reader.

Theorem 4.2 Let S and S

0 be two sets of q2+ q+1 mutually skew lines in PG(d, q) which
together generate PG(d, q), d � 3. Suppose that ⇡ = (S,S 0,⇠) is a Desarguesian projective
plane. If either d = 8 or q is prime and d = 7, then the conditions of Theorem 4.1 are
satisfied and consequently, with the same notation as above, the geometry � = (P ,S [ S

0, I)
is a fully and weakly embedded thin hexagon and hence known.
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