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1. Introduction and Preliminaries

A generalized polygon is a thick incidence geometry of rank 2 such that the girth of the
incidence graph is twice the diameter of the incidence graph. These geometries are intro-
duced by Tits [17] for group-theoretical purposes, but became an interesting research object
in their own right. For an overview of the geometric study, see [19].

Obviously, the notion of morphism is an important one when dealing with geometries. For
instance, monomorphisms are equivalent to embeddings of one geometry into the other (and
on the group-theoretical level often give rise to maximal subgroups); isomorphisms clearly
are needed to distinguish new geometries from old ones, but also to determine automorphism
groups; epimorphisms can be used to construct quotient geometries or cover geometries (as
the geometric counterpart of local fields). But in all these cases, the geometries considered
in the literature are of the same kind, i.e., they have same gonality and diameter. In the
present paper, we initiate the study of morphisms between generalized polygons of unequal
gonality. We restrict ourselves to epimorphisms since we are motivated by some nice
examples in this case. The study of monomorphisms and embeddings requires different
techniques.

To see the problem, a good starting point is Pasini’s theorem [13] that states that any
epimorphism between two generalizedn-gons,n > 2, is either an isomorphism or has
infinite fibers. In particular, if an epimorphism is bijective if restricted to one point row,
then it is a global isomorphism. This is no longer true for epimorphisms from a generalized
m-gon to ann-gon,m 6= n, and a standard example is given is Section 3 below. It describes
an epimorphism from the classical split Cayley hexagon over some fieldF to the ordinary
Pappian projective plane overF with the property that line pencils and point rows are
mapped bijectively onto line pencils and point rows, respectively.

The paper is organized as follows. In section 2, we propose a quite general classifica-
tion system for epimorphisms of geometries, from the local point of view. In the next
section, Section 3, we give some examples, and we characterize geometrically our stan-

* The second author is a Research Director of the Fund for Scientific Research—Flanders (Belgium).



100 GRAMLICH AND VAN MALDEGHEM

dard example mentioned above in Section 4. Finally, in Section 5, we give an alternative
proof using ideas of the present paper to show part of a well know result of B¨odi and
Kramer [2].

The paper will have a sequel. In [7], we will treat free constructions (providing many
more examples) and the finite case (mostly non-existence results).

Let’s get down to precise definitions.
A generalizedm-gonP is a thick point-line geometry(P,L,F)with an incidence graph

of diameterm and girth 2m. For a generalizedm-gon (P1,L1,F1) and a generalizedn-
gon (P2,L2,F2) a homomorphism φ: (P1,L1,F1) → (P2,L2,F2) is a function that
maps points to points, lines to lines, and preserves incidence, i.e. for any(p, l ) ∈ F1 we
have(φ(p), φ(l )) ∈ (φ × φ)(F1) ⊆ F2. Thedual homomorphismφdual is the mapping
(L1,P1,F−1

1 )→ (L2,P2,F−1
2 ) defined byφdual|P1:= φ|P1 andφdual|L1:= φ|L1 between

the dual polygons.
Monomorphisms, isomorphisms and epimorphisms are always meant to be injective,

bijective and surjective, respectively, on the point set, the line set and the flag set.
For a generalizedm-gon P and an integern ≤ [ m

2 ] a distance-n-ovoid On is a set of
points ofP that are at distance≥ 2n from each other with the property that given any vertex
x of P there is a point ofOn with distance≤ n from x. Dually, adistance-n-spread is
defined. Sometimes, ifn is clear or not important, we will omit the distance and just write
ovoidsor spreads.

Given a partitionO of the point set and a partitionS of the line set of some point-line
geometry, we define thequotient geometryas the geometry(O,S,F) with the induced
incidence, i.e.(O, S) ∈ F if and only if there is a point ofO incident with a line ofS;
then we also writeOI S. If OI S such that there exist uniquep ∈ O and l ∈ S with
pI l , then we sometimes writeOI ! S and callO and S uniquely incident. Clearly, the
canonical map from a geometry to a quotient is an epimorphism between these incidence
structures.

A partition of P into ovoid-spread pairings is a partition of the point set into ovoids
and of the line set into spreads, such that given any incident ovoid-spread pair (O, S) (in
the quotient geometry) any point ofO is incident with some line ofSand vice versa (in the
original geometry).

2. Classification and Characterization

In this section we give a classification of epimorphisms between generalized polygons.
The epimorphisms are classified by their properties restricted to the points, the lines, the
flags, the point rows, and the line pencils. Then in 2.3, 2.4, and 2.5 we characterize the
epimorphisms by describing the geometrical structure of the preimages of single vertices
under these epimorphisms.

In the classification we distinguish between injectivity(i ), surjectivity(s), bijectivity (b),
and neither of those(−). A homomorphism is 12345 with 1,2,3,4,5 ∈ {i, s,b,−}, if it
is 1,2,3,4,5 restricted to the points, lines, flags, point rows, and line pencils, respectively.
Sometimes, we write∗, if we do not know the property or if we do not want to specify.
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We call a homomorphismstrictly 12345, if it is 12345, but does not satisfy any additional
condition (i.e., no surjection or injection is bijective).

The following theorem, in fact, holds for any epimorphism between any two point-line
geometries, but we will only state it for generalized polygons.

THEOREM2.1 Any epimorphism between generalized polygonsP1 and P2 is one of the
following types:

(i) bbbbb, i.e. anisomorphism,

(ii) bsbib,

(iii) sbbbi, which is dual to bsbib,

(iv) ssbi i ,

(v) bssis,

(vi) sbssi , which is dual to bssis,

(vii) sss∗∗.
In case (vii) there are the possibilities sss−− , sssi−, ssss−, sssb−, sss− i , sssi−,

ssssi , sssbi, sss−s, sssis, sssss, sssbs, sss−b, sssib, ssssb, sssbb.

Proof. The case “strictlybbs∗∗” cannot occur, as point and line bijectivity imply flag
injectivity.

We show thatb∗∗∗∗ implies b∗∗is, that∗b∗∗∗ implies∗b∗si and that∗∗b∗∗ implies
∗∗bii . Clearly, a point (line) bijective homomorphism has to be point row (line pencil)
injective. Also a flag bijective homomorphism has to be point row and line pencil injec-
tive, since otherwise we would obtain flags having the same image. Moreover, suppose
we have a point bijective epimorphismφ that is not line pencil surjective. Then for a
point p of P1 there exists a linem ∈ [φ(p)]\φ([ p]). Considering this line, we see a
contradiction against point bijectivity, as a point distinct ofp maps onφ(p), since the
flag (φ(p),m) has to have a preimage. Dually, we prove the statement for line bijective
epimorphisms.

Now we show thatb∗∗b∗ impliesbb∗b∗, that∗b∗∗b impliesbb∗∗b, that∗∗bb∗ implies
∗bbb∗ and that∗∗b∗b implies b∗b∗b. Let φ be a point bijective and point row bijective
epimorphism. Ifφ is not line injective, there exist linesl1, l2 of P1 with the same image
underφ. By point row surjectivity, we find points onφ(l1) which have two distance points
in their preimage, a contradiction. Dually, for line bijective epimorphisms. The same proof
holds for a flag bijective homomorphism.

Putting everything together still leaves to disprove existence of strictlybssiband strictly
sbsbi. Suppose a strictlybssibhomeomorphism exists. Then we have flags(p, l ), (p′, l ′)
with the same image. By point bijectivity we getp = p′, but this gives a contradiction
against line pencil bijectivity. Dually, we also exclude strictlysbsbi.
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Epimorphisms between generalized polygons are either gonality preserving or gonality
decreasing. More precisely, we have

COROLLARY 2.2 Any homomorphism belonging to one of the cases (ii), (iii), (iv), (v) or (vi)
is gonality decreasing. Moreover, any gonality preserving strict epimorphism is sss−−,
ssss−, sss−s, or ssssswith nonfinite preimage.

Proof. All other epimorphisms are either point row or line pencil injective, hence injective
by [2] (or by Theorem 5.1 below) if they are gonality preserving. Moreover, by [13] there
are no gonality preserving proper epimorphisms with finite preimage.

The following theorems give geometrical characterizations of the interesting cases of
epimorphisms between generalized polygons, i.e. of cases(ii) to (vi) andsssbbof (vii)
of 2.1:

THEOREM2.3 Let2≤ n < m. The existence of a (strictly)sssbbhomomorphism from an
m-gonP1 onto an n-gonP2 is equivalent to the existence of a partition of the point and
line sets ofP1 into distance-n-ovoid spread pairings.

Proof. Assume that the generalizedm-gon P allows a partition into distance-n-ovoid-
spread pairings. First, we have to show that the quotient geometry is a generalizedn-gon.
Indeed, its diameter is at mostn, as we are considering distance-n-ovoids and distance-
n-spreads inP1. To establish diametern and girth 2n it suffices to rule out the existence
of ordinary polygons of gonalityn′ < n. But if there was an ordinaryn′-gon, we would
either obtain an ordinaryn′-gon inP1 or two verticesx, y with d(x, y) ≤ 2n′ < 2n and
φ(x) = φ(y), both of which is impossible. Thickness is inherited.

Now we have to prove that this epimorphism is of typesssbb. Indeed, it is neither point
nor line nor flag injective (since we have ovoid-spread pairings), but injective on each point
row and each line pencil. But again since we have ovoid-spread pairings the epimorphism
is also surjective on each point row and each line pencil.

Conversely, supposeφ is a homomorphism of the given type. Verticesx, y of P1 belong-
ing to the same preimage underφ have to be at distance≥ 2n, since otherwise we find a
chain fromx to y that “collapses” underφ (i.e. the image does not contain any ordinary
polygon) to avoid an ordinary polygon in the image with gonality< n. But if the chain col-
lapses, then two confluent lines or two collinear points have the same image, contradicting
the point row or the line pencil bijectivity. Now take two non-opposite verticesx, y in P2

There exists a chain of length< n from x to y which we can lift toP1. There, by line pencil
and point row bijectivity, we obtain a set of pairwise disjoint chains from vertices ofφ−1(x)
to vertices ofφ−1(y) of the same length. This proves that for any vertexa of P1 and any
vertexx of P2 there either exists a unique vertexb ∈ φ−1(x) at a distance< n from a or
there exist verticesb ∈ φ−1(x) at distancen from a. Hence the preimages are distance-n-
ovoids and -spreads, cf. Lemma 7.2.2 of [19]. Lifting chains in the special casexI y gives
pairings.

THEOREM2.4 Let 2 ≤ n < m. The existence of a (strictly) bsbib, ssbi i or sbbbi homo-
morphism from an m-gonP1 onto an n-gonP2 is equivalent to the existence of a partition
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O of the point set ofP1 into sets Oα of points mutual at distance≥ 2n and of a partition
S of the line set ofP1 into sets Sβ of lines mutually at distance≥ 2n, α, β ∈ I for some
index set I , with the following properties:

(i) If n odd,

• for any two points p,q there exist k unique sets Oi ,1 ≤ i ≤ k ≤ n−1
2 + 1,

and k− 1 unique distance sets Sj ,1 ≤ j ≤ k − 1 ≤ n−1
2 , such that p∈

O1I ! S1I ! O2I ! · · · gI ! Sk−1I ! Ok 3 q;

• for any two lines x, y there exist k unique distinct sets Sj , 1 ≤ j ≤ k ≤ n−1
2 + 1,

such that x∈ S1I ! O1I ! S2I ! · · · I ! Ok−1I ! Sk ∈ q.

(ii) If n even, for any point p and any line x there exist k unique distinct sets Oi ,
1 ≤ i ≤ k ≤ n

2 , and k unique distinct sets Sj , 1 ≤ j ≤ k ≤ n
2 , such that

p ∈ O1I ! S1I ! O2I ! · · · I ! OkI ! Sk 3 x

More precisely, we have bsbib if and only if|Oα| = 1 for all α and sbbbi if and only if
|Sβ | = 1 for all β and ssbii otherwise.

Proof. Suppose we have a partition of the points and lines ofP1 with the given properties.
The mapP1 → (O,S,F ′) to the quotient geometry is an epimorphism. We will prove
that the image is a generalizedn-gon. For sure, the diameter is≤ n (since n

2 + n
2 = n =

n−1
2 + n−1

2 + 1), hence it remains to prove that there are no ordinary polygons of gonality
< n. Thickness is inherited. Indeed, if we had an ordinary polygon of gonalityn′ < n we
would find verticesx, y of appropriate type (i.e. both points or both lines forn odd; one line,
one point forn even) that have twon′-chains, respectively one(n′ − 1)- and one(n′ + 1)-
chain connecting them, namely the two parts of the ordinary polygon, a contradiction since
n′ < n.

It remains to show that the obtained epimorphismφ between polygons is of one of
the given types. But the homomorphism is clearly flag injective, as flags(x, y), (x′, y′),
x 6= x′, y 6= y′ cannot have the same image, since otherwise the preimagesφ−1(φ(x)) and
φ−1(φ(y))would not be uniquely incident; other flags cannot have the same image because
vertices belonging to the same set of the partition are mutually at distance≥ 2n ≥ 4. Hence
the homomorphism is even flag bijective, thus the classification 2.1 proves the claim, since
the homomorphism obviously is not an isomorphism.

Conversely, suppose we have a homomorphismφ of one of the given types. We claim that
the preimages form a partition of the points and lines of the given shape. We prove things
only for n even, the other case being similar. Take any pointp and any linex in P1. In
the image,φ(p) andφ(x) have a unique chainφ(p) = p1I x1I p2I · · · I pkI xk = φ(x) of
length at mostn−1 (i.e. 1≤ k ≤ n

2) connecting them. We claim that the sets of preimages
of all the vertices contained in this chain satisfy the above condition. Clearly, there is but
one such chain and the inequalities for the indices are satisfied. Now we show the unique
incidence. But by flag bijectivity we can lift any flag(pi xj ), j ∈ {i − 1, i } uniquely, hence
the claim. Vertices belonging to the same set of the partition have to be mutually at distance
≥ 2n. For, let otherwise bex, y be two distinct vertices contained in the same set of the
partition at distance≤ 2n. We find a chain fromx to y that has to collapse underφ (i.e. the
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image does not contain any ordinary polygon), since otherwise we would obtain an ordinary
polygon in the image with gonality≤ n. But collapsing of the chain is impossible, since
two confluent lines or two collinear points cannot have the same image by flag bijectivity.

Finally, the last statement is obvious.

THEOREM2.5 Let 2 ≤ n < m. The existence of a (strictly) bssis homomorphism from an
m-gonP1 onto an n-gonP2 is equivalent to the existence of a partitionS of the line set of
P1 into setsSα, α ∈ I for some index set I , with the following properties:

(i) If n odd,

• for any two points p,q there exist k unique points pi , 1 ≤ i ≤ k ≤ n−1
2 +

1, and k− 1 unique distinct sets Sj , 1 ≤ j ≤ k − 1 ≤ n−1
2 , such that x∈

S1I p2I · · · I Sk−1I pk = q;

• for any two lines x, y there exist k unique distinct sets Sj ,1 ≤ j ≤ k ≤ n−1
2 + 1,

and k− 1 unique distinct points pi ,1 ≤ i ≤ k − 1 ≤ n−1
2 , such that p=

p1I S1I p1I S2I · · · I pk−1I Sk 3 y;

• there exists a set Sα containing two confluent lines.

(ii) If n even,

• for any point p and any line x there exist k unique distinct points pi , 1 ≤
i ≤ k ≤ n

2 , and k unique distinct sets Sj , 1 ≤ j ≤ k ≤ n
2 , such that p=

p1I S1I p2I · · · I pkI Sk 3 x;

• there exists a set Sα containing two confluent lines.

The dual statement holds for sbssi homomorphisms.

Proof. Given a partition of the lines with the above properties, the canonical map from
P1 onto its quotient geometry is an epimorphism. The proof that the quotient geometry is
a generalizedn-gon is similar to that of Theorem 2.4 (note that the uniqueness of thepi is
responsible for the nonexistence of ordinary polygons with too small a gonality). By the
classification 2.1 the type of the epimorphism isbssib, since it is point bijective and not
flag injective.

Conversely, we only have to prove the existence of a setSα containing two confluent lines,
the remainder being as in the proof of Theorem 2.4. But this is an immediate consequence
of point bijectivity and flag non-injectivity.

The statement about duality is obvious.

COROLLARY 2.6 Strictly bsbib, ssbi i, sbbbi, sssbbhomomorphisms from an m-gon to and
n-gon only exist for n≤ [m

2

]
.

Remark 2.7.

(i) There are examples for all classes of epimorphisms between generalized polygons as
described in Theorem 2.1. In section 3 we give some concrete examples. Moreover,
see [7] for some general existence and non-existence results.
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(ii) The sssbbepimorphisms are covers in geometrical sense. Ansssbbepimorphism
from anm-gon to ann-gon maps the set of vertices at distance≤ n − 1 from any
vertexx bijectively onto the set of vertices at distance≤ n− 1 from the image ofx.
We call themlocal isomorphisms.

(iii) Note that in case ofbsbib/sbbbi onto a digon (i.e.n = 2) the setsSj and Oi are
distance-2-spreads and distance-2-ovoids, respectively. Indeed, forsbbbi, if we fix
somei each line is incident with a unique vertex ofOi .

(iv) Corollary 2.6 does not hold forbssis. It is quite easy to construct abssishomomor-
phism from a projective plane to a digon. Indeed, it suffices to find a partition of the
line set of the plane in at least three dual blocking sets (a dual blocking set is just a set
of lines covering all points of the plane). The digon then is the quotient geometry.

(v) Since any homomorphism between two generalized polygons factors into an epimor-
phism and an embedding, it would be natural to look at embeddings of polygons. Of
course, with free constructions (cf. [18]) it is possible to embed polygons of different
gonality in each other. The easiest embedding is(P,L, F)→ (P,L,P × L).

3. Concrete Examples

In this section we present some “nice” examples. With “nice” examples we understand
finite, continuousor usingclassical objectssuch as classical ovoids and spreads. All the
other examples we are aware of involve some free construction and will be given in [7].

Example 3.1. This first example was the origin of our research which resulted in this
article. It was first mentioned in [6].

Consider Tits’s description of the split Cayley hexagon (see e.g. [17]). The points ofH(F)
are the points of the quadricQ(6,F) in PG(6,F) given byX0X4 + X1X5 + X2X6 = X2

3,
whereF is a (commutative) field. From the Grassmann coordinates of the lines, it is easily
seen that each point star has (algebraic) dimension 3, i.e., the point stars form point sets of
(Pappian) projective planes.

Now we project the points ofH into the subspace given byX0 − X4 = 0, X1 − X5 =
0, X2 − X6 = 0, and X3 = 0: map a point(x0 : x1 : x2 : x3 : x4 : x5 : x6) on
(x0 + x4 : x1 + x5 : x2 + x6). Obviously, this defines a projectionπ of the points, but it
does not necessarily map points to points.

However, if−1 is not the sum of three squares in the fieldF, this projection defines a
homomorphism from the split Cayley hexagon into the projective plane. Indeed, a point is
mapped on a point, asx0 + x4 = x1 + x5 = x2 + x6 = 0 impliesx2

0 + x2
1 + x2

2 + x2
3 = 0

which in the considered fields is equivalent tox0 = x1 = x2 = x3 = 0. Lines are mapped
on lines, as they are linearly spanned by two collinear points and no two collinear points
have the same image. (Otherwise, letp andq be two collinear points withπ(p) = π(q).
Then p− q is a point ofH(F) which is mapped to 0.) Obviously, incidence is preserved.

Moreover, the restriction ofπ to some point star is injective by the same reasoning as
in the above paragraph, since for any two pointsp,q of one point star alsop − q is a
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point of the same star. By dimension, this means thatπ maps any point star bijectively
on the point set of a projective planePG(2,F). This then implies bijectivity on point
rows and line pencils. Forπ being a local isomorphism it remains to show thatπ is flag
surjective. We will make use of the point surjectivity ofπ : fix any point p in PG(2,F),
take a point of the preimage and consider the point star of this preimage. The algebraic
dimension of this point star is 3, and bijectivity ofπ restricted to point stars implies
that any line throughp is an image underπ . But this gives flag surjectivity. Henceπ
is a local isomorphism. We call this thestandard local isomorphism from H(F) to
PG(2,F).

The original construction ofπ , however, was made by means of algebra. We will now
give a sketch: The split Cayley algebra of octavesO is defined as the set of matrices

x =
(

a b
c d

)
wherea,d ∈ F andb, c ∈ F3 with F being a field. LetO be equipped with the usual
eight dimensional vector space structure overF and the following multiplication (where×
denotes the standard outer product and· denotes the standard inner product)

xy =
(

a b
c d

)(
a′ b′

c′ d′

)
=
(

aa′ − b · c′ ab′ + d′b+ c× c′

a′c+ dc′ + b× b′ dd′ − c · b′
)

which makes it an algebra overF.
H := {x ∈ O | a = d,b = c} is a subalgebra ofO isomorphic to Hamilton’s (split)

quaternions. Moreover, if the characteristic ofF is not 2, then forv := ( 1 0
0 −1

)
we have

O = H⊕ vH.
The incidence geometryH(F) = (P,L,⊆) with the point setP = {xF|x ∈ O, x2 = 0}

and the set of linesL = {xF+yF|xF, yF ∈ P, xy= 0}, i.e. the point-line geometry consist-
ing of the one dimensional and two dimensional subspaces ofO with trivial multiplication,
is the split Cayley hexagon.

Now if −1 is not a sum of three squares inF, the projection

π : H(F)→ PG(2,F) : xF 7→ b1F

with x = (0 b1

b1 0

)+ v(a2 b2

b2 a2

)
mapping a point of the split Cayley hexagon into the projective

plane overF defines a local isomorphism.
The construction of the split Cayley hexagon as given above can be found in [3], the

algebraic proof forπ being a local isomorphism in [6].

Example 3.2. The following examples arise from work of Linus Kramer who in [10] gives
compact quadrangles with a partition of the point space into compact ovoids and a partition
of the line space into compact spreads. Our job is just to apply Theorem 2.3. We will give
a short summary of the results.
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Let F = R,C,H and letV be anF-vector space of dimensionn + 1. Moreover, letf
be aσ -hermitian form of Witt index 2 onV whereσ : x 7→ x is the standard involution
of F. The geometry of totally isotropic subspaces defines the classical standard hermitian
quadrangles.

For any 0 6= x = (x0, x1,0) ∈ V (relative to a basis{e0, . . . ,en} with f being positive
definite on theF-linear span of{e2, . . . ,en})we have a hyperplanehx = {v ∈ V | f (v, x) =
0} and the setOHx = {p ∈ P| f (p, x) = 0} is an ovoid, the Thas ovoid. Indeed, every line
of the quadrangle meets the hyperplaneHx (in a point of the quadrangle) and the hyperplane
does not contain a line of the quadrangle, asf |Hx×Hx has Witt index 1. Moreover, any two
distinct Thas ovoids have trivial intersection, as the two corresponding hyperplanes do not
have any nonzero totally isotropic subspaces in common. Finally, since for any pointp of
the quadrangle there is an 06= x = (x0, x1,0) with f (p, x) = 0, we can cover the whole
point set by Thas ovoids, and we have a partition.

So, especially the classical quadranglesQ5(R), Q9(R), H3(C) and H5(C) admit parti-
tions of the point set into ovoids. ByQ5(R)dual∼= H3(C), we also have a partition of the line
set of these two quadrangles into spreads, hence (by distance 2) a partition into ovoid-spread
pairings. ForQ9 andH5(C) we will use the isomorphismsQ9(R)dual ∼= F K M(6,8) and
H5(C)dual∼= F K M(5,8)whereF K M denote the Clifford quadrangles, see e.g. [5] or [11].
In [11] it is also shown that the point space of the Clifford quadrangles can be partitioned
into ovoids.

This gives the following: the generalized quadranglesQ5(R), Q9(R), H3(C), H5(C),
F K M(5,8), and F K M(6,8) admit a partition into ovoid-spread pairings, hence there
exist local isomorphisms from these quadrangles into generalized digons.

Example 3.3. Another example was pointed out to us by Jef Thas. Consider the gen-
eralized quadrangleT∗2 (O). To construct this, cf. [1] or [8], letO be a complete oval of
PG(2,q),q = 2h, and embedPG(2,q) as a planeP in PG(3,q). The incidence geom-
etry T∗2 (O) consisting of the points ofPG(3,q) not in P and the lines ofPG(3,q) not in
P meetingO is a generalized quadrangle with parameterss = q − 1, t = q + 1. The set
of all lines ofT∗2 (O) meeting in a unique point ofO form a spread (no two lines intersect
and each point lies on one such line) and all such spreads partition the line set. Fixing
a line in P not meetingO the set of all (hyper)planesH distinct from P gives rise to a
partition of the point set into ovoids. Clearly, one such plane establishes an ovoid (no two
points are collinear and each line contains such point) and the planes do not have points in
common.

Example 3.4. We finish this section with a nice example of a class ofsss−− epimor-
phisms from the symplectic quadrangle to the projective plane. It was suggested by Theo
Grundhöfer. Take a (commutative) fieldF and let f : F4→ F3 be a linear projection with
one dimensional kernel. This gives rise to a homomorphism from the symplectic quadrangle
W(F) (the geometry consisting of the totally isotropic one and two dimensional subspaces
of F4 of the bilinear formx0y1− x1y0+ x2y3− x3y2, cf. [14]) to the projective plane where
we can freely choose the image of the point corresponding to the kernel off . For the right
choice of this image we even get an epimorphism.
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4. A Geometric Characterization of the Standard Local Isomorphism fromH(F) to
PG(2,F)

Let π be the standard local isomorphism fromH(F) to PG(2,F). Let l be any line of
PG(2,F) and consider the inverse imageH underπ of l . Then this is a distance-3-spread
ofH(F) all elements of which lie in some 5-dimensional subspaceU of PG(6,F).

If l ′ is another line ofPG(2,F), and if H ′ is the corresponding distance-3-spread in the
hyperplaneU ′, then the inverse image of the pointL ∩ L ′ is the distance-3-ovoid ofH(F)
obtained by intersecting the quadricQ(6,F) with the spacesU andU ′. If U ∩ Q(6,F)
contained planes ofQ(6,F), thenU∩U ′ would contain lines ofQ(6,F) and hence points of
H(F) at distance≤ 4, contradicting the fact thatU∩U ′meetsQ(6,F) in a distance-3-ovoid
ofH(F).

The construction ofH with the subspaceU parallels the construction by Thas [16] of
Hermitian spreads in the finite case. We now show that this is a general fact (and note that
the proof in [16] relies heavily on finiteness; our proof provides an alternative argument in
the finite case).

PROPOSITION4.1 Let U be a hyperplane of PG(6,F) meeting the quadric Q(6,F) in a
quadric Q(5,F) which does not contain planes. Then the set H of lines of U contained in
H(F) forms a distance-2-spread of the generalized quadrangle Q(5,F), and a distance-3-
spread of the generalized hexagonH(F).
Proof. Let p be any point ofQ(5,F). We first show that there is a line ofH containing
p. Consider the planeP of Q(6,F) containing all lines ofH(F) through p (this exists,
see 2.4.16 of [19]). SinceQ(5,F) does not contain planes, it must meetP in a unique line
m ∈ H .

So we have already shown thatH is a distance-2-spread of the generalized quadrangle
Q(5,F). In order to show that it is a distance-3-spread ofH(F), we have, according to 7.2.2
of [19], to prove that every linen of H(F) is at distance≤ 2 from a unique element ofH .
If n lies inU , then this follows easily from the previous paragraph. Ifn is not contained in
U , then it has a unique pointx in common withU ; the unique linem throughx of H is at
distance 2 fromn and is unique with that property (again by the previous paragraph which
says thatH is a distance-2-spread ofQ(5,F)).

Any spread ofH(F) obtained as in the previous proposition will be called aHermitian
spread.

Similarly, we have:

PROPOSITION4.2 Let U be a four dimensional subspace PG(6,F) meeting the quadric
Q(6,F) in a quadric Q(4,F) which does not contain lines. Then the set O of points of
Q(5,E) forms a distance-3-ovoid of the generalized hexagonH(F).
Proof. Clearly no two points ofO can be collinear. Now letp be a point ofH(F) not in O.
The set of points collinear withp in H(F) is the point set of a projective planePG(2,F)
of PG(6,F) lying on Q(6,F). This plane meetsU in a unique point (otherwiseQ(4,F)
would contain at least one line), which belongs toO by definition. The result now follows
from 7.2.2 of [19].
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We call the ovoidO of the previous proposition aclassical ovoid.
We can now prove a characterization of the standard local isomorphism.

THEOREM4.3 LetP be a projective plane with point setP and line set L. Letρ be a local
isomorphism fromH(F) onto P. If all line fibers are Hermitian spreads, thenP is the
Pappian plane overF andρ = π is the standard local isomorphism.

Proof. Let S be any line fiber ofρ. By assumption all elements ofS are contained in a
fixed hyperplaneH of PG(6,F). Let S′ be a second line fiber, contained in the hyperplane
H ′ 6= H . Choose arbitrarily a linel ∈ S. SinceS′ is a distance-3-spread, there is a unique
elementl ′ ∈ S′ concurrent withl . let p be the intersection point ofl and l ′. The point
fiber containingp is contained in the 4-dimensional spaceH ∩ H ′. Hence it is easily seen
that every point fiber is a classical ovoid. Now letS′′ be a third line fiber contained in
the hyperplaneH ′′, H 6= H ′′ 6= H ′. Let PG(2,F) be the projective plane containing all
lines ofH(F) throughp. It meetsH ′′ in a line l ′′ of the quadricQ(6,F). Hence we can
identify the line fibers with the lines ofPG(2,F). Consider three line fibers corresponding
to concurrent lines inP. The fiber corresponding to the intersection point contains a point
p′ collinear with p, hencep′ ∈ PG(2,F). The three fibers now all contain a line through
p′, hence it is clear the three lines ofPG(2,F) corresponding to the three fibers as above
are collinear. This shows thatP is isomorphic toPG(2,F).

Now we claim that the four dimensional spaces of all point fibers and the hyperplanes
corresponding to all line fibers share a common fixed three dimensional spaceU . Indeed,
it is clear thatH ∩ H ′ ∩ H ′′ =: U is three dimensional (H ′′ does not containH ∩ H ′

becausep does not lie inH ′′). Let m be any line ofH(F) through p. Every element of
the line fiber containingm is incident with an element of the point fiber containingp, and
vice versa. Hence the hyperplaneHm containing all elements of the line fiber containingm
containsH ∩ H ′. Similarly, if m′ is a line ofPG(2,F) through the intersection point ofl
andl ′′, then the hyperplane containing all elements of the line fiber containingm′ contains
H ∩ H ′′. It follows that the four dimensional space corresponding to the point fiber of the
pointm∩m′ contains the space(H ∩ H ′)∩ (H ∩ H ′′) = U . Varyingm andm′, we see that
the four dimensional space corresponding to the point fiber of any point ofPG(2,F) not
on l ∪ l ′ ∪ l ′′ containsU . Also, the four dimensional space corresponding to the point fiber
of the pointm∩ l ′′ contains the spaceH ∩ H ′ ∩ H ′′ = U . So the four dimensional space of
the point fiber of every point ofl ′′ contains U; similarly for the point ofl ′ andl ′′. Hence the
space of every point fiber containsU . Since these spaces are intersections of hyperplanes
spanned by the line fibers, the claim follows.

But nowρ can be described as follows. Consider a linen ofH(F); consider intersection
of the hyperplane spanned by the line fiber ofn with PG(2,F): this line is the image ofn
underρ. But this coincides with the projectionπ(n) of n from U onto PG(2F).

The theorem is proved.

5. The Bödi-Kramer Theorem

This section serves as an addendum to the present article. It gives an entirely geometric
proof of Theorem 2.8 of B¨odi-Kramer [2] (as opposed to the original proof which uses a
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weak form of coordinates). However, we use complementary assumptions. Indeed, in [2],
the assumptions are thatφ is injective on at least one point row, and that the image is a
generalizedn-gon; one then immediately deduces in a geometric way thatφ is injective on
all point rows. So we assume the latter and weaken instead the second condition.

THEOREM5.1 A homomorphism between generalized n-gons that is point row injective
and the point-line image under which contains two opposite elements is injective.

Proof. Let φ be this homomorphism. If two objects have the same image underφ, then
considering a minimal chain connecting these objects, we see that there must be a subchain
xI yI z with φ(x) = φ(z). If y is a line, this is impossible by assumption. Hence it suffices
to show thatφ is line pencil injective.

First we show that, whenever two pointsφ(p) andφ(q) are opposite in the image ofφ,
thenφ is injective on the line pencil throughp. Indeed, suppose the linesl andl ′ through
p are mapped underφ onto the same line. Letm be the line incident withq and nearest to
l . If r is an arbitrary point onm, then the point onl ′ nearest tor must clearly be mapped
onto the point onφ(l ′) = φ(l ) nearest toφ(m), contradicting point row injectivity.

Let us call an ordinaryn-gon in the domain ofφ stableif it is mapped onto an ordinary
n-gon underφ. We show that there exists at least one stablen-gon. Indeed, this follows
from the previous paragraph if there are two opposite points in the image. Now letφ(l )
andφ(x) be two arbitrary opposite elements in the image ofφ with l a line. Thenl andx
are also opposite (φ diminishes distances). Sinceφ is injective on point rows, everyn-gon
throughl andx is stable. Notice thatφ is automatically injective on [x], i.e., the line pencil,
respectively point row ofx. Hence, in view of this and the previous paragraph, it suffices
to show that every point is contained in a stablen-gon.

Therefore, letp be a point collinear with a pointp′ contained in a stablen-gonA. If p
is incident with a linel of A, then we obtain a stablen-gon containingp by considering
the unique minimal path connectingp with the line (point, respectively) ofA oppositel .
Similarly, every linem throughp′ is contained in a stablen-gon (by also noticing thatφ(m)
is distinct from at least one of the images underφ of the lines ofA throughp′). Putting
pp′ = m, we see thatp is incident with a line of a stablen-gon, and hence is contained
itself in a stablen-gon by our previous argument. Continuing like that, we see that, by
connectedness, all points are contained in a stablen-gon.

The theorem is proved.

Remark 5.2. It is clear that the condition of point row injectivity in the previous theo-
rem cannot be dispensed with. But also the second condition is necessary, even under the
stronger condition of point row bijectivity, as one may project a quadric of Witt index 2
in a k-dimensional projective space from a(k − 2)-dimensional subspace not intersect-
ing the quadric onto a line of the quadric. More sophisticated examples arise from free
constructions.
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