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1. Introduction and Preliminaries

A generalized polygon is a thick incidence geometry of rank 2 such that the girth of the
incidence graph is twice the diameter of the incidence graph. These geometries are intro-
duced by Tits [17] for group-theoretical purposes, but became an interesting research object
in their own right. For an overview of the geometric study, see [19].

Obviously, the notion of morphism is an important one when dealing with geometries. For
instance, monomorphisms are equivalent to embeddings of one geometry into the other (and
on the group-theoretical level often give rise to maximal subgroups); isomorphisms clearly
are needed to distinguish new geometries from old ones, but also to determine automorphism
groups; epimorphisms can be used to construct quotient geometries or cover geometries (as
the geometric counterpart of local fields). But in all these cases, the geometries considered
in the literature are of the same kind, i.e., they have same gonality and diameter. In the
present paper, we initiate the study of morphisms between generalized polygons of unequal
gonality. We restrict ourselves to epimorphisms since we are motivated by some nice
examples in this case. The study of monomorphisms and embeddings requires different
techniques.

To see the problem, a good starting point is Pasini's theorem [13] that states that any
epimorphism between two generalizeeons,n > 2, is either an isomorphism or has
infinite fibers. In particular, if an epimorphism is bijective if restricted to one point row,
then itis a global isomorphism. This is no longer true for epimorphisms from a generalized
m-gon to am-gon,m # n, and a standard example is given is Section 3 below. It describes
an epimorphism from the classical split Cayley hexagon over someHiadhe ordinary
Pappian projective plane ové@r with the property that line pencils and point rows are
mapped bijectively onto line pencils and point rows, respectively.

The paper is organized as follows. In section 2, we propose a quite general classifica-
tion system for epimorphisms of geometries, from the local point of view. In the next
section, Section 3, we give some examples, and we characterize geometrically our stan-
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dard example mentioned above in Section 4. Finally, in Section 5, we give an alternative
proof using ideas of the present paper to show part of a well know resulbdif &id
Kramer [2].

The paper will have a sequel. In [7], we will treat free constructions (providing many
more examples) and the finite case (mostly non-existence results).

Let’s get down to precise definitions.

A generalizedm-gon‘ is a thick point-line geometrgP, £, F) with an incidence graph
of diameterm and girth 2n. For a generalizedh-gon (P, £1, 1) and a generalized-
gon (P,, Lo, F2) ahomomorphism ¢: (Py, L1, F1) — (P2, Lo, F») is a function that
maps points to points, lines to lines, and preserves incidence, i.e. fqpahye F; we
have(¢(p), ¢ (1)) € (¢ x ¢)(F1) € Fo. Thedual homomorphism ¢94@ is the mapping
(L1, P1, FiH) — (L2, P2, F5'Y) defined byp?@ 5, : = ¢|p, andp®¥@| .,: = |, between
the dual polygons.

Monomorphisms, isomorphisms and epimorphisms are always meant to be injective,
bijective and surjective, respectively, on the point set, the line set and the flag set.

For a generalized-gonp and an integen < [7] a distancen-ovoid O, is a set of
points of3 that are at distance 2n from each other with the property that given any vertex
x of P there is a point o0, with distance< n from x. Dually, adistancen-spreadis
defined. Sometimes, if is clear or not important, we will omit the distance and just write
ovoidsor spreads

Given a partition® of the point set and a partitio§ of the line set of some point-line
geometry, we define thguotient geometry as the geometryO, S, F) with the induced
incidence, i.e(O, S) € F if and only if there is a point o incident with a line ofS;
then we also writeOl S. If Ol S such that there exist unique € O andl € S with
pl |, then we sometimes writ®I ;S and callO and S uniquely incident. Clearly, the
canonical map from a geometry to a quotient is an epimorphism between these incidence
structures.

A partition of 3 into ovoid-spread pairingsis a partition of the point set into ovoids
and of the line set into spreads, such that given any incident ovoid-sprea®p&r ({n
the quotient geometry) any point 6fis incident with some line adand vice versa (in the
original geometry).

2. Classification and Characterization

In this section we give a classification of epimorphisms between generalized polygons.
The epimorphisms are classified by their properties restricted to the points, the lines, the
flags, the point rows, and the line pencils. Then in 2.3, 2.4, and 2.5 we characterize the
epimorphisms by describing the geometrical structure of the preimages of single vertices
under these epimorphisms.

In the classification we distinguish between injectivity, surjectivity(s), bijectivity (b),
and neither of thosé—). A homomorphism is 12345 with, 2,3, 4,5 € {i, s, b, —}, if it
is 1, 2, 3,4, 5 restricted to the points, lines, flags, point rows, and line pencils, respectively.
Sometimes, we write, if we do not know the property or if we do not want to specify.
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We call a homomorphisrstrictly 12345, if it is 12345, but does not satisfy any additional
condition (i.e., no surjection or injection is bijective).

The following theorem, in fact, holds for any epimorphism between any two point-line
geometries, but we will only state it for generalized polygons.

THEOREM 2.1 Any epimorphism between generalized polygiasand 3, is one of the
following types:

(i) bbbbb, i.e. ansomorphism,
(i) bsbib,

(iii) sbbbi, which is dual to bsbib,
(iv) sshii,

(v) bssis,

(vi) sbssi, which is dual to bssis,
(vii) sSSx.

In case (vii) there are the possibilities sss-, sssi—, ssss-, sssb-, SSs— i, SSSi—,
ssssi, sssbhi, ssss, sssis, sssss, sssbs,sbssssib, ssssh, sssbb.

Proof. The case “strictlypbbs««” cannot occur, as point and line bijectivity imply flag
injectivity.

We show thabssxxx implies bxxis, that xbxxx implies xbxsi and thatsxbxx implies
xxbii. Clearly, a point (line) bijective homomorphism has to be point row (line pencil)
injective. Also a flag bijective homomorphism has to be point row and line pencil injec-
tive, since otherwise we would obtain flags having the same image. Moreover, suppose
we have a point bijective epimorphisgnthat is not line pencil surjective. Then for a
point p of 1 there exists a linen € [¢(pP)]\¢([p]). Considering this line, we see a
contradiction against point bijectivity, as a point distinct pimaps ong (p), since the
flag (¢ (p), m) has to have a preimage. Dually, we prove the statement for line bijective
epimorphisms.

Now we show thabsxbx impliesbb«bx, that«xbsxxb impliesbbx«xb, thatxxbbx implies
xbbbx and thatxxbxb implies bxbxb. Let ¢ be a point bijective and point row bijective
epimorphism. If¢ is not line injective, there exist lindsg, |, of 31 with the same image
underg. By point row surjectivity, we find points opa(I1) which have two distance points
in their preimage, a contradiction. Dually, for line bijective epimorphisms. The same proof
holds for a flag bijective homomorphism.

Putting everything together still leaves to disprove existence of sthetyband strictly
sbsbi Suppose a strictligssibhomeomorphism exists. Then we have flagsl), (p', ")
with the same image. By point bijectivity we gpt= p’, but this gives a contradiction
against line pencil bijectivity. Dually, we also exclude strictlysbi ]
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Epimorphisms between generalized polygons are either gonality preserving or gonality
decreasing. More precisely, we have

COROLLARY 2.2 Any homomorphism belonging to one of the cases (ii), (iii), (iv), (v) or (vi)
is gonality decreasing. Moreover, any gonality preserving strict epimorphism is sss
SSSs-, SSS-S, or sssssvith nonfinite preimage.

Proof. All other epimorphisms are either point row or line pencil injective, hence injective
by [2] (or by Theorem 5.1 below) if they are gonality preserving. Moreover, by [13] there
are no gonality preserving proper epimorphisms with finite preimage. ]

The following theorems give geometrical characterizations of the interesting cases of
epimorphisms between generalized polygons, i.e. of c@8e® (vi) and sssbbof (vii)
of 2.1:

THEOREM2.3 Let2 < n < m. The existence of a (strictlgssbbthomomorphism from an
m-gonf3; onto an n-gori3; is equivalent to the existence of a partition of the point and
line sets of3; into distance-n-ovoid spread pairings.

Proof. Assume that the generalizedgon ‘R allows a partition into distance-ovoid-
spread pairings. First, we have to show that the quotient geometry is a genenatjpad
Indeed, its diameter is at most as we are considering distaneesvoids and distance-
n-spreads in3;. To establish diametar and girth 2 it suffices to rule out the existence
of ordinary polygons of gonalitp’ < n. But if there was an ordinamy’-gon, we would
either obtain an ordinarg’-gon in‘B; or two verticesx, y with d(x, y) < 2n’ < 2n and
¢ (X) = ¢(y), both of which is impossible. Thickness is inherited.

Now we have to prove that this epimorphism is of tssbb Indeed, it is neither point
nor line nor flag injective (since we have ovoid-spread pairings), but injective on each point
row and each line pencil. But again since we have ovoid-spread pairings the epimorphism
is also surjective on each point row and each line pencil.

Conversely, supposgis a homomorphism of the given type. Verticesy of 31 belong-
ing to the same preimage undgthave to be at distance 2n, since otherwise we find a
chain fromx to y that “collapses” undeg (i.e. the image does not contain any ordinary
polygon) to avoid an ordinary polygon in the image with gonadity. But if the chain col-
lapses, then two confluent lines or two collinear points have the same image, contradicting
the point row or the line pencil bijectivity. Now take two non-opposite verticegin B,
There exists a chain of length n from x to y which we can lift to3;. There, by line pencil
and point row bijectivity, we obtain a set of pairwise disjoint chains from vertices &fx)
to vertices ofp~(y) of the same length. This proves that for any veaenf 3; and any
vertexx of 93, there either exists a unique vertiexe ¢~1(x) at a distance< n from a or
there exist verticeb € ¢ 1(x) at distancen from a. Hence the preimages are distamze-
ovoids and -spreads, cf. Lemma 7.2.2 of [19]. Lifting chains in the speciahtasgives
pairings. ]

THEOREM2.4 Let2 < n < m. The existence of a (strictly) bshgsbii or sbbbi homo-
morphism from an m-gof$; onto an n-gon; is equivalent to the existence of a partition
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O of the point set ofg; into sets Q of points mutual at distance 2n and of a patrtition
S of the line set off3; into sets $ of lines mutually at distance 2n, «, 8 € | for some
index set |, with the following properties:

(i) Ifnodd,

Q

e for any two points pg there exist k unique sets; |
and k— 1 unique distance sets; 9 < j < k-1
01115110l ---gl1&-11 10k 3 q;

o for any two lines xy there exist k unique distinct sets $< j <k < ”%1 +1,
suchthat xe §1 1011 /Sl -+ 1101l 1& € g.

(i) If n even, for any point p and any line x there exist k unique distinct sgts O
1 <i < k < 3, and k unique distinct sets;S1 < j < k < 3, such that

pe O 1§10l --- 110l & 3 X

More precisely, we have bsbib if and only®,| = 1 for all « and sbbbi if and only if
|S| = 1for all g and sshii otherwise.

Proof. Suppose we have a partition of the points and lineg pivith the given properties.
The map3; — (O, S, F’) to the quotient geometry is an epimorphism. We will prove
that the image is a generalizeegon. For sure, the diameterdsn (since; + 5 =n =
%1 + %1 + 1), hence it remains to prove that there are no ordinary polygons of gonality
< n. Thickness is inherited. Indeed, if we had an ordinary polygon of gondlity n we
would find verticex, y of appropriate type (i.e. both points or both linesriardd; one line,
one point fom even) that have two’-chains, respectively on@ — 1)- and one(n’ + 1)-
chain connecting them, namely the two parts of the ordinary polygon, a contradiction since
n <n.

It remains to show that the obtained epimorphignbetween polygons is of one of
the given types. But the homomorphism is clearly flag injective, as flagg), (X', y),
x # X/, y # y' cannot have the same image, since otherwise the preimadés(x)) and
¢~1(¢(y)) would not be uniquely incident; other flags cannot have the same image because
vertices belonging to the same set of the partition are mutually at distaBone> 4. Hence
the homomorphism is even flag bijective, thus the classification 2.1 proves the claim, since
the homomorphism obviously is not an isomorphism.

Conversely, suppose we have a homomorphkissfione of the given types. We claim that
the preimages form a partition of the points and lines of the given shape. We prove things
only for n even, the other case being similar. Take any pgiaind any linex in §3;. In
the imageg (p) and¢ (x) have a unique chaig(p) = p1l X1l pal -+ -1 pxl Xk = @ (X) of
length at mosh — 1 (i.e. 1< k < 3) connecting them. We claim that the sets of preimages
of all the vertices contained in this chain satisfy the above condition. Clearly, there is but
one such chain and the inequalities for the indices are satisfied. Now we show the unique
incidence. But by flag bijectivity we can lift any flag; x;), j € {i — 1, i} uniquely, hence
the claim. Vertices belonging to the same set of the partition have to be mutually at distance
> 2n. For, let otherwise be&, y be two distinct vertices contained in the same set of the
partition at distances 2n. We find a chain fronx to y that has to collapse under(i.e. the
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image does not contain any ordinary polygon), since otherwise we would obtain an ordinary

polygon in the image with gonalitg n. But collapsing of the chain is impossible, since

two confluent lines or two collinear points cannot have the same image by flag bijectivity.
Finally, the last statement is obvious. [ |

THEOREM2.5 Let2 < n < m. The existence of a (strictly) bssis homomorphism from an
m-gon$3; onto an n-gor; is equivalent to the existence of a partitiSrof the line set of
B, into setsS,, « € | for some index set |, with the following properties:

(i) Ifnodd,

e for any two points pq there exist k unique pointsj,pl < i < k < ”;2.1 +
1, and k— 1 unique distinct sets;S1 < j < k-1 < “%1 such that xe
Sl p2l oo Sl pe=0q;

o for any two lines xy there exist k unique distinct sets $< j <k < ”—51 +1,
and k— 1 unique distinct points pl < i < k-1 < ”;21 such that p=
pu Sl pul SI -1 -1l S 3 Y,

e there exists a set,Sontaining two confluent lines.
(i) Ifneven,

e for any point p and any line x there exist k unique distinct points1p <

i < k < 3, and k unique distinct sets,SL < j < k < 3, such that p=

pal Sl p2l -1 pl & 2 X5
o there exists a set,ontaining two confluent lines.

The dual statement holds for shssi homomorphisms.

Proof. Given a partition of the lines with the above properties, the canonical map from
3, onto its quotient geometry is an epimorphism. The proof that the quotient geometry is
a generalized-gon is similar to that of Theorem 2.4 (note that the uniqueness gfitie
responsible for the nonexistence of ordinary polygons with too small a gonality). By the
classification 2.1 the type of the epimorphisnbissih since it is point bijective and not
flag injective.

Conversely, we only have to prove the existence of &sebntaining two confluent lines,
the remainder being as in the proof of Theorem 2.4. But this is an immediate consequence
of point bijectivity and flag non-injectivity.

The statement about duality is obvious. ]

COROLLARY 2.6 Strictly bshih ssbii, sbbbi sssbbhomomorphisms from an m-gontoand
n-gon only exist for n< [7]. [

Remark 2.7.

(i) There are examples for all classes of epimorphisms between generalized polygons as
described in Theorem 2.1. In section 3 we give some concrete examples. Moreover,
see [7] for some general existence and non-existence results.
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(i) The sssbbepimorphisms are covers in geometrical sense.sgésbbepimorphism
from anm-gon to ann-gon maps the set of vertices at distancen — 1 from any
vertexx bijectively onto the set of vertices at distancen — 1 from the image ok.
We call themlocal isomorphisms

(i) Note that in case obsbily/sbbbionto a digon (i.en = 2) the sets§ and G; are
distance-2-spreads and distance-2-ovoids, respectively. Indeeshbbi, if we fix
somei each line is incident with a unique vertex ©f.

(iv) Corollary 2.6 does not hold fd¥ssis It is quite easy to constructtessishomomor-
phism from a projective plane to a digon. Indeed, it suffices to find a partition of the
line set of the plane in at least three dual blocking sets (a dual blocking set is just a set
of lines covering all points of the plane). The digon then is the quotient geometry.

(v) Since any homomorphism between two generalized polygons factors into an epimor-
phism and an embedding, it would be natural to look at embeddings of polygons. Of
course, with free constructions (cf. [18]) it is possible to embed polygons of different
gonality in each other. The easiest embeddingisL, F) — (P, L, P x L).

3. Concrete Examples

In this section we present some “nice” examples. With “nice” examples we understand
finite, continuou®r usingclassical objectsuch as classical ovoids and spreads. All the
other examples we are aware of involve some free construction and will be given in [7].

Example 3.1. This first example was the origin of our research which resulted in this
article. It was first mentioned in [6].

Consider Tits’s description of the split Cayley hexagon (see e.g. [17]). The poiRt&df
are the points of the quadrig(6, F) in PG(6, F) given by XoXs + X1 X5 + X2 Xg = X%,
whereF is a (commutative) field. From the Grassmann coordinates of the lines, it is easily
seen that each point star has (algebraic) dimension 3, i.e., the point stars form point sets of
(Pappian) projective planes.

Now we project the points of{ into the subspace given bYyp — X4 = 0, X1 — X5 =
0, X, — Xg = 0, andX3 = 0: map a point(Xg : X1 : X2 : X3 : X4 : Xs : Xg) ON
(Xo + X4 : X1+ X5 : X2 + Xg). Obviously, this defines a projection of the points, but it
does not necessarily map points to points.

However, if—1 is not the sum of three squares in the fiBldthis projection defines a
homomorphism from the split Cayley hexagon into the projective plane. Indeed, a point is
mapped on a point, ag + X4 = X1 + X5 = X2 + Xg = 0 impliesx3 + X7 + x5 + x3 = 0
which in the considered fields is equivalent¢p= x; = x, = x3 = 0. Lines are mapped
on lines, as they are linearly spanned by two collinear points and no two collinear points
have the same image. (Otherwise, leindq be two collinear points withe (p) = 7(q).
Thenp — q is a point of H(IF) which is mapped to 0.) Obviously, incidence is preserved.

Moreover, the restriction of to some point star is injective by the same reasoning as
in the above paragraph, since for any two poiptg of one point star als@ — q is a
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point of the same star. By dimension, this means thataps any point star bijectively
on the point set of a projective plarfeG(2, F). This then implies bijectivity on point
rows and line pencils. For being a local isomorphism it remains to show thais flag
surjective. We will make use of the point surjectivityof fix any pointp in PG(2, F),
take a point of the preimage and consider the point star of this preimage. The algebraic
dimension of this point star is 3, and bijectivity af restricted to point stars implies
that any line througlp is an image underr. But this gives flag surjectivity. Hence
is a local isomorphism. We call this ttetandard local isomorphism from H(IF) to
PG(2, F).

The original construction of, however, was made by means of algebra. We will now
give a sketch: The split Cayley algebra of octatiers defined as the set of matrices

v (2 b
“\cd
wherea, d € F andb, ¢ € F® with F being a field. LetD be equipped with the usual

eight dimensional vector space structure dv@nd the following multiplication (wherg
denotes the standard outer product addnotes the standard inner product)

Xy — a b\ /a b
y = c d/\c d

aa —b-c ab+db+cxc
ac+dd+bxb dd —c-b

which makes it an algebra ovEr

H:={x € O | a=d,b = c}is asubalgebra af isomorphic to Hamilton’s (split)
guaternions. Moreover, if the characteristiclofs not 2, then forv = (01701) we have
O =Ho vH.

The incidence geometi (F) = (P, L, €) with the point sefP = {xF|x € O, x, = 0}
andthe setofline§ = {xF+yF|xF, yF € P, xy = 0}, i.e. the point-line geometry consist-
ing of the one dimensional and two dimensional subspac@svath trivial multiplication,
is the split Cayley hexagon.

Now if —1 is not a sum of three squareshnthe projection

7. HF) - PG2,F) : XF > b F

with x = (%1%) + (g gz) mapping a point of the split Cayley hexagon into the projective
plane oveif defines a local isomorphism.
The construction of the split Cayley hexagon as given above can be found in [3], the

algebraic proof forr being a local isomorphism in [6].

Example 3.2. The following examples arise from work of Linus Kramer who in [10] gives
compact quadrangles with a partition of the point space into compact ovoids and a partition
of the line space into compact spreads. Our job is just to apply Theorem 2.3. We will give
a short summary of the results.
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LetF = R, C, H and letV be anlF-vector space of dimensian+ 1. Moreover, letf
be ac-hermitian form of Witt index 2 o’/ whereo: x — X is the standard involution
of F. The geometry of totally isotropic subspaces defines the classical standard hermitian
quadrangles.

For any 0# X = (o, X1, 0) € V (relative to a basigey, ..., e,} with f being positive
definite on théf-linear span ofey, . . ., e,}) we have a hyperplarg = {v € V|f (v, X) =
0} and the seOy, = {p € P|f(p, x) = 0} is an ovoid, the Thas ovoid. Indeed, every line
of the quadrangle meets the hyperplahgin a point of the quadrangle) and the hyperplane
does not contain a line of the quadrangle fés, .1, has Witt index 1. Moreover, any two
distinct Thas ovoids have trivial intersection, as the two corresponding hyperplanes do not
have any nonzero totally isotropic subspaces in common. Finally, since for anyppoint
the quadrangle there is an®x = (Xg, X1, 0) with f(p, X) = 0, we can cover the whole
point set by Thas ovoids, and we have a partition.

So, especially the classical quadrangl@sR), Qq(R), H3(C) and Hs(C) admit parti-
tions of the point set into ovoids. BYs(R)%@ = H;(C), we also have a partition of the line
set of these two quadrangles into spreads, hence (by distance 2) a partition into ovoid-spread
pairings. ForQg and Hs(C) we will use the isomorphism@g(R)%a = FK M (6, 8) and
Hs(C)%a = FK M(5, 8) whereF K M denote the Clifford quadrangles, see e.qg. [5] or [11].
In [11] it is also shown that the point space of the Clifford quadrangles can be partitioned
into ovoids.

This gives the following: the generalized quadrang@sR), Qq(R), H3(C), H5(C),
FKM(5, 8), and FK M (6, 8) admit a partition into ovoid-spread pairings, hence there
exist local isomorphisms from these quadrangles into generalized digons.

Example 3.3. Another example was pointed out to us by Jef Thas. Consider the gen-
eralized quadrangl&; (O). To construct this, cf. [1] or [8], leD be a complete oval of
PG(2,q),q = 2", and embed G(2, ) as a planeé® in PG(3, ). The incidence geom-
etry T,/ (O) consisting of the points d® G(3, ) not in P and the lines oP G(3, ) not in

P meetingO is a generalized quadrangle with paramegetsq — 1,t = q 4+ 1. The set

of all lines of T;*(O) meeting in a unique point dd form a spread (no two lines intersect
and each point lies on one such line) and all such spreads partition the line set. Fixing
a line in P not meetingO the set of all (hyper)planeld distinct from P gives rise to a
partition of the point set into ovoids. Clearly, one such plane establishes an ovoid (no two
points are collinear and each line contains such point) and the planes do not have points in
common.

Example 3.4. We finish this section with a nice example of a class®§— — epimor-
phisms from the symplectic quadrangle to the projective plane. It was suggested by Theo
Grundlofer. Take a (commutative) fieldland letf: F* — [F3 be a linear projection with

one dimensional kernel. This gives rise to a homomorphism from the symplectic quadrangle
W (F) (the geometry consisting of the totally isotropic one and two dimensional subspaces
of F* of the bilinear formxoy; — X1Yo + X2Y3 — X3Y2, cf. [14]) to the projective plane where

we can freely choose the image of the point corresponding to the keriielredr the right
choice of this image we even get an epimorphism.
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4. A Geometric Characterization of the Standard Local Isomorphism fromH(IF) to
PG(2F)

Let 7 be the standard local isomorphism fraf(IF) to PG(2, F). Letl| be any line of
P G(2, F) and consider the inverse imageunderr of I. Then this is a distance-3-spread
of H(IF) all elements of which lie in some 5-dimensional subspaas P G(6, IF).

If I” is another line ofP G(2, IF), and if H' is the corresponding distance-3-spread in the
hyperplandJ’, then the inverse image of the pointh L’ is the distance-3-ovoid df((IF)
obtained by intersecting the quadi@(6, IF) with the spacet) andU’. If U N Q(6, F)
contained planes @) (6, IF), thenU NU’" would contain lines 0Q (6, IF) and hence points of
‘H(F) at distance< 4, contradicting the fact that NU’ meetsQ(6, IF) in a distance-3-ovoid
of H(F).

The construction oH with the subspact) parallels the construction by Thas [16] of
Hermitian spreads in the finite case. We now show that this is a general fact (and note that
the proof in [16] relies heavily on finiteness; our proof provides an alternative argument in
the finite case).

ProOPOSITION4.1 Let U be a hyperplane of P@, F) meeting the quadric &, F) in a
quadric Q(5, F) which does not contain planes. Then the set H of lines of U contained in
H(F) forms a distance-2-spread of the generalized quadranglg ®), and a distance-3-
spread of the generalized hexaghfiF).

Proof. Let p be any point ofQ(5, F). We first show that there is a line &f containing
p. Consider the plan® of Q(6, F) containing all lines ofH () through p (this exists,
see 2.4.16 of [19]). Sinc®(5, ) does not contain planes, it must mé&ein a unique line
me H.
So we have already shown thidtis a distance-2-spread of the generalized quadrangle
Q(5, F). In order to show that it is a distance-3-sprea@{oF), we have, according to 7.2.2
of [19], to prove that every lina of H(F) is at distance< 2 from a unique element dfl .
If nlies inU, then this follows easily from the previous paragrapm i$ not contained in
U, then it has a unigue pointin common withU ; the unique linen throughx of H is at
distance 2 fronm and is unique with that property (again by the previous paragraph which
says thaH is a distance-2-spread Qf(5, F)). ]

Any spread ofH(IF) obtained as in the previous proposition will be calleldermitian
spread
Similarly, we have:

ProOPOSITION4.2 Let U be a four dimensional subspace F85F) meeting the quadric
Q(6, F) in a quadric Q4, F) which does not contain lines. Then the set O of points of
Q(5, E) forms a distance-3-ovoid of the generalized hexatygR).

Proof. Clearly no two points oD can be collinear. Now legp be a point ofH(IF) notin O.
The set of points collinear witlp in H(F) is the point set of a projective plareG(2, IF)
of PG(6, F) lying on Q(6, IF). This plane meetd in a unique point (otherwis® (4, F)
would contain at least one line), which belongsadoy definition. The result now follows
from 7.2.2 of [19]. ]
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We call the ovoidD of the previous proposition @assical ovoid
We can now prove a characterization of the standard local isomorphism.

THEOREM4.3 Let‘P be a projective plane with point setand line set L. Lep be alocal
isomorphism fron#(F) onto*B. If all line fibers are Hermitian spreads, théefi is the
Pappian plane oveF andp =  is the standard local isomorphism.

Proof. Let Sbe any line fiber ofp. By assumption all elements &are contained in a
fixed hyperplanéd of PG(6, F). Let S be a second line fiber, contained in the hyperplane
H’ # H. Choose arbitrarily a linee S. SinceS is a distance-3-spread, there is a unique
element’ € S concurrent withl. let p be the intersection point dfandl’. The point
fiber containingp is contained in the 4-dimensional spaden H’. Hence it is easily seen
that every point fiber is a classical ovoid. Now I8t be a third line fiber contained in
the hyperplandH”, H = H” # H’. Let PG(2, F) be the projective plane containing all
lines of H(IF) throughp. It meetsH” in a linel” of the quadricQ(6, F). Hence we can
identify the line fibers with the lines @ G(2, ). Consider three line fibers corresponding
to concurrent lines if3. The fiber corresponding to the intersection point contains a point
p’ collinear withp, hencep’ € PG(2, F). The three fibers now all contain a line through
p’, hence it is clear the three lines BiG(2, F) corresponding to the three fibers as above
are collinear. This shows thgt is isomorphic toP G(2, ).

Now we claim that the four dimensional spaces of all point fibers and the hyperplanes
corresponding to all line fibers share a common fixed three dimensional 9pdoeeed,
it is clear thatH N H' ' N H” =: U is three dimensional{” does not contaird N H’
becausep does not lie inH”). Letm be any line of H(F) throughp. Every element of
the line fiber containingn is incident with an element of the point fiber containipgand
vice versa. Hence the hyperplaHg, containing all elements of the line fiber containimg
containsH N H’. Similarly, if m' is a line of PG(2, F) through the intersection point bf
andl”, then the hyperplane containing all elements of the line fiber contamirmgntains
H N H”. It follows that the four dimensional space corresponding to the point fiber of the
pointmNm’ contains the spagdH NH")N(HNH"”) = U. Varyingmandm', we see that
the four dimensional space corresponding to the point fiber of any poiRGiR, F) not
onl Ul"Ul” containdJ. Also, the four dimensional space corresponding to the point fiber
of the pointmN1” contains the spadd N H’'NH” = U. So the four dimensional space of
the point fiber of every point df’ contains U; similarly for the point df andl”. Hence the
space of every point fiber contaibk Since these spaces are intersections of hyperplanes
spanned by the line fibers, the claim follows.

But nowp can be described as follows. Consider a lingf H(F); consider intersection
of the hyperplane spanned by the line fibenafith PG(2, F): this line is the image off
underp. But this coincides with the projection(n) of n from U onto P G(2F).

The theorem is proved. ]

5. The Bodi-Kramer Theorem

This section serves as an addendum to the present article. It gives an entirely geometric
proof of Theorem 2.8 of Bdi-Kramer [2] (as opposed to the original proof which uses a
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weak form of coordinates). However, we use complementary assumptions. Indeed, in [2],
the assumptions are thatis injective on at least one point row, and that the image is a
generalizeah-gon; one then immediately deduces in a geometric waygtlisinjective on

all point rows. So we assume the latter and weaken instead the second condition.

THEOREM5.1 A homomorphism between generalized n-gons that is point row injective
and the point-line image under which contains two opposite elements is injective.

Proof. Let ¢ be this homomorphism. If two objects have the same image ufdden
considering a minimal chain connecting these objects, we see that there must be a subchain
X1 yl zwith ¢ (X) = ¢(2). If yis aline, this is impossible by assumption. Hence it suffices
to show that is line pencil injective.

First we show that, whenever two poimigp) and¢ (q) are opposite in the image ¢f
theng is injective on the line pencil througp. Indeed, suppose the lineandl’ through
p are mapped under onto the same line. Leh be the line incident witly and nearest to
[. If r is an arbitrary point om, then the point o’ nearest t& must clearly be mapped
onto the point o (I") = ¢ (I) nearest t@ (m), contradicting point row injectivity.

Let us call an ordinarp-gon in the domain o$ stableif it is mapped onto an ordinary
n-gon underp. We show that there exists at least one stabipn. Indeed, this follows
from the previous paragraph if there are two opposite points in the image. Naewd Jet
and¢ (x) be two arbitrary opposite elements in the image afith | a line. Therl andx
are also oppositep(diminishes distances). Singds injective on point rows, eveny-gon
throughl andx is stable. Notice thag is automatically injective onq], i.e., the line pencil,
respectively point row ok. Hence, in view of this and the previous paragraph, it suffices
to show that every point is contained in a statigon.

Therefore, letp be a point collinear with a poirp’ contained in a stable-gon A. If p
is incident with a lind of A, then we obtain a stable-gon containingp by considering
the unigque minimal path connectiqgwith the line (point, respectively) afl oppositel.
Similarly, every linemthroughp’ is contained in a stable-gon (by also noticing that (m)
is distinct from at least one of the images ungeof the lines ofA through p’). Putting
pp = m, we see thap is incident with a line of a stabla-gon, and hence is contained
itself in a stablen-gon by our previous argument. Continuing like that, we see that, by
connectedness, all points are contained in a staigien.

The theorem is proved. [ |

Remark 5.2.1t is clear that the condition of point row injectivity in the previous theo-

rem cannot be dispensed with. But also the second condition is necessary, even under the
stronger condition of point row bijectivity, as one may project a quadric of Witt index 2

in a k-dimensional projective space from(l — 2)-dimensional subspace not intersect-

ing the quadric onto a line of the quadric. More sophisticated examples arise from free
constructions.
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