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Abstract. From an elementary observation, we derive some upper bounds for the number of mutually opposite
points in the classical generalized polygons having 3 points on each line. In particular, it follows that the Ree-Tits
generalized octagd@(2) of order(2, 4) has no ovoids. Also, we deduce from another observation a similar upper
bound in any generalized hexagon of or¢ers®).
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1. Introduction and statement of the main result

A generalized polygoilr of order (s, t) is a rank 2 point-line geometry whose incidence
graph has diameter and girth 2, for somen € N\{0, 1} (in which case the generalized
polygon is also calledgeneralized n-gopneach vertex corresponding to a point has valency
t+1 and each vertex corresponding to a line has valeady Ifs, t > 1, thenthis geometry

is usually calledhick. Each non-thick generalized polygon can be obtained from a thick one,
and so one usually only considers thick generalized polygorss=I2 andt > 1, then we

call the generalized polygmiim. Generalized polygons were introduced by Tits [8]. More
information is gathered in the monograph [9], to which we refer for a general introduction
and basic properties. Here, we recall some notation. For an elentdiit, and a natural
numberi, we denote by'; (X) the set of elements df at distance from x in the incidence
graph ofl". The distance function in that incidence graph is denotedl liftwo elements

x andy are not at distance, then there exists a unique element pxdpcident withy and

at distancé (x, y) — 1 fromx. We call that element therojection of x onto y Also recall

that thedual of T is obtained by interchanging the words “point” and “line”. The dual of a
generalized-gon is obviously again a generalizadjon. Two elements at distanoeare
calledopposite Now we call a set of mutually opposite pointpartial ovoid An ovoid

O inT is a partial ovoid such that every elementois at distance at most/2 from some
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element of0. Clearly ovoids in this sense only exist in generalinegons withn even. In
the finite case, this implies that= 4, 6, 8 [4].

Now letT" be a finite slim generalizeatgon,n € {4, 6, 8}. Forn = 4, this means thdt
has order2, 2) or (2, 4) and there exist unique examples in each case (see [6](6.1)), denoted
by W(2) (asymplectic quadrang)eandQ(5, 2) (anorthogonal quadranglerespectively.
Forn = 6, I" has ordel(2, 2) or (2, 8) and there exist exactly two examples in cé3€2)
(each one dual to the other) and one example in the @ (see [3]), and these are
denoted byH(2) (asplit Cayley hexagonH(2)P (the dual of the previous one) aiid2, 8)
(atwisted triality hexagop Forn = 8, the order is necessarilg, 4), and there is such an
example (the Ree-Tits octag@{2)), but it is not yet known to be unique.

The first aim of the present paper is to derive some upper bounds for the number of points
of a partial ovoid inC". A trivial upper bound is the number of points of an ovoid. Hence, if
I" admits ovoids, then the trivial upper bound can be reached and nothing else can be said.
This is the case fow(2) (ovoids have 5 points) and fét(2)P (ovoids have 9 points) and
this is well known (see Chapter 7 of [9] for more details).

Our first main result reads as follows.

Theorem 1 If T" contains a partial ovoidwith T" € {Q(5, 2), H(2), T(2, 8), 0(2)}, then
the number k of points of that partial ovoid satisfies
(i) k<7ifT =Q(5,2);
(i) k<7if T =H(2);
(i) k< 27ifI' = T(2, 8) (but see Theorerd);
(iv) k <27ifI' = 0O(2).

Note that the upper bound i) is worse than the upper boutkd< 6 following from
2.7.1 of [6]. Regarding caséB), (iii) and(iv), the previously known upper bounds were
respectivelyk < 8,k < 43 andk < 65. The first one follows from the fact that there are
no ovoids inH(2) (see [7]); the second one follows from an elementary counting argument
(see 7.2.3 of [9] or below); the third one follows from the fact that an ovoi@({®) must
contain 65 points (see also 7.2.3 of [9]). Hence cagesand (iv) of our Main Result
are drastic improvements of the earlier bounds (and there is a further improventgint of
below). Also, the nonexistence of ovoids@i2) is the first result on existence of ovoids
in general in finite generalized octagons. It suggests the conjecture that no finite Ree-Tits
octagon has an ovoid.
Now let " be a generalized hexagon of orders®). Examples are the dual twisted
triality hexagonsT (s, s%); see [8] (we use the notation of [9]; in the literature, this hexagon
is sometimes called thD4(s)-hexagon). Itis well known thdt cannot have an ovoid (see
7.2.4 of [9]), and that an upper bound for the maximal number of mutually opposite points
in T is given by the largest integer smaller than
(s+1i(ss+s4+1) Sy ?osa 28?2 +2s4+1
st+s+1 st+s+1

which iss® + s* — s2 — sif s > 2. Fors = 2, this is 43. Our second main results reads as
follows.



PARTIAL OVOIDS IN GENERALIZED POLYGONS 109

Theorem 2 LetI be a generalized hexagon of ordsr s%), for some integer s- 1. Then
a partial ovoid has at mosPs- s* +s— 1 points. In particular putting s= 2, the hexagon
T(2, 8) has no partial ovoids of size k¥ 26, thus improving the bound of Theoreiiii )
by 2.

2. Proof of Theorem 1

The crucial observation is contained in the next lemma. We first need a definition. A
generalized polygon is fully embeddedh a projective spacBG(d, K) if the point set of

I" is a subset of the point set BIG(d, K), and if for each lineL of I, the set of points of

[ incident withL forms a (complete) line d?G(d, K).

Lemmal LetI be aslim polygon fully embedded in the finite projective sjpeel, 2)

over the Galois fiel@F(2). Suppose that there is a symmetric bilinear form B on the point
set of PG(d, 2) (with values inGF(2)) with the property thatfor all pairs (x, y) of points

of I", B(X, y) # 0 whenever x and y are opposite. Then for every partial o¢oid I" we
have|C| <d + 1 (ifdiseven, or |[C| < d+ 2 (ifd is odd.

Proof: Putk =|C|. Two distinct pointsx andy of C satisfyB(X, y) = 1. Hence the matrix
M with lines and columns indexed by the point€aind with(x, y)-entry equal tdB(x, y)

is equal taJ — I, wherelJ is the all-one matrix, antlis the identity matrix of the appropriate
size (namelyk x k). SinceM can be written aX AXt, with X the matrix whose lines are
indexed by the points af and linex is just the(d + 1)-coordinate-tuple ok, with A the
matrix of the bilinear formB, and with X! the transposed oX, we see that the rank of

is at mostd + 1. In particular, ifk > d + 1, then deM = 0. But it is readily checked that
detM = det(J — |) = 1, whenevek is even. Hence, ik > d + 1, thenk must be odd.
Since every subset @fis again a partial ovoid, this implies thatkif> d + 1, onlyd + 2
can be odd and in that cake= d + 2. The lemma is proved. O

Now supposé& = Q(5, 2). Then, as an elliptic quadric RG(5, 2), I is fully embedded
in PG(5, 2) and there is a natural bilinear form (namely, the one defining the quagiric)
with B(x,y) = 0 if and only if x andy are collinear in". This proves(i) of the Main
Result.

Next, suppose thdt = H(2). Thenr is fully embedded ilPG(5, 2). In fact, all points
of PG(5, 2) are points of", and the lines of" are certain lines of a symplectic polarity in
PG(5, 2) (see for instance 2.4.14 of [9]). Moreover, the bilinear form associated with that
symplectic polarity has the required property to apply Lemma 1 (see the same reference).
This showqii) of the Main Result.

Now letT" be equal tad(2). ThenI" can be viewed as a sub building of a buildingof
type F4, having itself 3 points per line. In fact, it is well known that the point sdft @f the
set of absolute points of any polarity i (a polarity is here a type reversing automorphism
of order 2), and it follows easily from e.g. 2.5.2 of [9] that two pointd'cdire opposite in
T if and only if they are opposite i (with the usual notion of opposition in buildings).
Now, the point-line space of type, ; related toA admits an embedding iRG(25, 2), and
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there is a symmetric bilinear form with values inGF(2) and such thaB(x, y) = 1 (for
pointsx, y of A) if and only if x andy are opposite i\ (see 5.3 of [2]; the bilinear form is
denoted there by, -)). Hence, it follows thaf” is embedded iPG(25, 2) with appropriate
bilinear formB. This showgiv) of the Main Result.

Finally, we show(iii ) of the Main Result. The universal embedding dimensioh(&f 8)
is equal to 28, i.eT(2, 8) can be fully embedded iIRG(27, 2) and every other embedding
arises from that one by projecting down (see [5]). But we are looking for an embedding
in PG(25, 2) and moreover, we want a suitable bilinear form. We will establish this in full
generality, that is, we will describe a full embeddinglof|, g%). Since this can be of some
interest on its own, we will do this in a separate section. This is also our motivation for
proving (iii ), although Theorem 2 fag = 2 gives a better result.

3. Afull embedding of T(q, g°)

First, we need a description 8tq, g%). We use the original description of Tits [8]. Explicit
coordinates ilPG(7, g%) of the points and lines of the du@(q?, q) are calculated in 3.5.8
of [9]. We are especially interested in the linesTgf?, q), since these are the points of
T(g. g%). Welistthe lines and label them asin 3.5.8 of [9] (see Table 1, whédrek”, |,1" €
GF(q) anda, &, b, b’ € GF(g®), and wherer : GF(g®) — GF(g®) : x — x9); the points
are obtained by taking all the points BG(7, °) on these lines. Note that the points of
T(g3, g) are contained in the quadr@* (7, g°) with equationXoX4 + X1 X5 + XoXg +
X3X7 =0.

It is easy to see that a line is opposite] if and only if it is labeled k, b, k', b’, k"],
for somek, k', k” € GF(q) andb, b’ e GF(g®). It is now an elementary exercise to cal-
culate the Grassmannian coordinates of the line$(gf, q). Without explicitly writ-
ing down the result of these calculations, we notice that the Grassmannian coordinates
(X0.0, X0.1, X0.2, - - - » X5.7, Xg,7) Of @an arbitrary line off (g3, q) satisfy, up to a scalar multiple
and up to changing the sign of some coordinates, the following conditions:

(@) Xo,5, X065 X1,4, XL6: X2.4, X2.5 € GF(q),
(b) xi3= Xf7 = Xik, i=01212{ +4,j,kl={456}] <k,

Table 1 Coordinatization off (g3, q).

Labels inT(qg, g°) Coordinates iPG(7, g°)
[o0] ((1,0,0,0;0,0,0,0), (0,0,0,0; 0,0, 1, 0))
IK] ((1,0,0,0;0,0,0,0), (0,0,0,0; 0, 1, —k, 0))
[a,1] ((@,0,0,0;0,0,1,0), (—I,1,0,a%; 0,a”+°>, 0, —a))
Ik, b, k'] ((6,0,0,0;0,1, —k, 0), (K, k, 1, —b?; 0,0, bo*+%, b7%))
[a,1,a,11 (-] —ad,1,0,a%; 0,a°+7%, —a’, —a°%),
@ —al,0,—a,a° ;1,1 + (ad)" + (@a)*’, -1, —a%))
Ik, b, K, b', K] (K +bb, k, 1, —b%; 0, b, bo+9% _ 'k, bo"),

O+ £ Kb, b, 0,65 1, K", —kK' — K — (bb)” — (bb)**, —b/))
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(©) x7=x%{; =x%,i =4,56,{i —4,j.k} ={0,1,2}, j <k, ]
(d) Xo4 — X15 € GF(0), X206 + X37 = (Xo,6 — X37)7 = (Xo,4 + X1,5)° ,
(e) (ifgiseven)xos+ Xi.i+a € GF(Q),i € {1, 2,3}, andXp 4 + X1.5 + X26 + X37 = 0.

Moreover, it is easy to check that two lines @f (7, g%) with Grassmannian coordinates

(Xo.1, X0.2 - - -» X6,7) @and(Yo.1, Yo.2 - - - » Y6.7), respectively, are opposite if and only if
D XiiYisajea— Y XijYi-aivat D XijVi-aja#0 1)
i<j<3 i<3<j 4<i<j

Since two lines off (g3, ) are opposite i (g3, q) if and only if they are opposite on
Q" (7, g®) (as a building; or just think about opposition as being at maximal distance), the
left hand side of Eq. (1) defines a bilinear foBron the point set of (g, %) vanishing on
pairs of non-opposite points. Moreover, itis readily checked that coordinates can be chosen
such thatB(x, y) € GF(q) for all pairsx, y of points ofT(q, g®). Now letq be odd. We
choose two fixed elements v € GF(g®) such that the matrix

1 1 1
u u u°
v v o

is non-singular (this is always possible; it suffices to chovﬁéi.sjéﬁ1 outsideGF(q), which

can be done because tE#(q)-linear mapu — ==, for fixed v, has a 1-dimensional
kernel, and hence a 2-dimensional image). The coordinate changes
X],k = Xjk+ X,7+ X3,
/ o o?
X 7 = UXjk +U"X 7+ U7 X3,

2
X 3 = vXjk + VX 7+ 07 X3,

withi, j, kasin (b) above, together with the analogous coordinate changes for the situations

in (c) and (d) above, and also witly 4 substituted byxo 4 — X1.5, embedsT(q, g°) into

PG(27, q), and moreover, the bilinear form has all its coefficients iGF(q) in the new

coordinates. For a given point of T(q, 3), the set of pointsy of T(q, g%) such that

B(x, y) =0 is exactly the set of points df(g, g%) not oppositex. One can check that

this set always generates a hyperplanP@(27, g) (for instance, ifx corresponds to the

line [oo] of T(g3, q) above, then this hyperplane has equatin, = 0), which we call

thetangent hyperplanat x. It can be checked that the set of pointsTef], g%) actually

generate®G(27, ) and that no point dPG(27, q) is contained in all tangent hyperplanes.
Now suppose thatis even. We can still perform the coordinate changes related to (b) and

(c) asabove. Moreover, we can pyit, , = Xi.i+a+Xo4,i € {1, 2, 3}. Now, itisclearthatthe

points ofT(q, g®) are contained in the hyperplakewith old equationXo 4+ X1.5+ X6+

X37 = 0 (infact, all points corresponding to the lines of the qua@ic7, g°) are contained

in that hyperplane as can be seen immediately from the bilinear form corresponding to
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Q*(7, g%). Moreover, the poin with old coordinateo 4 = X1 5 = X2 6 = X3 7 =1, and all
other coordinates equal to O, liesthand in every tangent hyperplane. Hence we can project
from w onto thePG(25, g%) < H with (old) equationsXgs = X15 + X6 + X37 = 0,

and we obtain a full embedding af(q, g°) into PG(25, q), obtained fromPG(25, g°)

by restricting coordinates t8F(q). The bilinear formB’, obtained fromB by the same
coordinate changes and projection as above, has its valugE (@) when restricted to
PG(25, q) (indeed, the effect of the projection is just the deletion of the terms ¥itlh
andYp 4; but after the coordinate changes and the restrictidd tthere are none). Putting

g = 2, (i) of the Main Result follows.

Remark The previous construction of the full embeddingTaty, %) in PG(27, q) (for

q odd) orPG(25, q) (for g even) provides an elementary way of seeing the gfidyiq)
included in an orthogonal group defined o@¥(q). Also, the finiteness assumption is not
essential, and everything works in the infinite case as well (treating characteristic O in the
same way as odd characteristic).

4. Proof of Theorem 2

The crucial observation here is contained in Lemma 2.

Lemma 2 LetI be a finite generalized hexagon of orders®) and define the matrix E
whose rows and columns are indexed by the poinis a$ follows. TheXx, y)-entry of E

is equal to(—s)3~9, where d is the distance between the points x and y in the collinearity
graph of". Then the rank of E is equal tGs- s° + s.

Proof: The matrixE is nothing other than a scalar multiple of the minimal idempotent
of the Bose-Mesner algebra of the collinearity graph (viewed as an association scheme)
corresponding to the eigenvalues® — 1, and the lemma follows from.2 of [1]. O

Lemma 2 can be stated in general for any finite generalized polygon. The ré&nis tifien
the multiplicity of the eigenvalue-t — 1 of the adjacency matrix of the collinearity graph
of the generalized polygon in question. But only in the case of generalized hexagons of
order(s, s®) will this observation give new bounds.

Now letC be a partial ovoid in the generalized hexagdoof order(s, s%) and putC| = k.
Suppose thdt > s® — s>+ s— 1. The sub matriD of E indexed by the elements 6thas
—s% on the diagonal and everywhere else 1. Hence it is singular if and oslyif-1 or
s® = k — 1, clearly both contradictions. Hen@is nonsingular and hence its size cannot
exceed the rank oE. This implies by Lemma 2 tha = s° — s® + s = rkE. SinceC is
not an ovoid, there exists a poiptof I' not collinear with any point of. We consider the
(symmetric) sub matriXD’ of E indexed byC U {p}. Define the natural numbefs and
£3 as the number of points @f at distance 2 and 3, respectively, pfin the collinearity
graph ofT". If we order the rows and columns &f such that the points @ not opposite
p correspond to the first, rows and columns, the points 6foppositep correspond to
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the next¢s rows and columns, and the last row and last column correspopdtten we
perform the following operation ob’. Put

ki = —sly + €3 +s(k—s*— 1),
kp = =Sl + 03— (K—s*—1),
ks = —(s®+ 1)k —s® — 1).

Now we multiply the firstZ, rows of D’ by k;, the nextls rows byk,, and the last row
by ks, add all rows thus obtained together to get the rosnd replace the last row @&’
by this one. One can compute thatas O in all positions, except possibly the last one, and
this last entry is equal to (after some calculations)

o= (s+1D?((5 — (° — 28 + 28> — s+ 1)lr + S(S* — s+ D*(s* — 1)?).

Since the rank of is k, the determinant oD’ must be zero, and since the determinant
of D is not zero, it follows that, = 0. This determines a quadratic equatiortjnwith
discriminant

(s> — 2s* — 35— 1)2 — (4s* + 125% — 45 + 12) := A(S)? — B(S).

Clearly fors = 2, 3, 4, 5, this is not a square. Fer> 5, we haveB(s) < (2A(s) — 1),
and hencgA(s)—1)? < A(s)°—B(s) < A(S)2. So¢, can never be aninteger, consequently
Theorem 2 is proved.
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