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Abstract. From an elementary observation, we derive some upper bounds for the number of mutually opposite
points in the classical generalized polygons having 3 points on each line. In particular, it follows that the Ree-Tits
generalized octagonO(2) of order(2, 4) has no ovoids. Also, we deduce from another observation a similar upper
bound in any generalized hexagon of order(s, s3).
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1. Introduction and statement of the main result

A generalized polygon0 of order(s, t) is a rank 2 point-line geometry whose incidence
graph has diametern and girth 2n, for somen ∈ N\{0, 1} (in which case the generalized
polygon is also called ageneralized n-gon), each vertex corresponding to a point has valency
t+1 and each vertex corresponding to a line has valencys+1. If s, t > 1, then this geometry
is usually calledthick. Each non-thick generalized polygon can be obtained from a thick one,
and so one usually only considers thick generalized polygons. Ifs= 2 andt > 1, then we
call the generalized polygonslim. Generalized polygons were introduced by Tits [8]. More
information is gathered in the monograph [9], to which we refer for a general introduction
and basic properties. Here, we recall some notation. For an elementx of 0, and a natural
numberi , we denote by0i (x) the set of elements of0 at distancei from x in the incidence
graph of0. The distance function in that incidence graph is denoted byδ. If two elements
x andy are not at distancen, then there exists a unique element projyx incident withy and
at distanceδ(x, y)− 1 from x. We call that element theprojection of x onto y. Also recall
that thedualof 0 is obtained by interchanging the words “point” and “line”. The dual of a
generalizedn-gon is obviously again a generalizedn-gon. Two elements at distancen are
calledopposite. Now we call a set of mutually opposite points apartial ovoid. An ovoid
O in 0 is a partial ovoid such that every element of0 is at distance at mostn/2 from some
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element ofO. Clearly ovoids in this sense only exist in generalizedn-gons withn even. In
the finite case, this implies thatn = 4, 6, 8 [4].

Now let0 be a finite slim generalizedn-gon,n ∈ {4, 6, 8}. Forn = 4, this means that0
has order(2, 2) or (2, 4) and there exist unique examples in each case (see [6](6.1)), denoted
by W(2) (a symplectic quadrangle) andQ(5, 2) (anorthogonal quadrangle) respectively.
For n = 6,0 has order(2, 2) or (2, 8) and there exist exactly two examples in case(2, 2)
(each one dual to the other) and one example in the case(2, 8) (see [3]), and these are
denoted byH(2) (asplit Cayley hexagon), H(2)D (the dual of the previous one) andT(2, 8)
(a twisted triality hexagon). Forn = 8, the order is necessarily(2, 4), and there is such an
example (the Ree-Tits octagonO(2)), but it is not yet known to be unique.

The first aim of the present paper is to derive some upper bounds for the number of points
of a partial ovoid in0. A trivial upper bound is the number of points of an ovoid. Hence, if
0 admits ovoids, then the trivial upper bound can be reached and nothing else can be said.
This is the case forW(2) (ovoids have 5 points) and forH(2)D (ovoids have 9 points) and
this is well known (see Chapter 7 of [9] for more details).

Our first main result reads as follows.

Theorem 1 If 0 contains a partial ovoid, with 0 ∈ {Q(5, 2),H(2),T(2, 8),O(2)}, then
the number k of points of that partial ovoid satisfies
(i) k ≤ 7 if 0 = Q(5, 2);
(ii) k ≤ 7 if 0 = H(2);

(iii) k ≤ 27 if 0 = T(2, 8) (but see Theorem2);
(iv) k ≤ 27 if 0 = O(2).

Note that the upper bound in(i) is worse than the upper boundk ≤ 6 following from
2.7.1 of [6]. Regarding cases(ii), (iii ) and(iv), the previously known upper bounds were
respectivelyk ≤ 8, k ≤ 43 andk ≤ 65. The first one follows from the fact that there are
no ovoids inH(2) (see [7]); the second one follows from an elementary counting argument
(see 7.2.3 of [9] or below); the third one follows from the fact that an ovoid inO(2) must
contain 65 points (see also 7.2.3 of [9]). Hence cases(iii ) and (iv) of our Main Result
are drastic improvements of the earlier bounds (and there is a further improvement of(iii )
below). Also, the nonexistence of ovoids inO(2) is the first result on existence of ovoids
in general in finite generalized octagons. It suggests the conjecture that no finite Ree-Tits
octagon has an ovoid.

Now let 0 be a generalized hexagon of order(s, s3). Examples are the dual twisted
triality hexagonsT(s, s3); see [8] (we use the notation of [9]; in the literature, this hexagon
is sometimes called the3D4(s)-hexagon). It is well known that0 cannot have an ovoid (see
7.2.4 of [9]), and that an upper bound for the maximal number of mutually opposite points
in 0 is given by the largest integer smaller than

(s+ 1)(s8+ s4+ 1)

s4+ s+ 1
= s5+ s4− s2− s+ s3+ 2s2+ 2s+ 1

s4+ s+ 1
,

which iss5+ s4− s2− s if s> 2. Fors= 2, this is 43. Our second main results reads as
follows.
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Theorem 2 Let0 be a generalized hexagon of order(s, s3), for some integer s> 1. Then
a partial ovoid has at most s5−s3+s−1 points. In particular, putting s= 2, the hexagon
T(2, 8) has no partial ovoids of size k≥ 26, thus improving the bound of Theorem1(iii )
by2.

2. Proof of Theorem 1

The crucial observation is contained in the next lemma. We first need a definition. A
generalized polygon0 is fully embeddedin a projective spacePG(d,K) if the point set of
0 is a subset of the point set ofPG(d,K), and if for each lineL of 0, the set of points of
0 incident withL forms a (complete) line ofPG(d,K).

Lemma 1 Let0 be a slim polygon fully embedded in the finite projective spacePG(d, 2)
over the Galois fieldGF(2). Suppose that there is a symmetric bilinear form B on the point
set of PG(d, 2) (with values inGF(2)) with the property that, for all pairs (x, y) of points
of 0, B(x, y) 6= 0 whenever x and y are opposite. Then for every partial ovoidC of 0 we
have|C| ≤ d + 1 (if d is even), or |C| ≤ d + 2 (if d is odd).

Proof: Putk= |C|. Two distinct pointsx andy of C satisfyB(x, y)= 1. Hence the matrix
M with lines and columns indexed by the points ofC and with(x, y)-entry equal toB(x, y)
is equal toJ− I , whereJ is the all-one matrix, andI is the identity matrix of the appropriate
size (namely,k× k). SinceM can be written asX AXt, with X the matrix whose lines are
indexed by the points ofC and linex is just the(d + 1)-coordinate-tuple ofx, with A the
matrix of the bilinear formB, and withXt the transposed ofX, we see that the rank ofM
is at mostd+ 1. In particular, ifk > d+ 1, then detM = 0. But it is readily checked that
detM = det(J − I ) = 1, wheneverk is even. Hence, ifk > d + 1, thenk must be odd.
Since every subset ofC is again a partial ovoid, this implies that, ifk > d + 1, onlyd + 2
can be odd and in that casek = d + 2. The lemma is proved. 2

Now suppose0 = Q(5, 2). Then, as an elliptic quadric inPG(5, 2),0 is fully embedded
in PG(5, 2) and there is a natural bilinear form (namely, the one defining the quadric)B
with B(x, y) = 0 if and only if x and y are collinear in0. This proves(i) of the Main
Result.

Next, suppose that0 = H(2). Then0 is fully embedded inPG(5, 2). In fact, all points
of PG(5, 2) are points of0, and the lines of0 are certain lines of a symplectic polarity in
PG(5, 2) (see for instance 2.4.14 of [9]). Moreover, the bilinear form associated with that
symplectic polarity has the required property to apply Lemma 1 (see the same reference).
This shows(ii) of the Main Result.

Now let0 be equal toO(2). Then0 can be viewed as a sub building of a building1 of
typeF4, having itself 3 points per line. In fact, it is well known that the point set of0 is the
set of absolute points of any polarity in1 (a polarity is here a type reversing automorphism
of order 2), and it follows easily from e.g. 2.5.2 of [9] that two points of0 are opposite in
0 if and only if they are opposite in1 (with the usual notion of opposition in buildings).
Now, the point-line space of typeF4,1 related to1 admits an embedding inPG(25, 2), and
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there is a symmetric bilinear formB with values inGF(2) and such thatB(x, y) = 1 (for
pointsx, y of1) if and only if x andy are opposite in1 (see 5.3 of [2]; the bilinear form is
denoted there by(·, ·)). Hence, it follows that0 is embedded inPG(25, 2)with appropriate
bilinear formB. This shows(iv) of the Main Result.

Finally, we show(iii ) of the Main Result. The universal embedding dimension ofT(2, 8)
is equal to 28, i.e.,T(2, 8) can be fully embedded inPG(27, 2) and every other embedding
arises from that one by projecting down (see [5]). But we are looking for an embedding
in PG(25, 2) and moreover, we want a suitable bilinear form. We will establish this in full
generality, that is, we will describe a full embedding ofT(q,q3). Since this can be of some
interest on its own, we will do this in a separate section. This is also our motivation for
proving(iii ), although Theorem 2 fors= 2 gives a better result.

3. A full embedding of T(q, q3)

First, we need a description ofT(q,q3). We use the original description of Tits [8]. Explicit
coordinates inPG(7,q3) of the points and lines of the dualT(q3,q) are calculated in 3.5.8
of [9]. We are especially interested in the lines ofT(q3,q), since these are the points of
T(q,q3). We list the lines and label them as in 3.5.8 of [9] (see Table 1, wherek, k′, k′′, l , l ′ ∈
GF(q) anda,a′, b, b′ ∈ GF(q3), and whereσ : GF(q3)→ GF(q3) : x 7→ xq); the points
are obtained by taking all the points ofPG(7,q3) on these lines. Note that the points of
T(q3,q) are contained in the quadricQ+(7,q3) with equationX0X4 + X1X5 + X2X6 +
X3X7 = 0.

It is easy to see that a line is opposite [∞] if and only if it is labeled [k, b, k′, b′, k′′],
for somek, k′, k′′ ∈GF(q) andb, b′ ∈GF(q3). It is now an elementary exercise to cal-
culate the Grassmannian coordinates of the lines ofT(q3,q). Without explicitly writ-
ing down the result of these calculations, we notice that the Grassmannian coordinates
(x0,0, x0,1, x0,2, . . . , x5,7, x6,7) of an arbitrary line ofT(q3,q) satisfy, up to a scalar multiple
and up to changing the sign of some coordinates, the following conditions:

(a) x0,5, x0,6, x1,4, x1,6, x2,4, x2,5 ∈ GF(q),
(b) xi,3 = xσi,7 = xσ

2

j,k, i = 0, 1, 2, {i + 4, j, k} = {4, 5, 6}, j < k,

Table 1. Coordinatization ofT(q3,q).

Labels inT(q,q3) Coordinates inPG(7,q3)

[∞] 〈(1, 0, 0, 0; 0, 0, 0, 0), (0, 0, 0, 0; 0, 0, 1, 0)〉
[k] 〈(1, 0, 0, 0; 0, 0, 0, 0), (0, 0, 0, 0; 0, 1,−k, 0)〉
[a, l ] 〈(a, 0, 0, 0; 0, 0, 1, 0), (−l , 1, 0,aσ ; 0,aσ+σ2

, 0,−aσ
2
)〉

[k, b, k′] 〈(b, 0, 0, 0; 0, 1,−k, 0), (k′, k, 1,−bσ ; 0, 0, bσ+σ2
, bσ

2
)〉

[a, l ,a′, l ′] 〈(−l − aa′, 1, 0,aσ ; 0,aσ+σ2
,−a′,−aσ

2
),

(a′σ+σ
2 − al ′, 0,−a,a′σ

2; 1, l + (aa′)σ + (aa′)σ2
,−l ′,−a′σ )〉

[k, b, k′, b′, k′′] 〈(k′ + bb′, k, 1,−bσ ; 0, b′, bσ+σ2 − b′k, bσ2
),

(b′σ+σ
2 + k′′b,−b, 0, b′σ

2; 1, k′′,−kk′′ − k′ − (bb′)σ − (bb′)σ2
,−b′σ )〉
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(c) xi,7 = xσ3,i = xσ
2

j,k, i = 4, 5, 6, {i − 4, j, k} = {0, 1, 2}, j < k,
(d) x0,4− x1,5 ∈ GF(q), x2,6+ x3,7 = (x2,6− x3,7)

σ = (x0,4+ x1,5)
σ 2

,
(e) (if q is even)x0,4+ xi,i+4 ∈ GF(q), i ∈ {1, 2, 3}, andx0,4+ x1,5+ x2,6+ x3,7 = 0.

Moreover, it is easy to check that two lines ofQ+(7,q3) with Grassmannian coordinates
(x0,1, x0,2, . . . , x6,7) and(y0,1, y0,2, . . . , y6,7), respectively, are opposite if and only if∑

i< j≤3

xi, j yi+4, j+4−
∑

i≤3< j

xi, j yj−4,i+4+
∑

4≤i< j

xi, j yi−4, j−4 6= 0 (1)

Since two lines ofT(q3,q) are opposite inT(q3,q) if and only if they are opposite on
Q+(7,q3) (as a building; or just think about opposition as being at maximal distance), the
left hand side of Eq. (1) defines a bilinear formB on the point set ofT(q,q3) vanishing on
pairs of non-opposite points. Moreover, it is readily checked that coordinates can be chosen
such thatB(x, y) ∈ GF(q) for all pairsx, y of points ofT(q,q3). Now letq be odd. We
choose two fixed elementsu, v ∈ GF(q3) such that the matrix 1 1 1

u uσ uσ
2

v vσ vσ
2


is non-singular (this is always possible; it suffices to chooseuσ−u

vσ−v outsideGF(q), which
can be done because theGF(q)-linear mapu 7→ uσ−u

vσ−v , for fixed v, has a 1-dimensional
kernel, and hence a 2-dimensional image). The coordinate changes

x′j,k = xj,k + xi,7+ xi,3,

x′i,7 = uxj,k + uσ xi,7+ uσ
2
xi,3,

x′i,3 = vxj,k + vσ xi,7+ vσ 2
xi,3,

with i, j, k as in (b) above, together with the analogous coordinate changes for the situations
in (c) and (d) above, and also withx0,4 substituted byx0,4 − x1,5, embedsT(q,q3) into
PG(27,q), and moreover, the bilinear formB has all its coefficients inGF(q) in the new
coordinates. For a given pointx of T(q,q3), the set of pointsy of T(q,q3) such that
B(x, y)= 0 is exactly the set of points ofT(q,q3) not oppositex. One can check that
this set always generates a hyperplane inPG(27,q) (for instance, ifx corresponds to the
line [∞] of T(q3,q) above, then this hyperplane has equationX2,4 = 0), which we call
the tangent hyperplaneat x. It can be checked that the set of points ofT(q,q3) actually
generatesPG(27,q) and that no point ofPG(27,q) is contained in all tangent hyperplanes.

Now suppose thatq is even. We can still perform the coordinate changes related to (b) and
(c) as above. Moreover, we can putx′i,i+4 = xi,i+4+x0,4, i ∈ {1, 2, 3}. Now, it is clear that the
points ofT(q,q3) are contained in the hyperplaneH with old equationX0,4+X1,5+X2,6+
X3,7 = 0 (in fact, all points corresponding to the lines of the quadricQ+(7,q3)are contained
in that hyperplane as can be seen immediately from the bilinear form corresponding to
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Q+(7,q3)). Moreover, the pointwwith old coordinatesx0,4= x1,5= x2,6= x3,7= 1, and all
other coordinates equal to 0, lies inH and in every tangent hyperplane. Hence we can project
from w onto thePG(25,q3) ⊆ H with (old) equationsX0,4 = X1,5 + X2,6 + X3,7 = 0,
and we obtain a full embedding ofT(q,q3) into PG(25,q), obtained fromPG(25,q3)

by restricting coordinates toGF(q). The bilinear formB′, obtained fromB by the same
coordinate changes and projection as above, has its values inGF(q) when restricted to
PG(25,q) (indeed, the effect of the projection is just the deletion of the terms withX0,4

andY0,4; but after the coordinate changes and the restriction toH , there are none). Putting
q = 2, (iii ) of the Main Result follows.

Remark The previous construction of the full embedding ofT(q,q3) in PG(27,q) (for
q odd) orPG(25,q) (for q even) provides an elementary way of seeing the group3D4(q)
included in an orthogonal group defined overGF(q). Also, the finiteness assumption is not
essential, and everything works in the infinite case as well (treating characteristic 0 in the
same way as odd characteristic).

4. Proof of Theorem 2

The crucial observation here is contained in Lemma 2.

Lemma 2 Let0 be a finite generalized hexagon of order(s, s3) and define the matrix E
whose rows and columns are indexed by the points of0 as follows. The(x, y)-entry of E
is equal to(−s)3−d, where d is the distance between the points x and y in the collinearity
graph of0. Then the rank of E is equal to s5− s3+ s.

Proof: The matrixE is nothing other than a scalar multiple of the minimal idempotent
of the Bose-Mesner algebra of the collinearity graph (viewed as an association scheme)
corresponding to the eigenvalue−s3− 1, and the lemma follows from 2.2 of [1]. 2

Lemma 2 can be stated in general for any finite generalized polygon. The rank ofE is then
the multiplicity of the eigenvalue−t − 1 of the adjacency matrix of the collinearity graph
of the generalized polygon in question. But only in the case of generalized hexagons of
order(s, s3) will this observation give new bounds.

Now letC be a partial ovoid in the generalized hexagon0 of order(s, s3) and put|C| = k.
Suppose thatk > s5− s3+ s−1. The sub matrixD of E indexed by the elements ofC has
−s3 on the diagonal and everywhere else 1. Hence it is singular if and only ifs = −1 or
s3 = k− 1, clearly both contradictions. HenceD is nonsingular and hence its size cannot
exceed the rank ofE. This implies by Lemma 2 thatk = s5 − s3 + s = rkE. SinceC is
not an ovoid, there exists a pointp of 0 not collinear with any point ofC. We consider the
(symmetric) sub matrixD′ of E indexed byC ∪ {p}. Define the natural numbers̀2 and
`3 as the number of points ofC at distance 2 and 3, respectively, ofp in the collinearity
graph of0. If we order the rows and columns ofD′ such that the points ofC not opposite
p correspond to the first̀2 rows and columns, the points ofC oppositep correspond to
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the next̀ 3 rows and columns, and the last row and last column correspond top, then we
perform the following operation onD′. Put

k1 = −s`2+ `3+ s(k− s3− 1),

k2 = −s`2+ `3− (k− s3− 1),

k3 = −(s3+ 1)(k− s3− 1).

Now we multiply the first̀ 2 rows of D′ by k1, the next̀ 3 rows byk2, and the last row
by k3, add all rows thus obtained together to get the rowr and replace the last row ofD′

by this one. One can compute thatr has 0 in all positions, except possibly the last one, and
this last entry is equal to (after some calculations)

r p = (s+ 1)2
(
`2

2− (s5− 2s3+ 2s2− s+ 1)`2+ s(s2− s+ 1)2(s2− 1)2
)
.

Since the rank ofE is k, the determinant ofD′ must be zero, and since the determinant
of D is not zero, it follows thatr p = 0. This determines a quadratic equation in`2 with
discriminant

(s5− 2s4− 3s− 1)2− (4s4+ 12s3− 4s2+ 12) := A(s)2− B(s).

Clearly fors = 2, 3, 4, 5, this is not a square. Fors > 5, we haveB(s) < (2A(s)− 1),
and hence(A(s)−1)2 < A(s)2−B(s) < A(s)2. So`2 can never be an integer, consequently
Theorem 2 is proved.
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