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1 Introduction

Definition 1.1 A (finite) generalized quadrangle (GQ) S = (P, B, I) is a point-line inci-
dence geometry satisfying the following axioms.

(i) Every line is incident with s + 1 points for some integer s ≥ 1 and two lines are
incident with at most one common point.

(ii) Every point is incident with t + 1 lines for some integer t ≥ 1 and two points are
incident with at most one common line.

(iii) Given any point x and any line L not incident with x, i.e., x !I L, there exists a
unique point y and a unique line M with x I M I y I L.

Generalized quadrangles were introduced by Tits [14] as the geometric interpretation of
certain algebraic and mixed groups of relative rank 2. The pair (s, t) is usually called
the order or the parameters of S. If s, t ≥ 2, then S is called thick. If t = 1, then S is
sometimes called a grid; if s = 1, we talk about a dual grid. In fact, there is a point-line
duality for GQ. When s #= 1, Axiom (ii) above can be weakened to

(ii)′ every point is on at least 2 lines.

For more information and properties of finite GQ we refer to the monograph Payne &
Thas [10], for a recent survey see Thas [12], and for a treatment of some aspects of
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infinite GQ see Van Maldeghem [15]. We restrict ourselves to introducing the finite
classical quadrangles here.

The geometry of points and lines of a non-degenerate quadric of projective Witt index 1 in
PG(d, q) is a GQ denoted by Q(d, q). Here only the cases d = 3, 4, 5 occur and Q(d, q) has
order (q, qd−3). The geometry of all points of PG(3, q) together with all totally isotropic
lines of a symplectic polarity in PG(3, q) is a GQ of order (q, q) denoted by W (q). The
geometry of points and lines of a hermitian variety of projective Witt index 1 in PG(d, q2)
is a GQ H(d, q2) of order (q2, q2d−5). Here d = 3 or d = 4. All these examples are called
classical. However, W (q) is the dual of Q(4, q), and H(3, q2) is the dual of Q(5, q). The
classical and dual classical (finite) GQ are sometimes called the finite Moufang GQ.

Axiom (i) above implies that the set of points incident with a certain line L in a GQ S
completely determines L. So we may identify L with the set of points of S incident with
L. This way, we view the lines as subsets of P . This will be especially convenient for the
purposes of this paper. Likewise, we view the lines of any projective space as subsets of
the point set.

For notation and (standard) terminology not explained here, we refer to Payne & Thas
[10]. Let us just mention that opposite points of a GQ are points which are not collinear
and opposite lines are lines which are not concurrent. Also, if a GQ S has order (s, t),
then a full subquadrangle S ′ of S is a subquadrangle of order (s, t′). We denote by S \ S ′
the geometry of points and lines of S which do not belong to S ′.

Definition 1.2 A generalized quadrangle (GQ) S = (P, B, I) is laxly embedded in the
projective space PG(d, q), d ≥ 2, if the following conditions are satisfied:

(i) P is a point set of PG(d, q) which generates PG(d, q);

(ii) each line L of S is a subset of a line L′ of PG(d, q), and distinct lines L1, L2 of S
define distinct lines L′1, L

′
2 of PG(d, q).

There are two easy ways to obtain lax embeddings from another given lax embedding of
a generalized quadrangle S in some projective space PG(d, q). Firstly, one can consider
a proper field extension GF(q′) of GF(q) and obtain a lax embedding in PG(d, q′) in the
obvious way; secondly, one might project the embedding from a point p of PG(d, q) onto
some hyperplane H not containing p, where p is not on any line of PG(d, q) joining two
arbitrary points of S, and where p is not contained in the plane generated by the points
of any two lines of S of which the corresponding lines in PG(d, q) intersect in PG(d, q)
(and repeating this procedure, we may project from a subspace U of PG(d, q) onto some
complementary space V (so U ∩ V = ∅, while U and V together generate PG(q, q)).
In fact, a point p as in the second case can always be found if d ≥ 3 and q is large
enough with respect to the line size of S (the latter can be achieved by applying the first
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construction). A lax embedding which cannot be obtained from another embedding by
a combination of the constructions just mentioned, will be called an ultimate embedding
(as suggested by the referee). It is not clear to us whether an ultimate embedding should
be — what one could call — relatively universal, i.e., it is conceivable that two different
ultimate embeddings give rise to the same non-ultimate embedding by applying a number
of times the two constructions mentioned above.

In order to classify all lax embeddings of a given geometry, it is enough to describe
all ultimate embeddings. That is exactly what we will do below for all finite classical
quadrangles (except for the symplectic quadrangle W (s) with s odd) embedded in d-
dimensional projective space, d ≥ 3.

A lax embedding is called full if in (ii) above L = L′. Note that the description of the
classical quadrangles above yields full embeddings of these. We call these full embeddings
the natural embeddings of the classical GQ. All full embeddings of finite (Buekenhout
& Lefèvre [1]) and infinite (Dienst [3, 4]) GQ are classified. In the finite case, only
the natural embeddings of the classical GQ turn up. A lax embedding of a GQ S is
called weak if the set of points of S collinear in S with any given point is contained in a
hyperplane of PG(d, q). All weak embeddings in PG(3, q) of finite thick GQ are classified
by Lefèvre-Percsy [7] and in PG(d, q), with d > 3, by Thas & Van Maldeghem
[13] (although the former used a stronger definition for “weak embedding”, proved by the
latter to be equivalent with the notion in the present paper). Here, every weak embedding
in PG(d, q) either turns out to be full in a subspace PG(d, q′) of PG(d, q) over a subfield
GF(q′) of GF(q), or is the universal weak embedding of W (2) in a projective 4-space over
an odd characteristic finite field.

Hence for s #= 1 “being fully or weakly embedded” characterizes the finite classical quad-
rangles amongst the others. This does not come as a surprise because from Lefèvre-
Percsy [8] it immediately follows that for s #= 1 weakly embedded quadrangles either
admit non-trivial central collineations of the projective space, or have all their lines reg-
ular. This is not longer true for laxly embedded GQ; indeed, usually the projection of a
weak embedding does not preserve the group action. Also, the quadrangles T ∗

2 (O) of order
(q−1, q +1), q > 2, embed laxly in PG(3, q), do not admit central collineations and have
non-regular lines. So different combinatorial and geometric methods are needed to handle
laxly embedded GQ. Also, these combinatorial and geometric methods do not work in
the case d = 2. Moreover, by projection, every quadrangle which admits an embedding in
some projective space admits a lax embedding in a plane. This makes the classification
problem very hard and probably impossible. Hence we will restrict our attention to the
case d ≥ 3. Notice also that by substituting AG(d, q) for PG(d, q) in Definition 1.2,
we obtain the definition of laxly, weakly and fully embedded GQ in affine space. Every
such embedding gives rise to a lax embedding in the corresponding projective space; the
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classification of all fully embedded GQ in finite affine space by Thas [11], see also Payne
& Thas [10], Chapter 7, shows that we do not always have weak embeddings.

The elements of PSL will be called special linear transformations, those of PGL linear
transformations and those of PΓL semi-linear transformations.

We split our main result in two parts. The first theorem characterizes some classical
quadrangles by the fact that they admit certain embeddings.

Theorem 1.3 If the generalized quadrangle S of order (s, t), s > 1, is laxly embedded in
PG(d, q), then d ≤ 5. Furthermore we have the following isomorphisms.

(i) If d = 5, then S ∼= Q(5, s).

(ii) If d = 4, then s ≤ t.

(a) If s = t, then S ∼= Q(4, s).

(b) If t = s + 2, then s = 2 and S ∼= Q(5, 2).

(c) If t2 = s3, then S ∼= H(4, s).

(iii) If d = 3 and s = t2, then S ∼= H(3, s).

The second theorem characterizes the embeddings themselves of some classical quadran-
gles.

Theorem 1.4 Suppose the laxly embedded generalized quadrangle S arises by extensions
and projections from an ultimate embedding in PG(d, q), where d ≥ 3 and S ∼= Q(5, s),
Q(4, s), H(4, s), H(3, s) or the dual of H(4, t). Then either the ultimate embedding is
full, or one of the following holds.

(i) d = 5, S ∼= Q(5, 2), q is an odd prime number, the embedding is not weak and it
is unique up to a special linear transformation; if q = 3, then the embedding is full
in an appropriate affine space. In all cases, the full automorphism group of S is
induced by PGL6(q).

(ii) d = 4, S ∼= Q(4, 2), q is an odd prime number, the embedding is weak and it is unique
up to linear transformation; if q = 3, then the embedding is full in an appropriate
affine space. In all cases, the full automorphism group of S is induced by PGL5(q),
see Thas & Van Maldeghem [13].
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(iii) d = 4, S ∼= Q(4, 3), q ≡ 1 mod 3, q is either an odd prime number or the square of
a prime number p with p ≡ −1 mod 3, the embedding is not weak, and it is unique
up to a special linear transformation; if q = 4, then the embedding is full in an
appropriate affine space. The group PSp4(3) (which is not the full automorphism
group of Q(4, 3)) acting naturally as an automorphism group on W (3) (which is
dual to Q(4, 3)) is induced on S by PSL5(q).

For more information about automorphism groups of, in particular, lax embeddings which
are not ultimate, we refer to the statements in the next sections. For instance, it can
happen that the automorphism group induced by PΓL(d, q) is strictly contained in the
one induced by PΓL(d, q2) (after field extension), see e.g. Theorem 5.1.

Note that H(4, t) does not occur: it has no lax embedding at all in PG(d, q) for any q and
any d ≥ 3. Also, we did not consider W (s) for s odd. The reason is that this quadrangle
does not contain large enough grids or full subquadrangles (and these are essential for our
techniques).

In two appendices we prove a characterization of the hermitian quadrangle H(4, s2) in
terms of subquadrangles, and we show that any generalized quadrangle of order (s, s + 2)
with s > 2 has at least one non-regular line.

We show Theorems 1.3 and 1.4 in a sequence of theorems.

2 Preliminary lemmas

If S is a laxly embedded GQ in PG(d, q), then for each line L of S, we denote by L′ the
(set of points on the) corresponding line of PG(d, q). In particular, we have L ⊆ L′.

Lemma 2.1 If the generalized quadrangle S is laxly embedded in PG(d, q), d ≥ 2, and
if L is any line of S, then the points of L are the only points of S on the corresponding
line L′ of PG(d, q).

Proof. Assume, by way of contradiction, that x is a point of S on L′ \ L. If M is the
line of S through x and concurrent with L, then also M ⊆ L′, contradicting (ii) in the
definition of lax embedding. The lemma is proved.

Lemma 2.2 If the generalized quadrangle S has s #= 1 and is laxly embedded in PG(d, q),
and if U is a subspace of PG(d, q) containing the points of two opposite lines L, M of S,
then the intersection of U with the point set of S yields a full subquadrangle laxly embedded
in the subspace of U generated by the points of that intersection.
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Proof. Let S ′ be the subgeometry of S arising from the intersection of U with the point
set of S. Clearly S ′ satisfies (i) and (iii) of Definition 1.1. Let x be any point of S. If
x /∈ L ∪M , then there are lines L1, M1 of S ′ through x meeting L, M respectively. Let
N be a line of S concurrent with L and M , but not concurrent with either L1 or M1; as
s #= 1, such a line N exists. If N1 is the line of S containing x and concurrent with N ,
then L1 and N1 are distinct lines of S ′ through x. If x ∈ L ∪M , say x ∈ L, then there
is a line M1 of S ′ through x meeting M , and L #= M1. Hence (ii)′ in the definition of a
GQ is satisfied. So S ′ is a subquadrangle of S, and it is clearly a full one. The lemma is
proved.

For a subspace U as in the previous lemma, we say that U induces S ′.

Corollary 2.3 If the generalized quadrangle S has s #= 1 and is laxly embedded in
PG(d, q), and if p is a point of S for which p⊥ does not span PG(d, q), then no point of
S opposite p is contained in the space 〈p⊥〉.

Proof. Let S have order (s, t). Suppose on the contrary that 〈p⊥〉 contains a point x
opposite p. Then 〈p⊥〉 induces a full subquadrangle of order (s, t), a contradiction. The
corollary follows.

This corollary shows that the definition of weakly embedded quadrangle in the present
paper is equivalent to the definition of weakly embedded quadrangle in Thas & Van
Maldeghem [13] (where it is required that no subspace 〈p⊥〉 contains a point opposite
p), which in turn is equivalent to the definition of weakly embedded quadrangle used in
Lefèvre-Percsy [7].

3 Restrictions on the parameters

Theorem 3.1 If the generalized quadrangle S of order (s, t), s #= 1, is laxly embedded in
PG(d, q), then d ≤ 5. Also, if d = 5, then t = s2 and S is isomorphic to the classical
generalized quadrangle Q(5, s). If d = 4, then s ≤ t and for s = t the quadrangle S is
isomorphic to the classical generalized quadrangle Q(4, s).

Proof. Let L, M be two opposite lines of S. The subspace U of dimension ≤ 3 generated
by L and M induces a full subquadrangle S ′ of order (s, t′) in S. Consider any point
x of S \ S ′. The subspace U ′ of dimension ≤ 4 generated by U and x induces a full
subquadrangle S ′′ of order (s, t′′), with t′ < t′′ ≤ t. If t′′ = t, then S ′′ = S and d ≤ 4. By
Payne & Thas [10](2.2.2), this must happen in particular if s = t. If t′′ < t, then by
Payne & Thas [10](2.2.2), t = s2 = t′′2 and t′ = 1. Considering a point y ∈ S \S ′′, then,
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again by Payne & Thas [10](2.2.2), we see that the subspace (of dimension at most 5)
generated by U ′ and y contains S, hence d ≤ 5.

If d = 5, then the proper full subquadrangles S ′ and S ′′ of S in the previous paragraph
do exist and hence t = s2. Note that in this case every two opposite lines of S span a
3-dimensional subspace in PG(5, q). If d = 4, then S ′ is a proper subquadrangle and by
Payne & Thas [10](2.2.2) we have s ≤ t.

Now suppose d = 4 and s = t. By the foregoing, the space U generated by two non-
intersecting lines of S meets S in a subquadrangle of order (s, 1) (by Payne & Thas
[10](2.2.2)). Hence every line is regular and S ∼= Q(4, s) (see Payne & Thas [10](5.2.1)).
If d = 5, then t = s2 and by the previous paragraphs, every quintet of points (x, y, z; u, v),
with u opposite v and x, y, z ∈ {u, v}⊥, is contained in a proper full subquadrangle. By
Payne & Thas [10](5.3.5(ii)), we conclude S ∼= Q(5, s). The theorem is proved.

Corollary 3.2 Suppose the generalized quadrangle S of order (s, t), s #= 1, is laxly em-
bedded in PG(d, q), and let H be a hyperplane of PG(d, q) containing two opposite lines
of S. If d = 5, then H induces a subquadrangle of order (s, s) isomorphic to Q(4, s). If
d = 4 and s = t, then H induces a subquadrangle of order (s, 1). Also, if d = 4 and s = t,
then no plane of PG(4, q) contains two opposite lines of S.

Proof. This follows from the proof of the previous theorem.

4 The case d = 3, s = t2

Theorem 4.1 If the generalized quadrangle S of order (s2, s) is laxly embedded in PG(3, q),
then S is a full embedding of the classical generalized quadrangle H(3, s2) in a subspace
PG(3, s2) of PG(3, q), for the subfield GF(s2) of GF(q).

Proof. Assume, by way of contradiction, that the lines L, M are not concurrent in S,
but are coplanar in PG(3, q). Then the plane 〈L, M〉 induces a subquadrangle S ′ of S of
order (s2, t′). By Payne & Thas [10](2.2.1), we then have s2t′ ≤ t = s, a contradiction.

Let L1, . . . , L4, respectively M1, . . . ,M4, be four mutually non-concurrent lines of S, with
Li ∼ Mj for all i, j ∈ {1, . . . , 4} with (i, j) #= (4, 4) (here “ ∼′′ means concurrent in
the GQ S). As no two of the lines L1, . . . , L4, respectively M1, . . . ,M4, are coplanar
in PG(3, q), the corresponding lines L′1, . . . , L

′
4, M

′
1, . . . ,M

′
4 of PG(3, q) are lines of a

hyperbolic quadric. So L′4 intersects M ′
4 in PG(3, q). Hence by the preceding paragraph

L4 ∼ M4. Now by Payne & Thas [10](5.3.2) we have S ∼= H(3, s2).
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First, assume s > 2.
Let x and y be non-collinear points of S. As S ∼= H(3, s2), we have |{x, y}⊥⊥| = s + 1.
Let z ∈ {x, y}⊥⊥ \ {x, y}, and let x ∈ L, y ∈ M , z ∈ N with L, M, N pairwise non-
concurrent lines of S. As S ∼= H(3, s2), we have |{L, M, N}⊥⊥| = s + 1. Also, each line
of {L, M, N}⊥⊥ contains a point of {x, y}⊥⊥. Clearly the lines L′, M ′, N ′, . . . of PG(3, q)
which correspond to the lines of {L, M, N}⊥⊥, belong to a regulus R of PG(3, q). Next,
let N1 be a line of S through z, with N #= N1, N1 #∼ L, N1 #∼ M (as s > 2, the line
N1 exists). Again, each line of {L, M, N1}⊥⊥ contains a point of {x, y}⊥⊥, and the lines
L′, M ′, N ′

1, . . . of PG(3, q) which correspond to the lines of {L, M, N1}⊥⊥ belong to a
regulus R1 of PG(3, q). Let U ′ be the line of PG(3, q) containing z and intersecting the
lines L′ and M ′ non-trivially. Then the lines L′, M ′ and U ′ of PG(3, q), are common
lines of the hyperbolic quadrics Q and Q1 defined respectively by R and R1. Hence
Q ∩Q1 = L′ ∪M ′ ∪ U ′ ∪ V ′, with V ′ a line which possibly coincides with U ′.

As {x, y}⊥⊥ belongs to Q ∩ Q1, the s − 1 points z, u, . . . of {x, y}⊥⊥ \ {x, y} belong to
U ′ ∪ V ′. Since {x, y}⊥ contains a point of each of L, M, N, N1, also {x, y}⊥ belongs to
Q ∩ Q1. Let n1 ∈ N1, n1 ∼ x and n ∈ N , n ∼ x. Then n, n1 ∈ Q ∩ Q1. Clearly,
n, n1 /∈ U ′ ∪ L′ ∪M ′, and so, V ′ is the line nn1 of PG(3, q). If u ∈ {x, y}⊥⊥ \ {x, y, z}
belongs to V ′, then the lines un and un1 of S coincide, a contradiction. It follows that
the s− 1 points of {x, y}⊥⊥ \ {x, y} belong to U ′. Consequently any s− 1 points of any
hyperbolic line of S (that is, a point set of the form {v, w}⊥⊥, with v #∼ w) are collinear
in PG(3, q). It easily follows that for s ≥ 4 any hyperbolic line of S is a subset of a line
of PG(3, q). Now let s = 3, and consider a line L1 #= L of S through x, with L1 #∼ M . As
zu = U ′, the line U ′ is independent of the choice of L, M, N through respectively x, y, z.
Hence U ′ intersects the line L′1 ⊇ L1 of PG(3, q).

Consequently, x ∈ U ′. Analogously, y ∈ U ′. Hence {x, y}⊥⊥ ⊆ U ′, and so also for s = 3
any hyperbolic line of S is a subset of a line of PG(3, q).

Let v be any point of S, and let w1 ∼ v ∼ w2, w1 #∼ w2. Then the s + 1 points of
{w1, w2}⊥⊥ are collinear in PG(3, q). Consequently the s + 1 lines of S containing v
belong to a common plane π of PG(3, q). So S is weakly embedded in PG(3, q). Now by
Lefèvre-Percsy [7] and Thas & Van Maldeghem [13], S is a full embedding of the
GQ H(3, s2) in a subspace PG(3, s2) of PG(3, q), for the subfield GF(s2) of GF(q).

Next, let s = 2. We give an explicit description of any lax non-weak embedding of H(3, 4)
in PG(3, q). To that end, we first need an explicit description of the points and lines of
H(3, 4). We use coordinatization. By Hanssens & Van Maldeghem [5], we can define
H(3, 4) as follows. The point set of H(3, 4) is the set

{(∞)} ∪ {(a) : a ∈ GF(4)}
∪{(k, b) : k ∈ GF(2), b ∈ GF(4)} ∪ {(a, l, a′) : a, a′ ∈ GF(4), l ∈ GF(2)},
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where ∞ is a symbol not contained in GF(4), the line set of H(3, 4) is the set

{[∞]} ∪ {[k] : k ∈ GF(2)}
∪{[a, l] : a ∈ GF(4), l ∈ GF(2)} ∪ {[k, b, k′] : k, k′ ∈ GF(2), b ∈ GF(4)},

and incidence is given by

[k, b, k′] I (k, b) I [k] I (∞) I [∞] I (a) I [a, l] I (a, l, a′)

and no other cases occur, except that (a, l, a′) I [k, b, k′] if and only if (viewing GF(2) as
a subfield of GF(4)) {

b = ak + a′,
l = a3k + k′ + a2b + ab2.

We can now coordinatize PG(3, q) in such a way that, without loss of generality, the
following points of H(3, 4) are given the following corresponding coordinates in PG(3, q):

in H(3, 4) in PG(3, q)
(∞) (1, 0, 0, 0)
(0) (0, 0, 1, 0)
(1) (1, 0, 1, 0)

(0, 0) (0, 0, 0, 1)
(0, 1) (1, 0, 0, 1)

(0, 0, 0) (0, 1, 0, 0)
(0, 0, 1) (0, 1, 1, 0)

in H(3, 4) in PG(3, q)
(1, 0, 0) (0, 1, 0, 1)
(1, 0, 1) (1, 1, 1, 1)

(ε) (a, 0, 1, 0)
(ε, 0, 0) (0, 1, 0, b)
(0, ε) (1, 0, 0, c)

(0, 0, ε) (0, d, 1, 0)
(ε, 0, ε) (a, d, 1, ac)

where GF(4) = {0, 1, ε, ε2}, with a, b, c, d ∈ GF(q) \ {0, 1} and with ac = bd. By Payne
& Thas [10](5.3.5), there is a (unique) subquadrangle S ′ of order (2, 2) containing the
points (∞), (ε), (0), (0, ε), (ε, 0, ε) and (0, 0, ε). Since in S ′ there are three lines concurrent
with [0], [ε, 0] and [0, 0], and since in S only [∞], [0, ε, 0] and [0, 0, 0] are concurrent with
all three of [0], [ε, 0] and [0, 0], also the line [0, 0, 0], and hence the points (0, 0), (ε, 0, 0)
and (0, 0, 0) belong to S ′. We now calculate the coordinates in PG(3, 4) of all points of
S ′. First, we must determine all points of S ′. There remains to determine six points.
Clearly the point (1, 0) belongs to S ′. As H(3, 4) is non-weakly embedded in PG(3, q),
we may assume that the point (1, 0) does not belong to the plane 〈(∞), (0), (0, 0)〉. Hence
we may assume that (1, 0) = (x, 1, y, z). Since the line [1, 0, 0] belongs to S ′, also the
point (ε, 1, ε) collinear with (ε) belongs to S ′. We can assign it the coordinates (x, u, y, z),
with u ∈ GF(q) \ {0, 1} (if u = 0, then the plane 〈(∞), (0), (0, 0)〉 induces a proper
full subquadrangle, yielding a contradiction). The line [1, ε, 0] is the unique line in S ′
containing (0, 0, ε) and concurrent with both [ε, 1] (which contains (ε) and (ε, 1, ε)) and [1]
(which contains (∞) and (1, 0)). Since this also determines the line [1, ε, 0] in PG(3, q), we
can calculate that this line intersects [1] in the point (dx + ua− a, d, dy, dz) (which is the
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point (1, ε) of S ′) and the line [ε, 1] in the point (dx+ua−a, du, dy+u−1, dz) (which is the
point (ε, 1, 0) of S ′). Similarly, we see that the point (0, 1, ε) belongs to S ′ and that it has
coordinates (cx+ub−b, cu, cy, cz+ubc−bc) in PG(3, q). Only one point of S ′ remains, and
that is (0, 1, 0), which is the intersection of [0, 1] (containing the points (0) and (0, 1, ε))
and [0, 0, 1] (containing the points (0, 0) and (ε, 1, 0)). We easily calculate that (0, 1, 0)
has coordinates (dx + ua − a, du, dy + u − 1, dz + ubd − bd). But (0, 1, 0) also belongs
to the subquadrangle S obtained from H(3, 4) by restricting coordinates (in the sense of
Hanssens & Van Maldeghem [5]) to GF(2)∪{∞}. We obtain all points of S from the
points of S ′ by putting a = b = c = d = 1, and writing u′ for u, with u′ ∈ GF(q)\{0, 1, u}.
Hence the point (0, 1, 0) has also coordinates (x+u′−1, u′, y +u′−1, z +u′−1). It easily
follows that 





uu′(a− d) + u(d− xd) + u′(xd− a) = 0,
uu′(d− 1) + u(yd− d) + u′(1− yd) = 0,
uu′(b− 1) + u(1− z) + u′(z − b) = 0.

Clearly ∣∣∣∣∣∣

a− d d− xd xd− a
d− 1 yd− d 1− yd
b− 1 1− z z − b

∣∣∣∣∣∣
= 0.

If the rank of the matrix [
d− 1 yd− d 1− yd
b− 1 1− z z − b

]

is equal to 2, then u = u′ = uu′ = #(byd + dz + 1− bd− yd− z) for some # #= 0, clearly a
contradiction as u #= u′. Consequently the rank of the above 2×3-matrix is at most 1 and
so byd + dz + 1− bd− yd− z = 0. As ac = bd, we have acy + dz + 1− ac− yd− z = 0. It
follows that the points (1, 0) = (x, 1, y, z), (ε, 0, ε) = (a, d, 1, ac), (1, 0, 1) = (1, 1, 1, 1) and
(∞) = (1, 0, 0, 0) are coplanar. As (ε, 0, ε), (1, 0, 1) and (∞) are points of (1, 0)⊥, we have
that (1, 0)⊥ belongs to a plane. It follows that if p is any point of H(3, 4) for which the
lines of H(3, 4) through it are non-coplanar in PG(3, q), then for any point p′ ∈ H(3, 4)
with p′ ∼ p and p′ #= p, the lines of H(3, 4) through p′ are coplanar.

Let p be a point of H(3, 4) and assume that the lines L1, L2, L3 of H(3, 4) through p are
not coplanar. Further, let p′ be a point of H(3, 4) with p′ /∈ p⊥. If mi ∈ Li with mi ∼ p′,
then the lines of H(3, 4) through mi are coplanar, i = 1, 2, 3. So the points p, p′, p′′ of
{p, p′}⊥⊥ are on a common line of PG(3, q). As m1, m2, m3 are not on a common line
of PG(3, q), for at least one of the points p′, p′′ the lines of H(3, 4) through it are not
coplanar. It follows that the number of points r of H(3, 4) for which r⊥ is not contained
in a plane, is at least 1 + 16 = 17. As no two distinct such points are collinear in H(3, 4),
we have 17 ≤ st + 1 = 9, a contradiction.

Hence every lax embedding of H(3, 4) in PG(3, q) is weak and the result follows.
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5 The case d = 4 and (s, t) ∈ {(s, s), (s, s + 2), (s2, s3)}

If the GQ S of order (s, t) is laxly embedded in PG(4, q), then by Theorem 3.1 we have
s ≤ t. Also, every known GQ of order (s, t), with 1 #= s ≤ t, has an order of the form
(s, t) ∈ {(s, s), (s, s + 2), (s2, s3), (s, s2)}. In this section we will determine, in each of the
cases (s, s), (s, s + 2), (s2, s3), all lax embeddings in PG(4, q).

We start with an exceptional non-weak lax embedding of a small GQ.

Theorem 5.1 Let q be a power of the prime p. If a generalized quadrangle S of order
(3, 3) is laxly embedded in PG(4, q), then S ∼= Q(4, 3) and either S is weakly embedded
in PG(4, q), or q ≡ 1 mod 3 and, up to a special linear transformation, there exists a
unique (non-weak) lax embedding, which is contained in a subspace PG(4, p) of PG(4, q),
if p ≡ 1 mod 3, and in a subspace PG(4, p2) of PG(4, q), if p ≡ 2 mod 3.

Let S be non-weakly lax embedded in PG(4, q). Then the case q = 4 corresponds to
a full affine embedding; the case q even corresponds to a full affine embedding in an
affine subspace over the subfield GF(4) of GF(q). In each case, the automorphism group
PSp4(3) of S (the group generated by all root elations of S) is the group induced on S
by PSL5(q) and by PGL5(q). If q is a perfect square and if

√
q ≡ −1 mod 3, then the

full automorphism group PGSp4(3) of S is the group induced by PΓL5(q); otherwise,
PΓL5(q) just induces PSp4(3).

Proof. By Theorem 3.1, S ∼= Q(4, 3). We describe S with coordinates as follows (see
Hanssens & Van Maldeghem [5]). The points are the elements of the set

{(∞)} ∪ {(a) : a ∈ GF(3)} ∪ {(k, b) : k, b ∈ GF(3)} ∪ {(a, l, a′) : a, a′, l ∈ GF(3)},

the lines are the elements of the set

{[∞]} ∪ {[k] : k ∈ GF(3)} ∪ {[a, l] : a, l ∈ GF(3)} ∪ {[k, b, k′] : k, k′, b ∈ GF(3)},

incidence is given by the general sequence

(a, l, a′) I [a, l] I (a) I [∞] I (∞) I [k] I (k, b) I [k, b, k′] I (a, ak + k′, b + ak2 − kk′).

As S is not contained in a hyperplane, the lines [∞], [0] and [1] through (∞) are not
contained in a plane (otherwise the proper subspace containing these lines and a line of S
concurrent with [∞] but not containing (∞) would induce a subquadrangle of order (3, t′)
with 3t′ ≤ 3 and t′ #= 1, a contradiction). Also, the 3-dimensional space 〈[∞], [0], [1]〉
does not contain the point (0, 0, 0). Hence, without loss of generality, we can choose
coordinates in PG(4, q) as follows:
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in S in PG(4, q)
(∞) (1, 0, 0, 0, 0)
(0) (0, 1, 0, 0, 0)
(1) (1, 1, 0, 0, 0)

(−1) (a, 1, 0, 0, 0)
(0, 0) (0, 0, 0, 1, 0)
(0, 1) (1, 0, 0, 1, 0)

(0,−1) (b, 0, 0, 1, 0)
(1, 0) (0, 0, 0, 0, 1)
(1, 1) (1, 0, 0, 0, 1)

in S in PG(4, q)
(0, 0, 0) (0, 0, 1, 0, 0)
(0, 0, 1) (0, 1, 1, 0, 0)

(0, 0,−1) (0, b, 1, 0, 0)
(1, 0, 0) (0, 0, 1, 1, 0)
(1, 0, 1) (1, 1, 1, 1, 0)

(1, 0,−1) (b, b, 1, 1, 0)
(−1, 0, 0) (0, 0, 1, a, 0)
(−1, 0, 1) (a, 1, 1, a, 0)

(−1, 0,−1) (ab, b, 1, a, 0)

with a, b ∈ GF(q) \ {0, 1}. These coordinates can easily be computed, because we have
grids in S. Now also all points of the subquadrangle of order (3, 1) induced by the subspace
generated by [1] and [0, 0] can be computed. We obtain:

in S in PG(4, q)
(1,−1) (b, 0, 0, 0, 1)
(1, 1, 0) (b, b, 1, 0, 1)
(1, 1, 1) (0, 0, 1, 0, 1)

(1, 1,−1) (1, 1, 1, 0, 1)
(−1,−1, 0) (a, 1, 1, 0, a)
(−1,−1, 1) (ab, b, 1, 0, a)

(−1,−1,−1) (0, 0, 1, 0, a)

The point (−1, 0) is incident with the line [−1, 0, 1], which contains furthermore the points
(1, 0,−1) and (−1,−1, 0). But the same point (−1, 0) is also on [−1, 0,−1], which contains
(1, 1, 0) and (−1, 0, 1). Looking at the above coordinates in PG(4, q) of these points, we
conclude that (−1, 0) has coordinates (ab+a, ab+1, a+1, a, a) in PG(4, q). Similarly, one
calculates that (−1, 1) (on the lines [−1, 1, 1] = 〈(1, 0, 0), (−1,−1, 1)〉 and [−1, 1,−1] =
〈(1, 1, 1), (−1, 0,−1)〉) has coordinates (ab, b, a+1, a, a). Since (∞), (−1, 0) and (−1, 1) are
collinear in PG(4, q), we obtain ab+1 = b. Similarly, one calculates that (−1,−1) (on the
lines [−1,−1, 1] = 〈(1, 0, 1), (−1,−1,−1)〉 and [−1,−1,−1] = 〈(1, 1,−1), (−1, 0, 0)〉) has
coordinates (a, a, a + 1, a, a). Since (∞), (−1, 0) and (−1,−1) are collinear in PG(4, q),
we obtain ab + 1 = a. Hence a = b and a2 − a + 1 = 0. This equation has no solution
if q ≡ −1 mod 3. If q ≡ 0 mod 3, then the only solution is a = b = −1 and (∞)⊥ is
contained in the hyperplane with equation X2 = 0 in PG(4, q) (working with X0, . . . , X4-
coordinates). Hence, since (∞) is basically an arbitrary point of S, we obtain a weak
embedding.

Now suppose that q ≡ 1 mod 3. Then we can calculate all other points of S in PG(4, q)
and we obtain:
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in S in PG(4, q)
(−1, 0) (1 + a, 1, 2− a, 1, 1)
(−1, 1) (a, 1, 2− a, 1, 1)

(−1,−1) (1, 1, 2− a, 1, 1)
(0, 1, 0) (a, a, 1, a, 1)
(0, 1, 1) (a, 0, 1, a, 1)

(0, 1,−1) (a, 1, 1, a, 1)
(0,−1, 0) (1, 1− a, 1− a, 1− a, 1)
(0,−1, 1) (1, 1, 1− a, 1− a, 1)

(0,−1,−1) (1, 0, 1− a, 1− a, 1)
(1,−1, 0) (1, 1− a, 1− a, 1, 1)
(1,−1, 1) (1 + a, 1, 1− a, 1, 1)

(1,−1,−1) (a, 0, 1− a, 1, 1)
(−1, 1, 0) (a, a, 1, 1, 1)
(−1, 1, 1) (1, 0, 1, 1, 1)

(−1, 1,−1) (1 + a, 1, 1, 1, 1)

Now it is a tedious, but very easy calculation, to check that this representation of Q(4, 3)
in PG(4, q) is indeed a lax embedding of Q(4, 3), and we denote that lax embedding by
S[a]. It is clear that, if p ≡ 1 mod 3, then a ∈ GF(p) and all points of the quadrangle
belong to the subspace PG(4, p). Likewise, if p ≡ 2 mod 3, then a ∈ GF(p2) and the
embedding happens in the subspace PG(4, p2).

The following linear transformations in PG(4, q), given by the matrices





a− 1 0 0 1 1
0 a− 1 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




,





a− 1 1 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 1 a− 1 0
0 0 0 0 1




,





1 0 0 0 0
0 1 0 0 0
0 1 −a 0 1
1 0 0 −a 0
0 0 0 0 1




,





1 0 0 0 0
1 −a 0 0 0
0 0 −a 1 1
0 0 0 1 0
0 0 0 0 1




,





−1 0 0 0 1 + a
0 −1 0 0 1
0 0 −1 0 2− a
0 0 0 0 1
0 0 0 −1 1





preserve S[a] (one only needs to check that these matrices map the 18 points given in
the first table of this proof onto points of S[a]; this is again a tedious but very easy
job) and induce root elations which generate a flag transitive automorphism group of
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S[a] isomorphic to PSp4(3). Hence the latter is a subgroup G of PSL5(q) (indeed, all
determinants are fifth powers in GF(q) observing that a = a−5) acting flag transitively
on S[a].

Now it is easily checked that the special linear transformation with matrix




a4 0 0 0 0
0 −a2 0 0 0
0 0 1 0 0
0 0 0 −a2 0
0 0 0 0 −a2





interchanges S[a] with S[−a2], where a and −a2 are the two solutions of the equation
x2−x+1 = 0. Hence, up to a special linear transformation, we have a unique (non-weak)
lax embedding. Moreover, a direct computation shows that there is an automorphism of
PG(4, q) stabilizing S[a], fixing the points (∞), (0), (0, 0), (0, 0, 0) and (1, 0) and mapping
(1) to (−1) (which would induce an element of PGSp4(3) \ PSp4(3)) if and only if q is
a perfect square and a1+

√
q = 1. If q is odd, then a has order 6 and the condition is

equivalent to
√

q ≡ −1 mod 6, hence to
√

q ≡ −1 mod 3. If q is even, then a3 = 1 and
again this is equivalent to

√
q ≡ −1 mod 3.

If q is even, then the hyperplane β with equation

aX0 + X1 + a2X2 + X3 + X4 = 0

is preserved by G (this can easily be checked with the above matrices). By the transitivity,
no point of S[a] belongs to β. Hence S[a] lies in an affine space. If q = 4, then the lines
of S[a] must be full lines of that affine space and we obtain the well-known embedding of
Q(4, 3) in AG(4, 4), see Payne & Thas [10](7.4.1(iii)). Since q ≡ 1 mod 3 if and only
if q is an even power of 2, this lax embedding of Q(4, 3) in PG(4, q) for q even is just the
full embedding of Q(4, 3) in AG(4, 4), with AG(4, 4) an affine subspace of some affine
space AG(4, q) associated to PG(4, q).

The theorem is proved.

We make the following observation. With the notation of the previous proof, the ten points
(∞), (a, l,−a), a, l,∈ GF(3), form an ovoid of S[a] which is obtained by intersecting
Q(4, 3) in its natural embedding in PG(4, 3) with a certain hyperplane. These ten points
of the (non-weak) lax embedding in PG(4, q) clearly generate PG(4, q). Any ovoid O
of S[a] obtained by intersecting Q(4, 3) in its natural embedding in PG(4, 3) with some
hyperplane (that is, O is an elliptic quadric of Q(4, 3) in its natural embedding), will be
called a classical ovoid. Any two classical ovoids of S[a] are equivalent under the subgroup
G of PSL5(q).

We now handle the general case Q(4, s).
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Theorem 5.2 If the generalized quadrangle S of order (s, s), with s #= 1 and where s #= 3
for q ≡ 1 mod 3, is laxly embedded in PG(4, q), then S ∼= Q(4, s) and the lax embedding
is a weak embedding.

Proof. If s = 3, then the result follows from Theorem 5.1. If s = 2, then there are only
three lines through each point of Q(4, 2), hence they cannot generate PG(4, q) and so the
lax embedding is necessarily a weak embedding. Henceforth, we may assume s ≥ 4.

By Corollary 3.2, we know that every two non-intersecting lines of S generate a 3-
dimensional space in PG(4, q) which induces a subquadrangle of order (s, 1) in S. We
also know that every line is regular. Now we fix a line L in S and a plane U skew to
the line L′ of PG(4, q) containing L. Let M be any line of S intersecting L. The plane
〈L, M〉 meets U in a point pM . If N is a line of S opposite L, then the 3-dimensional
space 〈L, N〉 meets U in a line which contains all points pM such that M is a line of S in
{L, N}⊥. So we obtain a (lax) embedding of the dual affine plane defined by the regular
line L, in the projective plane U . By Limbos [9], s ≥ 4 implies that the points pM of U
such that M meets L in a fixed point x are contained in a line Lx of U , for all x of S on
L. Hence x⊥ is contained in the hyperplane generated by L and Lx. So we have a weak
embedding and the theorem is proved.

Theorem 5.3 No generalized quadrangle S of order (s, s+2) with s > 2, is laxly embedded
in PG(4, q).

Proof. Assume, by way of contradiction, that S is a GQ of order (s, s + 2), with s > 2,
laxly embedded in PG(4, q). Let L, M be two non-concurrent lines of S and let S ′ be the
subquadrangle of order (s, t′) induced by PG(m, q) = 〈L, M〉; clearly m ≤ 3. By Payne
& Thas [10](2.2), we have st′ ≤ s + 2, and so t′ = 1. It follows that all lines of S are
regular, contradicting Theorem 8.10 (see Appendix A). The theorem is proved.

Theorem 5.4 If a generalized quadrangle S of order (s2, s3), s #= 1, is laxly embedded in
PG(4, q), then S is a full embedding of the classical generalized quadrangle H(4, s2) in a
subspace PG(4, s2) of PG(4, q), for the subfield GF(s2) of GF(q).

Proof. Suppose that the GQ S of order (s2, s3), s #= 1, is laxly embedded in PG(4, q). Let
L, M be two non-concurrent lines of S. First, assume that 〈L, M〉 is a plane PG(2, q).
Then in PG(2, q) a subquadrangle of order (s2, t′), with t′ < s3, is induced. Now let
N be a line of S which is concurrent with L but not contained in PG(2, q). Then in
PG(3, q) = 〈L, M, N〉 a subquadrangle of order (s2, t′′), with t′ < t′′ < s3, is induced.
This contradicts Payne & Thas [10](2.2.2). Hence 〈L, M〉 is always a PG(3, q). By
such a PG(3, q) a subquadrangle S ′ of order (s2, t′) is induced, and, by Payne & Thas
[10](2.2.2), t′ ∈ {1, s}.
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Assume, by way of contradiction, that for any two non-concurrent lines of S the space
〈L, M〉 induces a subquadrangle of order (s2, 1). Then all lines of S are regular. So by
Payne & Thas [10](1.5.1), s2+1 divides (s6−1)s6, clearly a contradiction. It follows that
by at least one space PG(3, q) = 〈L, M〉 a subquadrangle S ′ of order (s2, s) is induced.
As S ′ is laxly embedded in PG(3, q), we have by Theorem 4.1 that S ′ ∼= H(3, s2) and
that it is fully embedded in a subspace PG(3, s2) of PG(3, q), for the subfield GF(s2) of
GF(q).

Let y be a point of S which is not contained in S ′. By Payne & Thas [10](2.2.1), the
point y is collinear with the s3 + 1 points of an ovoid O of S ′. Let O = {z1, z2, . . . , zs3+1}.
The maximum number of points zi, i #= 1, 2, for which there is a plane through z1, z2, zi

containing s + 1 lines of S ′ equals (s + 1)(s − 1). So there is a point zi, i #= 1, 2, say
z3, such that no plane through z1, z2, z3 contains s + 1 lines of S ′. For such a point z3

the points z1, z2, z3 are not collinear in PG(4, q), and the plane z1z2z3 contains exactly
s3 + 1 points of S ′. Let PG′(3, q) = 〈z1, z2, z3, y〉. First, assume that y is collinear (in
S) with the s3 + 1 points of S ′ in z1z2z3. Then the s3 + 1 lines of S through y are
contained in a 3-dimensional space. Next, assume that y is not collinear with the s3 + 1
points of S ′ in the plane z1z2z3. Then PG′(3, q) induces a subquadrangle S ′′ of S of
order (s2, s). As S ′′ is fully embedded in a subspace PG′(3, s2) of PG′(3, q), the s + 1
lines of S ′′ through y are coplanar, so yz1, yz2, yz3 are coplanar so z1, z2, z3 are collinear
in PG(3, q), a contradiction. So we conclude that the lines of S through y are contained
in a 3-dimensional space.

Next, assume that z is a point of S ′. Consider a plane π of PG(3, q), with z /∈ π, which
contains s3 +1 mutually non-collinear points of S ′. Let u1, u2 be points of S ′ in π. If each
point of S \ S ′ collinear with u1 and u2, is collinear with all points of S ′ in π, then by
Payne & Thas [10](1.4.2) we have (s3−s)s3 ≤ s4, a contradiction. So let v be a point of
S \S ′ collinear with u1 and u2, but not with all points of S ′ in π. Then 〈π, v〉 =PG′′(3, q)
induces a subquadrangle S ′′′ of order (s2, t′). The intersection of S ′ and S ′′′ is an ovoid of
S ′′′, or is the union of t′ + 1 concurrent lines of S ′′′. As the s3 + 1 points of S ′ in π belong
also to S ′′′, the latter case would imply t′ ≥ s3, a contradiction. Hence the intersection of
S ′ and S ′′′ is an ovoid of S ′′′, which contains at least s3 + 1 points. So s2t′ + 1 ≥ s3 + 1,
that is, t′ ≥ s, and consequently t′ = s. Interchanging roles of S ′ and S ′′′, and as z is not
contained in S ′′′, the previous paragraph shows that all lines of S through z are contained
in a 3-dimensional space.

It follows that S is weakly embedded in PG(4, q). Now by Thas & Van Maldeghem
[13] S is a full embedding of the GQ H(4, s2) in a subspace PG(4, s2) of PG(4, q), for
the subfield GF(s2) of GF(q).

The theorem is proved.
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6 The case d = 5

For d = 5, a complete classification is possible. We start with an exceptional lax non-weak
embedding of a small GQ.

Theorem 6.1 Up to a linear transformation, there exists a unique lax embedding of
Q(5, 2) in PG(5, q) with q odd. This lax embedding is not weak and the full collineation
group of Q(5, 2) is induced by PGL6(q). Also, this collineation group fixes a hyperplane
in PG(5, q) if and only if q is a power of 3, in which case the lax embedding is a full
embedding in some affine subspace AG(5, 3) over the subfield GF(3) of GF(q). In each
case, the lax embedding is contained in a subspace PG(5, p) of PG(5, q) over the subfield
GF(p) of GF(q), with p the characteristic of GF(q).

Proof. We use the description of (the dual of) Q(5, 2) in terms of coordinates, introduced
in the last part of the proof of Theorem 4.1. By Corollary 3.2, we know that every subspace
PG(4, q) containing two opposite lines of Q(5, 2) induces a subquadrangle Q(4, 2). Since
Q(4, 2) is laxly embedded in PG(4, q) and q is odd, we know by Theorem 5.2 combined
with Theorem 1 of Thas & Van Maldeghem [13] that the embedding of Q(4, 2) is
universal in PG(4, q). Without loss of generality, we may assume that Q(4, 2) is obtained
from Q(5, 2) by restricting coordinates to GF(2) in the coordinatization of Hanssens &
Van Maldeghem [5]. It is an elementary exercise to write down explicitly the universal
embedding of Q(4, 2) (see also Thas & Van Maldeghem [13]), and one obtains, up to
a linear transformation,

in S in PG(5, q)
(∞) (1, 0, 0, 0, 0, 0)
(0) (0, 0, 1, 0, 0, 0)
(1) (1, 0, 1, 0, 0, 0)

(0, 0) (1, 0, 0, 1, 0, 0)
(0, 1) (0, 0, 0, 1, 0, 0)
(1, 0) (0, 1, 0, 0, 1, 0)
(1, 1) (−1, 1, 0, 0, 1, 0)

(0, 0, 0) (0, 0, 0, 0, 1, 0)
(0, 0, 1) (0, 0, 1, 0, 1, 0)
(1, 0, 0) (1, 0, 0, 1,−1, 0)
(1, 0, 1) (0, 0, 1,−1, 1, 0)
(0, 1, 0) (0, 1,−1, 1, 0, 0)
(0, 1, 1) (0, 1, 0, 1, 0, 0)
(1, 1, 0) (1,−1, 1, 0, 0, 0)
(1, 1, 1) (0, 1, 0, 0, 0, 0)

Let GF(4) = {0, 1, ε, ε2}. We may now choose, without loss of generality, the coordinates
of the point (ε, 0) as (0, 0, 0, 0, 0, 1) and those of (ε, 1) as (1, 0, 0, 0, 0, 1), since (∞), (ε, 0)
and (ε, 1) are collinear in Q(5, 2), and hence in PG(5, q) as well. With the same elementary
technique as in the proof of Theorem 5.1, we deduce the coordinates of all other points
of Q(5, 2) and we obtain:
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in S in PG(5, q)
(ε, 0) (0, 0, 0, 0, 0, 1)
(ε, 1) (1, 0, 0, 0, 0, 1)
(ε2, 0) (1,−1, 1,−1, 1, 1)
(ε2, 1) (0,−1, 1,−1, 1, 1)
(0, ε, 0) (0, 0, 1,−1, 1, 1)
(0, ε, 1) (0, 0, 0, 1,−1,−1)

in S in PG(5, q)
(1, ε, 0) (1, 0, 1, 0, 1, 1)
(1, ε, 1) (0, 0, 0, 0, 1, 1)
(0, ε2, 0) (1,−1, 0, 0, 0, 1)
(0, ε2, 1) (1,−1, 1, 0, 0, 1)
(1, ε2, 0) (0, 1, 0, 1, 0,−1)
(1, ε2, 1) (1,−1, 1,−1, 0, 1)

The following linear transformations given by their matrices, preserve the point set of
Q(5, 2), induce root elations and generate a subgroup (isomorphic to PGU4(2)) of index 2
of the full automorphism group PGU4(2) : 2 of Q(5, 2):





−1 −1 0 1 0 1
0 1 0 0 0 0
0 −1 −1 0 1 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




,





−1 0 1 0 −1 1
0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 −1 −1 0
0 0 0 0 1 0
0 0 0 0 0 1




,





0 0 0 −1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
−1 0 0 0 0 0
0 1 1 0 −1 1
0 0 0 0 0 1




,





1 0 0 0 0 0
0 1 0 0 0 0
1 0 −1 −1 0 0
0 0 0 1 0 0
0 1 0 −1 −1 1
0 0 0 0 0 1




,





−1 0 0 0 0 1
0 0 0 0 −1 0
0 −1 −1 0 1 0
0 1 0 −1 −1 0
0 −1 0 0 0 0
0 0 0 0 0 1




,





1 1 0 0 0 0
0 −1 0 0 0 0
0 1 1 0 −1 0
0 −1 0 1 1 0
0 0 0 0 −1 0
0 1 0 0 −1 1




.

Also, the linear transformation given by the matrix





1 0 0 0 0 −1
0 1 0 0 0 1
0 0 1 0 0 −1
0 0 0 1 0 1
0 0 0 0 1 −1
0 0 0 0 0 −1





fixes Q(4, 2) pointwise and preserves Q(5, 2). Hence we now have the full automorphism
group PGU4(q) : 2 of Q(5, 2) which is induced by PGL6(q). So we do have a lax
embedding of Q(5, 2) in PG(5, q), and, obviously, it is unique and contained in PG(5, p)
(with p the characteristic of q).
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One can check easily that all the above transformations fix a hyperplane if and only if
they fix a unique hyperplane if and only if q is a power of 3. In such a case the hyperplane
has equation

X0 + X1 + X2 + X3 + X4 + X5 = 0.

Then S lies in an affine space and the smallest case, q = 3, again corresponds to a full
affine embedding, see Payne & Thas [10](7.5.1(ii)). Now, up to some tedious but easy
calculations which, having all the necessary information above, can be done by the reader,
the theorem is completely proved.

Theorem 6.2 If the generalized quadrangle S of order (s, t), s #= 1, is laxly embedded in
PG(5, q), then t = s2 and S ∼= Q(5, s). If q is even for s = 2, then the lax embedding is a
weak embedding and hence a full one in a subspace PG(5, s) of PG(5, q) over the subfield
GF(s) of GF(q).

Proof. By Theorem 3.1 we have t = s2 and S ∼= Q(5, s).

Suppose first that s = 3. If q #≡ 1 mod 3, then, by Theorem 5.1, every subquadrangle
of order (3, 3) induced by a hyperplane is weakly embedded in that hyperplane. Now
let q ≡ 1 mod 3. Let S ′ be a subquadrangle of order (3, 3) induced by a hyperplane.
Every classical ovoid in S ′ is contained in exactly two subquadrangles S ′, S ′′ of order
(3, 3). By Theorem 3.1, S ′′ is laxly embedded in some hyperplane of PG(5, q). But
from the observation following the proof of Theorem 5.1, we have that a classical ovoid
of S ′ generates a hyperplane in PG(5, q). Hence the two subquadrangles lie in the same
hyperplane, a contradiction.

So by Theorem 5.2, and for all s, every subquadrangle of order (s, s) induced by a hy-
perplane is weakly embedded in that hyperplane. As S ∼= Q(5, s), every point x of S
is collinear with every point of some classical ovoid in any given subquadrangle of order
(s, s) not containing x; also, every line of S through x contains a unique point of the
ovoid. But since every subquadrangle of order (s, s) is weakly embedded in a hyperplane,
and since q is even if s = 2, every classical ovoid lies in a 3-dimensional space. Hence the
set of lines through a point of S is contained in a hyperplane and so S is weakly embedded
in PG(5, q).

The theorem is proved.

7 The case d = 4 and S is isomorphic to Q(5, s)

We start with an exceptional lax embedding of a small GQ.
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Theorem 7.1 If the generalized quadrangle S ∼= Q(5, 2) is laxly embedded in PG(4, q), q
odd, then there exists a PG(5, q) containing PG(4, q) and a point x ∈ PG(5, q)\PG(4, q)
such that S is the projection from x onto PG(4, q) of a generalized quadrangle S̃ ∼= Q(5, 2)
which is laxly embedded in PG(5, q), and hence determined by Theorem 6.1.

Proof. We start by making the following crucial remark: if L is a line of S opposite
the two lines M and M ′, where M and M ′ meet in a point of S, then at least one of
the spaces 〈L, M〉 or 〈L, M ′〉 is 3-dimensional. Indeed, if they were both 2-dimensional,
then they would coincide and the plane 〈L, M, M ′〉 would induce a subquadrangle S ′ in
S, necessarily of order (2, 2); considering then the 3-space generated by L, M and some
further point z ∈ S \ S ′, we see that S would be contained in a hyperplane of PG(4, q),
a contradiction.

Hence there exist opposite lines L, M of S such that 〈L, M〉 is 3-dimensional. Let u be a
point of L. If all lines of S through u were contained in 〈L, M〉, then S would be contained
in 〈L, M〉, a contradiction. Let N be a line of S incident with u, but not contained in
〈L, M〉. As S ∼= Q(5, 2), there is a unique subquadrangle S ′′ of order (2, 2) of S containing
L, M, N . If we use the description of Q(5, 2) in the proof of Theorem 6.1, then we may take
for S ′′ the subquadrangle obtained by restricting coordinates (in the sense of Hanssens
& Van Maldeghem [5]) to GF(2). Hence, without loss of generality, we may assume
that the following points have coordinates in PG(4, q) as shown in the table:

in S in PG(4, q)
(∞) (1, 0, 0, 0, 0)
(0) (0, 0, 1, 0, 0)
(1) (1, 0, 1, 0, 0)

(0, 0) (1, 0, 0, 1, 0)
(0, 1) (0, 0, 0, 1, 0)
(1, 0) (0, 1, 0, 0, 1)
(1, 1) (−1, 1, 0, 0, 1)

(0, 0, 0) (0, 0, 0, 0, 1)
(0, 0, 1) (0, 0, 1, 0, 1)
(1, 0, 0) (1, 0, 0, 1,−1)
(1, 0, 1) (0, 0, 1,−1, 1)
(0, 1, 0) (0, 1,−1, 1, 0)
(0, 1, 1) (0, 1, 0, 1, 0)
(1, 1, 0) (1,−1, 1, 0, 0)
(1, 1, 1) (0, 1, 0, 0, 0)

Now we put (ε, 0) and (ε, 1) equal to (a, b, c, d, e) and (a′, b, c, d, e), respectively, with
a, a′, b, c, d, e ∈ GF(q), a #= a′ and (b, c, d, e) #= (0, 0, 0, 0). By our first remark in this
proof, we have that the plane generated by [ε] and [∞] does not contain both [0, 0] and
[0, 1]. By recoordinatizing, we may assume that it does not contain [0, 0]. Hence the space
U := 〈[ε], [0, 0]〉 is 3-dimensional and so the lines

[∞], [ε, 1, 0], [ε, 0, 0] and [ε], [1, ε], [0, 0]

form a grid (hence lie on a hyperbolic quadric in U). Since we know the coordinates in
PG(4, q) of 7 of the 9 points of that grid, we can calculate the coordinates of the other two
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points (the line [1, ε] containing the points (1, ε, 0) and (1, ε, 1) is the unique line through
(1) = (1, 0, 1, 0, 0) intersecting the lines [ε, 1, 0] and [ε, 0, 0] non-trivially). We obtain:

(1, ε, 0) = (a′, b, c + a′ − a, d, e + a′ − a), (1, ε, 1) = (a, b, c, d, e + a′ − a).

Now we consider the line [0, ε]. The plane 〈[0, ε], [∞]〉 does not contain both [0] and
[ε], and we can calculate in both cases the coordinates of the points (0, ε, 0) and (0, ε, 1)
similarly as above. In both cases, we obtain the same coordinates. Continuing like this,
we eventually get the coordinates in PG(4, q) of all points of S, and we summarize this
in the following table (putting a− a′ = f):

in S in PG(4, q)
(ε, 0) (a, b, c, d, e)
(ε, 1) (a− f, b, c, d, e)
(ε2, 0) (a− f, b + f, c− f, d + f, e− f)
(ε2, 1) (a, b + f, c− f, d + f, e− f)
(0, ε, 0) (a, b, c− f, d + f, e− f)
(0, ε, 1) (a, b, c, d + f, e− f)
(1, ε, 0) (a− f, b, c− f, d, e− f)
(1, ε, 1) (a, b, c, d, e− f)
(0, ε2, 0) (a− f, b + f, c, d, e)
(0, ε2, 1) (a− f, b + f, c− f, d, e)
(1, ε2, 0) (a, b + f, c, d + f, e)
(1, ε2, 1) (a− f, b + f, c− f, d + f, e)

Now let PG(4, q) be embedded as the hyperplane with equation X6 = 0 in PG(5, q),
and let S̃ be the lax embedding of Q(5, 2) in PG(5, q) described in the proof of Theo-
rem 6.1. Then it is clear that S is the projection of S̃ onto PG(4, q) from the point x
with coordinates (a, b, c, d, e, f). The theorem is proved.

Theorem 7.2 If the generalized quadrangle S ∼= Q(5, s) is laxly embedded in PG(4, q),
where s #= 2 for q odd, then there exists a PG(5, q) containing PG(4, q) and a point x ∈
PG(5, q)\PG(4, q) such that S is the projection from x onto PG(4, q) of a generalized
quadrangle S̃ ∼= Q(5, s) which is fully embedded in a subspace PG(5, s) of PG(5, q), for
the subfield GF(s) of GF(q).

Proof. Assume, by way of contradiction, that a subquadrangle S ′ ∼= Q(4, s) of S is
contained in a plane PG(2, q) of PG(4, q). Let L be a line of S not contained in PG(2, q)
but containing a point of S ′. Then the 3-dimensional space 〈PG(2, q), L〉 induces a
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subquadrangle of order (s, t) of S, with s < t < s2. This contradicts Payne & Thas
[10](2.2.2).

Assume that the subquadrangle G of order (s, 1) of S is contained in a plane PG(2, q).
Let L be a line of S not contained in PG(2, q) but containing a point of G. Further, let
M be a line of G not concurrent with L. So S always contains lines L, M which are not
coplanar. As S ∼= Q(5, s) the lines L, M are contained in s + 1 subquadrangles of order
(s, s). By Payne & Thas [10](2.2.2) at most one of these subquadrangles is contained
in 〈L, M〉. Hence at least s of these subquadrangles generate PG(4, q).

Let S ′ be a subquadrangle of order (s, s) of S which generates PG(4, q). If for q ≡ 1 mod 3
we have s #= 3 and if for q odd we have s #= 2, then by Thas & Van Maldeghem [13]
and by Theorem 5.2 the subquadrangle S ′ is fully embedded in some subspace PG(4, s) of
PG(4, q). Now assume, by way of contradiction, that s = 3 with q ≡ 1 mod 3. Let L, M be
two non-coplanar lines of S. Further, let {L, M}⊥ = {M1, M2, M3, M4} and {L, M}⊥⊥ =
{L1, L2, L3, L4} with Li ∩ Mj = {xij}. Consider a point y collinear with x12 and x21,
y #= x11, x22, and consider a point z collinear with y, x23, x32. For the point z we have 4
different choices. For given y there is at most one point z for which the lines yz and x12x32

respectively x21x23 are coplanar. So we may assume that 〈yz, x12x32〉 and 〈yz, x21x23〉 are
hyperplanes of PG(4, q). As {yz, x12x32}⊥⊥ is a set of 4 lines on a hyperbolic quadric
Q+(3, q) the cross-ratios {x12, x22; x32, x42} and {y, u; z, v} are equal, where u is the point
of yz collinear with x22 and v is the point of yz collinear with x42. Analogously, we
have {x21, x22; x23, x24} = {y, u; z, v}. Hence {x12, x22; x32, x42} = {x21, x22; x23, x24}. It
follows that the points x11, x22, x33, x44 of Q+(3, q) are coplanar. Consequently, any plane
containing 3 pairwise non-collinear points of the grid defined by L, M , contains exactly
4 points of this grid. Now let π be a plane of PG(4, q) not containing x11 and let
x11xij ∩ π = {x′ij}, i, j = 1, 2, 3, 4 and (i, j) #= (1, 1). Any line containing two distinct
points of the set P = {x′22, x′32, x′42, x′23, x′33, x′43, x′24, x′34, x′44} contains exactly three points
of P . Hence there arises an affine plane AG(2, 3). Also the lines x′22x

′
23, x

′
32x

′
33, x

′
42x

′
43

all contain the point x′21 = x′31 = x′41. Now by Limbos [9] we have q ≡ 0 mod 3, a
contradiction. Consequently, if for q odd we have s #= 2, then S ′ is always fully embedded
in some subspace PG(4, s) of PG(4, q).

Choose a line N of S not contained in S ′. Then N contains just one point n of S ′. By the
foregoing it is clear that N is contained in a subquadrangle S ′′ ∼= Q(4, s) which generates
PG(4, q). Again S ′′ is fully embedded in some subspace PG′(4, s) of PG(4, q). Hence N
is a subline PG(1, s) of the corresponding line N ′ of PG(4, q).

Now we show that not all points of N belong to PG(4, s) (that is, N contains at most two
points of PG(4, s)). Suppose the contrary. Let u be a point of S not in S ′, with u /∈ N .
Assume first that u #∼ n. Let w be the point of N for which w ∼ u. Then the line wu of S
has a point n′ in common with S ′. As S ′ ∼= Q(4, s) is fully embedded in PG(4, s), there
is a line W of S ′ through n which is not contained in the plane 〈N, u〉. Now we consider a
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subquadrangle S ′′′ ∼= Q(4, s) of S containing W, N, u, n′ and generating PG(4, q) (by the
second paragraph of this proof such a subquadrangle exists). Then S ′′′ is fully embedded
in a subspace PG′′(4, s) of PG(4, q). As S ′ and S ′′′ share the line W , they intersect
either in a grid or in s + 1 concurrent lines. In either case PG(4, s) and PG′′(4, s) share
a PG(3, s). So the line nn′ of PG(4, s) coincides with the line nn′ of PG′′(4, s). In
PG′′(4, s) there is a plane PG(2, s) containing N, u, n′. This plane contains the lines N
and nn′ of PG(4, s), hence PG(2, s) is a plane of PG(4, s). It follows that u is a point
of PG(4, s). Next, assume that u ∼ n. Choose distinct lines T, T ′ of S through u, with
T #= un #= T ′. By the preceding case the line T respectively T ′ contains at least s points of
PG(4, s). So the common point u of the lines T, T ′ belongs to PG(4, s). Consequently, S
is fully embedded in PG(4, s), contradicting the Theorem of Buekenhout & Lefèvre
[1]. We conclude that at most one point of N \ {n} belongs to PG(4, s).

Now we choose a PG(5, q) containing PG(4, q), and in PG(5, q) we choose a line N̄
having just n in common with PG(4, q). Next, we choose on N̄ a subline Ñ over GF(s)
which contains n, and such that N is the projection of Ñ onto PG(4, q) from some point
x of PG(5, q). We call PG(5, s) the subspace of PG(5, q) defined by PG(4, s) and Ñ . If
x would belong to PG(5, s), then N would belong to PG(4, s), a contradiction. It follows
that x /∈PG(5, s).

Let u be a point of S not in S ′ and not on N . Assume first that u #∼ n. The line
M of S through u and concurrent with N contains a point m of S ′. By a foregoing
argument the line nm of PG(4, s) coincides with the line nm of the plane PG(2, s)

containing N, u, m. Let P̃G(2, s) be the plane over GF(s) defined by Ñ and the line nm

of PG(4, s). Projecting this P̃G(2, s) from x onto PG(4, q), we clearly obtain the plane

PG(2, s). Hence the line ux intersects P̃G(2, s) in a point ũ (if ux would contain two

distinct points of P̃G(2, s), then x would be a point of P̃G(2, q), so N would contain n
and m, a contradiction). If ux intersects PG(5, s) in more than one point, then u belongs
to PG(4, s). As x is not in PG(5, s), for at most one point r of S the line rx has more
than one point in common with PG(5, s). Assume that the line ux has more than one
point in common with PG(5, s). The line M of S is the projection from x onto PG(4, q)

of some line M̃ of the plane P̃G(2, s) of PG(5, s). Interchanging roles of M and N , and

of M̃ and Ñ , we then see that, without loss of generality, we may always assume that for
any point u #∼ n, u not in S ′, the line ux has just one point in common with PG(5, s).
Next, assume that u ∼ n. Choose a line W #= un of S through u. Then for any point v of
W \{u} not in S ′, the line xv has exactly one point ṽ in common with PG(5, s). Let T be
a line of S concurrent with W and N , but neither containing n nor the common point w
of W and S ′. Then T is the projection from x onto PG(4, q) of some line T̃ of PG(5, s);
the line T̃ has a unique point in common with PG(4, s) and this point coincides with
the intersection of T and S ′. Interchanging roles of N and T , and also of Ñ and T̃ , we
then see that W is the projection from x onto PG(4, q) of a line W̃ of PG(5, s). Hence
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the line xu intersects PG(5, s) in at least one point. Assume that the line ux has more
than one point in common with PG(5, s). Interchanging roles of W and N , and also of

W̃ and Ñ , we then see that without loss of generality we may always assume that for
any point u ∼ n, u not in S ′ and u not on N , the line ux has just one point in common
with PG(5, s). Now it is clear that there arises an injection θ from the point set of S into
PG(5, s); also, for any point d of S the points x, d, dθ are collinear; the points of S ′ are
fixed by θ, the points of N are mapped onto the points of Ñ , and any point d of S not in
S ′ and not on N is mapped onto the unique common point of dx and PG(5, s).

Let M be a line of S which is concurrent with N , but does not contain n. Then we have
already shown that M θ is a line M̃ of PG(5, s). If A is a line of S ′, then trivially Aθ = A
is a line of PG(5, s). Next, let W be a line of S which is not concurrent with N and
which does not belong to S ′. Further, let T be a line of S which is concurrent with N and
W , but which neither contains n nor the common point w of W and S ′. Then T θ = T̃
and PG(4, s) determine uniquely PG(5, s), and so by a previous argument the point w

together with the s points uθ, with u ∈ W \ {w}, form a line W θ = W̃ of PG(5, s).
Finally, let S #= N be a line of S which does not belong to S ′ but contains n. Let W
be a line of S which is concurrent with S, but does not contain n. Then W θ = W̃ and
PG(4, s) determine uniquely PG(5, s), and so by a previous argument the common point
n of S and S ′ together with the s points eθ, with e ∈ S \ {n}, form a line Sθ = S̃ of
PG(5, s).

Hence θ is an injection from the point set of S into PG(5, s), which maps the lines of
S onto lines of PG(5, s). So there arises a GQ S̃ ∼= Q(5, s) which is fully embedded in
PG(5, s). Also, S is the projection of S̃ from x onto PG(4, q). The theorem is proved.

8 The case d = 3 and S is isomorphic to one of Q(4, s),
Q(5, s), H(4, s2), or the dual of H(4, s2)

Theorem 8.1 If the generalized quadrangle S ∼= H(4, s2) is laxly embedded in PG(3, q),
then there exists a PG(4, q) containing PG(3, q) and a point x ∈ PG(4, q)\PG(3, q) such
that S is the projection from x onto PG(3, q) of a generalized quadrangle S̃ ∼= H(4, s2)
which is fully embedded in a subspace PG(4, s2) of PG(4, q), for the subfield GF(s2) of
GF(q).

Proof. Assume, by way of contradiction, that all the lines of S are mutually coplanar
in PG(3, q). Then the corresponding lines of PG(3, q) all contain a common point y
of PG(3, q); by Lemma 2.1 the point y does not belong to S. Let L, M be lines of S
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and let z ∈ L. If N is the line of S incident with z and concurrent with M , then the
corresponding line N ′ of PG(3, q) does not contain y, a contradiction. So there exist lines
L, M of S for which 〈L, M〉 =PG(3, q). As S ∼= H(4, s2) there exists a subquadrangle
S ′ ∼= H(3, s2) of S for which L, M are lines. By Theorem 4.1 S ′ is fully embedded in a
subspace PG(3, s2) of PG(3, q).

Choose a line N of S not contained in S ′. Then N contains just one point n of S ′.
Assume, by way of contradiction, that all the lines of S ′ are coplanar with a common line
Z of PG(3, q). As the s + 1 lines of S ′ containing a given point of S ′ are coplanar, it
then easily follows that S ′ is contained in a plane through Z, a contradiction. Hence there
exists a line U in S ′ such that 〈U,N〉 is 3-dimensional. Again there exists a subquadrangle
S ′′ ∼= H(3, s2) of S which contains the lines U,N . By Theorem 4.1 S ′′ is fully embedded in
a subspace PG′(3, s2) of PG(3, q). Hence N is a subline PG(1, s2) of the corresponding
line N ′ of PG(3, q).

Now we show that not all points of N belong to PG(3, s2) (that is, N contains at most
two points of PG(3, s2)). Suppose the contrary. Let u be a point of S not in S ′, with
u /∈ N . Assume first that u #∼ n. Let w be the point of N for which w ∼ u. Then the
line wu of S has a point n′ in common with S ′. As S ′ ∼= H(3, s2) is fully embedded in
PG(3, s2), the lines of S ′ through n respectively n′ are contained in a plane π respectively
π′ of PG(3, q). At least one of π, π′ is distinct from the plane 〈N, u〉, and so there is
a line W of S ′ through n or n′, which is not contained in 〈N, u〉. Now we consider a
subquadrangle S ′′′ ∼= H(3, s2) of S containing W, N, u and n′. As S ′′′ is fully embedded
in a PG′′(3, s2), there exists a plane PG(2, s2) in PG′′(3, s2) containing N, u, n′. The
subquadrangles S ′ and S ′′′ share the line W , so they intersect in s + 1 concurrent lines.
Consequently the hyperbolic line containing n, n′ of S ′ coincides with the hyperbolic line
through n, n′ of S ′′′ , and further this hyperbolic line is a PG(1, s) which belongs to
the plane PG(2, s2). It follows that PG(2, s2) belongs to PG(3, s2), hence u belongs to
PG(3, s2). Next, assume that u ∼ n. Choose a line T #= un of S through u. By the
preceding case the line T contains at least s2 points of PG(3, s2). As T is a line over
GF(s2) in PG(3, q), also u belongs to PG(3, s2). Consequently, S is fully embedded in
PG(3, s2), contradicting the Theorem of Buekenhout & Lefèvre [1]. We conclude
that at most one point of N \ {n} belongs to PG(3, s2).

Now we choose a PG(4, q) containing PG(3, q), and in PG(4, q) we choose a line N̄
having just n in common with PG(3, q). Next, we choose on N̄ a subline Ñ over GF(s2)
which contains n, and such that N is the projection of Ñ onto PG(3, q) from some point
x of PG(4, q). We call PG(4, s2) the subspace of PG(4, q) defined by PG(3, s2) and Ñ .
If x would belong to PG(4, s2), then N would belong to PG(3, s2), a contradiction. It
follows that x /∈ PG(4, s2).

Let u be a point of S not in S ′ and not on N . Assume first that u #∼ n. The line M of
S through u and concurrent with N contains a point m of S ′. By a foregoing argument,
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the hyperbolic line Y of S ′ through m and n is a PG(1, s) of PG(3, q), and in the plane

〈mu,N〉 S has s + 1 lines intersecting S ′ in the points of Y . Let P̃G(2, s2) be the plane

over GF(s2) defined by Ñ and Y (then P̃G(2, s2) is a plane of the space PG(4, s2)).

Projecting this P̃G(2, s2) from x onto PG(3, q), we obtain the unique plane PG(2, s2)
over GF(s2) containing N and Y . By the foregoing paragraphs the point u also belongs

to this plane PG(2, s2). Hence the line ux intersects P̃G(2, s2) in a unique point ũ. If
ux intersects PG(4, s2) in more than one point, then u belongs to PG(3, s2). As x is
not in PG(4, s2), for at most one point r of S the line rx has more than one point in
common with PG(4, s2). Assume that the line ux has more than one point in common

with PG(4, s2). The line M of S is the projection from x onto PG(3, q) of some line M̃

of the plane P̃G(2, s2) of PG(4, s2). Interchanging roles of M and N , and of M̃ and Ñ ,
we then see that, without loss of generality, we may always assume that for any point
u #∼ n, u not in S ′, the line ux has just one point in common with PG(4, s2). Next, assume
that u ∼ n. Choose a line W #= un of S through u. Then for any point v of W \ {u}
not in S ′, the line xv has exactly one point ṽ in common with PG(4, s2). Let T be a line
of S concurrent with W and N , but neither containing n nor the common point w of W
and S ′. Then T is the projection from x onto PG(3, q) of some line T̃ of PG(4, s2); the
line T̃ has a unique point in common with PG(3, s2) and this point coincides with the
intersection of T and S ′. Interchanging roles of N and T , and also of Ñ and T̃ , we then
see that W is the projection from x onto PG(3, s) of a line W̃ of PG(4, s2). Hence the
line xu intersects PG(4, q2) in at least one point. Assume that the line ux has more than

one point in common with PG(4, s2). Interchanging roles of W and N , and also of W̃
and Ñ , we then see that without loss of generality we may always assume that for any
point u ∼ n, u not in S ′ and u not on N , the line ux has just one point in common with
PG(4, s2). Now it is clear that there arises an injection θ from the point set of S into
PG(4, s2); also, for any point d of S the points x, d, dθ are collinear; the points of S ′ are
fixed by θ, the points of N are mapped onto the points of Ñ , and any point d of S not in
S ′ and not on N is mapped onto the unique common point of dx and PG(4, s2).

Let M be a line of S which is concurrent with N , but does not contain n. Then we have
already shown that M θ is a line M̃ of PG(4, s2). If A is a line of S ′, then trivially Aθ = A
is a line of PG(4, s2). Next, let W be a line of S which is not concurrent with N and
which does not belong to S ′. Further, let T be a line of S which is concurrent with N and
W , but which neither contains n nor the common point w of W and S ′. Then T θ = T̃
and PG(3, s2) determine uniquely PG(4, s2), and so by a previous argument the point

w together with the s2 points uθ, with u ∈ W \ {w}, form a line W θ = W̃ of PG(4, s2).
Finally, let S #= N be a line of S which does not belong to S ′ but contains n. Let W
be a line of S which is concurrent with S, but does not contain n. Then W θ = W̃ and
PG(3, s2) determine uniquely PG(4, s2), and so by a previous argument the common
point n of S and S ′ together with the s2 points eθ, with e ∈ S \ {n}, form a line Sθ = S̃
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of PG(4, s2).

Hence θ is an injection from the point set of S into PG(4, s2), which maps the lines of
S onto lines of PG(4, s2). So there arises a GQ S̃ ∼= H(4, s2) which is fully embedded in
PG(4, s2). Also, S is the projection of S̃ from x onto PG(3, q).

The theorem is proved.

A perspectivity [L; M ] in a GQ is a map from a line L to an opposite line M which
maps any point x on L onto the unique point y of M collinear with x. A projectivity
is the composition of a finite number of perspectivities. We denote [L1; L2; L3; . . . ; Li] =
[L1; L2][L2; L3] · · · [Li−1; Li], for Lj opposite Lj+1, j = 1, . . . , i− 1.

Theorem 8.2 A generalized quadrangle S isomorphic to the dual of H(4, s2) cannot be
laxly embedded in PG(d, q), for d ≥ 3.

Proof. By Theorem 3.1, we only have to deal with the case d = 3.

Let L and M be two arbitrary opposite lines of S and suppose that S is laxly embedded in
PG(3, q). Then 〈L, M〉 is 3-dimensional, otherwise S has a subquadrangle of order (s3, t),
with s3t ≤ s2, a contradiction. Also, |{L, M}⊥⊥| = s + 1. Clearly, the perspectivity in S
mapping a point x on L to the point y on M collinear with x is the restriction of a linear
transformation of PG(3, q) to L (because the lines xy of PG(3, q) are generators of the
hyperbolic quadric containing the extensions of the s + 1 lines of {L, M}⊥⊥ to GF(q)).
Hence the full group G of projectivities of a line L of S is contained in the group PGL2(q).
By Knarr [6], the group G is permutation equivalent to PGU3(s) acting naturally on
a hermitian unital. It follows that G contains a non-trivial element fixing three distinct
points of L. On the other hand PGL2(q) acts sharply 3-transitive on the extension L′ of
L to GF(q). This contradiction proves the theorem.

The following lemma follows immediately from the classification of all (maximal) sub-
groups of PGL2(q), see Dickson [2].

Lemma 8.3 Consider the natural action of PGL2(q) on the projective line PG(1, q). If
PSL2(s) is a subgroup of PGL2(q) and if it has an orbit of length s + 1, then either this
orbit is a projective subline PG(1, s) over the subfield GF(s) of GF(q), or s = 3 and
q ≡ 1 mod 3, or s = 2 and q is odd. Also, if s = 3 and PGL2(3) is a subgroup of
PGL2(q) with an orbit of length 4, then q is a power of 3.

Theorem 8.4 If the generalized quadrangle S ∼= Q(4, s) of order (s, s), with s #= 2 for
q odd and s #= 3 for q ≡ 1 mod 3, is laxly embedded in PG(3, q), then either s is even
and S ∼= Q(4, s) ∼= W (s) is fully embedded in a subspace PG(3, s) of PG(3, q), or there
exists a PG(4, q) containing PG(3, q) and a point x ∈ PG(4, q) \ PG(3, q) such that S
is the projection from x onto PG(3, q) of a generalized quadrangle S̃ ∼= Q(4, s) which is
fully embedded in a subspace PG(4, s) of PG(4, q), for the subfield GF(s) of GF(q).
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Proof. First we claim that, if s > 2, and if L is a line of S, then the group PGL2(q)
of the linear transformations of the corresponding line L′ of PG(3, q) admits a subgroup
isomorphic to PSL2(s) acting on the s + 1 points of L.

Suppose first that no two opposite lines of S are contained in a plane of PG(3, q). Let L
and M be two such lines. The lines L and M are contained in a subquadrangle S ′ of order
(s, 1), and S ′ is contained in a unique hyperbolic quadric of PG(3, q). It follows easily
that the perspectivity [L; M ] from L to M in S is the restriction of a linear transformation
L → M in PG(3, q). Hence the group PSL2(s) of projectivities of a line of S (see Knarr
[6]) is contained in the group PGL2(q) of all linear transformations of a line in PG(3, q).
The claim follows.

Now suppose that the two opposite lines L and M of S are contained in a plane π of
PG(3, q). Let N∞ be a line of S concurrent with both L, M and let x, y be points on
N∞ not incident with either L or M . Let {Ni|i ∈ {∞} ∪GF(s)} be the set of lines of
S through x, with N0 ∈ {L, M}⊥⊥, and let {Ri|i ∈ {∞} ∪ GF(s)} be the set of lines
of S through y, with R0 ∈ {L, M}⊥⊥. Consider the projectivity θ = [L; Nj; M ; Rk; L],
j, k ∈ GF(s)×. Note that the lines L′ and N ′

j, j #= 0, are skew in PG(3, q) because
otherwise S would be contained in the plane π. Similarly, the lines M ′ and N ′

j, j #= 0,
the lines M ′ and R′

k, k #= 0, and the lines L′ and R′
k, k #= 0, are skew. Hence, as in the

previous paragraph, the projectivity θ is the restriction to L of a linear transformation
in PG(3, q) of L′. Let Q(4, s) be the generalized quadrangle arising from the quadric
in PG(4, s) with equation X2

4 = X0X1 + X2X3 and let γ be an isomorphism of S onto
Q(4, s). If we take for Lγ, Mγ, Nγ

∞ the lines with respective equations X1 = X2 = X4 = 0,
X0 = X3 = X4 = 0 and X1 = X3 = X4 = 0, then we can choose for xγ and yγ the points
with coordinates (a, 0, 1, 0, 0) and (b, 0, 1, 0, 0), respectively, a, b ∈ GF(s) \ {0}, and for
Nγ

j , respectively Rγ
k , the line through xγ and (j2, 1, 0,−a, j), respectively through yγ and

(k2, 1, 0,−b, k). One calculates that θ maps the point (x0, 0, 0, 1, 0)γ−1
onto the point

(x0 − a−1j2 + b−1k2, 0, 0, 1, 0)γ−1
. Since the element a−1j2 − b−1k2 is arbitrary in GF(s)

(by appropriate choices of a, b, j, k), we easily see that, by varying N∞, these elements θ
generate PSL2(s), which acts on the s + 1 points of L. Our claim now follows.

By the previous lemma, and under the assumptions of the theorem, we now know that
the points of a line L of S form a projective subline of the corresponding line L′ of
PG(3, q). Suppose now that L, M are two opposite lines of S which span PG(3, q). The
unique subquadrangle S ′ of order (s, 1) of S containing L and M is clearly contained in
a hyperbolic quadric Q+(3, q) of PG(3, q). Let N be a line of S ′ concurrent with both L
and M . By the foregoing, it is clear that L, M, N are contained in a unique subquadric
Q+(3, s) of Q+(3, q) in a projective subspace PG(3, s) of PG(3, q) defined over the field
GF(s). Since any line K of S ′ not concurrent with L is contained in the unique line
of PG(3, q) through K ∩ N meeting every line X ′ of PG(3, q), where X is a line of S
meeting both L and M , we see that all points of K belong to Q+(3, s). Hence we have
shown that, if L, M are lines of S with 〈L, M〉 3-dimensional, then the subquadrangle of

28



order (s, 1) of S containing L, M , is fully embedded in a subspace PG(3, s) of PG(3, q).

Let L, M , respectively L, M∗, be opposite lines of S, with M and M∗ concurrent in S
and M #= M∗. If L, M∗ are contained in a plane π, then π induces a subquadrangle S ′ of
order (s, 1), and so M is not contained in π. Hence 〈L, M〉 is 3-dimensional. Let us now
fix lines L, M , with 〈L, M〉 3-dimensional, and denote by G the unique grid of S for which
L, M are lines. By the previous paragraph G is fully embedded in a subspace PG(3, s) of
PG(3, q).

Choose a line N of S not contained in G. Then N contains just one point n of G. By the
foregoing N is a subline PG(1, s) of the corresponding line N ′ of PG(3, q).

First, assume that all points of N belong to PG(3, s). Let u be a point of S not in G,
with u /∈ N . Assume first that u #∼ n. Let w be the point of N for which w ∼ u. Then
the line wu of S has a point n′ in common with G. Since the point n′ of the plane 〈N, u〉
clearly is not collinear with n, it does not belong to the plane of PG(3, q) generated by
the two lines of G through n. Hence the two lines of G through n are not both contained
in the plane 〈N, u〉. Consequently there is a line W of G through n which is not contained
in the plane 〈N, u〉. Now we consider the grid G ′ of S containing W, N, u, n′; clearly G ′
generates PG(3, q). Then G ′ is fully embedded in a subspace PG′(3, s) of PG(3, q). As
G and G ′ share the line W , they intersect in 2 concurrent lines. It follows that PG(3, s)
and PG′(3, s) share a PG(2, s). So the line nn′ of PG(3, s) coincides with the line nn′ of
PG′(3, s). In PG′(3, s) there is a plane PG′(2, s) containing N, u, n′. This plane contains
the lines N and nn′ of PG(3, s), hence PG′(2, s) is a plane of PG(3, s). It follows that u
is a point of PG(3, s). Next, assume that u ∼ n. Choose distinct lines T, T ′ of S through
u, with T #= un #= T ′. By the preceding case the line T respectively T ′ contains at least
s points of PG(3, s). So the common point u of the lines T, T ′ belongs to PG(3, s).
Consequently, S is fully embedded in PG(3, s). Now by the Theorem of Buekenhout
& Lefèvre [1], s is necessarily even and so S ∼= W (s).

Next, assume that not all points of N belong to PG(3, s), that is, assume that at most
one point of N \ {n} belongs to PG(3, s). Now from here on the proof is completely
analogous to the second half of the proof of Theorem 7.2.

The theorem is proved.

Remark 8.5 If the generalized quadrangle S ∼= W (s), s even, is fully embedded in a
subspace PG(3, s) of PG(3, q), then there also exists a PG(4, q) containing PG(3, q)
and a point x ∈ PG(4, q) \PG(3, q) such that S is the projection from x onto PG(3, q)
of a generalized quadrangle S̃ ∼= Q(4, s) ∼= W (s) which is fully embedded in a subspace
PG(4, s) of PG(4, q). Here x is the nucleus of the quadric Q defining Q(4, s).

Theorem 8.6 If the generalized quadrangle S ∼= Q(4, s) of order (s, s), with s = 2 and
q odd, or s = 3 and q ≡ 1 mod 3, is laxly embedded in PG(3, q), then there exists a
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PG(4, q) containing PG(3, q) and a point x ∈ PG(4, q) \ PG(3, q) such that S is the
projection from x onto PG(3, q) of a generalized quadrangle S̃ ∼= Q(4, s) which is laxly
embedded in PG(4, q) (and hence weakly embedded for s = 2).

Proof. First let s = 3.

We use the same description, in terms of Hanssens and Van Maldeghem coordinates,
of Q(4, 3) as in the proof of Theorem 5.1. Since there must be at least one ordinary
quadrangle in S spanning PG(3, q) (otherwise S is contained in a plane), we may assume
that the points (∞), (0), (0, 0) and (0, 0, 0) span PG(3, q). Also, not both lines [1] and
[−1] are contained in the plane 〈(∞), (0), (0, 0, 0)〉, since otherwise again S would be
contained in this plane. So we may assume that [1] is skew to [0, 0] in PG(3, q). Hence,
without loss of generality we can choose coordinates in PG(3, q) as follows:

in S in PG(3, q)
(∞) (1, 0, 0, 0)
(0) (0, 1, 0, 0)
(1) (1, 1, 0, 0)

(−1) (a, 1, 0, 0)
(0, 0) (0, 0, 0, 1)
(0, 1) (1, 0, 0, 1)

(0,−1) (b, 0, 0, 1)
(1, 0) (A, B, C,D)
(1, 1) (A′, B, C,D)

in S in PG(3, q)
(0, 0, 0) (0, 0, 1, 0)
(0, 0, 1) (0, 1, 1, 0)

(0, 0,−1) (0, b, 1, 0)
(1, 0, 0) (0, 0, 1, 1)
(1, 0, 1) (1, 1, 1, 1)

(1, 0,−1) (b, b, 1, 1)
(−1, 0, 0) (0, 0, 1, a)
(−1, 0, 1) (a, 1, 1, a)

(−1, 0,−1) (ab, b, 1, a)

with a, b ∈ GF(q)\{0, 1}, and A, A′, B, C,D ∈ GF(q), A #= A′, D #= 0. These coordinates
can be easily computed because the grids of S we must use to that purpose, are not
contained in a plane of PG(3, q). In the same way, we can calculate the following points
of S (where we put E = A− A′):

in S in PG(3, q)
(1,−1) (A− bE,B,C, D)
(1, 1, 0) (A− bE,B − bE,C − E, D)
(1, 1, 1) (A, B, C − E, D)

(1, 1,−1) (A′, B − E, C − E, D)
(−1,−1, 0) (A′a, aB − E, aC − E, aD)
(−1,−1, 1) (aA− aEb, aB − bE, aC − E, aD)

(−1,−1,−1) (aA, aB, aC − E, aD)
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In exactly the same way as we calculated the coordinates of the points (−1, 0) and (−1, 1)
in the proof of Theorem 5.1, we can do this here and we obtain respectively (Aa−E(ab+
a), Ba−E(ab+1), Ca−E(a+1), Da−Ea) and (Aa−Eab,Ba−Eb,Ca−E(a+1), Da−Ea).
This again implies ab+1 = b. Also, exactly as in the proof of Theorem 5.1, it follows that
ab+1 = b and so we conclude that a = b. Now using the same technique as in the proof of
Theorem 7.1 (noting that, if two opposite lines of S are contained in a plane of PG(3, q),
then no line not belonging to the grid defined by these two lines is contained in that
plane), we see that we can calculate the coordinates of all points uniquely. Embedding
PG(3, q) into PG(4, q) as the hyperplane with equation X4 = 0, we see that S is the
projection from the point (A, B, C,D, E) onto PG(3, q) of the quadrangle Q(4, 3) laxly
embedded in PG(4, q) as in the proof of Theorem 5.1.

Now let s = 2. We obtain a description of Q(4, 2) by restricting coordinates (in the sense
of Hanssens & Van Maldeghem [5]) to GF(2) in the representation of H(3, 4) in the
proof of Theorem 4.1. After an elementary exercise, we see that we can choose coordinates
in PG(3, q) in such a way that, for some A, A′, B, C,D ∈ GF(q), with A #= A′, D #= 0,
and putting E = A− A′, we have:

in S in PG(3, q)
(∞) (1, 0, 0, 0)
(0) (0, 1, 0, 0)
(1) (1, 1, 0, 0)

(0, 0) (0, 0, 0, 1)
(0, 1) (1, 0, 0, 1)
(1, 0) (A, B, C,D)
(1, 1) (A′, B, C,D)

(0, 0, 0) (0, 0, 1, 0)
(0, 0, 1) (0, 1, 1, 0)
(1, 0, 0) (0, 0, 1, 1)
(1, 0, 1) (1, 1, 1, 1)
(1, 1, 1) (A, B, C − E, D)
(1, 1, 0) (A′, B − E, C − E, D)
(0, 1, 0) (A′, B − E, C − E, D − E)
(0, 1, 1) (A′, B, C − E, D − E)

Let PG(4, q) be a projective space containing PG(3, q) as the hyperplane X4 = 0. Then
it is readily checked that S is the projection from the point (A, B, C,D, E) of PG(4, q)
onto PG(3, q) of the quadrangle S ′ ∼= Q(4, 2), weakly embedded in PG(4, q) as follows:

in S ′ in PG(4, q)
(∞) (1, 0, 0, 0, 0)
(0) (0, 1, 0, 0, 0)
(1) (1, 1, 0, 0, 0)

(0, 0) (0, 0, 0, 1, 0)
(0, 1) (1, 0, 0, 1, 0)
(1, 0) (0, 0, 0, 0, 1)
(1, 1) (1, 0, 0, 0, 1)

(0, 0, 0) (0, 0, 1, 0, 0)
(0, 0, 1) (0, 1, 1, 0, 0)
(1, 0, 0) (0, 0, 1, 1, 0)
(1, 0, 1) (1, 1, 1, 1, 0)
(1, 1, 1) (0, 0, 1, 0, 1)
(1, 1, 0) (1, 1, 1, 0, 1)
(0, 1, 0) (1, 1, 1, 1, 1)
(0, 1, 1) (1, 0, 1, 1, 1)

This completes the proof of the theorem.
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Theorem 8.7 If the generalized quadrangle S ∼= Q(5, s) of order (s, s2), with s #= 2 for q
odd, is laxly embedded in PG(3, q), then there exists a PG(5, q) containing PG(3, q) and
a line L of PG(5, q) skew to PG(3, q) such that S is the projection from L onto PG(3, q)
of a generalized quadrangle S̃ ∼= Q(5, s) which is fully embedded in a subspace PG(5, s) of
PG(5, q), for the subfield GF(s) of GF(q).

Proof. Let S ′ be a subquadrangle of order (s, s) of S containing a given line M of S (S ′
exists as S ∼= Q(5, s)). Assume that S ′ is contained in a plane PG(2, q). Let y be a point
of S ′ not on the line M . Further, let N be a line of S containing y but not contained in
the plane PG(2, q). As S ∼= Q(5, s), the lines M and N are contained in a subquadrangle
S ′′ of order (s, s) of S. This subquadrangle S ′′ generates PG(3, q). Hence any line M of
S is contained in a subquadrangle of order (s, s) of S which generates PG(3, q).

Let z1 and z2 be non-collinear points of S. If y1, y2 ∈ {z1, z2}⊥, y1 #= y2, and if the
s2 + 1 lines of S through yi, i = 1, 2, are contained in a plane πi of PG(3, q), i = 1, 2,
then π1 #= π2 as otherwise S is contained in a plane; also, π1 ∩ π2 contains {y1, y2}⊥. As
S ∼= Q(5, s) and so |{y, z}⊥⊥| = 2 for any two non-collinear points y, z, it follows that
there are at least s2 − 1 points u in {z1, z2}⊥ for which u⊥ is not contained in a plane
of PG(3, q). Let U1 = uz1, U2 = uz2, U3 be lines of S through u which are not coplanar.
Then U1, U2, U3 are contained in a subquadrangle of order (s, s) of S which generates
PG(3, q) and is not fully embedded in a subspace PG(3, s) of PG(3, q).

So without loss of generality we may assume that S ′ generates PG(3, q) and is not fully
embedded in a subspace PG(3, s) of PG(3, q). Also, any point of S is contained in such
a subquadrangle S ′.
First, assume that s #= 2 for q odd and s #= 3 for q ≡ 1 mod 3. By Theorem 8.4 there exists
a PG(4, q) containing PG(3, q) and a point x ∈ PG(4, q) \ PG(3, q) such that S ′ is the
projection from x onto PG(3, q) of a generalized quadrangle S̃ ′ ∼= Q(4, s) which is fully
embedded in a subspace PG(4, s) of PG(4, q), for the subfield GF(s) of GF(q); as S ′ is
not fully embedded in a 3-dimensional subspace over GF(s) we have x /∈ PG(4, s). Let
U be a line of S not contained in S ′. Then U contains exactly one point u of S ′. By the
first paragraph of the proof there is a subquadrangle of order (s, s) of S which contains
U and generates PG(3, q). By Theorem 8.4 U is a subline PG(1, s) of the corresponding
line U ′ of PG(3, q). Further, let ũ be the unique common point of the line ux of PG(4, q)
and S̃ ′.
Assume, by way of contradiction, that U is the projection from x onto PG(3, q) of a line
Ũ through ũ of PG(4, s). Let v be a point of S not in S ′, with v /∈ U . Assume first
that v #∼ u. Let w be the point of U with w ∼ v. Then the line vw of S has a point
u′ in common with S ′. If all lines of S ′ through u are contained in the plane 〈v, U〉,
then the plane 〈v, U〉 induces a proper subquadrangle of order (s, t′) of S, with t′ > s,
a contradiction as S ∼= Q(5, s). Hence there is a line W of S ′ through u which is not
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contained in the plane 〈v, U〉. Now we consider a subquadrangle S ′′ ∼= Q(4, s) of order
(s, s) of S containing W, U, v, u′. By Theorem 8.4 and Remark 8.5 S ′′ is the projection

from some point x′ onto PG(3, q) of a generalized quadrangle
˜̃S ′′ fully embedded in some

subspace PG′(4, s) of PG(4, q). As S ′ and S ′′ share the line W , they intersect either in
a grid or in s + 1 concurrent lines. Let V be the line of S containing u′ and concurrent
with W ; then V is a common line of S ′ and S ′′. Let Ṽ respectively W̃ be the line of S̃ ′

which corresponds to V respectively W , and let
˜̃
V respectively

˜̃
W be the line of

˜̃
S ′′ which

corresponds to V respectively W . The plane P̃G(2, s), respectively
˜̃
PG(2, s), defined by

Ṽ , W̃ , respectively
˜̃
V ,

˜̃
W , is projected from x, respectively x′, onto the plane PG(2, s) of

PG(3, q) defined by V and W . If ux′ intersects
˜̃S ′′ in ˜̃u, if u′x intersects S̃ ′ in ũ′, and if

u′x′ intersects
˜̃S ′′ in ˜̃u

′
, then the line uu′ of PG(2, s) is the projection from x, respectively

x′, onto PG(3, q) of the line ũũ′, respectively ˜̃u ˜̃u′, of P̃G(2, s), respectively
˜̃
PG(2, s).

Hence the plane π over GF(s) defined by U, v, u′ contains the projection of the line ũũ′ of
PG(4, s) from x onto the plane 〈U, v, u′〉 of PG(3, q). It follows that π is the projection
from x onto PG(3, q) of a plane of PG(4, s). So v is the projection from x onto PG(3, q)
of a point ṽ of PG(4, s). Also the projection of the line ũ′ṽ of PG(4, s) from x onto
PG(3, q) is the line u′v of S. As x /∈ PG(4, s) there is at most one point r of S for which
the line rx of PG(4, q) contains more than one point of PG(4, s). If such a point r exists,
we may assume it belongs to S ′. Next, assume that v ∼ u. Now we consider a line U1 of
S not in S ′ where U ∼ U1 and where the common point u1 of S ′ and the line U1 is not
one of the s2 + 1 points of S ′ collinear with v. Interchanging roles of U and U1, we see
that also in this case v is the projection from x onto PG(3, q) of a point ṽ of PG(4, s).
Now let T be a line of S not in S ′ which is not concurrent with U . Let U1 be a line of
S concurrent with U and T , which contains neither the point u nor the common point t
of T and S ′. Interchanging roles of U and U1 we then see that the common point t̃ of S̃ ′
and xt, together with the common points of PG(4, s) and xm, with m ∈ T − {t}, form
a line T̃ of PG(4, s). Finally, let T1 #= U be a line of S not in S ′ through u. Let U1 be
a line of S not in S ′, which does not contain u. Interchanging roles of U and U1, we see
again that with T1 there corresponds a line T̃1 of PG(4, s).

Now it is clear that S is isomorphic to a GQ S̃ ∼= Q(5, s) which is fully embedded in
PG(4, s), contradicting the Theorem of Buekenhout & Lefèvre [1]. We conclude
that U is not the projection from x onto PG(3, q) of a line of PG(4, s) through ũ.

Consider a line Ũ of PG(4, q) through ũ such that the projection from x onto PG(3, q)
is the line U of S. Then Ũ has at most two points in common with PG(4, s). Now we
consider a space PG(5, q) containing PG(4, q), a point x̄ ∈ PG(5, q)\PG(4, q) and a line
U through ũ in PG(5, q) but not in PG(4, q), in such a way that Ũ is the projection from
x̄ onto PG(4, q) of the line U . Further, let PG(5, s) be the 5-dimensional subspace of
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PG(5, q) defined by PG(4, s) and U . As Ũ is not a line of PG(4, s) we have x̄ /∈ PG(5, s).
Let R be the projection of PG(5, s) from x̄ onto PG(4, q).

First, assume that Ũ contains two points ũ, h̃ of PG(4, s); then the line x̄h̃ of PG(5, q)
contains a line of PG(5, s). Consider any line Ñ , h̃ /∈ Ñ , of PG(4, s) through ũ, and let
π eN be the plane over GF(s) defined by Ñ and Ũ . We have |R| = s5 + s4 + s3 + s2 + 1,
and the subset N =

⋃
eN

π eN of R has size s5 + s4 + s3 + s + 1. The s2 − s points of R \N

are on the line ũh̃ of PG(4, q) and are the intersections of the line ũh̃ of PG(4, q) with
the lines of PG(4, q) containing exactly s points of N .

Next, assume that Ũ contains exactly one point of PG(4, s) and that the extension Ũ ′ of
Ũ to GF(q) does not contain a line of PG(4, s). If Ñ is any line of PG(4, s) through ũ
and if π eN is the plane over GF(s) defined by Ñ and Ũ , then R =

⋃
eN

π eN . If there is no line

of PG(5, s) whose extension to GF(q) contains x̄, then |R| = s5 + s4 + s3 + s2 + s + 1; if
PG(5, s) contains a line whose extension to GF(q) contains x̄, then |R| = s5 + s4 + s3 +
s2 + 1.

Finally, assume that Ũ contains exactly one point of PG(4, s) and that the extension

Ũ ′ of Ũ to GF(q) contains a line W̃ of PG(4, s). Consider any line Ñ , Ñ #= W̃ , of
PG(4, s) through ũ, and let π eN be the plane over GF(s) defined by Ũ and Ñ . Further,

let N =
⋃
eN

π eN . The points of R \ N are on the line Ũ ′ and are the intersections of the

line Ũ ′ with the lines of PG(4, q) containing exactly s points of N . If there is no line of
PG(5, s) whose extension to GF(q) contains x̄, then |R| = s5 + s4 + s3 + s2 + s + 1, and
|N | = s5 + s4 + s3 + s + 1; if there is a line H of PG(5, s) whose extension H ′ to GF(q)
contains x̄, then H contains ũ, |R| = s5 + s4 + s3 + s2 + 1, and |N | = s5 + s4 + s3 + s + 1.

So in each case R can be easily constructed from PG(4, s) and Ũ . Also, if Ũ1 is a PG(1, s)
contained in R, but not in PG(4, s), which is the projection of a line of PG(5, s) from x̄
onto PG(4, q), then R can be analogously constructed from PG(4, s) and Ũ1; in particular
this is the case when Ũ1 is a PG(1, s) contained in R, but not in PG(4, s), for which the
extension Ũ ′

1 to GF(q) intersects R exactly in Ũ1.

Let v be a point of S not in S ′ and not on U . Assume first that v #∼ u, with u the
unique common point of S ′ and U . The line M of S through v and concurrent with U
contains a point m of S ′. If ũ respectively m̃ is the common point of S̃ ′ and the line
xu respectively xm of PG(4, q), then let T be the projection from x onto PG(3, q) of
the line ũm̃ of PG(4, s). By a foregoing argument the line T over GF(s) belongs to the

plane PG(2, s) defined by U, v,m. Let P̃G(2, s) be the plane over GF(s) defined by Ũ

and the line ũm̃ = T̃ of PG(4, s). Projecting this P̃G(2, s) from x onto PG(3, q) we

clearly obtain the plane PG(2, s). The plane P̃G(2, s) belongs to the set R. Hence the
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line vx of PG(4, q) intersects P̃G(2, s) in a point ṽ (if vx would contain distinct points

of P̃G(2, s), then x would be a point of P̃G(2, q), so M and U would be on a common
line of PG(3, q), clearly a contradiction). Let v′ be the common point of M and U . If
ṽ′ is the point of Ũ which corresponds to v′, then the points m̃, ṽ′ and the s − 1 points
ṽ which correspond to the s − 1 points v on M \ {m, v′} form a line M̃ over GF(s) in

R. As M̃ belongs to the plane P̃G(2, s), it is the projection from x̄ onto PG(4, q) of
some line M through m̃ of PG(5, s). Next, assume that v ∼ u. Now we consider a line
U1 of S not in S ′ where U ∼ U1 and where the common point u1 of S ′ and the line U1

is not one of the s2 + 1 points of S ′ collinear with v. Then with U1 there corresponds
a line Ũ1 in R. Interchanging roles of U and U1, and of Ũ and Ũ1, we see again that v
is the projection from x onto PG(3, q) of a point ṽ of R. Hence every point of S is the
projection from x onto PG(3, q) of some point of R. Now let W be a line of S not in S ′
which is not concurrent with U . Let U1 be a line of S concurrent with U and W , which
contains neither the point u nor the common point w of W and S ′. Interchanging roles
of U and U1 we then see that W is the projection from x onto PG(3, q) of some line W̃
in R. Finally, let W1 #= U be a line of S not in S ′ through u. Let U1 be a line of S not
in S ′, which does not contain u. Interchanging roles of U and U1, we see again that W1

is the projection from x onto PG(3, q) of some line W̃1 in R. We conclude that for any
line R of S not in S ′, there is a line R̃ in R whose projection from x onto PG(3, q) is R.
Also, if r is the common point of R and S ′, then R̃ contains the unique common point r̃
of the line xr of PG(4, q) and S̃ ′. Further, R̃ is the projection from x̄ onto PG(4, q) of
some line R through r̃ of PG(5, s).

Let v be any point of S not in S ′ and let T be any line of S containing v. If the line T̃
in R corresponds to T , then let vθ be the unique common point of T̃ and the line xv of
PG(4, q). We will show that vθ is uniquely defined by v.

First assume, by way of contradiction, that with T there correspond distinct lines T̃ and
T̃ ∗ in R; these lines contain a common point of S̃ ′. Let w be any point of T \ {t}, where
t is the common point of S ′ and T . Then the line wx of PG(4, q) contains a point w̃

of T̃ and a point w̃∗ of T̃ ∗. It follows that the plane P̃G(2, s) over GF(s) defined by T̃
and T̃ ∗ contains x. Suppose that the line T , respectively T

∗
, of PG(5, s) corresponds to

T̃ , respectively T̃ ∗; then T and T
∗

both contain t̃. If PG(2, s) is the plane over GF(s)

defined by T and T
∗
, then P̃G(2, s) is the projection of PG(2, s) from x̄ onto PG(4, q).

As PG(2, s) contains a line A of PG(4, s), also P̃G(2, s) contains A; clearly A contains
t̃. As x̄ /∈ PG(4, q), it follows that T is the projection of A from x onto PG(3, q). At the
beginning of the proof we have shown that this implies that some GQ S̃ ∼= Q(5, s) is fully
embedded in PG(4, s), giving a contradiction.

Next, let T and T1 be distinct lines of S containing v. Assume that with T , respectively
T1, there corresponds the line T̃ , respectively T̃1, in R. By the beginning of the proof the
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uniquely defined line T̃1 necessarily contains ṽ.

Consequently the point vθ is uniquely defined by v. Further, for any point u in S ′ we put
uθ = u. So there arises an injection from the point set of S into R. Also, it is now clear
that for any line W of S the set W θ is a line over GF(s). Further, for distinct lines W, W1

of S the extensions (W θ)′, (W θ
1 )′ of W θ, W θ

1 to GF(q) are distinct. So θ is an isomorphism
of S onto a GQ S̃ ∼= Q(5, s) which is laxly embedded in PG(4, q); also S is the projection

of S̃ from x onto PG(3, q). From Theorem 11 it now follows that there exists a
˜̃
PG(5, q)

containing PG(4, q) and a point ˜̃x ∈ ˜̃
PG(5, q) \ PG(4, q) such that S̃ is the projection

from ˜̃x onto PG(4, q) of a GQ
˜̃S ∼= Q(5, s) which is fully embedded in a subspace

˜̃
PG(5, s)

of
˜̃
PG(5, q); in fact, as R is the projection of PG(5, s) from x̄ onto PG(4, q), it is clear

that we can put
˜̃
PG(5, q) = PG(5, q), ˜̃x = x̄ and

˜̃
PG(5, s) = PG(5, s). We conclude that

S is the projection of
˜̃S from L = x˜̃x onto PG(3, q).

Finally, let s = 3 and q ≡ 1 mod 3. If every two opposite lines of S span PG(3, q), then,
since the full group of projectivities of a line of S is isomorphic to PGL2(s) (by Knarr
[6]), as in the first part of the proof of Theorem 8.4, we obtain that for any line L of S
the group PGL2(q) of the linear transformations of the corresponding line L′ of PG(3, q)
admits a subgroup isomorphic to PSL2(s) acting on the s + 1 points of L. Hence in such
a case we have that q is a power of 3 by Lemma 8.3, contradicting q ≡ 1 mod 3.

Let L, M be two opposite lines of S contained in a plane π of PG(3, q), let x, y, x #= y,
be two points on L, let N be the unique line of S through y concurrent with M , and let
{Lr|r ∈ GF(3)2} be the set of lines of S through x, different from L. Since π induces a
proper subquadrangle, there are at most four lines of S through x lying in π. We now
consider the naturally embedded generalized quadrangle Q(5, 3) in PG(5, 3); the point
set of Q(5, 3) is a non-singular elliptic quadric Q of PG(5, 3). We can take as equation
of Q

X2X3 + X4X5 = X2
0 + X2

1 .

Let γ be an isomorphism of S onto Q(5, 3). Then we can take for Lγ the line through
the two points xγ(0, 0, 0, 1, 0, 0) and yγ(0, 0, 0, 0, 1, 0), for Nγ the line through the points
yγ and zγ(0, 0, 1, 0, 0, 0), and for Mγ the line through the points zγ and (0, 0, 0, 0, 0, 1).
Furthermore, we can take for Lγ

r , r = (r0, r1) ∈ GF(3)2, the line through xγ and the
point (r0, r1, 0, 0, r2

0 + r2
1, 1), and we also may assume that the lines Lr with r0 #= 0 are

not contained in π. Then the projectivity θ = [N ; La; M ; Lb; N ], a, b ∈ GF(3)× ×GF(3)
of the line N of S extends to a unique linear transformation of the line N ′ of PG(3, q)
containing N . One easily calculates that in PG(5, 3), the projectivity γ−1θγ of Nγ, with
a = (1, 1) and b = (1, 0), maps the point with coordinates (0, 0, c, 0, 1, 0) onto the point
with coordinates (0, 0,−c, 0, 1, 0). Hence by varying y and z on N , we now see that the
symmetric group S4, which is isomorphic to PGL2(3), is induced on N ′ as a subgroup
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of PGL2(q) and acting on the four points of N . By Lemma 8.3, q is divisible by 3, a
contradiction.

Now the theorem is completely proved.

Theorem 8.8 If the generalized quadrangle S of order (2, 4) is laxly embedded in PG(3, q),
q odd, then there exists a PG(5, q) containing PG(3, q) and a line L of PG(5, q) skew to
PG(3, q) such that S is the projection from L onto PG(3, q) of a generalized quadrangle
S̃ ∼= Q(5, 2) which is laxly embedded in PG(5, q), and hence determined by Theorem 6.1.

Proof. We consider two opposite lines L0 and L1 in S which are not coplanar in PG(3, q)
(these lines exist by the first paragraph of the proof of Theorem 8.7). Using the description
of S in terms of Hanssens and Van Maldeghem coordinates, as in the proof of Theorem 6.1,
we may take L0 = [∞] and L1 = [0, 0, 0]. We may then coordinatize PG(3, q) as follows:

in S in PG(3, q)
(∞) (1, 0, 0, 0)
(0) (0, 1, 0, 0)
(1) (1, 1, 0, 0)

(0, 0) (0, 0, 0, 1)

(0, 1) (1, 0, 0, 1)
(0, 0, 0) (0, 0, 1, 0)
(0, 0, 1) (0, 1, 1, 0)
(1, 0, 0) (0, 0, 1, 1)
(1, 0, 1) (1, 1, 1, 1)

There are exactly three subquadrangles of order (2, 2) containing L0 and L1. Every such
subquadrangle S ′ is laxly embedded in PG(3, q) and hence it is represented as in the
proof of Theorem 8.6. Note however that in the latter proof we started by assigning the
point (1, 0) the coordinates (A, B, C,D) assuming that the point (1, 0) was not contained
in the plane spanned by [∞] and [0, 0]. If (1, 0) is a point of the plane 〈[∞], [0, 0]〉, then
(1, 0) is not a point of the plane 〈[0], [0, 0, 0]〉. In such a case put (1, 0) = (A, B, C,D)
and (1, 1) = (A′, B, C,D), with A, A′, B, C,D ∈ GF(q) and A #= A′, B #= 0. Putting
E = A−A′, we obtain exactly the same coordinates for the points of the subquadrangle
S ′ containing (1, 0) as in the proof of Theorem 8.6. The same is true for the subquadrangle
of order (2, 2) containing L0, L1 and (ε, 0). We assign to (ε, 0) the coordinates (X, Y, Z, U),
to (ε, 1) the coordinates (X ′, Y, Z, U), and we put W = X − X ′. Similarly we give the
point (ε2, 0) respectively (ε2, 1) the coordinates (K, L, M, N) respectively (K ′, L,M,N),
and we put P = K −K ′. This way, we easily obtain the coordinates of all points of S:
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in S in PG(3, q)
(1, 0) (A, B, C,D)
(1, 1) (A′, B, C,D)

(1, 1, 1) (A, B, C − E, D)
(1, 1, 0) (A′, B − E, C − E, D)
(0, 1, 0) (A′, B − E, C − E, D − E)
(0, 1, 1) (A′, B, C − E, D − E)
(ε, 0) (X, Y, Z, U)
(ε, 1) (X ′, Y, Z, U)

(1, ε, 1) (X, Y, Z −W, U)
(1, ε, 0) (X ′, Y −W, Z −W, U)
(0, ε, 0) (X ′, Y −W, Z −W, U −W )
(0, ε, 1) (X ′, Y, Z −W, U −W )
(ε2, 0) (K, L, M, N)
(ε2, 1) (K ′, L,M,N)

(1, ε2, 1) (K, L, M − P, N)
(1, ε2, 0) (K ′, L− P, M − P, N)
(0, ε2, 0) (K ′, L− P, M − P, N − P )
(0, ε2, 1) (K ′, L,M − P, N − P )

Any point p ∈ {(1, 0), (1, 1), (ε, 0), (ε, 1), (ε2, 0), (ε2, 1)} is on exactly two lines Lp, Mp of
S not concurrent with any of L0, L1, [0, 1, 0]. It is clear that these twelve lines, together
with (0) and (0, 0), are not in a common plane. It follows that there is a point p for which
〈Lp, Mp〉 does not contain both points (0) and (0, 0). We may choose coordinates in such a
way that 〈L(ε2,0), M(ε2,0)〉 does not contain both (0) and (0, 0). As (ε2, 0) is the intersection
of the lines through the respective points (1, 1, 0), (0, ε, 1), and (0, 1, 1), (1, ε, 0), we have

∣∣∣∣
A− E C − E
X −W Z −W

∣∣∣∣ #= 0.

Expressing now that 〈(1, 1, 0), (0, ε, 1)〉 and 〈(0, 1, 1), (1, ε, 0)〉 intersect in (ε2, 0), we see
that we may put 





K = WA + EX − 2EW,
L = WB + EY − EW,
M = WC + EZ − 2EW,
N = WD + EU − EW.

Expressing that (ε2, 1) is the intersection of the lines through respectively (1, 1, 1), (0, ε, 0)
and (0, 1, 0), (1, ε, 1), we obtain after a calculation and taking account of the foregoing
equalities that K ′ = WA + EX − EW and so P = K − K ′ = −EW . Now we embed
PG(3, q) in PG(5, q) as the subspace with equations X4 = X5 = 0 and we see that
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S is the projection onto PG(3, q) from the line through the points with coordinates
(A, B, C,D, E, 0) and (X, Y, Z, U, 0, W ) of the following structure S ′ (on the same line we
put the coordinates in PG(5, q) of any point of S ′ (at the right) and the Hanssens and
Van Maldeghem coordinates of the corresponding point of S (at the left)):

in S in PG(5, q)
(∞) (1, 0, 0, 0, 0, 0)
(0) (0, 1, 0, 0, 0, 0)
(1) (1, 1, 0, 0, 0, 0)

(0, 0) (0, 0, 0, 1, 0, 0)
(0, 1) (1, 0, 0, 1, 0, 0)

(0, 0, 0) (0, 0, 1, 0, 0, 0)
(0, 0, 1) (0, 1, 1, 0, 0, 0)
(1, 0, 0) (0, 0, 1, 1, 0, 0)
(1, 0, 1) (1, 1, 1, 1, 0, 0)
(1, 0) (0, 0, 0, 0, 1, 0)
(1, 1) (1, 0, 0, 0, 1, 0)

(1, 1, 1) (0, 0, 1, 0, 1, 0)
(1, 1, 0) (1, 1, 1, 0, 1, 0)

(0, 1, 0) (1, 1, 1, 1, 1, 0)
(0, 1, 1) (1, 0, 1, 1, 1, 0)
(ε, 0) (0, 0, 0, 0, 0, 1)
(ε, 1) (1, 0, 0, 0, 0, 1)

(1, ε, 1) (0, 0, 1, 0, 0, 1)
(1, ε, 0) (1, 1, 1, 0, 0, 1)
(0, ε, 0) (1, 1, 1, 1, 0, 1)
(0, ε, 1) (1, 0, 1, 1, 0, 1)
(ε2, 0) (2, 1, 2, 1, 1, 1)
(ε2, 1) (1, 1, 2, 1, 1, 1)

(1, ε2, 1) (2, 1, 1, 1, 1, 1)
(1, ε2, 0) (1, 0, 1, 1, 1, 1)
(0, ε2, 0) (1, 0, 1, 0, 1, 1)
(0, ε2, 1) (1, 1, 1, 0, 1, 1)

Now one can check that this is a lax embedding of Q(5, 2) in PG(5, q). Since there is
only one such lax embedding by Theorem 6.1, the theorem is proved.

Remark 8.9 The only thick finite Moufang generalized quadrangles whose lax embed-
dings in PG(3, q) are not yet classified are the generalized quadrangles W (s) with s odd.

APPENDIX A: Regularity in generalized quadrangles
of order (s, s− 2)

If each point of a GQ of order (s, t), s > 1, is regular, then, by 1.3.6 and 1.5.1 of Payne
& Thas [10] we have that s ≥ t and that t + 1 divides (s2 − 1)s2. Hence, a priori, a GQ
of order (s, s− 2) could have all its points regular. This problem, which is important for
the theory of the lax embeddings of GQ (see Theorem 5.3), will be considered in this first
Appendix.

Theorem 8.10 All the points of a generalized quadrangle S of order (s, s − 2), s ≥ 4,
are regular if and only if s = 4 and S ∼= H(3, 4).
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Proof. First let s = 4. By (the dual of) Payne & Thas [10](5.3.2), any GQ of order
(4,2) is isomorphic to the classical GQ H(3, 4) and consequently all its points are regular.

Now let s > 4 and assume, by way of contradiction, that S = (P, B, I) is any GQ of order
(s, s−2) having all its points regular. Let L = {y, z}⊥⊥ with y #∼ z. Then |L| = s−1. The
set of all points of S collinear with no point of L will be denoted by VL. Then VL = VL⊥ .
Also, |VL| = (s + 1)(s− 1)2 − (s− 1)2(s− 1)− 2(s− 1) = 2(s− 1)(s− 2).

Let x ∈ VL, and consider ⋃

u∈L

{x, u}⊥⊥ \ L =: W.

Then |W | = (s−2)2. Let v ∈ W, v #= x. Assume that v ∼ u′, with u′ ∈ L. If v ∈ {u, x}⊥⊥,
u ∈ L, and if w is the point of vu′ collinear with u, then w ∼ x and wx intersects L, a
contradiction as x ∈ VL. Consequently W ⊆ VL. As VL = VL⊥ , also

∪u∈L⊥{x, u}⊥⊥ \ L⊥ =: W̃

is a subset of VL. If v′ ∈ W ∩ W̃ , with v′ #= x, then the point {x, v′}⊥⊥ ∩ L is collinear
with the point {x, v′}⊥⊥ ∩L⊥, a contradiction as no two points of {x, v′}⊥⊥ are collinear.

Hence W ∪ W̃ is a subset of size 2(s− 2)2 − 1 of VL.

Now we show that no two distinct points of W ∪ L are collinear, that is, we show that
W ∪ L is a (s2 − 3s + 3)-cap of S. No two distinct points of L are collinear. Also, if
v1 and v2 are distinct points of {u, x}⊥⊥, u ∈ L, then v1 #∼ v2. If u ∈ L and v ∈ W ,
then u #∼ v as v ∈ VL. Finally, let v, v′ be distinct points of W , with v #= x #= v′ and
{x, v}⊥⊥ #= {x, v′}⊥⊥. Assume that v ∼ v′ and let v′′ be the point of vv′ collinear with x.
Further, let L∩ {x, v}⊥⊥ = {u} and L∩ {x, v′}⊥⊥ = u′. Then v′′ ∼ u and v′′ ∼ u′. Hence
v′′ ∈ L⊥. It follows that xv′′ intersects L, a contradiction as x ∈ VL.

Let {Mi : i = 1, 2, . . . , s − 1} be the set of lines of S incident with x and fix any i ∈
{1, 2, . . . , s− 1}. As x ∈ VL no two distinct points of L are collinear with the same point
of Mi. It immediately follows that Mi contains exactly two distinct points of VL, say x
and ti. Clearly ti ∈ VL \ (W ∪ W̃ ). Put T = {t1, t2, . . . , ts−1} and X = VL \ (W ∪ W̃ ∪ T ).
Then |X| = s− 2. Further, let x′ be a point of VL collinear with ti, but not incident with
Mi. Clearly x′ /∈ T . If x′ ∈ W , where {x′, x}⊥⊥∩L = {u}, then ti ∼ u, a contradiction as

ti ∈ VL. Analogously, x′ /∈ W̃ . Hence x′ ∈ X. So the s−2 points of VL\{x} collinear with
ti belong to X, for all i ∈ {1, 2, . . . , s− 1}. It follows that X ∪ {x} and T are hyperbolic

lines, and that (X ∪ {x})⊥ = T . Also, VL = W ∪ W̃ ∪ T ∪X.

Now we show that the set OL,x = W ∪ L ∪ X is a (s − 1)2-cap, that is, an ovoid, of S.
Let x′ ∈ X. Clearly x′ #∼ x. If x′ ∼ v, with v #= x, v ∈ W ∪ L and {v, x}⊥⊥ ∩ L = {u},
then x′v contains one of the points of T , say ti, so ti ∼ u, a contradiction as ti ∈ VL.
Consequently W ∪ L ∪X is a (s2 − 1)-cap of the GQ S. Analogously, W̃ ∪ L⊥ ∪X is an
ovoid OL⊥,x of S.
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Let VL ∪ L ∪ L⊥ = UL. Then |UL| = 2(s − 1)2. In fact UL = OL,x ∪ ÕL,x, with ÕL,x =

(W̃ ∪L⊥ ∪ T ) \ {x}. As ÕL,x = (OL⊥,x \ (X ∪ {x}))∪ (X ∪ {x})⊥, it is also an ovoid of S.

If m ∈ UL, then from the preceding it is clear that all points of UL \ {m} collinear with m
form a hyperbolic line. Let m, m′ be distinct points of OL,x or ÕL,x, and let respectively
N, N ′ be the corresponding hyperbolic lines contained in UL. Then N ∪ N ′ ⊆ OL,x or

N ∪ N ′ ⊆ ÕL,x. Assume that n ∈ N ∩ N ′. If n ∈ L, then m, m′ ∈ L⊥, so N = N ′ = L;
if n ∈ L⊥, then m, m′ ∈ L, so N = N ′ = L⊥. Now let n /∈ L ∪ L⊥. Interchanging roles
of n and x, we see that UL is the union of all hyperbolic lines containing n and a point
of L ∪ L⊥, the hyperbolic line S consisting of all the points of UL \ {n} collinear with
n, and one hyperbolic line containing n and disjoint from L ∪ L⊥ (this last hyperbolic
line is S⊥). Clearly (N ∪ N ′) ∩ S = ∅. Also, if N ∪ N ′ contains a point of L ∪ L⊥, say
N ∪ N ′ contains a point of L, then at least one of m, m′ is collinear with a point of L,
so at least one of N, N ′ coincides with L, from which n ∈ L, a contradiction. It follows
that (N ∪ N ′) ∩ (L ∪ L⊥) = ∅. Hence N respectively N ′ is the unique hyperbolic line
contained in UL, containing n, and disjoint from L ∪ L⊥. Consequently, N = N ′. The
ovoid OL,x is the union of the hyperbolic lines in OL,x which correspond with the points

of ÕL,x, and so with the (s− 1)2 points of ÕL,x there correspond exactly s− 1 mutually
disjoint hyperbolic lines L, L1, . . . , Ls−2 in OL,x; analogously, with the (s − 1)2 points of

OL,x there correspond exactly s − 1 mutually disjoint hyperbolic lines L⊥, L̃1, . . . , L̃s−2

in ÕL,x. Now it is also immediate that L⊥i coincides with some L̃j, i = 1, 2, . . . , s − 2.

Consequently, indices can be chosen in such a way that L⊥i = L̃i, i = 1, 2, . . . , s− 2.

Consider now a point v ∈ OL,x \ (L ∪ {x}). Then OL,v = L ∪ L∗1 ∪ L∗2 ∪ . . . ∪ L∗s−2, where
L∗i ∈ {Li, L⊥i }, i = 1, 2, . . . , s − 2. First, suppose that {x, v}⊥⊥ /∈ {L1, . . . , Ls−2}. Then
{x, v}⊥⊥ has one point in common with each of L, L1, L2, . . ., Ls−2. As OL,x is the union
of the s−1 hyperbolic lines in the set L = {L, L1, . . . , Ls−2, L⊥, L⊥1 , . . . , L⊥s−2} which have
exactly one point in common with {x, u}⊥⊥, with u any point in L, the ovoid OL,v is the
union of the s− 1 elements of L which have exactly one point in common with {x, v}⊥⊥
(as {x, v}⊥⊥ = {v, u}⊥⊥ for some point u ∈ L). Hence OL,v = L∪L1 ∪ . . .∪Ls−2 = OL,x.
Next, assume that {x, v}⊥⊥ ∈ {L1, L2, . . . , Ls−2}, say {x, v}⊥⊥ = L1. Let v′ ∈ L2. Then,
by the foregoing, OL,x = OL,v′ and OL,v′ = OL,v, so OL,x = OL,v. We conclude that for
any point v ∈ OL,x \ L, we have OL,x = OL,v.

Indices can be chosen in such a way that x ∈ L1. The ovoid OL⊥,x is the union of the
hyperbolic lines L⊥, L1, L⊥2 , L⊥3 , . . . , L⊥s−2. As s > 4, we can choose a point w ∈ OL⊥,x

not in L⊥, L⊥2 , L1. Then OL⊥,w = OL⊥,x. Let u be a point of L2. Then the ovoid
OL⊥,u is the union of the hyperbolic lines L⊥, L⊥1 , L2, L⊥3 , . . . , L⊥s−2. Also, OL⊥,u = OL⊥,w.
Consequently, OL⊥,x = OL⊥,u. It follows that L2 ⊆ OL⊥,x, clearly a contradiction. Now
the theorem is completely proved.
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APPENDIX B: A characterization of the classical gen-
eralized quadrangle H(4, s2)

Theorem. A generalized quadrangle S = (P, B, I) of order (s2, s3), s #= 1, is isomor-
phic to H(4, s2) if and only if any two non-concurrent lines are contained in a proper
subquadrangle of order (s2, t), with t #= 1.

Proof. Let S ∼= H(4, s2). Then any two non-concurrent lines are contained in a sub-
quadrangle S ′ ∼= H(3, s2) of order (s2, s).

Conversely, assume that S = (P, B, I) is a GQ of order (s2, s3), s #= 1, for which any two
non-concurrent lines are contained in a proper subquadrangle of order (s2, t), t #= 1. Then
by Payne & Thas [10](2.2.2), we have t = s.

Fix a subquadrangle S ′ of order (s2, s) of S, and let L be a line of S ′. Now let S ′′ be
a subquadrangle of order (s2, s), distinct from S ′, containing the line L. By Payne &
Thas [10](2.2.1), each line of S ′′ respectively S ′ has a point in common with the set of all
common points of S ′ and S ′′. As by Payne & Thas [10](2.2.2) the GQ S ′ respectively
S ′′ has no proper subquadrangle of order (s2, t′) it now easily follows that S ′∩S ′′ consists
of s + 1 concurrent lines together with the points incident with these lines. As a GQ of
order (s2, s), s #= 1, has no proper subquadrangle of order (s2, t′), the lines L and M of S,
with M any line of S not in S ′ and not concurrent with L, are contained in exactly one
subquadrangle S ′′ #= S ′ of order (s2, s).

Let x, y, z be points of S ′ with x ∼ z ∼ y, and x #∼ y. Further, let z′ ∈ {x, y}⊥, with
z #= z′ and z′ in S ′. If S ′′′ #= S ′ is a subquadrangle of order (s2, s) containing z′, x, y, then
S ′′′ does not contain the point z. Now let u be a point of S ′′′ collinear with x and y, where
u #= z′. Further, let S̃ be the subquadrangle of order (s2, s) containing x, y, z, u. Then
the s + 1 lines of S ′ through z are the s + 1 lines of S̃ through z, and the s + 1 lines of S̃
through u are the s + 1 lines of S ′′′ through u. Hence S ′ ∩ S ′′′ ∩ S̃ is the set V consisting
of the s + 1 points collinear in S̃ with u and z. The set V is the set of all points of S ′′′
belonging to the lines of S ′ through z.

Now let w be a point of {x, y}⊥, with w not in S̃. Let S̃ ′ be the subquadrangle of order
(s2, s) containing x, y, w, u, and let S̃ ′′ be the subquadrangle of order (s2, s) containing
x, y, z, w. Then S̃ ∩ S̃ ′ ∩ S̃ ′′ is the set V ′ consisting of the s + 1 points collinear in S̃ ′′
with z and w, and also the set of the s + 1 points of S̃ collinear with u and z. Hence
V ′ = V , and all points of V are collinear with w. If we choose w in S ′ , then it follows
that the pair {x, y} is regular in S ′. Now it is clear that any point of any subquadrangle
of order (s2, s) is regular. Hence any point of V is collinear with any point w̃ of {x, y}⊥
in S̃. Consequently |{x, y}⊥⊥| ≥ |V | = s + 1. Now by Payne & Thas [10](5.5.1), we
have S ∼= H(4, s2).

The theorem is proved.
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