

Discrete Mathematics 234 (2001) 89-100

www.elsevier.com/locate/disc

Sharply 2-transitive groups of projectivities in generalized polygons

Hendrik Van Maldeghem¹

Department of Pure Mathematics and Computer Algebra, University of Ghent, Galglaan 2, 9000 Ghent, Belgium

Received 4 May 1999; revised 18 April 2000; accepted 1 May 2000

Abstract

The group of projectivities of (a line of) a projective plane is always 3-transitive. It is well known that the projective planes with a sharply 3-transitive group of projectivities are classified: they are precisely the Pappian projective planes. It is also well known that the group of projectivities of a generalized polygon is 2-transitive. Here, we classify all generalized quadrangles, all finite generalized hexagons, and the parameter sets of all finite generalized octagons with a sharply 2-transitive group of projectivities. © 2001 Elsevier Science B.V. All rights reserved.

MSC: 51E12

Keywords: Generalized polygon; Perspectivities; Projectivities; Group of projectivities

1. Introduction and statement of the main result

A generalized polygon Γ of order (s,t) is a rank 2 point-line geometry whose incidence graph has diameter n and girth 2n, for some $n \in \mathbb{N} \setminus \{0,1\}$ (in which case the generalized polygon is also called a *generalized n-gon*), each vertex corresponding to a point has valency t+1 and each vertex corresponding to a line has valency s+1. If s,t>1, then the geometry is usually called *thick*. Each non-thick generalized polygon can be obtained from a thick one, and so one usually only considers thick generalized polygons. These objects were introduced by Tits [12]. More information is gathered in my monograph [13], to which we refer for a general introduction and basic properties. Here, we recall some notation. For an element x of Γ , and a natural number i, we denote by $\Gamma_i(x)$, the set of elements of Γ at distance i from x in the incidence graph of Γ . The distance function in that incidence graph is denoted by δ . If two elements x and y are not at distance n, then there exists a unique element proj $_y x$ incident with y and at distance $\delta(x,y)-1$ from x. We call that element the *projection of x onto*

E-mail address: hvm@cage.rug.ac.be (H.V. Maldeghem).

0012-365X/01/\$-see front matter © 2001 Elsevier Science B.V. All rights reserved. PII: \$0012-365X(00)00195-3

¹ The author is a Research Director of the Fund for Scientific Research — Flanders (Belgium).

y. Also recall that the *dual* of Γ is obtained by interchanging the words 'point' and 'line'. The dual of a generalized n-gon is obviously again a generalized n-gon.

Let Γ be a generalized n-gon of order (s,t), and let x and y be two elements of Γ at distance n in the incidence graph (elements of Γ at distance n in the incidence graph of Γ are called opposite). Let $\Gamma_1(x)$ denote the set of elements of Γ incident with x, and similarly for $\Gamma_1(y)$. It is well known that the relation 'is not opposite' is a bijection from $\Gamma_1(x)$ to $\Gamma_1(y)$. This bijection is called a perspectivity and denoted by [x,y]. For a collection $\{x_0,x_1,\ldots,x_\ell\}$ of points and lines, with x_{i-1} opposite x_i , $1 \le i \le \ell$, we define the composition

$$[x_0,x_1,\ldots,x_\ell]:=[x_0,x_1][x_1,x_2]\cdots[x_{\ell-1},x_\ell]$$

and call this bijection from $\Gamma_1(x_0)$ to $\Gamma_1(x_\ell)$ a projectivity. The set of all projectivities $\Gamma_1(L) \to \Gamma_1(L)$, for some line L of Γ , forms a group $\Pi(\Gamma)$, which is abstractly and as a permutation group, independent of L. It is called the group of projectivities of Γ . The 'Fundamental Theorem of Projective Plane Geometry' says that, for n=3 (a generalized 3-gon is nothing other than a projective plane), the (permutation) group of projectivities always acts 3-transitively, and it acts sharply 3-transitively if and only if the plane is Pappian (or equivalently, if and only if the projective plane arises from a three-dimensional vector space over a commutative field by taking the vector lines as points and the vector planes as lines, and inclusion as incidence). Now it is well known (for an explicit proof, see [8]) that in general, the group $\Pi(\Gamma)$ acts 2-transitively, and there are many examples of (finite and infinite) generalized 4-gons and generalized 8-gons with a group of projectivities which does not act 3-transitively (see e.g. [8] again, or Section 8.4 of the monograph [13]). In the present paper, we deal with the question (*): 'what can be said about the generalized polygon Γ when $\Pi(\Gamma)$ acts sharply 2-transitively?'

Question (*) has been suggested to me by Katrin Tent who, herself, classified in [11] all generalized quadrangles Γ with a sharply 2-transitive group of projectivities under the additional assumption that the one-point stabilizers of $\Pi(\Gamma)$ are abelian.

Note that for n even, the group $\Pi(\Gamma)$ has a subgroup (denoted by $\Pi^+(\Gamma)$) of index at most 2 consisting of all elements of $\Pi(\Gamma)$ associated to projectivities which are the composite of an even number of perspectivities (so-called *even projectivities*). Also, this group always acts 2-transitively, and hence, if $\Pi(\Gamma)$ acts sharply 2-transitively, then so does $\Pi^+(\Gamma)$. Consequently, the question: 'When exactly does $\Pi^+(\Gamma)$ act sharply 2-transitively?', is more general than the question (*).

A few remarks should put this question in a better perspective.

(i) Characterizations of certain classes of projective and affine planes by properties of their groups of projectivities exist in abundance, see [10] for a survey. For generalized n-gons with n > 3 (the case n = 2 is trivial: the group of projectivities is in this case always the identity), only the results for n = 4 of Brouns et al. [1] are available. Basically, the configurational properties induced by specific properties of the group of projectivities become too messy for n > 3, and hence, they do not

lead to anywhere. No classification result using groups of projectivities is known to me for generalized n-gons, with n > 4. The one we present here may not be very general (only a finite number of small polygons are characterized), but it can serve as a start for more results in this direction.

- (ii) If s = 2, then $\Pi(\Gamma) = \Pi^+(\Gamma)$ is automatically sharply 2-transitive (in fact, at the same time sharply 3-transitive). A classification of all generalized polygons Γ with $\Pi(\Gamma)$ or $\Pi^+(\Gamma)$ sharply 2-transitive would imply a classification of all generalized polygons of order (2,t). The latter one is at the moment not a reasonable problem, since it would in particular settle the question whether t has necessarily to be finite for n even (and this is an open problem solved only for n = 4; see Appendix 5 of [13]). We will restrict ourselves here to the values n = 3, 4, 6, 8, which appear to be the most interesting ones by the existence of 'classical examples' related to simple groups.
- (iii) If we consider for a moment only the finite case, then we see that a complete classification of polygons Γ with $\Pi(\Gamma)$ sharply 2-transitive requires, as above, the classification of generalized octagons of order (2,4). This is a long-standing problem that we will not try to solve in the present paper.

Our Main Result reads as follows.

Main Result. Let Γ be a projective plane, a generalized quadrangle, a finite generalized hexagon, or a finite generalized octagon. Suppose that $\Pi^+(\Gamma)$ acts sharply 2-transitively. Then $\Pi(\Gamma) = \Pi^+(\Gamma)$ and one of the following holds:

- 1. Γ is the unique projective plane of order (2,2),
- 2. Γ is the unique generalized quadrangle of order (2,2),
- 3. Γ is the unique generalized quadrangle of order (2,4),
- 4. Γ is isomorphic to the generalized quadrangle Q(4,3) of order (3,3) arising from a non-singular quadric in the four-dimensional projective space PG(4,3) over the Galois field GF(3) of order 3 (see also [9]),
- 5. Γ is a generalized hexagon of order (2,2) (and there are exactly 2 such; each one the dual of the other),
- 6. Γ is the unique generalized hexagon of order (2,8) and
- 7. Γ is a generalized octagon of order (2,4) or (4,2).

Concerning Cases 5 and 6, we remark that the finite generalized hexagons of order (2,t) are classified by Cohen and Tits [3]. As for Case 7 of the Main result, we remark that for the known generalized octagons Γ of order (2,4) and (4,2) we actually have that $\Pi^+(\Gamma)$ acts sharply 2-transitively (this is proved in [8]).

Concerning our proof, we note that our argument for n=6,8 is typically a finite one, because we heavily use Lemma 2 of the next section. We could also use it for the case n=4 to get rid of some small examples, but here there is a better geometric way, which also immediately gives us the examples without having to refer to the explicit calculation of the groups $\Pi^+(\Gamma)$ for some small finite generalized quadrangles Γ .

We subdivide our proof into the following parts. After two rather general lemmas (proving in particular that $\Pi^+(\Gamma) = \Pi(\Gamma)$ under the assumptions of the Main Result), we first deal with n=4 (the case n=3 follows from the 'Fundamental Theorem' stated above). Then we reduce the cases n=6,8 to a finite set of possible counterexamples. In the last part, we get rid of those.

2. Two useful lemmas

Lemma 1. Let Γ be any generalized n-gon of order (s,t), s,t > 1 (and possibly infinite), n > 3. Suppose that $\Pi^+(\Gamma)$ acts sharply 2-transitively. Then $\Pi^+(\Gamma) = \Pi(\Gamma)$. Moreover, if s is finite, and n is not congruent to 2 modulo 3, then s is not congruent to 1 modulo 3.

Proof. In this proof, we use the following observation, partly due to Norbert Knarr (private communication). Let L be any line of Γ . Pick any three points x, y, z incident with L. It is easy to see that there is an ordinary (n + 1)-gon with sides $x_0 := L, x_2, x_4, \dots, x_{2n}, x_{2i}$ meeting x_{2i+2} , but not x_{2i+4} (subscripts to be taken modulo 2n+2), such that x is incident with x_{2n} , y is incident with x_2 and z is the projection onto L of x_{n+1} (if n is odd) or of the intersection of x_n and x_{n+2} (if n is even). Let x_{2i+1} be the intersection of x_{2i} and x_{2i+2} (subscripts again modulo 2n+2). Let $\theta: \Gamma_1(L) \to \Gamma_1(L)$ be the even projectivity defined by $\theta:=[x_0,x_n,x_{2n},x_{3n},\ldots,x_{(2n+2)n}]$ (subscripts modulo 2n+2, and note that $x_{(2n+2)n}=x_0=L$). It was observed by Norber Knarr that θ stabilizes $\{x, y, z\}$ and that θ^3 fixes x, y and z. In fact, it is not difficult to see that $\theta: x \mapsto y \mapsto z \mapsto x$ if $n \equiv 0 \mod 3$, that $\theta: x \mapsto z \mapsto y \mapsto x$ if $n \equiv 1 \mod 3$, and that θ fixes x, y, z if $n \equiv 2 \mod 3$. If n is even, then $\theta' : \Gamma_1(L) \to \Gamma_1(L)$ defined by $\theta' := [x_0, x_n, x_{2n}, \dots, x_{(n+1)n}]$ does not possibly belong to $\Pi^+(\Gamma)$ (because it is composed of an odd number of perspectivities), and one checks that $\theta': x \mapsto y \mapsto z \mapsto x$ if $n \equiv 1 \mod 3$, that $\theta': x \mapsto z \mapsto y \mapsto x$ if $n \equiv 0 \mod 3$, and that θ' fixes x, y, z if $n \equiv 2 \mod 3$. Note that $\theta'^2 = \theta$.

Now, if n is odd, then automatically $\Pi^+(\Gamma) = \Pi(\Gamma)$ (because a composition of an odd number of perspectivities always maps $\Gamma_1(\text{line})$ to $\Gamma_1(\text{point})$, and vice versa). Suppose now that n is even. Assume that $\Pi(\Gamma) \neq \Pi^+(\Gamma)$. Then θ'^3 of the previous paragraph fixes x, y, z and belongs to $\Pi(\Gamma) \backslash \Pi^+(\Gamma)$ (hence $\theta'^3 \neq \text{id}$). Let u be a point incident with L and not fixed by θ'^3 . Noting that x, y, z were chosen arbitrarily, we can consider an element $\sigma: \Gamma_1(L) \to \Gamma_1(L)$ of $\Pi(\Gamma) \backslash \Pi^+(\Gamma)$ fixing x, y, u. Clearly, the composition $\sigma\theta'^3$ fixes x and y, but not u. But $\sigma\theta'^3 \in \Pi^+(\Gamma)$, a contradiction. Hence, θ'^3 is the identity and $\Pi^+(\Gamma) = \Pi(\Gamma)$.

Now suppose that $n \not\equiv 2 \mod 3$, and let $s \equiv 1 \mod 3$ be finite. Then the map θ above belongs to $\Pi^+(\Gamma)$ and is not trivial. Clearly, θ^3 is trivial, so θ defines a number of 3-cycles in $\Gamma_1(L)$. Since $s \equiv 1 \mod 3$, there are at least two points on L fixed by θ , hence θ is trivial by the sharp 2-transitivity, a contradiction.

The lemma is proved. \Box

Remark 1. Considering θ'^3 of the previous proof again, we see that this fixes at least three points. If $\Pi(\Gamma)$ is a Zassenhaus group, i.e., if the pointwise stabilizer of three elements is automatically the identity, then θ'^3 is the identity, and hence $\Pi^+(\Gamma) = \Pi(\Gamma)$. This observation may be used to shorten the arguments in [8].

For the next lemma, we introduce some notation. Let Γ be a finite generalized n-gon, n=4,6,8. Let p be any point of Γ , and fix two lines L and M through p. Now we consider the following subgeometry $\Gamma^{\{L,M\}}$ (respectively $\Gamma^{\{p\}}$) of Γ . The points of $\Gamma^{\{L,M\}}$ (respectively $\Gamma^{\{p\}}$) are the points of Γ opposite p; the lines of $\Gamma^{\{L,M\}}$ (respectively $\Gamma^{\{p\}}$) are the lines of Γ opposite both L and M (respectively at a distance n-1 from p); incidence is inherited from Γ .

Lemma 2. With the above notation, the geometry $\Gamma^{\{L,M\}}$ is connected except possibly in the following cases:

- (a) Γ is a quadrangle and $(s,t) \in \{(2,2),(2,4),(3,3),(4,2)\},\$
- (b) Γ is a hexagon and $(s,t) \in \{(2,2),(2,8),(3,3),(4,4),(8,2)\},\$
- (c) Γ is an octagon and $(s,t) \in \{(2,4),(3,6),(4,2),(6,3)\}.$

Proof. The lemma will be proved by the method introduced by Brouwer [2], which he attributes to Willem Haemers. In fact, we can more or less copy Section 4 of Brouwer [2] (and we explicitly do so because we will need a slight modification later on). So, suppose that $\Gamma^{\{L,M\}}$ is disconnected. Let A be the adjacency matrix of the collinearity graph of $\Gamma^{\{p\}}$. Let U,V be two disjoint components whose union is $\Gamma^{\{L,M\}}$. Consider the corresponding partition of A and let B be the condensed form of average row sums of the blocks of A. Putting r = (s-1)(t+1), which is the valency of the collinearity graph of $\Gamma^{\{p\}}$, u = |U| and v = |V|, we find

$$B = \begin{pmatrix} r - \varepsilon & \varepsilon \\ \varepsilon u/v & r - \varepsilon u/v \end{pmatrix},$$

where ε is the average number of points in V collinear (in $\Gamma^{\{p\}}$) with a point of U. The eigenvalues of B are r and $r - \varepsilon - \varepsilon u/v$, and they must interlace the eigenvalues of A. So, as in [2], we must have

$$(s-1)(t+1)-\varepsilon(1+u/v)\leqslant s-1+\sqrt{ast},$$

with a=n/2-2. Similarly as in [2], the expression $\varepsilon(1+u/v)$ is maximized by having all lines of $\Gamma^{\{p\}}$ which do not belong to $\Gamma^{\{L,M\}}$ meet U in the same number of points, in which case $\varepsilon(1+u/v)=2s$. Hence

$$(s-1)(t+1) - 2s \le s - 1 + \sqrt{ast}$$
.

For n=4, this reduces to $st \le 2s+t$. We easily obtain $(s,t) \in \{(2,2),(2,4),(3,3),(4,2)\}$. For n=6, this means that $st \le 2s+t+\sqrt{st}$. Since st is a perfect square (see [4]) and since $s \le t^3$ (see [6]), this implies that $(s,t) \in \{(2,2),(2,8),(3,3),(4,4),(8,2)\}$.

Similarly, for n = 8, we have $st \le 2s + t + \sqrt{2st}$. As 2st is a perfect square [4] and $s \le t^2 \le s^4$ [7], we obtain $(s,t) \in \{(2,4),(3,6),(4,2),(6,3)\}$. The lemma is proved. \square

3. Generalized quadrangles

In this section, we assume that Γ is a generalized quadrangle (4-gon) with $\Pi^+(\Gamma)$ sharply 2-transitive. All generalized quadrangles of order (2,t) are classified, see for instance the monograph [13, 1.7.9]. Hence, we may assume that the order of Γ is (s,t)with s>2. We show that in this case $t \le 3$. Let z be any point of Γ and let p,a,b be three mutually opposite points collinear with z, chosen in such a way that there exists a point x opposite p and collinear with both a, b (one easily checks that this is always possible). Let a' (respectively b') be the projection of p onto ax (respectively bx). Let L be any line through p distinct from pa', pb' and pz (if such a line L does not exist, then t=2 and we are done). Consider the even projectivity $\theta = [L, ax, pz, bx, L]$. It is clear that θ maps p onto itself, and that it also fixes the point $\operatorname{proj}_L x$. Hence θ also fixes $\operatorname{proj}_{L} a$, which is mapped onto $\operatorname{proj}_{L} b$. We conclude that $\operatorname{proj}_{L} a = \operatorname{proj}_{L} b$ and hence $|\Gamma_2(p) \cap \Gamma_2(a) \cap \Gamma_2(b)| = t - 1$. Now let b^* be a point incident with bz but distinct from b, from z and from $\operatorname{proj}_{bz} a'$ (since s > 2, we can find such a point b^*). Interchanging the roles of x and proj_{ax} b^* , and of b and b^* , we see that $|\Gamma_2(p) \cap \Gamma_2(a) \cap \Gamma_2(b^*)| = t - 1$. But no element of $\Gamma_2(p) \cap \Gamma_2(a) \cap \Gamma_2(b)$ is collinear with b^* , except for z. Moreover, also a' does not belong to $\Gamma_2(b^*)$. Hence $\Gamma_2(p) \cap \Gamma_2(a) \cap \Gamma_2(b^*)$ contains at most 2 elements (namely z and possibly a point incident with pb'). This implies $t-1 \le 2$.

So we have shown that $t \le 3$. But now Γ is finite and is known (see 1.7 of the monograph [13], cp. 6.1 and 6.2 of [9]). The result now follows from the explicit determination of $\Pi^+(\Gamma)$, with Γ a quadrangle of order (s,2) or (s,3). This is done in [8] for the orders (4,2), (3,3) and (9,3), and in [5] for the quadrangle of order (5,3).

Alternatively, we may argue as follows. Let L and M be two opposite lines of Γ . Let L' and M' be two opposite lines each meeting both L and M. Finally, let N be opposite both L and M, and meeting both L' and M'. Since $\Pi^+(\Gamma) = \Pi(\Gamma)$ by Lemma 1, the projectivity [L,M,N,L] is trivial, and this readily implies that, in the terminology of Payne and Thas [9], the pair $\{L,M\}$ is *regular*, and hence that each line of Γ is *regular*. Hence, by 2.2.2(i) of [9], we have $t \geqslant s$. Hence, only the quadrangles of order (2,2) and (3,3) must be considered (this argument also works for s infinite!). Moreover, for order (3,3), all lines are regular, and hence we have the generalized quadrangle $\mathbb{Q}(4,3)$ arising from a non-degenerate quadric in the four-dimensional projective space $\mathbb{PG}(4,3)$ over the Galois field $\mathbb{GF}(3)$ of order 3. Now Knarr [8] tells us that $\Pi^+(\mathbb{Q}(4,3)) \cong \mathbb{PSL}_2(4)$ and so Case 4 of the Main Result follows.

Remark 2. Completely similar as in the beginning of this section, one shows the following more general fact. If Γ is a generalized n-gon, $n \ge 4$ even, of order (s, t), with $\Pi^+(\Gamma)$ sharply 2-transitive, p is some point of Γ , and x, y, z are points opposite p with

x and y collinear with z, but x not collinear with y, then $|\Gamma_2(p) \cap \Gamma_{n-2}(x) \cap \Gamma_{n-2}(y)| \in \{0, t-1\}.$

4. Finite generalized hexagons and octagons

In this section, we suppose that Γ is a finite generalized hexagon or octagon of order (s,t), and that $\Pi^+(\Gamma)$ acts sharply 2-transitively. Let n be the diameter of the incidence graph of Γ (so n=6 or 8).

Let p be any point of Γ , and fix two lines L and M through p. Let x be some fixed point opposite p. Let y be a point in the same connected component of $\Gamma^{\{L,M\}}$ as x. Suppose that $\operatorname{proj}_L x = \operatorname{proj}_L y$. If x and y are collinear, then the line xy does not belong to $\Gamma^{\{L,M\}}$, and hence x and y are never collinear in $\Gamma^{\{L,M\}}$. If x and y are at distance 4 (measured in the incidence graph of $\Gamma^{\{L,M\}}$), and if $\{z\} = \Gamma_2(x) \cap \Gamma_2(y)$, then by considering the projectivity [M,xz,L,yz,M], we see that $\operatorname{proj}_M x = \operatorname{proj}_M y$. Suppose now that x and y are at distance d>4 (again measured in the incidence graph of $\Gamma^{\{L,M\}}$). Let y be a minimal path from x to y in $\Gamma^{\{L,M\}}$. Let y' be the projection of the point $\operatorname{proj}_L x$ onto the second line of y. By the previous argument we have $\operatorname{proj}_M y' = \operatorname{proj}_M x$. An induction argument on the length of y now implies that $\operatorname{proj}_M y = \operatorname{proj}_M y'$. Hence $\operatorname{proj}_M x = \operatorname{proj}_M y$. It is of course clear that there exists a point a opposite p with $\operatorname{proj}_L a = \operatorname{proj}_L x$ and $\operatorname{proj}_M a \neq \operatorname{proj}_M x$. This shows that the geometry $\Gamma^{\{L,M\}}$ cannot be connected (and must have at least s components since there are s choices for $\operatorname{proj}_M a$).

Now we apply Lemma 2. The cases s = 2 and t = 2 give rise to Cases 5, 6 and 7 of our Main Result (because the unique generalized hexagon of order (8,2) has a 3-transitive group of projectivities; see [8]). Also, the case (n,s,t) = (6,4,4) has been taken care of by Lemma 1.

Hence, we are left to show that for no generalized hexagon Γ of order (3,3), and for no generalized octagon of order (3,6) or (6,3), the permutation group $\Pi^+(\Gamma)$ acts sharply 2-transitively. In the next section, we will use the geometry of traces to rule these cases out.

5. The remaining small cases

5.1. The case (n, s, t) = (8, 3, 6)

Let Γ be a generalized octagon of order (3,6) with $\Pi^+(\Gamma)$ sharply 2-transitive. Let p be any point of Γ , and let x_0 be a point of Γ opposite p. If L is some line through p, then we label the point $\operatorname{proj}_L x_0$ by $(L,0 \operatorname{mod} 3)$. We now choose an arbitrary order $(L_1,L_2,L_3,L_4,L_5,L_6,L_7)$ of the lines through p, and we label the two points on L_1 distinct from p and from $\operatorname{proj}_L x_0$ arbitrarily by $(L_1,1 \operatorname{mod} 3)$ and $(L_1,2 \operatorname{mod} 3)$. For convenience, we usually omit 'mod 3' when it is clear it should be there. Let θ_i ,

 $2 \le i \le 7$ be any even projectivity from L_1 to L_i which maps p to p and $(L_1,0)$ to $(L_i,0)$ (θ_i exists by the 2-transitivity of $\Pi^+(\Gamma)$). Then we label the image of (L_1,ℓ) , $\ell \in \{1,2\}$, by (L_i,ℓ) . This labeling is independent of the choice of θ_i by the sharp 2-transitivity of $\Pi^+(\Gamma)$. Now with every point x opposite p, we can associate a unique 7-tuple $7(x):=(i_1,i_2,...,i_7) \in \{0,1,2\}^7$ defined by $\text{proj}_{L_i} x = (L_j,i_j), 1 \le j \le 7$. Now let y be any point opposite p collinear with x. Without loss of generality we may assume that the line xy is not opposite L_1 . Hence 7(y) is of the form $(i_1, j_2, j_3, ..., j_7)$. Consider the even projectivity $\sigma_{\ell} := [L_2, xy, L_{\ell}], 3 \le \ell \le 7$. Clearly it maps (L_2, i_2) to (L_{ℓ}, i_{ℓ}) . We now claim that it maps (L_2, j_2) to $(L_\ell, i_\ell + j_2 - i_2)$. First, remark that every even projectivity from L_{ℓ} to L_2 which maps p to p and $(L_{\ell},0)$ to $(L_2,0)$ maps $(L_{\ell},1)$ to $(L_2,1)$. Now let σ be any projectivity from L_2 to L_ℓ mapping p to p and $(L_2,0)$ to $(L_{\ell},1)$. Suppose σ maps $(L_2,1)$ to $(L_{\ell},0)$. Then we may compose σ with an even and we obtain an even projectivity $\sigma\sigma'$ from L_2 onto itself fixing p and $(L_2,2)$ and swapping $(L_2,0)$ with $(L_2,1)$. This contradicts the sharp 2-transitivity of $\Pi^+(\Gamma)$. Hence σ maps $(L_2,1)$ to $(L_\ell,2)$ and $(L_2,2)$ to $(L_\ell,0)$. Similarly, every even projectivity from L_2 to L_ℓ mapping p to p and $(L_2,0)$ to $(L_\ell,2)$, maps $(L_2,1)$ to $(L_\ell,0)$ and $(L_2,2)$ to $(L_{\ell}, 1)$. Consequently, we have shown that the even projectivities from L_2 to L_{ℓ} fixing p are of the form $(L_2, k) \mapsto (L_\ell, k + \varepsilon)$, with $\varepsilon \in \{0, 1, 2\}$ (modulo 3). Our claim now follows easily. Putting $\varepsilon = j_2 - i_2$, we now have that $7(y) = (i_1, i_2 + \varepsilon, i_3 + \varepsilon, \dots, i_7 + \varepsilon)$. Since ε appears 6 times, we deduce that the sum of all entries of 7(y) is congruent modulo 3 to the sum of all entries of 7(x). We can draw two conclusion out of this.

First. With the usual subtraction, we have that 7(x) - 7(y) contains a unique zero entry and either six 1's or six 2's when x and y are distinct collinear points opposite p. The zero entry is at position i if and only if xy is not opposite L_i , $i \in \{1, 2, ..., 7\}$. Second. Since we can reach every point opposite p by a sequence of collinear points (because $\Gamma^{\{p\}}$ is connected, see [2]), we have exactly 3^6 7-tuples which are actually equal to 7(z), for some point z of Γ opposite p. Since there are $3^4 \cdot 6^3$ points in Γ opposite p, this means that on the average, every admissible 7-tuple appears as 7(x) for 24 points x (an admissible 7-tuple is one which is equal to 7(u), for some point u opposite p).

Now we consider any admissible 7-tuple, and without loss of generality we may take $7(x_0) = (0, 0, ..., 0)$. Let x_1 be any point opposite p collinear with x_0 and such that the line x_0x_1 is not opposite L_1 (there are 2 choices for x_1). Without loss of generality we may assume that $7(x_1) = (0, 1, 1, ..., 1)$. Now we consider any point x_2 opposite p, collinear with x_1 and not on the line x_0x_1 (fixing x_1 , there are 12 choices for x_2 ; hence in total we have 24 choices). Without loss of generality, we may assume that x_1x_2 is not opposite L_7 . Then, since $7(x_1) - 7(x_2)$ contains either six 1's or six 2's (and the zero entry appears at the last position because $\text{proj}_{L_7} x_1 = \text{proj}_{L_7} x_2$) we have two possibilities.

1. $7(x_2) = (1, 2, 2, 2, 2, 2, 1)$. In this case there is a unique point x_3 collinear with x_2 , opposite p, such that x_2x_3 is not opposite L_1 , and with $7(x_3) = (1, 1, 1, 1, 1, 1, 0)$. It

is now easily seen that a point x_4 opposite p and collinear with x_3 exists such that $7(x_4) = 7(x_0)$.

2. $7(x_2)=(2,0,0,0,0,0,1)$. In this case we can take for x_3 the unique point opposite p, collinear with x_2 , such that x_2x_3 is not opposite L_1 , and with $7(x_3)=(2,2,2,2,2,2,0)$. Also in this case, there is now a point x_4 collinear with x_3 opposite p with $7(x_4)=7(x_0)$.

Hence, each of the 24 choices for x_2 gives rise to a point x_4 at distance 7 from x_0x_1 with $7(x_4) = 7(x_0)$. If two such points coincide, then there unique paths to x_0x_1 must coincide, a contradiction (they are all different by construction). Hence, we have a set of 25 points (all points x_4 and in addition the point x_0) giving rise to the same prechosen 7-tuple. Hence, the average of points x with 7(x) prechosen must be at least 25, a contradiction to our previous paragraph.

Hence Γ cannot exist.

5.2. The case (n, s, t) = (8, 6, 3)

Let Γ be a generalized octagon of order (6,3) with $\Pi^+(\Gamma)$ sharply 2-transitive. Let p be any point of Γ , and let x_0 be a point of Γ opposite p. As in the previous case, we can associate a 4-tuple (0,0,0,0) to x_0 by taking an order (L_1,L_2,L_3,L_4) of the lines through p, and by labeling the point $\operatorname{proj}_{L_i} x_0$ as $(L_i,0 \mod 6)$, $1 \le i \le 4$ (and we will omit 'mod 6' again in the sequel). We now choose a point on L_1 distinct from p and from $(L_1,0)$ and label it $(L_1,1)$. There is a unique element θ of $\Pi^+(\Gamma)$ mapping L_1 to itself, fixing p and mapping $(L_1,0)$ to $(L_1,1)$. We define $(L_1,j)^\theta = (L_1,j+1)$ inductively, for all j (modulo 6). As before, this induces a unique labeling on the lines L_i , i=2,3,4, and we can associate a 4-tuple 4(x) with every point x opposite p, in exactly the same way as before. One also shows similarly that the sum of the labels is congruent 3 modulo 6, and that for collinear points x and y, the 4-tuples 4(x) and 4(y) have the same entry at a certain position, and the entries in the other positions have a constant difference.

It is now a little elementary exercise to show that, if (a,b,c,d) is an admissible 4-tuple (as before, this means that there exists a point x opposite p with 4(x) = (a,b,c,d)), then

$$(c-a,d-b) \in \{(0,0),(2,4),(4,2),(3,3),(1,5),(5,1),(0,3),(2,1),(4,5),(3,0),(1,2),(5,4)\} = : \mathcal{A}.$$

For $(i,j) \in \mathcal{A}$, we put $\mathcal{S}(i,j) = \{x \in \Gamma_8(p) \mid 4(x) = (a,b,a+i,b+j), \text{ for some } a,b\}$. Suppose now two points x and y are collinear in $\Gamma^{\{L_3,L_4\}}$. Then xy is opposite both L_3 and L_4 , hence we may assume it is not opposite L_1 . So, $4(x) = 4(y) + (0, \varepsilon, \varepsilon, \varepsilon)$, and we see that x and y belong to the same set $\mathcal{S}(i,j)$ for some suitable (i,j). This means that each $\mathcal{S}(i,j)$ is the union of connected components of $\Gamma^{\{L_3,L_4\}}$, and hence there are at least 12 connected components. Now we set $\mathcal{S}_1 = \mathcal{S}(0,0) \cup \mathcal{S}(2,4) \cup \mathcal{S}(4,2)$, $\mathcal{S}_2 = \mathcal{S}(3,3) \cup \mathcal{S}(1,5) \cup \mathcal{S}(5,1)$, $\mathcal{S}_3 = \mathcal{S}(0,3) \cup \mathcal{S}(2,1) \cup \mathcal{S}(4,5)$ and $\mathcal{S}_4 = \mathcal{S}(3,0) \cup \mathcal{S$

 $\mathcal{S}(1,2) \cup \mathcal{S}(5,4)$. It is easy to check that an arbitrary member of \mathcal{S}_1 (respectively \mathcal{S}_2 , \mathcal{S}_3 , \mathcal{S}_4) is collinear (in $\Gamma^{\{p\}}$) with exactly 14 members of \mathcal{S}_1 (respectively \mathcal{S}_2 , \mathcal{S}_3 , \mathcal{S}_4), with no members of \mathcal{S}_2 (respectively \mathcal{S}_1 , \mathcal{S}_4 , \mathcal{S}_3), with exactly three members of both \mathcal{S}_3 and \mathcal{S}_4 (respectively \mathcal{S}_3 and \mathcal{S}_4 , \mathcal{S}_1 and \mathcal{S}_2 , \mathcal{S}_1 , \mathcal{S}_2). Indeed, let us check this for instance for a point x with $4(x) = (0,0,0,0) \in \mathcal{S}_1$. The neighbors of x have corresponding 4-tuple (and ' \leadsto ' means 'gives rise to members of')

$$(0,\ell,\ell,\ell), (\ell,0,\ell,\ell) \rightsquigarrow \mathcal{S}(0,0) \subseteq \mathcal{S}_{1}, \quad \ell \in \{1,2,3,4,5\},$$

$$(2,2,0,2), (4,4,4,0) \rightsquigarrow \mathcal{S}(2,4) \subseteq \mathcal{S}_{1},$$

$$(2,2,2,0), (4,4,0,4) \rightsquigarrow \mathcal{S}(4,2) \subseteq \mathcal{S}_{1},$$

$$(1,1,0,1), (3,3,0,3), (5,5,0,5) \rightsquigarrow \mathcal{S}_{3},$$

$$(1,1,1,0), (3,3,3,0), (5,5,5,0) \rightsquigarrow \mathcal{S}_{4}.$$

The condensed form of the adjacency matrix with corresponding partition is thus

$$\begin{pmatrix}
14 & 0 & 3 & 3 \\
0 & 14 & 3 & 3 \\
3 & 3 & 14 & 0 \\
3 & 3 & 0 & 14
\end{pmatrix}$$

and this has eigenvalues 20 (multiplicity 1), 14 (multiplicity 2) and 8 (multiplicity 1). As before, by interlacing, we must have $14 \le s - 1 + \sqrt{2st} = 11$, a contradiction.

5.3. The case (n, s, t) = (6, 3, 3)

Let Γ be a generalized hexagon of order (3,3) such that $\Pi^+(\Gamma)$ is sharply 2-transitive. Let p be a point of Γ . Exactly in the same way as in the two previous subsections, we can associate a 4-tuple 4(x) with every point x opposite p, and such a 4-tuple (i_1,i_2,i_3,i_4) consists of 4 integers i_{ℓ} modulo 3 which sum up to 0 modulo 3. Adjacent to x in $\Gamma^{\{p\}}$ are 8 points with corresponding 4-tuples $(i_1,i_2+\varepsilon,i_3+\varepsilon,i_4+\varepsilon)$, $(i_1+\varepsilon,i_2,i_3+\varepsilon,i_4+\varepsilon)$,..., $(...,i_3+\varepsilon,i_4)$. We observe that no two of these 8 quadruples share in exactly one position an element. Hence, since $\Gamma^{\{p\}}$ is connected (see [2]), we have 27 admissible quadruples, and if we consider the graph G with vertex set the admissible quadruples, and we call two quadruples adjacent if they share in exactly one position an element, then we obtain a (strongly regular) graph without triangles. It can also be easily seen that there are no two quadruples differing in exactly one position.

Since there are 27 admissible quadruples, and 3^5 points opposite p, there must be at least one admissible quadruple equal to 4(x), for at least 9 points x opposite p. Now suppose, without loss of generality, that (0,0,0,0) is such a quadruple, and let 4(x) = 4(y) = (0,0,0,0) for two distinct points x and y. We now determine the mutual position of x and y by ruling out some possibilities.

Suppose that $|\Gamma_3(p) \cap \Gamma_3(x) \cap \Gamma_3(y)| = 0$. Let M be any line through y and put $N = \operatorname{proj}_x M$. The point $\operatorname{proj}_N y$ is opposite p since otherwise it would coincide with $\operatorname{proj}_N p$, and the latter is opposite p (because, if $U = \operatorname{proj}_p N$ and $u = \operatorname{proj}_U N$, we

have by assumption that $\operatorname{proj}_u y \neq \operatorname{proj}_u x$). Similarly, the point $\operatorname{proj}_M x$ is opposite p. By Remark 2, the sets $\Gamma_2(p) \cap \Gamma_2(x)$ and $\Gamma_2(p) \cap \Gamma_2(\operatorname{proj}_M x)$ have exactly two elements in common. But since y and $\operatorname{proj}_M x$ are collinear, the sets $\Gamma_2(p) \cap \Gamma_2(y)$ and $\Gamma_2(p) \cap \Gamma_2(\operatorname{proj}_M x)$ have exactly one element in common, a contradiction (because $\Gamma_2(p) \cap \Gamma_2(x) = \Gamma_2(p) \cap \Gamma_2(y)$ by assumption).

Suppose now $\Gamma_3(p) \cap \Gamma_3(x) \cap \Gamma_3(y) = \{L\}$. Suppose, moreover, that $\operatorname{proj}_L x \neq \operatorname{proj}_L y$. Then $\delta(x,y) = 6$ and considering a line $M \neq \operatorname{proj}_y L$ through y, we can copy the argument in the previous paragraph to reach a contradiction.

Similarly, we can rule out the case $\Gamma_3(p) \cap \Gamma_3(x) \cap \Gamma_3(y) = \{L, L'\}$, $L \neq L'$ (proj_L $x \neq$ proj_L y is automatic since $x \neq y$). Note that an analogous argument shows that $|\Gamma_3(p) \cap \Gamma_3(x) \cap \Gamma_3(y)| \neq 3$.

Suppose now $|\Gamma_3(p) \cap \Gamma_3(x) \cap \Gamma_3(y)| = 4$. There is at most one further point z opposite p with $|\Gamma_3(p) \cap \Gamma_3(x) \cap \Gamma_3(z)| = 4$. Since there are at least nine points u with 4(u) = 4(x), there is at least one point w opposite p with 4(w) = 4(x) and $\Gamma_3(p) \cap \Gamma_3(x) \cap \Gamma_3(w) = \{L\}$, for some line L, and $\operatorname{proj}_L x = \operatorname{proj}_L w$. But then $\Gamma_3(p) \cap \Gamma_3(y) \cap \Gamma_3(w) = \{L\}$ with $\operatorname{proj}_L y \neq \operatorname{proj}_L w$. So $4(w) \neq 4(y)$, a contradiction.

Hence we have shown that $\Gamma_3(p) \cap \Gamma_3(x) \cap \Gamma_3(y)$ consists of a unique line L with $\operatorname{proj}_L x = \operatorname{proj}_L y$. It is clear that each such line L gives rise to at most two points $y, y \neq x$, with 4(y) = 4(x), because on each line K through $\operatorname{proj}_L x, K \neq L, K$ not through x, the point y must be equal to the projection of every element of $(\Gamma_2(p) \cap \Gamma_4(x)) \setminus \{\operatorname{proj}_L p\}$. Since there are four lines in $\Gamma_3(p) \cap \Gamma_3(x)$, there are at most nine elements y with 4(y) = 4(x). Our assumption now implies that there are exactly nine such elements. We can do the same with a second admissible quadruple, and continuing this way, we finally have that every admissible quadruple arises from exactly nine points opposite p. We can show that such a set of nine points is contained in a subhexagon of order (1,3), but we will not need this fact.

Now put $\Gamma_3(p) \cap \Gamma_3(x) = \{L_0, L_1, L_2, L_3\}$. Let u be a point on L_0 distinct from $\operatorname{proj}_{L_0} x$. Let $(u, uw_i, w_i, w_iu_i, L_i)$, i = 1, 2 be path from u to L_i . Then $w_1 \neq w_2$ (otherwise $4(w_1)$ and 4(x) differ in at most one position, a contradiction). Since $\Pi(\Gamma) = \Pi^+(\Gamma)$, the projectivity $[L_2, L_0, L_1, L_2]$ is the identity. Hence $\delta(u_1, u_2) = 4$, and there is a path $(u_1, u_1u_1, u_1u_2, u_1u_2, u_1u_2, u_1u_2)$ from U_1 to U_2 . By an argument in the previous paragraph, we know that on the line uw_2 , there is a unique point v with $4(v) = 4(w_1)$. Hence $4(w_1)$ and $4(w_2)$ differ in exactly three positions (because if they were equal, then they would have to be equal to 4(x), a contradiction). Similarly, $4(w_1)$ (respectively $4(w_2)$) and $4(w_{12})$ differ in exactly three positions. But this induces a triangle in the graph G (see above), a contradiction.

This completes the proof of our Main Result. \Box

References

 L. Brouns, K. Tent, H. Van Maldeghem, Groups of projectivities of generalized quadrangles, Geom. Dedicata 73 (1998) 165–180.

- [2] A.E. Brouwer, The complement of a geometric hyperplane in a generalized polygon is usually connected, in: F. De Clerck, et al., (Eds.), Finite Geometry and Combinatorics, Proceedings Deinze 1992, London Mathematical Society Lecture Note Series, Vol. 191, Cambridge University Press, Cambridge, 1993, pp. 53–57.
- [3] A.M. Cohen, J. Tits, On generalized hexagons and a near octagon whose lines have three points, Eur. J. Combin. 6 (1985) 13–27.
- [4] W. Feit, G. Higman, The nonexistence of certain generalized polygons, J. Algebra 1 (1964) 114-131.
- [5] T. Grundhöfer, M. Joswig, M. Stroppel, Slanted symplectic quadrangles, Geom. Dedicata 49 (1994) 143–154
- [6] W. Haemers, C. Roos, An inequality for generalized hexagons, Geom. Dedicata 10 (1981) 219-222.
- [7] D.G. Higman, Invariant relations, coherent configurations and generalized polygons, in: M. Hall, J.H. Van Lint (Eds.), Combinatorics, D. Reidel, Dordrecht, 1975, pp. 347–363.
- [8] N. Knarr, Projectivities of generalized polygons, Ars Combin. 25B (1988) 265-275.
- [9] S.E. Payne, J.A. Thas, Finite Generalized Quadrangles, Pitman, Boston, 1984.
- [10] G. Pickert, Projectivities in projective planes, in: P. Plaumann, K. Strambach (Eds.), Geometry von Staudt's Point of View, Reidel, Dordrecht, 1981, pp. 1–49.
- [11] K. Tent, A note on the model theory of polygons, J. Symbolic Logic, to appear.
- [12] J. Tits, Sur la trialité et certains groupes qui s'en déduisent, Inst. Hautes Études Sci. Publ. Math. 2 (1959) 13-60.
- [13] H. Van Maldeghem, Generalized Polygons, Monographs in Mathematics, Vol. 97, Birkhäuser, Basel, 1998.