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Abstract

The group of projectivities of (a line of) a projective plane is always 3-transitive. It is well
known that the projective planes with a sharply 3-transitive group of projectivities are classi/ed:
they are precisely the Pappian projective planes. It is also well known that the group of projec-
tivities of a generalized polygon is 2-transitive. Here, we classify all generalized quadrangles,
all /nite generalized hexagons, and the parameter sets of all /nite generalized octagons with a
sharply 2-transitive group of projectivities. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction and statement of the main result

A generalized polygon � of order (s; t) is a rank 2 point-line geometry whose
incidence graph has diameter n and girth 2n, for some n ∈ N\{0; 1} (in which case
the generalized polygon is also called a generalized n-gon), each vertex corresponding
to a point has valency t+1 and each vertex corresponding to a line has valency s+1. If
s; t ¿ 1, then the geometry is usually called thick. Each non-thick generalized polygon
can be obtained from a thick one, and so one usually only considers thick generalized
polygons. These objects were introduced by Tits [12]. More information is gathered in
my monograph [13], to which we refer for a general introduction and basic properties.
Here, we recall some notation. For an element x of �, and a natural number i, we
denote by �i(x), the set of elements of � at distance i from x in the incidence graph
of �. The distance function in that incidence graph is denoted by 	. If two elements
x and y are not at distance n, then there exists a unique element projy x incident with
y and at distance 	(x; y) − 1 from x. We call that element the projection of x onto
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y. Also recall that the dual of � is obtained by interchanging the words ‘point’ and
‘line’. The dual of a generalized n-gon is obviously again a generalized n-gon.

Let � be a generalized n-gon of order (s; t), and let x and y be two elements of
� at distance n in the incidence graph (elements of � at distance n in the incidence
graph of � are called opposite). Let �1(x) denote the set of elements of � incident
with x, and similarly for �1(y). It is well known that the relation ‘is not opposite’ is
a bijection from �1(x) to �1(y). This bijection is called a perspectivity and denoted
by [x; y]. For a collection {x0; x1; : : : ; x‘} of points and lines, with xi−1 opposite xi,
16i6‘, we de/ne the composition

[x0; x1; : : : ; x‘]:=[x0; x1][x1; x2] · · · [x‘−1; x‘]

and call this bijection from �1(x0) to �1(x‘) a projectivity. The set of all projectivities
�1(L) → �1(L), for some line L of �, forms a group �(�), which is abstractly and
as a permutation group, independent of L. It is called the group of projectivities of
�. The ‘Fundamental Theorem of Projective Plane Geometry’ says that, for n = 3 (a
generalized 3-gon is nothing other than a projective plane), the (permutation) group of
projectivities always acts 3-transitively, and it acts sharply 3-transitively if and only if
the plane is Pappian (or equivalently, if and only if the projective plane arises from a
three-dimensional vector space over a commutative /eld by taking the vector lines as
points and the vector planes as lines, and inclusion as incidence). Now it is well known
(for an explicit proof, see [8]) that in general, the group �(�) acts 2-transitively, and
there are many examples of (/nite and in/nite) generalized 4-gons and generalized
8-gons with a group of projectivities which does not act 3-transitively (see e.g. [8]
again, or Section 8:4 of the monograph [13]). In the present paper, we deal with the
question (∗): ‘what can be said about the generalized polygon � when �(�) acts
sharply 2-transitively?’

Question (∗) has been suggested to me by Katrin Tent who, herself, classi/ed in
[11] all generalized quadrangles � with a sharply 2-transitive group of projectivities
under the additional assumption that the one-point stabilizers of �(�) are abelian.

Note that for n even, the group �(�) has a subgroup (denoted by �+(�)) of index
at most 2 consisting of all elements of �(�) associated to projectivities which are the
composite of an even number of perspectivities (so-called even projectivities). Also,
this group always acts 2-transitively, and hence, if �(�) acts sharply 2-transitively, then
so does �+(�). Consequently, the question: ‘When exactly does �+(�) act sharply
2-transitively?’, is more general than the question (∗).

A few remarks should put this question in a better perspective.

(i) Characterizations of certain classes of projective and aMne planes by properties
of their groups of projectivities exist in abundance, see [10] for a survey. For
generalized n-gons with n¿ 3 (the case n=2 is trivial: the group of projectivities
is in this case always the identity), only the results for n=4 of Brouns et al. [1] are
available. Basically, the con/gurational properties induced by speci/c properties
of the group of projectivities become too messy for n¿ 3, and hence, they do not
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lead to anywhere. No classi/cation result using groups of projectivities is known
to me for generalized n-gons, with n¿ 4. The one we present here may not be
very general (only a /nite number of small polygons are characterized), but it
can serve as a start for more results in this direction.

(ii) If s= 2, then �(�) =�+(�) is automatically sharply 2-transitive (in fact, at the
same time sharply 3-transitive). A classi/cation of all generalized polygons � with
�(�) or �+(�) sharply 2-transitive would imply a classi/cation of all generalized
polygons of order (2; t). The latter one is at the moment not a reasonable problem,
since it would in particular settle the question whether t has necessarily to be /nite
for n even (and this is an open problem solved only for n = 4; see Appendix 5
of [13]). We will restrict ourselves here to the values n= 3; 4; 6; 8, which appear
to be the most interesting ones by the existence of ‘classical examples’ related to
simple groups.

(iii) If we consider for a moment only the /nite case, then we see that a complete
classi/cation of polygons � with �(�) sharply 2-transitive requires, as above,
the classi/cation of generalized octagons of order (2; 4). This is a long-standing
problem that we will not try to solve in the present paper.

Our Main Result reads as follows.

Main Result. Let � be a projective plane; a generalized quadrangle; a 7nite gen-
eralized hexagon; or a 7nite generalized octagon. Suppose that �+(�) acts sharply
2-transitively. Then �(�) =�+(�) and one of the following holds:

1. � is the unique projective plane of order (2; 2);
2. � is the unique generalized quadrangle of order (2; 2);
3. � is the unique generalized quadrangle of order (2; 4);
4. � is isomorphic to the generalized quadrangle Q(4; 3) of order (3; 3) arising from
a non-singular quadric in the four-dimensional projective space PG(4; 3) over the
Galois 7eld GF(3) of order 3 (see also [9]);

5. � is a generalized hexagon of order (2; 2) (and there are exactly 2 such; each
one the dual of the other);

6. � is the unique generalized hexagon of order (2; 8) and
7. � is a generalized octagon of order (2; 4) or (4; 2).

Concerning Cases 5 and 6, we remark that the /nite generalized hexagons of order
(2; t) are classi/ed by Cohen and Tits [3]. As for Case 7 of the Main result, we remark
that for the known generalized octagons � of order (2; 4) and (4; 2) we actually have
that �+(�) acts sharply 2-transitively (this is proved in [8]).

Concerning our proof, we note that our argument for n = 6; 8 is typically a /nite
one, because we heavily use Lemma 2 of the next section. We could also use it for the
case n=4 to get rid of some small examples, but here there is a better geometric way,
which also immediately gives us the examples without having to refer to the explicit
calculation of the groups �+(�) for some small /nite generalized quadrangles �.
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We subdivide our proof into the following parts. After two rather general lemmas
(proving in particular that �+(�) =�(�) under the assumptions of the Main Result),
we /rst deal with n=4 (the case n=3 follows from the ‘Fundamental Theorem’ stated
above). Then we reduce the cases n= 6; 8 to a /nite set of possible counterexamples.
In the last part, we get rid of those.

2. Two useful lemmas

Lemma 1. Let � be any generalized n-gon of order (s; t); s; t ¿ 1 (and possibly
in7nite); n¿ 3. Suppose that �+(�) acts sharply 2-transitively. Then �+(�)=�(�).
Moreover; if s is 7nite; and n is not congruent to 2 modulo 3; then s is not congruent
to 1 modulo 3.

Proof. In this proof, we use the following observation, partly due to Norbert Knarr
(private communication). Let L be any line of �. Pick any three points x; y; z in-
cident with L. It is easy to see that there is an ordinary (n + 1)-gon with sides
x0:=L; x2; x4; : : : ; x2n, x2i meeting x2i+2, but not x2i+4 (subscripts to be taken modulo
2n+ 2), such that x is incident with x2n, y is incident with x2 and z is the projection
onto L of xn+1 (if n is odd) or of the intersection of xn and xn+2 (if n is even).
Let x2i+1 be the intersection of x2i and x2i+2 (subscripts again modulo 2n + 2). Let
� : �1(L) → �1(L) be the even projectivity de/ned by �:=[x0; xn; x2n; x3n; : : : ; x(2n+2)n]
(subscripts modulo 2n+ 2, and note that x(2n+2)n = x0 = L). It was observed by Norber
Knarr that � stabilizes {x; y; z} and that � 3 /xes x; y and z. In fact, it is not diMcult
to see that �:x 	→y 	→z 	→x if n ≡ 0mod 3, that � : x 	→ z 	→ y 	→ x if n ≡ 1mod 3, and
that � /xes x; y; z if n ≡ 2mod 3. If n is even, then �′ : �1(L) → �1(L) de/ned by
�′:=[x0; xn; x2n; : : : ; x(n+1)n] does not possibly belong to �+(�) (because it is composed
of an odd number of perspectivities), and one checks that �′ : x 	→ y 	→ z 	→ x if
n ≡ 1mod 3, that �′ : x 	→ z 	→ y 	→ x if n ≡ 0mod 3, and that �′ /xes x; y; z if
n ≡ 2mod 3. Note that �′2 = �.

Now, if n is odd, then automatically �+(�) = �(�) (because a composition of
an odd number of perspectivities always maps �1(line) to �1(point), and vice versa).
Suppose now that n is even. Assume that �(�) �= �+(�). Then �′3 of the previous
paragraph /xes x; y; z and belongs to �(�)\�+(�) (hence �′3 �= id). Let u be a point
incident with L and not /xed by �′3. Noting that x; y; z were chosen arbitrarily, we
can consider an element � : �1(L) → �1(L) of �(�)\�+(�) /xing x; y; u. Clearly, the
composition ��′3 /xes x and y, but not u. But ��′3 ∈ �+(�), a contradiction. Hence,
�′3 is the identity and �+(�) =�(�).

Now suppose that n �≡ 2mod 3, and let s ≡ 1mod 3 be /nite. Then the map � above
belongs to �+(�) and is not trivial. Clearly, � 3 is trivial, so � de/nes a number of
3-cycles in �1(L). Since s ≡ 1mod 3, there are at least two points on L /xed by �,
hence � is trivial by the sharp 2-transitivity, a contradiction.

The lemma is proved.
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Remark 1. Considering �′3 of the previous proof again, we see that this /xes at least
three points. If �(�) is a Zassenhaus group, i.e., if the pointwise stabilizer of three
elements is automatically the identity, then �′3 is the identity, and hence �+(�)=�(�).
This observation may be used to shorten the arguments in [8].

For the next lemma, we introduce some notation. Let � be a /nite generalized
n-gon, n = 4; 6; 8. Let p be any point of �, and /x two lines L and M through p.
Now we consider the following subgeometry �{L;M} (respectively �{p}) of �. The
points of �{L;M} (respectively �{p}) are the points of � opposite p; the lines of
�{L;M} (respectively �{p}) are the lines of � opposite both L and M (respectively at
a distance n− 1 from p); incidence is inherited from �.

Lemma 2. With the above notation, the geometry �{L;M} is connected except possibly
in the following cases:

(a) � is a quadrangle and (s; t) ∈ {(2; 2); (2; 4); (3; 3); (4; 2)};
(b) � is a hexagon and (s; t) ∈ {(2; 2); (2; 8); (3; 3); (4; 4); (8; 2)};
(c) � is an octagon and (s; t) ∈ {(2; 4); (3; 6); (4; 2); (6; 3)}.

Proof. The lemma will be proved by the method introduced by Brouwer [2], which he
attributes to Willem Haemers. In fact, we can more or less copy Section 4 of Brouwer
[2] (and we explicitly do so because we will need a slight modi/cation later on). So,
suppose that �{L;M} is disconnected. Let A be the adjacency matrix of the collinearity
graph of �{p}. Let U; V be two disjoint components whose union is �{L;M}. Consider
the corresponding partition of A and let B be the condensed form of average row sums
of the blocks of A. Putting r = (s− 1)(t + 1), which is the valency of the collinearity
graph of �{p}, u= |U | and v = |V |, we /nd

B =
(
r − � �
�u=v r − �u=v

)
;

where � is the average number of points in V collinear (in �{p}) with a point of U .
The eigenvalues of B are r and r − � − �u=v, and they must interlace the eigenvalues
of A. So, as in [2], we must have

(s− 1)(t + 1) − �(1 + u=v)6s− 1 +
√
ast;

with a=n=2−2. Similarly as in [2], the expression �(1+u=v) is maximized by having
all lines of �{p} which do not belong to �{L;M} meet U in the same number of points,
in which case �(1 + u=v) = 2s. Hence

(s− 1)(t + 1) − 2s6s− 1 +
√
ast:

For n=4, this reduces to st62s+t. We easily obtain (s; t) ∈ {(2; 2); (2; 4); (3; 3); (4; 2)}.
For n= 6, this means that st62s+ t +

√
st. Since st is a perfect square (see [4]) and

since s6t3 (see [6]), this implies that (s; t) ∈ {(2; 2); (2; 8); (3; 3); (4; 4); (8; 2)}.
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Similarly, for n = 8, we have st62s + t +
√

2st. As 2st is a perfect square [4] and
s6t26s4 [7], we obtain (s; t) ∈ {(2; 4); (3; 6); (4; 2); (6; 3)}.
The lemma is proved.

3. Generalized quadrangles

In this section, we assume that � is a generalized quadrangle (4-gon) with �+(�)
sharply 2-transitive. All generalized quadrangles of order (2; t) are classi/ed, see for
instance the monograph [13, 1:7:9]. Hence, we may assume that the order of � is (s; t)
with s¿2. We show that in this case t63. Let z be any point of � and let p; a; b be
three mutually opposite points collinear with z, chosen in such a way that there exists
a point x opposite p and collinear with both a; b (one easily checks that this is always
possible). Let a′ (respectively b′) be the projection of p onto ax (respectively bx). Let
L be any line through p distinct from pa′, pb′ and pz (if such a line L does not exist,
then t = 2 and we are done). Consider the even projectivity � = [L; ax; pz; bx; L]. It is
clear that � maps p onto itself, and that it also /xes the point projL x. Hence � also /xes
projL a, which is mapped onto projL b. We conclude that projL a = projL b and hence
|�2(p)∩�2(a)∩�2(b)|= t−1. Now let b∗ be a point incident with bz but distinct from
b, from z and from projbz a

′ (since s¿2, we can /nd such a point b∗). Interchanging
the roles of x and projax b

∗, and of b and b∗, we see that |�2(p)∩�2(a)∩�2(b∗)|=t−1.
But no element of �2(p) ∩ �2(a) ∩ �2(b) is collinear with b∗, except for z. Moreover,
also a′ does not belong to �2(b∗). Hence �2(p) ∩ �2(a) ∩ �2(b∗) contains at most 2
elements (namely z and possibly a point incident with pb′). This implies t − 162.

So we have shown that t63. But now � is /nite and is known (see 1.7 of the
monograph [13], cp. 6.1 and 6.2 of [9]). The result now follows from the explicit
determination of �+(�), with � a quadrangle of order (s; 2) or (s; 3). This is done in
[8] for the orders (4; 2), (3; 3) and (9; 3), and in [5] for the quadrangle of order (5; 3).

Alternatively, we may argue as follows. Let L and M be two opposite lines of �. Let
L′ and M ′ be two opposite lines each meeting both L and M . Finally, let N be opposite
both L and M , and meeting both L′ and M ′. Since �+(�) = �(�) by Lemma 1, the
projectivity [L;M; N; L] is trivial, and this readily implies that, in the terminology of
Payne and Thas [9], the pair {L;M} is regular, and hence that each line of � is regular.
Hence, by 2.2.2(i) of [9], we have t¿s. Hence, only the quadrangles of order (2; 2)
and (3; 3) must be considered (this argument also works for s in/nite!). Moreover, for
order (3; 3), all lines are regular, and hence we have the generalized quadrangle Q(4; 3)
arising from a non-degenerate quadric in the four-dimensional projective space PG(4; 3)
over the Galois /eld GF(3) of order 3. Now Knarr [8] tells us that �+(Q(4; 3)) ∼=
PSL2(4) and so Case 4 of the Main Result follows.

Remark 2. Completely similar as in the beginning of this section, one shows the
following more general fact. If � is a generalized n-gon, n¿4 even, of order (s; t), with
�+(�) sharply 2-transitive, p is some point of �, and x; y; z are points opposite p with
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x and y collinear with z, but x not collinear with y, then |�2(p)∩�n−2(x)∩�n−2(y)| ∈
{0; t − 1}.

4. Finite generalized hexagons and octagons

In this section, we suppose that � is a /nite generalized hexagon or octagon of
order (s; t), and that �+(�) acts sharply 2-transitively. Let n be the diameter of the
incidence graph of � (so n= 6 or 8).

Let p be any point of �, and /x two lines L and M through p. Let x be some
/xed point opposite p. Let y be a point in the same connected component of �{L;M}

as x. Suppose that projL x= projL y. If x and y are collinear, then the line xy does not
belong to �{L;M}, and hence x and y are never collinear in �{L;M}. If x and y are at
distance 4 (measured in the incidence graph of �{L;M}), and if {z} = �2(x) ∩ �2(y),
then by considering the projectivity [M; xz; L; yz;M ], we see that projM x = projM y.
Suppose now that x and y are at distance d¿4 (again measured in the incidence
graph of �{L;M}). Let ! be a minimal path from x to y in �{L;M}. Let y′ be the
projection of the point projL x onto the second line of !. By the previous argument
we have projM y′ = projM x. An induction argument on the length of ! now implies
that projM y= projM y′. Hence projM x= projM y. It is of course clear that there exists
a point a opposite p with projL a = projL x and projM a �= projM x. This shows that
the geometry �{L;M} cannot be connected (and must have at least s components since
there are s choices for projM a).

Now we apply Lemma 2. The cases s = 2 and t = 2 give rise to Cases 5, 6 and
7 of our Main Result (because the unique generalized hexagon of order (8; 2) has a
3-transitive group of projectivities; see [8]). Also, the case (n; s; t) = (6; 4; 4) has been
taken care of by Lemma 1.

Hence, we are left to show that for no generalized hexagon � of order (3; 3), and
for no generalized octagon of order (3; 6) or (6; 3), the permutation group �+(�) acts
sharply 2-transitively. In the next section, we will use the geometry of traces to rule
these cases out.

5. The remaining small cases

5.1. The case (n; s; t) = (8; 3; 6)

Let � be a generalized octagon of order (3; 6) with �+(�) sharply 2-transitive. Let
p be any point of �, and let x0 be a point of � opposite p. If L is some line through
p, then we label the point projL x0 by (L; 0mod 3). We now choose an arbitrary order
(L1; L2; L3; L4; L5; L6; L7) of the lines through p, and we label the two points on L1

distinct from p and from projL x0 arbitrarily by (L1; 1mod 3) and (L1; 2mod 3). For
convenience, we usually omit ‘mod 3’ when it is clear it should be there. Let �i,
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26i67 be any even projectivity from L1 to Li which maps p to p and (L1; 0) to
(Li; 0) (�i exists by the 2-transitivity of �+(�)). Then we label the image of (L1; ‘),
‘ ∈ {1; 2}, by (Li; ‘). This labeling is independent of the choice of �i by the sharp
2-transitivity of �+(�). Now with every point x opposite p, we can associate a unique
7-tuple 7(x):=(i1; i2; : : : ; i7) ∈ {0; 1; 2}7 de/ned by projLj x = (Lj; ij), 16j67. Now let
y be any point opposite p collinear with x. Without loss of generality we may assume
that the line xy is not opposite L1. Hence 7(y) is of the form (i1; j2; j3; : : : ; j7). Consider
the even projectivity �‘:=[L2; xy; L‘], 36‘67. Clearly it maps (L2; i2) to (L‘; i‘). We
now claim that it maps (L2; j2) to (L‘; i‘ + j2 − i2). First, remark that every even
projectivity from L‘ to L2 which maps p to p and (L‘; 0) to (L2; 0) maps (L‘; 1) to
(L2; 1). Now let � be any projectivity from L2 to L‘ mapping p to p and (L2; 0) to
(L‘; 1). Suppose � maps (L2; 1) to (L‘; 0). Then we may compose � with an even
projectivity �′ from L‘ to L2, where �′ /xes p and maps (L‘; k) to (L2; k), k = 0; 1; 2,
and we obtain an even projectivity ��′ from L2 onto itself /xing p and (L2; 2) and
swapping (L2; 0) with (L2; 1). This contradicts the sharp 2-transitivity of �+(�). Hence
� maps (L2; 1) to (L‘; 2) and (L2; 2) to (L‘; 0). Similarly, every even projectivity from
L2 to L‘ mapping p to p and (L2; 0) to (L‘; 2), maps (L2; 1) to (L‘; 0) and (L2; 2) to
(L‘; 1). Consequently, we have shown that the even projectivities from L2 to L‘ /xing
p are of the form (L2; k) 	→ (L‘; k + �), with � ∈ {0; 1; 2} (modulo 3). Our claim now
follows easily. Putting �= j2 − i2, we now have that 7(y) = (i1; i2 + �; i3 + �; : : : ; i7 + �).
Since � appears 6 times, we deduce that the sum of all entries of 7(y) is congruent
modulo 3 to the sum of all entries of 7(x). We can draw two conclusion out of this.
First. With the usual subtraction, we have that 7(x) − 7(y) contains a unique zero

entry and either six 1’s or six 2’s when x and y are distinct collinear points opposite
p. The zero entry is at position i if and only if xy is not opposite Li, i ∈ {1; 2; : : : ; 7}.
Second. Since we can reach every point opposite p by a sequence of collinear points

(because �{p} is connected, see [2]), we have exactly 36 7-tuples which are actually
equal to 7(z), for some point z of � opposite p. Since there are 34 · 63 points in �
opposite p, this means that on the average, every admissible 7-tuple appears as 7(x)
for 24 points x (an admissible 7-tuple is one which is equal to 7(u), for some point u
opposite p).

Now we consider any admissible 7-tuple, and without loss of generality we may take
7(x0)= (0; 0; : : : ; 0). Let x1 be any point opposite p collinear with x0 and such that the
line x0x1 is not opposite L1 (there are 2 choices for x1). Without loss of generality
we may assume that 7(x1) = (0; 1; 1; : : : ; 1). Now we consider any point x2 opposite
p, collinear with x1 and not on the line x0x1 (/xing x1, there are 12 choices for x2;
hence in total we have 24 choices). Without loss of generality, we may assume that
x1x2 is not opposite L7. Then, since 7(x1) − 7(x2) contains either six 1’s or six 2’s
(and the zero entry appears at the last position because projL7

x1 = projL7
x2) we have

two possibilities.

1. 7(x2) = (1; 2; 2; 2; 2; 2; 1). In this case there is a unique point x3 collinear with x2,
opposite p, such that x2x3 is not opposite L1, and with 7(x3) = (1; 1; 1; 1; 1; 1; 0). It
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is now easily seen that a point x4 opposite p and collinear with x3 exists such that
7(x4) = 7(x0).

2. 7(x2)=(2; 0; 0; 0; 0; 0; 1). In this case we can take for x3 the unique point opposite p,
collinear with x2, such that x2x3 is not opposite L1, and with 7(x3)=(2; 2; 2; 2; 2; 2; 0).
Also in this case, there is now a point x4 collinear with x3 opposite p with 7(x4)=
7(x0).

Hence, each of the 24 choices for x2 gives rise to a point x4 at distance 7 from x0x1

with 7(x4) = 7(x0). If two such points coincide, then there unique paths to x0x1 must
coincide, a contradiction (they are all diRerent by construction). Hence, we have a
set of 25 points (all points x4 and in addition the point x0) giving rise to the same
prechosen 7-tuple. Hence, the average of points x with 7(x) prechosen must be at least
25, a contradiction to our previous paragraph.

Hence � cannot exist.

5.2. The case (n; s; t) = (8; 6; 3)

Let � be a generalized octagon of order (6; 3) with �+(�) sharply 2-transitive. Let
p be any point of �, and let x0 be a point of � opposite p. As in the previous case,
we can associate a 4-tuple (0; 0; 0; 0) to x0 by taking an order (L1; L2; L3; L4) of the
lines through p, and by labeling the point projLi x0 as (Li; 0mod 6), 16i64 (and we
will omit ‘mod 6’ again in the sequel). We now choose a point on L1 distinct from p
and from (L1; 0) and label it (L1; 1). There is a unique element � of �+(�) mapping
L1 to itself, /xing p and mapping (L1; 0) to (L1; 1). We de/ne (L1; j)� = (L1; j + 1)
inductively, for all j (modulo 6). As before, this induces a unique labeling on the lines
Li, i = 2; 3; 4, and we can associate a 4-tuple 4(x) with every point x opposite p, in
exactly the same way as before. One also shows similarly that the sum of the labels
is congruent 3 modulo 6, and that for collinear points x and y, the 4-tuples 4(x) and
4(y) have the same entry at a certain position, and the entries in the other positions
have a constant diRerence.

It is now a little elementary exercise to show that, if (a; b; c; d) is an admissible
4-tuple (as before, this means that there exists a point x opposite p with 4(x) =
(a; b; c; d)), then

(c − a; d− b)∈ {(0; 0); (2; 4); (4; 2); (3; 3); (1; 5); (5; 1); (0; 3); (2; 1); (4; 5);

(3; 0); (1; 2); (5; 4)}= : A:

For (i; j) ∈ A, we put S(i; j) = {x ∈ �8(p) | 4(x) = (a; b; a+ i; b+ j); for some a; b}.
Suppose now two points x and y are collinear in �{L3 ;L4}. Then xy is opposite both L3

and L4, hence we may assume it is not opposite L1. So, 4(x) = 4(y) + (0; �; �; �), and
we see that x and y belong to the same set S(i; j) for some suitable (i; j). This means
that each S(i; j) is the union of connected components of �{L3 ;L4}, and hence there
are at least 12 connected components. Now we set S1 = S(0; 0) ∪S(2; 4) ∪S(4; 2),
S2 =S(3; 3)∪S(1; 5)∪S(5; 1), S3 =S(0; 3)∪S(2; 1)∪S(4; 5) and S4 =S(3; 0)∪
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S(1; 2)∪S(5; 4). It is easy to check that an arbitrary member of S1 (respectively S2,
S3, S4) is collinear (in �{p}) with exactly 14 members of S1 (respectively S2, S3,
S4), with no members of S2 (respectively S1, S4, S3), with exactly three members
of both S3 and S4 (respectively S3 and S4, S1 and S2, S1, S2). Indeed, let us
check this for instance for a point x with 4(x) = (0; 0; 0; 0) ∈ S1. The neighbors of x
have corresponding 4-tuple (and ‘ ’ means ‘gives rise to members of’)

(0; ‘; ‘; ‘); (‘; 0; ‘; ‘)  S(0; 0)⊆S1; ‘ ∈ {1; 2; 3; 4; 5};
(2; 2; 0; 2); (4; 4; 4; 0)  S(2; 4)⊆S1;
(2; 2; 2; 0); (4; 4; 0; 4)  S(4; 2)⊆S1;

(1; 1; 0; 1); (3; 3; 0; 3); (5; 5; 0; 5)  S3;
(1; 1; 1; 0); (3; 3; 3; 0); (5; 5; 5; 0)  S4:

The condensed form of the adjacency matrix with corresponding partition is thus



14 0 3 3
0 14 3 3
3 3 14 0
3 3 0 14




and this has eigenvalues 20 (multiplicity 1), 14 (multiplicity 2) and 8 (multiplicity 1).
As before, by interlacing, we must have 146s− 1 +

√
2st = 11, a contradiction.

5.3. The case (n; s; t) = (6; 3; 3)

Let � be a generalized hexagon of order (3; 3) such that �+(�) is sharply 2-transitive.
Let p be a point of �. Exactly in the same way as in the two previous subsections,
we can associate a 4-tuple 4(x) with every point x opposite p, and such a 4-tuple
(i1; i2; i3; i4) consists of 4 integers i‘ modulo 3 which sum up to 0 modulo 3. Adja-
cent to x in �{p} are 8 points with corresponding 4-tuples (i1; i2 + �; i3 + �; i4 + �),
(i1 + �; i2; i3 + �; i4 + �); : : : ; (: : : ; i3 + �; i4). We observe that no two of these 8 quadruples
share in exactly one position an element. Hence, since �{p} is connected (see [2]),
we have 27 admissible quadruples, and if we consider the graph G with vertex set the
admissible quadruples, and we call two quadruples adjacent if they share in exactly
one position an element, then we obtain a (strongly regular) graph without triangles.
It can also be easily seen that there are no two quadruples diRering in exactly one
position.

Since there are 27 admissible quadruples, and 35 points opposite p, there must be
at least one admissible quadruple equal to 4(x), for at least 9 points x opposite p.
Now suppose, without loss of generality, that (0; 0; 0; 0) is such a quadruple, and let
4(x)=4(y)= (0; 0; 0; 0) for two distinct points x and y. We now determine the mutual
position of x and y by ruling out some possibilities.

Suppose that |�3(p) ∩ �3(x) ∩ �3(y)| = 0. Let M be any line through y and put
N = projx M . The point projN y is opposite p since otherwise it would coincide with
projN p, and the latter is opposite p (because, if U = projp N and u = projU N , we
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have by assumption that proju y �= proju x). Similarly, the point projM x is opposite
p. By Remark 2, the sets �2(p) ∩ �2(x) and �2(p) ∩ �2(projM x) have exactly two
elements in common. But since y and projM x are collinear, the sets �2(p)∩�2(y) and
�2(p) ∩ �2(projM x) have exactly one element in common, a contradiction (because
�2(p) ∩ �2(x) = �2(p) ∩ �2(y) by assumption).

Suppose now �3(p)∩�3(x)∩�3(y)={L}. Suppose, moreover, that projL x �= projL y.
Then 	(x; y) = 6 and considering a line M �= projy L through y, we can copy the
argument in the previous paragraph to reach a contradiction.

Similarly, we can rule out the case �3(p)∩�3(x)∩�3(y)={L; L′}, L �= L′ (projL x �=
projL y is automatic since x �= y). Note that an analogous argument shows that |�3(p)∩
�3(x) ∩ �3(y)| �= 3.

Suppose now |�3(p)∩�3(x)∩�3(y)|=4. There is at most one further point z opposite
p with |�3(p)∩�3(x)∩�3(z)|=4. Since there are at least nine points u with 4(u)=4(x),
there is at least one point w opposite p with 4(w)=4(x) and �3(p)∩�3(x)∩�3(w)={L},
for some line L, and projL x = projL w. But then �3(p) ∩ �3(y) ∩ �3(w) = {L} with
projL y �= projL w. So 4(w) �= 4(y), a contradiction.

Hence we have shown that �3(p) ∩ �3(x) ∩ �3(y) consists of a unique line L with
projL x=projL y. It is clear that each such line L gives rise to at most two points y, y �=
x, with 4(y)=4(x), because on each line K through projL x, K �= L, K not through x, the
point y must be equal to the projection of every element of (�2(p)∩�4(x))\{projL p}.
Since there are four lines in �3(p) ∩ �3(x), there are at most nine elements y with
4(y) = 4(x). Our assumption now implies that there are exactly nine such elements.
We can do the same with a second admissible quadruple, and continuing this way, we
/nally have that every admissible quadruple arises from exactly nine points opposite
p. We can show that such a set of nine points is contained in a subhexagon of order
(1; 3), but we will not need this fact.

Now put �3(p)∩�3(x)={L0; L1; L2; L3}. Let u be a point on L0 distinct from projL0
x.

Let (u; uwi; wi; wiui; Li), i = 1; 2 be path from u to Li. Then w1 �= w2 (otherwise 4(w1)
and 4(x) diRer in at most one position, a contradiction). Since �(�) = �+(�), the
projectivity [L2; L0; L1; L2] is the identity. Hence 	(u1; u2) = 4, and there is a path
(u1; u1u12; u12; u12u2; u2) from U1 to U2. By an argument in the previous paragraph, we
know that on the line uw2, there is a unique point v with 4(v) = 4(w1). Hence 4(w1)
and 4(w2) diRer in exactly three positions (because if they were equal, then they would
have to be equal to 4(x), a contradiction). Similarly, 4(w1) (respectively 4(w2)) and
4(w12) diRer in exactly three positions. But this induces a triangle in the graph G (see
above), a contradiction.

This completes the proof of our Main Result.
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