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We present several new constructions for small generalized polygons using small
projective planes together with a conic or a unital, using other small polygons, and
using certain graphs such as the Coxeter graph and the Pappus graph. We also give a
new construction of the tilde geometry using the Petersen graph. � 2001 Academic Press
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1. INTRODUCTION

A generalized n-gon 1 of order (s, t) is a rank 2 point-line geometry
whose incidence graph has diameter n and girth 2n, each vertex corre-
sponding to a point has valency t+1 and each vertex corresponding to a
line has valency s+1. These objects were introduced by Tits [5], who con-
structed the main examples. If n=6 or n=8, then all known examples arise
from Chevalley groups as described by Tits (see, e.g., [6, or 7]). Although
these examples are strongly group-related, there exist simple geometric con-
structions for large classes of them. In particular, all ``classical'' finite
generalized quadrangles (classical means that the polygons arise naturally
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from Chevalley groups) ``are'' quadrics, Hermitian varieties, or the geometries
of linear line complexes in projective 3-space. Similarly, the hexagons (of order
(q, q)) related to Dickson's group G2 (q) are constructed using non-singular
quadrics in projective 6-space and linear line-complexes. In even characteristic,
one deduces a construction in projective 5-space (in fact embedded in a
symplectic geometry). For more details, we refer to the monograph [7].

Due to sporadic isomorphisms of small simple groups, some small poly-
gons have alternative constructions. Some of these are rather geometric,
others are rather combinatorial. The following example is probably the
proto-type of this phenomenon. It is well-known that there is a unique
quadrangle of order (2, 2). It may be constructed combinatorially as follows.
The set of points is the set of pairs of a given 6-set. The lines are the triples
of pairs partitioning the 6-set. Incidence is the natural one. Clearly, the
symmetric group S6 (which is isomorphic to the symplectic group PSp4 (2))
acts as an automorphism group on the quadrangle. A geometric construc-
tion runs as follows: the points are the points off a given hyperoval in
PG(2, 4) and the lines are the secant lines (with respect to the hyperoval).
Note that the stabilizer of the hyperoval inside P1L3 (4) is precisely the
symmetric group S6 . The following example illustrates the isomorphism
G2 (2)$$PSU3 (3). Let the point set of a geometry 1 be the set of points
off a given Hermitian curve in PG(2, 9), and let the line set be the polar
triangles with respect to the unital. Incidence is the natural one. Then 1 is
the dual of the generalized hexagon H(2) of order (2, 2) embedded in
PG(5, 2). Recently, the second author found another construction of H(2)
(see [8]), based on a more complicated description due to the first author
in [3]. We will give that construction below.

The aim of the present paper is to give more elementary constructions of
small generalized polygons. In particular, we will construct the generalized
hexagon H(2) in PG(2, 7), out of the Pappus configuration, and using the
unique generalized quadrangle Q(4, 2) of order (2, 4). We will construct
the generalized quadrangle W(2) of order (2, 2) out of a generalized digon
of order (2, 2) (which is straightforward), and also in PG(2, 5) and
PG(2, 9). We will construct Q(2, 4) in PG(2, 9), and also out of the
Pappus configuration. Further, we will construct the famous triple cover of
W(2) (the so-called tilde geometry) out of the Petersen graph.

2. CONSTRUCTIONS USING SMALL PROJECTIVE PLANES
TOGETHER WITH A CONIC OR A HERMITIAN UNITAL

In the following constructions Inat is the natural incidence relation. Here
a point p and a line l are naturally incident if, considered as set-theoretic
objects, p # l, l # p, p�l, or l�p.
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Construction 1. Let O be a conic in PG(2, 5). Let P be the set of
exterior points of PG(2, 5) with respect to O and let L be the set of exterior
lines together with the polar triangles consisting of exterior points with
respect to O. Then the triple (P, L, Inat) is a generalized quadrangle of
order (2, 2).

Construction 2. Let O be a conic in PG(2, 5). Let P be the set of inte-
rior points with respect to O together with the polar triangles consisting of
secant lines of O, and let L be the set of secant lines of O. Then the triple
(P, L, Inat) is a generalized quadrangle of order (2, 2).

Construction 3. Let O be a conic in PG(2, 7). Let X be the set of polar
triangles consisting of interior points, and let E be the set of non-disjoint
pairs of elements of X. An element of E, that is, a pair of triples of points,
can be identified with the unique interior point these two triples intersect
in. Thus, E can be identified with the set of interior points with respect to
O, and (X, E) is the incidence graph of PG(2, 2). The derived group
G$$PSL2 (7) of the automorphisms group G$PGL2 (7) of O in PG(2, 7)
has two orbits on X. These correspond exactly to the sets of points and
lines of PG(2, 2), respectively.

Construction 4. Let O be a conic in PG(2, 7). Let P be the set of points
off O together with the polar triangles consisting of interior points with
respect to O, and let L be the set of interior points with respect to O

together with the polar triangles containing exterior points with respect
to O. Then (P, L, Inat) is a generalized hexagon of order (2, 2) isomorphic
to H(2).

Construction 5. Let O be a conic in PG(2, 9). Let X be the set of polar
triangles consisting of exterior points, and let E be the set of non-disjoint
pairs of elements of X. As in Construction 3, the set E can be identified
with the set of exterior points with respect to O. Then (X, E) is the
incidence graph of W(2). The derived group G$$PSL2 (9) of the linear
automorphisms group G$PGL2 (9) of O in PG(2, 9) has two orbits on X.
These correspond exactly to the sets of points and lines of W(2), respec-
tively.

Construction 6. Let U be a Hermitian unital in PG(2, 9), and let L be
a tangent line of U. Let P be the set of polar triangles with respect to U

with a vertex on L. Let L be the set of points of L not on U, together with
the polar triangles not having a vertex on L. If incidence I is inverse con-
tainment or being non-disjoint, then (P, L, I) is a generalized quadrangle
of order (2, 4).
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Finally, we list the two well-known constructions mentioned in the intro-
duction; the second one is due to Tits [5].

Construction 7. Let H be a hyperoval in PG(2, 4). Let P be the set of
points off H, let L be the set of bisecant lines with respect to H, and let
I be the incidence relation of PG(2, 4). Then (P, L, I) is a generalized
quadrangle of order (2, 2).

Construction 8. Let U be a Hermitian unital in PG(2, 9). Let P be the
set of points off U, and let L be the set of polar triangles with respect to
U. Then (P, L, Inat) is a generalized hexagon of order (2, 2) isomorphic to
the dual of H(2).

3. CONSTRUCTIONS USING SMALL GENERALIZED POLYGONS

Not in the spirit of the title of this section, we start off with a construc-
tion in a projective (or rather affine) space.

Construction 9. Let PG(3, 3) be the 3-dimensional projective space
over the field GF(3) of four elements. Let _ be a symplectic polarity in
PG(3, 3) and let p be an arbitrary but fixed point of PG(3, 3). Let
[L, L$, M, M$] be the set of lines in p_ incident with p. For a point x not
in p_ and a line X # [L, L$, M, M$], we denote by xX the line in PG(3, 3)
through x and the intersection of x_ with X. Further, an affine object is an
object not in p_. Let P be the set of affine points of PG(3, 3), together with
all affine symplectic lines (a symplectic line is a line X with X_=X). Let L

be the set of all affine lines of PG(3, 3) through p, together with, for each
affine point x, the triples [x, xL, xL$] and [x, xM, xM$]. If I is the
natural incidence, or incidence in PG(3, 3), then (P, L, I) is a generalized
hexagon of order (2, 2) isomorphic to H(2).

A direct translation into the language of generalized quadrangles of the
previous construction gives us the following construction.

Construction 10. Let Q(5, 2)=(P$, L$, I$) be a generalized quadrangle
of order (2, 4). Let S be a normal spread of Q(5, 2), i.e., a partition of P$
into (disjoint) lines such that, if L, L$ # S, then the unique line of Q(5, 2)
meeting every line that meets both L and L$ is also contained in S. Let
[S, U, U$, V, V$] be a partition of L into (disjoint) spreads of Q(5, 2)
(note that only S is normal). Let P be the union of P$ and L$"S. Let L

be the union of S and the set of triples [x, u, u$] and [x, v, v$], with
x # P$, (u, u$, v, v$) # U_U$_V_V$ and xI$u, u$, v, v$. With the natural
incidence relation Inat , the triple (P, L, Inat) is a generalized hexagon of
order (2, 2) isomorphic to H(2).
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Finally, we mention two known constructions. The first is immediate, the
second is contained in [8].

Construction 11. Let 1 $=(P$, L$, I$) be a generalized digon of order
(2, 2). Let P be the set of points, lines and flags of 1 $ and let L be the set
of triples [ p, L, [ p, L]], where p # P$ and L # L$, together with the triples
of flags [F, F $, F"] such that F _ F $ _ F"=P$ _ L$. Then (P, L, Inat) is
a generalized quadrangle of order (2, 2).

Construction 12. Let 1 $=(P$, L$, I$) be a projective plane (=gener-
alized triangle) of order (2, 2). Let P be the set of points, lines, flags and
antiflags of 1 $, let L be the set of triples [ p, L, [ p, L]], where p # P$,
L # L$ and pI$L, together with the triples [F, A, A$], where F=[ p, L] is
a flag (with p # P$ and L # L$) and A, A$ are antiflags such that F _ A _ A$
is the set of points and lines of 1 $ incident in 1 $ with L and p, respectively.
Then (P, L, Inat) is a generalized hexagon of order (2, 2) isomorphic to
H(2).

4. CONSTRUCTIONS USING GRAPHS

In this section, we use four different graphs to construct small polygons.
The graphs are the Petersen graph, the Pappus graph, the Coxeter graph,
and the Heawood graph. We briefly recall how these graphs are con-
structed.

V The Petersen Graph. Consider a general Desargues configuration.
The vertices of the Petersen graph are the points of this configuration, and
the edges are the pairs of points not on a line of the Desargues configura-
tion. So, there are 10 vertices and 15 edges. Each edge of the Petersen
graph has two opposite edges, i.e., two edges at maximal distance in the
edge graph. These two edges are also mutually at maximal distance. The set
of three edges thus obtained forms a spread in the following sense: each
edge not of the spread is adjacent to a unique edge of the spread (this is
the usual notion of a spread in a generalized hexagon; in [7] this is called
a distance-3-spread ). We have pictured the Petersen graph and a spread
(thick edges) in Fig. 1.

The Petersen graph can also be constructed as follows. The vertices are
the transpositions of the symmetric group S5 . Two vertices are adjacent if
the corresponding transpositions commute. This way, edges can be iden-
tified with the involutions of the unique alternating subgroup A5 . Now a
spread is just a set of non-trivial elements of any subgroup of A5

isomorphic to A4 .
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FIGURE 1

V The Pappus Graph. Consider a Pappus configuration (this is a biaffine
plane of order 3). The vertices of the Pappus graph are the points and lines of
this configuration and adjacency is incidence. So, there are 18 vertices and 27
edges. Here, too, each edge has two opposites in the above sense (in the edge
graph, opposite edges are vertices at distance 4 from each other). And again,
these two opposite edges are mutually opposite. Hence we have a set of three
edges which can be called a spread in the following sense: each vertex not on one
of these three edges is adjacent to a (unique) vertex of a unique edge of the
spread (this is the usual definition of a spread in a generalized octagon; in [7]
this is called a distance-4-spread). We have pictured the Pappus graph together
with a spread (thick edges) in Fig. 2.

Figure 3 is the edge graph of the Pappus graph: it arises from the Pappus
graph (Fig. 2) by taking as vertices the midpoints of all edges and joining
two such vertices if the corresponding edges are adjacent (share a vertex)
in the Pappus graph. The labeling refers to the proof of Lemma 1 below.
Figure 3 also shows three spreads (the ``square, circle, and triangle
spreads''), which, together with their images under rotation through 120
and 240 degrees around the centre of the diagram, are a partition of the
edges into 9 spreads.

Also, each edge e of the Pappus graph is at distance 3 in the edge graph
from exactly twelve other edges. Eight amongst them share a vertex with
some edge opposite e; the other four are contained in a unique ordinary
hexagon which also includes e, and will be called half opposite e. For
instance, in Figs. 2 and 3, half opposite a1 are b8, c9, d7, and e6.
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FIGURE 2

FIGURE 3
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We will show below (see Lemma 2) that, up to left and right composi-
tions with isomorphisms of the Pappus graph, and up to taking inverses,
there is a unique permutation of the edges of the Pappus graph preserving
opposition (or, equivalently, preserving all spreads), and mapping half
opposite pairs of edges to adjacent pairs of edges. We call such a permuta-
tion a hexagon permutation.

There is one other remarkable property of the Pappus graph. For every
pair of half opposite edges, there exists a unique edge half opposite both.
Such a set of three mutually half opposite edges will be called a half spread.
For instance, the edges a1, d7, e6 (see Figs. 2 and 3) form a half spread. To
complete terminology, we will call a set of three mutually adjacent edges a
clique of edges.

V The Coxeter Graph. Consider PG(2, 2), the projective plane of
order 2. The vertices of the Coxeter graph are the antiflags of PG(2, 2).
Two antiflags [ p, L], [ p$, L$] (with p, p$ points and L, L$ lines of
PG(2, 2)) form an edge precisely when p{ p$, L{L$ and the intersection
point of L and L$ is incident with the line joining p and p$. We have
pictured the Coxeter graph in Fig. 4.

For every two vertices at distance 4 (which is the maximal distance),
there are exactly two vertices at distance 4 from both of these, and these
two vertices are also mutually at maximal distance. Hence we obtain a set
of four vertices mutually at maximal distance. We call any such set a

FIGURE 4
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FIGURE 5

variety of the Coxeter graph. Note that a variety corresponds to a unique
point or line of PG(2, 2) (because it is easily checked that vertices at maxi-
mal distance correspond to antiflags which share a point or a line; a variety
then corresponds to a set of four antiflags sharing the same point or line).
The black vertices and the doubly circled vertices in Fig. 5 are two
varieties.

Consider an arbitrary vertex a of the Coxeter graph. There are six
vertices at maximal distance from a (these are the solid black circles in
Fig. 4). Now let [a, b] be an edge of the Coxeter graph. There are exactly
two vertices c, d at distance 4 from both a and b and [c, d] happens to
be an edge (see Fig. 5). We call [a, b] and [c, d] opposite edges. We
have also the following property. There are exactly two vertices at distance
2 from both a and c (respectively a and d, or b and c, or b and d), for
example e is such a vertex. With the eight vertices thus obtained one can
form two uniquely determined varieties (see, again, Fig. 5). We call these
two varieties in the middle of [a, b] and [c, d]. Note that these two
varieties correspond to a unique incident point-line pair of PG(2, 2) (hence
a flag).

V The Heawood Graph. This is the incidence graph of PG(2, 2).
Here, too, we call two vertices at maximal distance opposite. Figure 6
pictures the Heawood graph and two opposite vertices (the solid black
circles).
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FIGURE 6

We start with some constructions of small generalized quadrangles.

Construction 13. Let G=(X, E) be the Petersen graph. Let P=E and
let L be the set of vertices union the set of spreads of G. Then (P, L, Inat)
is a generalized quadrangle of order (2, 2).

Construction 14. Let G=(X, E) be the Pappus graph. Let P=E and
let L be the set of spreads, half spreads and cliques. Then (P, L, Inat) is
a generalized quadrangle of order (2, 4).

We now continue with some constructions of H(2).

Construction 15. Let G=(X, E) be the Coxeter graph. Let P be the set
of vertices, varieties and pairs of opposite edges of G. Let L be the set of
triples [a, b, [e, e$]], where a, b # X, e=[a, b] # E and e$ # E opposite e,
together with the triples [V, V$, [e, e$]], where e # E is opposite e$ # E and
V, V$ are the two varieties in the middle of e and e$. Then the triple
(P, L, Inat) is a generalized hexagon isomorphic to H(2).

The next construction is a direct translation of Construction 12.

Construction 16. Let G=(X, E) be the Heawood graph. Let P be the
set of vertices, edges and pairs of opposite vertices. Let L be the union of
E and the set of triples [e, [a, b], [a$, b$]], where e # E, [a, a$, b, b$] is the
set of vertices adjacent to a vertex of e and a and a$ are opposite b and b$,
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respectively. Then the triple (P, L, Inat) is a generalized hexagon of order
(2, 2) isomorphic to H(2).

Construction 17. Let G=(X, E) and G$=(X$, E$) be two copies of the
Pappus graph. We may abstractly identify E with E$ in such a way that
triples of opposite edges are identified with triples of opposite edges and
triples of adjacent edges are identified with triples of half opposite edges. We
denote the corresponding quotient set by E". Now put P=X _ X$ _ E".
Let L be the union of the set E" and the set of triples [e, e$, e"], where
e, e$, e" # E" correspond to a spread in G (and hence also in G$). Then
the triple (P, L, Inat) is a generalized hexagon of order (2, 2) isomorphic
to H(2).

5. CONSTRUCTION OF THE TILDE GEOMETRY USING
THE PETERSEN GRAPH

First we mention a property of the Petersen graph G=(X, E). Let v be
any vertex and let e1 , e$1, e"1 be the edges containing v. Let [e1 , e2 , e3],
[e$1, e$2 , e$3], and [e"1, e"2, e"3 ] be the three spreads containing these edges.
Then the graph induced by the edges e2 , e3 , e$2 , e$3 , e"2 , e"3 is an ordinary
hexagon covering the vertices at distance 2 from v in G. We can choose
e2 , e$2 , e"2 mutually not adjacent. This defines a cyclic order on these three
spreads. By connectivity, we can put a cyclic order on any spread. The
question arises whether this is well-defined. Therefore, we look at this
ordering in a different way.

Let S1 be any 5-subset of E inducing a partition of X. We fix S1 for the
rest of this section (the triply bonded edges in Fig. 7). Then it is easy to see
that E"S1 is the union of the sets of edges of two ordinary pentagons. We
denote the sets of edges of these pentagons by S2 (in Fig. 7 the simply laced
pentagon) and S3 (in Fig. 7 the doubly bonded edges). Every spread of G
has an element in each of S1 , S2 , S3 , and hence, if we choose an arbitrary
but fixed cyclic ordering of the set [S1 , S2 , S3], this induces a cyclic order-
ing on any spread. It is readily checked that this cyclic ordering arises in
the way described in the first paragraph of this section. We call such an
ordering a tilde ordering of the spreads. Clearly, every cyclic ordering
satisfying the property outlined in the previous paragraph arises in the way
just explained. In the following we will be working with the cyclic ordering
S1 � S2 � S3 � S1 .

With respect to the second construction of the Petersen graph (using the
symmetric group S5), a tilde ordering is given by any ordering of any
spread, and then taking conjugates with elements of A5 . An element of
S5 "A5 reverses the tilde ordering.
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FIGURE 7

Construction 18. Let Gi=(Xi , Ei), i=1, 2, 3 be three copies of the
Petersen graph and let .ij : Gi � Gj , i, j # [1, 2, 3], be nine graph iso-
morphisms (identifications) with .ij .jk=.ik (and hence .ii=id), for all
i, j, k # [1, 2, 3]. Consider a fixed tilde ordering on the spreads of G1 . Let
P=E1 _ E2 _ E3 . Let L=X1 _ X2 _ X3 _ Y, with Y the set of triples
[e1 , e2 , e3], where ei # Ei (i=1, 2, 3), [e1 , e.21

2 , e.31
3 ] is a spread of G1 , and

(e1 , e.21
2 , e.31

3 ) corresponds to the chosen tilde ordering. Then 1=
(P, L, Inat) is a geometry of order (2, 2) isomorphic to the tilde geometry.

6. PROOFS

In this section, we outline the proofs that the constructions above work.
To this end, we use the following lemma, which belongs to folklore, but
which we will proof for completeness' sake.

Lemma 1. Let 1=(P, L, I) be a rank 2 point-line geometry, such that
each line of 1 is incident with s+1 points, and each point of 1 is incident
with t+1 lines, for some ( finite) constants s, t�1. Suppose the number of
points of 1 is |P|=(1+s)(1+st+(st)2+ } } } +(st)n), for some natural
number n�1. Suppose also that, given any line L # L, each point of 1 lies
at distance �2n (measured in the incidence graph) from some point incident
with L. Then 1 is a generalized (2n+2)-gon.
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Proof. Let L be any line of 1, and suppose 1�i�n. Then there are at
most (st) i points x of 1 at distance 2i from a given point p on L for which
there exists a minimal path from p to x not containing L as second element.
Varying i and p we see that there are at most (1+s)(1+st+(st)2+ } } } +
(st)n) points at distance �2n from some point on L. From our assumption
that every point must be obtained in that way, we easily deduce that all
points we counted so far are distinct (in other words, we did not count the
same point twice). Hence there are no ordinary k-gons, with k�2n, in 1
containing the line L. Since L was arbitrary, there are no ordinary k-gons
in 1, with k�2n, at all. Now, consider one of the (st)n points x at distance
2n from a certain point p of the line L. Then x is at distance 2n+2 from
any other point of L (indeed, otherwise we counted x twice in the previous
counting, a contradiction). Hence the diameter of the incidence graph is
equal to 2n+2 (noting that, by counting the number of lines, we may
dualize all arguments). Now, consider two points y, y$ collinear with x and
such that x, y, y$ are not collinear (since t�1, such points can be found).
If both y and y$ are at distance 2n&2 from p, then we counted x twice, a
contradiction. None of them can be at distance 2n from p since otherwise
(say y is at distance 2n from p) the point p is at distance 2n from two dis-
tinct point of the line xy, a contradiction. Hence we may assume that y
is at distance 2n+2 from p (and consequently at distance 2n from some
point q{ p on L), and we obtain an ordinary (2n+2)-gon containing
p, q, L, x, y. Hence the girth is 2n+2 and the lemma is proved. K

Since all generalized quadrangles that we construct are uniquely deter-
mined by their order, it suffices to show that the geometries are generalized
quadrangles. Moreover, since it is readily checked that each time we have
the right number of points and lines, it suffices, by the above lemma for
n=1, to show that for each line L, we obtain the full set of points by
considering all points collinear to at least one point incident with L. In all
constructions, this is an easy exercise.

Note that Construction 1 is equivalent to Construction 2 by applying the
polarity related to the conic.

That Construction 3 works follows directly form the definition of the
Heawood graph and Section 5 of Coxeter [2].

Concerning the constructions of the generalized hexagons H(2) and its
dual, it is, similar to the case of quadrangles, easy to show that the
geometries under consideration are generalized hexagons of order (2, 2).
One again counts the number of points and shows that, for every line L,
the full point set is obtained by considering the set of points at distance �4
from at least one point incident with L. Then apply Lemma 1 with n=2.
Such an explicit proof related to Construction 8 is worked out in [7,
1.3.12]. Now, since there are essentially two different generalized hexagons
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of order (2, 2), one the dual of the other (see Tits [5, Appendix] or, for an
explicit proof, Cohen and Tits [1], we proceed to identify which of the two
hexagons we are dealing with in the different constructions.

It is clear that, by Construction 3, the incidence graph of PG(2, 2), or
equivalently, the Heawood graph, is a subgeometry of the generalized
hexagon 1 of Construction 4. Since the dual of H(2) does not admit such
a subgeometry (see for instance [7, 6.3.5]), 1 must be isomorphic to H(2).

Concerning Construction 9, it is easily seen that the set of affine lines
through p forms a spread of the generalized hexagon (indeed, every other
line has a point in common with a unique line of the spread). Since the
dual of H(2) does not admit spreads (by Thas [4]), the hexagon in ques-
tion must be isomorphic to H(2).

Construction 10 is a direct translation of the previous construction into
the language of quadrangles. We only note that the affine points together
with the affine symplectic lines and the affine lines through p form the
quadrangle of order (2, 4).

In Construction 15, the geometry induced on the set of varieties is
exactly the incidence graph of PG(2, 2) (see the comments on the construc-
tion of the Coxeter graph). Hence we again have H(2).

In Construction 16 it is clear that the Heawood graph is a subgeometry
of the hexagon, hence, again, we have H(2). This also follows directly from
Construction 12.

The lines induced on the elements of E" of Construction 17 form a
spread of the hexagon, hence H(2) arises there (again by [4]).

The proof that Construction 17 works will be complete if we show the
following lemma.

Lemma 2. Let G=(X, E) be the Pappus graph. Then, up to left and right
compositions with isomorphisms of G, there exist exactly two hexagon
permutations { and {&1 (and, as the notation indicates, they can be chosen
inverse to each other). Hence, if G$=(X$, E$) is another copy of the Pappus
graph, then, up to automorphisms of G and G$, and up to a permutation of
[G, G$], there exists a unique bijection E � E$ preserving opposition and
mapping half opposite edges to adjacent ones.

Proof. Let G be the Pappus graph and label the vertices as indicated in
Fig. 2.

We will denote the edge corresponding to the vertices k, k # [1, 2, ..., 9]
and x, x # [a, b, ..., i] by xk. Further, we will call two edges at distance 3
from each other which are not half opposite, almost opposite, and we
will call edges at distance 2 from each other almost half opposite. We search
for a bijection { as stated in the lemma. Since the Pappus graph is
the incidence graph of the biaffine plane of order 3, it has a large
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automorphism group, and we may assume that { fixes the edges a1, f 3 and
h5. The eight edges half opposite f 3 and h5 are the eight edges almost half
opposite a1, and the four edges adjacent to f 3 and h5 are exactly the four
edges almost opposite a1. Hence { will map almost half opposite edges to
almost opposite edges. Now, consider the two half spreads of any edge half
opposite a1. One such half spread contains a1 and two edges half opposite
a1; the other half spread contains two edges almost opposite a1. The first
half spread is mapped under { to a clique of edges containing a1; the
second half spread must hence be mapped onto a clique of edges not con-
taining a1, but containing an edge adjacent to a1. It follows that the two
edges (of that half spread) almost opposite a1 are mapped onto two edges
amost half opposite a1. Hence almost opposite edges are mapped onto
almost half opposite ones. Hence adjacent edges are mapped onto half
opposite ones.

Therefore (i1){ # [b8, c9, d7, e6]. There is an automorphism of G fixing
1, a, g, i and interchanging the half spreads [a1, d7, e6] and [a1, b8, c9].
So, up to conjugation, we may assume that (i1){ # [d7, e6]. We will show
that { is determined by the image of i1. The arguments are similar for the
cases (i1){=d7 and (i1){=e6. To fix the ideas, we set (i1){=e6. Hence
(g1){=d7. It suffices to show that the images of the edges opposite i1 and
of those adjacent to i1 are determined (because then we let i1 play the role
of a1 and we can continue). The two edges opposite i1 are b3 and d5. They
must be mapped onto edges opposite e6, and these are c4 and g8. But b3
is adjacent to f 3 (which is fixed), hence b3 must also be mapped onto an
edge half opposite f 3. Since g8 qualifies for this and c4 does not, we have
(b3){= g6 and (d5){=c4.

Since the edges containing the vertex 1 are mapped onto the half spread
[a1, d7, e6], and i1 is mapped onto e6, the edges containing the vertex i
will be mapped onto the half spread [b3, e6, h9]. But i6 is half opposite h5,
hence (i6){ must be adjacent to (h5){=h5. This implies (i6){=h9. We con-
clude that { is completely determined. In order to show existence, it suffices
to continue the construction, and we obtain that { acts as follows:

a1 [ a1, f 3 [ f 3, h5 [ h5,

a2 [ c9 [ a4 [ b8 [ a2, b2 [ d5 [ c4 [ e5 [ b2,

b3 [ g8 [ c3 [ i9 [ b3, d4 [ f 7 [ e2 [ f6 [ d4,

d7 [ i1 [ e6 [ g1 [ d7, g7 [ h8 [ i6 [ h9 [ g7.

We have depicted { in Fig. 8, using the graph as in Fig. 3, but deleting the
edges for clarity.
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FIGURE 8

It is clear that {&1 also satisfies the hypotheses, and that it is obtained
by assuming that i1 is mapped onto d7.

The lemma is proved. K

Now consider Construction 18. It is easy to check that, given a vertex
v # Xi , i # [1, 2, 3], the set of points of 1 at distance 8 in the incidence
graph of 1 is precisely [v.ij, v.ik], with [i, j, k]=[1, 2, 3]. It follows that
every automorphism of 1 preserves the set of orbits of the .ij on
X1 _ X2 _ X3 . Hence the pointwise stabilizer of this set of 10 orbits is a
normal subgroup of the full automorphism group of 1. This stabilizer is
clearly generated by the maps .12 , .23 , .31 , hence it is a group of order 3.
The quotient geometry Q under this group is now clearly isomorphic to
W(2), see Construction 13. We now claim that the type-preserving
automorphism group of 1 is the non-trivial threefold cover of the sym-
metric group S6 (and so 1 is isomorphic to the tilde geometry). Indeed, let
% be an automorphism of Q. Then we must lift % to 1 in order to obtain
an automorphism %� of 1. Now Q can be identified with the Petersen graph
G1 , together with the five spreads. If % preserves G1 , then there are two
possibilities: either % belongs to A5 (in this case we define x%� =x.i1%.1i, for
any vertex x # Xi , i=1, 2, 3; and this naturally extends to E1 , E2 , E3 and
to Y, because % preserves the tilde ordering), or % belongs to S5"A5 (and
then, for all x # Xi , i=1, 2, 3, we define x%� =x.i1%.1_(i), where _ fixes 1 and
interchanges 2 and 3; again this can be naturally extended to E1 , E2 , E3
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and to Y, the map _ entering the scene because % does not preserve the
tilde ordering). Since S5 is a maximal subgroup of the automorphism group
S6 of Q, we only need to show how one element % # S6 "S5 can be lifted to
1. Therefore consider the labeling of edges of Gi , i=1, 2, 3, as in Fig. 9.
The label ixj of an edge tells us that the edge belongs to Gi and also
belongs to a spread with cyclic ordering (ix1, ix2, ix3), where j denotes the
weight of the corresponding edge in Fig. 7 (this cyclic ordering coincides
with the one chosen in Section 5). Further, ixj=(kxj).ki, i, j, k # [1, 2, 3],
x # [a, b, c, d, e]. It follows that, for all x # [a, b, c, d, e], the triple [1xi,
2xj, 3xk] belongs to Y, for (i, j, k) # [(1, 2, 3), (2, 3, 1), (3, 1, 2)]. We
choose % to be the unique involution of Q that fixes the edges 1a1, 1b1,
1c3, 1d3 and 1e1. Figure 9 then shows exactly how %� acts on the point set
E1 _ E2 _ E3 of 1: the thick edges are fixed, edges of the same graph that
are interchanged have a double arrow between them, the rest of the involu-
tion is written in between the graphs by specifying which edges are inter-
changed. One can verify that this induces an automorphism of 1 (in other
words, %� preserves collinearity of points of 1). Note that there are three
choices to define %� : one that fixes 1a1 (as in Fig. 9), one that fixes 2a1, and

FIGURE 9
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one that fixes 3a1. Each of them is an involution, showing that we indeed
have a non-trivial triple cover of S6 .

This completes the proofs that all constructions work.
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