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Abstract

Let G be a group with an irreducible spherical (B,N)-pair of rank 2 where B
has a normal subgroup U with B = UT for T = BN N. Let ‘P be the generalized
n-gon associated to this (B,N)-pair and let W be the associated Weyl group. So
T stabilizes an ordinary n-gon in ‘3, and |[W| = 2n. We prove that, if either U is
nilpotent or G acts effectively on 3 and Z(U) # 1, then |W| = 2n with n = 3,4,6,8
or 12. If G acts effectively and n # 4, 6, then (up to duality) Z(U) consists of central
elations. Also, if n = 3 and U is nilpotent, then *J3 is a Moufang projective plane
and if, moreover, G acts effectively on 3, then it contains its little projective group.
Finally, we show that, if G' acts effectively on B, if Z(U) # 1, and if T satisfies a
certain strong transitivity assumption, then I3 is a Moufang n-gon with n = 3,4 or
6 and G contains its little projective group.

1 Introduction

For the purpose of this paper, a thick generalized polygon B (or thick generalized n-gon,
n > 3), or briefly a polygon (or n-gon), is a bipartite graph (the two corresponding classes
are called types) of diameter n and girth 2n (the girth of a graph is the length of a minimal
circuit) containing a proper circuit of length 2n + 2 (the latter is equivalent with saying
that all vertices have valency > 2, see [15]). If the last condition is not (necessarily)
satisfied, then the polygon is called weak. The vertices are called the elements of P. A
pair of elements {z,y} is called a flag if © and y are adjacent. The set of neighbors of an
element z is denoted by D;(z), and, more generally, the set of elements at distance ¢ from
x, 0 < i < n, is denoted by D;(z). The diameter of the edge graph of 8 is also equal to
n and two flags at distance n from each other are called opposite. Also two elements of
P at distance n from each other are called opposite. A circuit of length 2n in B is called
an apartment. Two opposite flags are contained in exactly one apartment. These, and
many more properties, can be found in [15]. A sequence (xg, 1, ..., x)) of elements of P
is called a simple path of length k, or a (simple) k-path, if x;_; is incident with z;, for all
ie{l,2,...k}, and if x; 1 # x;q, foralli € {1,2,...,k —1}.

Generalized polygons were introduced by Tits [11]. The standard examples arise from
irreducible spherical (B,N)-pairs of rank 2. For this paper, we will content ourselves with
a geometric definition of these.
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Therefore, let P be an n-gon, and let G be a group acting (not necessarily effectively)
on B such that each element of G acts as a type preserving graph automorphism. If G acts
transitively on the set of apartments of 3, and if the stabilizer in G of an apartment A acts
as the dihedral group of order 2n on A, then we say that G is a group with an irreducible
spherical (B,N)-pair of rank 2, or briefly, with a (B,N)-pair. If we fix an apartment A
and a flag f contained in A, then we call the stabilizer B in G of f a Borel subgroup of
G. Also, there exists a subgroup N of B stabilizing A such that BN N is normal in N
and the corresponding quotient W has order 2n and is isomorphic to a dihedral group.
The group W is called the Weyl group of G. The group N is not unique; in particular
one can take the full stabilizer of A in G. If P is a weak polygon, then we call G a weak
(B,N)-pair. Groups with a (B,N)-pair were introduced by Tits; see e.g. [13].

Let P be an n-gon. An elation g of P is an automorphism of B fixing D;(x;), 1 <i <
n — 1, for some simple path (z1,xs,...,2, 1) of P. The group of elations fixing D (z;),
1 < i < n—1, for the simple path (z1,xs,...,2, 1) acts freely on Di(xg) \ {z1}, for
every element xg € D;(x1) \ {x2}. If this action is transitive for all such z(, then we say
that the path (z1,z,...,2,-1) is a Moufang path. If all simple paths of length n — 2 are
Moufang, then we say that B is a Moufang polygon. If n is even, and if all simple paths
of length n — 2 starting with an element of fixed type are Moufang, then we say that B is
half Moufang. All Moufang polygons are classified by Tits and Weiss [14]. An elation is
called central if it fixes D;(x), for some element x, and for all positive ¢ < n/2 (in which
case x is called a center of the elation). The little projective group of a Moufang polygon is
the group generated by all elations. It is a group with a natural (B,N)-pair and it always
contains central elations. For the notions introduced in this paragraph, see [14] and [15].

Let G be a group with an irreducible spherical (B,N)-pair of rank 2, let B be the
corresponding polygon and let A be any apartment of . If for any element x of A, the
pointwise stabilizer in G of A acts transitively on the set of elements of D;(z) which are
not contained in A, then we call G highly transitive. It is equivalent to require this for
two adjacent elements x of A.

If an n-gon P admits a type preserving automorphism group G acting transitively on
the set of proper circuits of length 2n 42, and such that the stabilizer of such a circuit acts
as the dihedral group of order 2n + 2 on that circuit, then G is a group with a (B,N)-pair
(and corresponding n-gon ), and we call this (B,N)-pair strong. A group G with a strong
(B,N)-pair is automatically highly transitive.

Granted the classification of finite simple groups, all finite groups with an irreducible
spherical (B,N)-pair of rank 2 can be classified, see [1]. The finiteness condition can not be
dispensed with as is shown by the ‘free’ and ‘universal’ examples of Tits [12] and Tent [8].
Hence, one must have additional hypotheses in order to classify. Therefore, let us have a
look at some results in the finite case the proofs of which do not use the classification of
finite simple groups.

(i) A fundamental result of Feit and Higman [2] states that the Weyl group W of a
weak finite (B,N)-pair must have order |W| = 2n for n = 2,3,4,6,8 or 12. In fact,
this is a consequence of their theorem that thick finite generalized n-gons exist only
for n = 3,4,6 and 8. This result does not hold in the infinite case: for any n, there
are infinite groups with a (B,N)-pair whose Weyl group has order 2n (see [8, 12]).



(ii) Consider the following condition for a group G with a (B,N)-pair:

(*) there exists a normal nilpotent subgroup U of B such that B = UT, for
T=BNN.

Fong and Seitz [3] classified all finite irreducible spherical (B,N)-pairs of rank 2
satisfying (*). They showed that such groups are all of Lie type equipped with a
natural (B,N)-pair structure, and hence the corresponding polygon is known.

(iii) The finite n-gons with a strong (B,N)-pair, and the corresponding groups (acting
faithfully on the n-gon) are classified in [6, 10, 16]. However, in the infinite case,
strong (B,N)-pairs exist for each n > 3, see [8] (and so, in particular, there are
infinite generalized n-gons with a highly transitive group, for all n), and the con-
struction shows that a classification is out of reach.

So in the infinite case, possibly except for the second result above, one needs additional
hypotheses. In this paper, we will show in a purely geometrical way the following results,
which are respective infinite analogs of the finite theorems mentioned above. Before
stating these results, we introduce the following condition for a group G' with a (B,N)-
pair:

(**) there is a normal subgroup U of B such that B = UT, with T = BN N, and
Z(UR/R) # 1, where R is the kernel of the action of G on the corresponding

polygon ‘B.

Theorem 1. The Weyl group of the group G with an irreducible spherical (B,N)-pair
of rank 2 satisfying (**) must have order 2n with n = 3,4,6,8 or 12. If, moreover,
n € {3,8,12}, then the center of UR/R (with R defined as in (**)) consists of central
elations. In particular, if G is a group with an irreducible spherical (B,N)-pair of rank 2
satisfying (*) and corresponding n-gon B, then n € {3,4,6,8,12}.

Theorem 2. If G is a group with a (B,N)-pair satisfying (*) and with Weyl group W of
order 6, then the associated projective plane B is a Moufang plane and G/R contains its
little projective group, where R denotes the kernel of the action of G on ‘B.

Theorem 3. If G is a highly transitive group with an irreducible spherical (B,N)-pair
of rank 2 satisfying (**), then the associated polygon B is a Moufang polygon and G/R
contains the little projective group of P, where R is the kernel of the action of G on B.

2 A general lemma

2.1 Standing Hypotheses. Throughout, let G be a group with an irreducible spherical
(B,N)-pair of rank 2 and let 3 be the associated n-gon. Let A be some apartment in 3
and let {p,q} be a flag in A. Let B be the stabilizer of {p, ¢}, and let N < G be such
that it stabilizes A and such that T := BN N < B with W := B/T isomorphic to the
dihedral group of order 2n. Finally, let R be the kernel of the action of G on . Then
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G/R is a group with a (B,N)-pair and with corresponding polygon ‘B. The stabilizer of
{p,q} in G/Ris B/R. The group N/R stabilizes A and T/R = B/RNN/R < B/R, with
W = (B/R)/(T/R). If G satisfies (*) or (**), respectively, then so does G/R. Hence, in
order to show Theorems 1, 2 and 3, we may assume that R is trivial and hence that G
acts effectively (faithfully) on .

Since in this case, (*) implies (**), we assume throughout that U is a normal subgroup
of B satisfying B = UT with Z(U) # 1.

We observe that U acts transitively on the set of flags opposite {p,q}. Also, we will
use the following well known observation frequently:

2.2 Lemma Let G be a group acting on a set X, and let g and h be commuting elements
of G. If g fizes some x € X, then it also fizes h(x). O

Now, it is an immediate consequence of Lemma 2.2 and the transitivity of U on flags
opposite {p, ¢} that, if an element in Z(U) fixes an element in D;(p) for i < n, then it
fixes all elements in D;(p). This implies in particular that, if Z(U) fixes a path (xo, . .. xy),
then Z(U) fixes all elements in Dy(z1) U ... U Dy(zx—1) and acts semi-regularly (freely)
on Di(zo) and D (zg).

The following result uses a small modification of Lemma 5 of [17].

2.3 Lemma The group Z(U) fizes the set Dy(p) U Di(q) elementwise, for all k < n/2.
In particular, if n is odd, then for any flag {z,y} of B, there exists a non-trivial central
elation with two centers x and y.

Proof. Suppose not. Without loss of generality, let v € Z(U) be an element of the
center not fixing all of Dy(q) with £ < n/2 minimal, and hence not fixing any element
in Dg(q). Choose a simple path v = (p,q, 22, ...,x,) of length n, put ¢ = x; and let
U, denote the subgroup of U fixing v. Then U, acts transitively on D;(p) \ {¢} and on
Dy (zn) \ {zn-1}-

Now let v € U,. Since u and v commute, we conclude by Lemma 2.2 that u also fixes
v(7y). But since v does not fix z441, the sequence (x,,...Tg1, Tk, V(Tri1), ... v(Ty,)) is
a path. It is fixed by w and has length 2n — 2k > n. Now, the flag {v(xax), v(zors1)}
is opposite the flag {x,,x,_1}, and hence u fixes the unique apartment determined by
these two flags; this implies that u fixes the unique element y € Dz, \ {z,_1} of that
apartment. Thus, any element of U which fixes v fixes y. But U acts transitively on
Dy (x,) \ {zn-1}, a contradiction.

So, Z(U) fixes Dy(p) U Di(q) for all k& < n/2. For odd n, this implies immediately
that Z(U) consists of elations having two centers p and q. 0J

3 Proof of Theorem 1

In this section, we prove Theorem 1. So under the assumptions of our standing hypothe-
ses, we have to show that n € {3,4,6,8, 12}, and if n # 4,6, then Z(U) consists of



central elations. The proof is almost identical to parts of [17], except that we make some
additional explicit observations (and that the general assumptions are different).

So, as in [17], the idea of the proof to rule out the values n ¢ {3,4,6,8,12} is roughly
speaking as follows. We consider the commutator of two central elements with respect to
flags at a certain distance and find that it (1) fixes too much to be non-trivial, but (2)
does not fix everything, yielding a contradiction.

Case 1: n is odd.

First assume that n is odd. Let (z,y) and (2, ') be flags where, say, d(z,z’) = and
d(y,y') = “T_l By the Lemma 2.3 we know that there exist elations o with centers z, y and
(G with centers z’,3/. Since « fixes 3/, and 3 fixes y, it is easy to see that the commutator

n+3
2

0 = |a, 8] = aBfa~f7! fixes all elements at distance < ”T_l from y and all elements at
distance < %3+ from y'. Hence 6 fixes D;(z) pointwise for all z belonging to any simple
path (z1, 22, ... ,z%), with y = Zno and v = z,_;. Hence 0 is the identity whenever

the length =* of that path exceeds n — 2. But now consider z € Dan(x’) N DnTH(y’),

and suppose that 6 fixes z. Then a~!(z) = 87 'a™!(2) and so 3 fixes a™!(2). Since «
does not fix #’, a~1(2) belongs to DnTJrl(y’) N Dugs (z'). Hence 8 would be the identity, a

contradiction. So 6 is not the identity, implying 3”2—’7 < n — 2. This reduces to n < 3.
Case 2: n =2m and Z(U) contains an automorphism which is not a central elation.

In this case, for any flag {z, y}, there exists a non-trivial automorphism a, , fixing Dy (z)U
Dy(y), for 0 < k < % —1, and acting freely on the sets D;,jo(x) N Dy, /241 (y) and Dy, /2(y) N
Dy, 241(x) (by Lemma 2.2 and Lemma 2.3). Let (z,y) and (2',y') be flags with d(xz,2") =
n/2+1 and d(y,y') = n/2 — 1. Choose a,, =: a and a,, =: . Since « fixes ', and

B fixes y, we see as before that the commutator 6 := [« ] fixes all elements at distance
< n/2—1 from y and all elements at distance < n/2 — 1 from y’. Hence 6 fixes D;(z)
pointwise for all z belonging to any simple path (21,22, ..., 230/2-4), With y = 2,51 and

Yy = zp_o. Hence 0 is the identity whenever the length 3n/2 — 5 of that path exceeds
n — 2. But now consider z € D,,/5_1(2") N Dy 2(y’'). As in Case 1 one easily shows that ¢
does not fix z. So 6 is not the identity, implying 3n/2 —5 < n —2. This reduces to n < 6.

Remark that, if n = 6, then the length of the path (z1,...,z25) is equal to n — 2 = 4,
hence 6 is a non-trivial elation fixing Ds(22) and Ds(z4) pointwise. By choosing the flags
{z,y} and {2/, y'} appropriately, we thus obtain in this case such non-trivial elations for
all simple paths of length 4.

Case 3a: n = 2m with m odd where Z(U) consists of central elations.

By the transitivity of G on elements of a given type, every element of one type of B is
center of a non-trivial elation. Let p and p’ be such elements at distance m + 1 from
each other and choose non-trivial elations o and (8 with center p and p’, respectively.
Then, as before, one easily shows that the commutator § = [«, 3] is non-trivial. Also, if
{¢} = Di(p) N D (p') and {¢'} = D1(p') N Dp(p), then 0 fixes Dyy—1(q) U Dyp—1(q'). As
before, this implies that 3m — 5 < n — 2, hence n < 6.

Case 3b: n = 2m with m even where Z(U) consists of central elations.



Here, we argue similarly as in Case 3a, except that we have to choose elements p and p’
at distance m + 2 from each other. So we obtain the condition 3m — 8 < n — 2, implying
n <12 son € {4,8 12}.

Thus, either Z(U) consists of elations and n € {3,4,6,8,12} or Z(U) does not consist
entirely of elations and n = 4 or 6. O
The remark in Case 2 of the proof of the previous theorem shows:

3.1 Proposition If, under the standing hypotheses, n = 6, then either Z(U) consists
of central elations or U contains elations for any simple path (x1,...xs5) fizing Dy(xs) U
Dy(z4) pointwise. O

4 Proof of Theorem 2

In this section we prove Theorem 2, as a corollary of a more general proposition.

4.1 Proposition Let G be a group with an irreducible spherical (B,N)-pair of rank 2
satisfying (*), i.e., in terms of our standing hypotheses, U 1is nilpotent. Then — wup
to duality, i.e., up to interchanging p and ¢ — for all x € Dy(p) \ {q}, and for all k,
0 < k <n/2, the subgroup of U fizing the set Di(p) U D1(q) pointwise acts transitively on
all elements in Di(x) N Dyy1(p). Also, for ally € Dy(q) \{p}, and for allk, 0 < k <n/2,
the subgroup of U fixing the set Dy(q) elementwise, acts transitively on all elements in

Di(y) N Dyy1(q)-

Proof. Clearly, we may assume that & is maximal with respect to the property & < n/2.
Let {1} 9Z(U) = Z,(U) < Z,(U)<--- <9 Z,,_1(U) < Z,,,(U) = U be the ascending central
series of U and let ¢ > 0 be minimal with the property that Z;;1(U) does not fix all of
Dy (p)UD;(q). Note that such an 7 exists because Z(U) fixes D;(p)UD;(q) by Lemma 2.3.
Without loss of generality, there is some v € Z;,1(U) not fixing D;(p) pointwise. Since
Z;(U) fixes all elements of D;(p) and U acts transitively on D;(p) \ {¢}, this implies that
v does not fix any element of Dy(p) \ {¢}. Let x € Di(p) \ {¢} be arbitrary, and let
v = (x,21,...25) and v = (x, 41, ... yx) be two simple paths of length k with x1,1; # p.

Then the simple path (zy, ... x1,z,p,v(z),v(x1), ... v(x))) has length 2k +2 € {n,n+
1} and hence it is contained in some ordinary n-gon I'. Similarly there is an ordinary
n-gon I containing the simple path (yg, ...y, z,p,v(x),v(x1),. .. v(zK)).

Let (p1,q1) be the unique flag in I opposite (p,v(z)) and let (p2,g2) be the unique
flag of T” opposite (p,v(x)). Then there exists u € U mapping the flag (p1,¢1) onto the
flag (p2, q2). Clearly, u fixes x and since the commutator [u, v] fixes all elements of Dy (p),
we conclude that u also fixes v(z). By choice of T' and I", then u also fixes the path
(v(z1),...,v(x)) and maps the path v to «'.

Now consider the commutator uv~tu"tv € Z;(U). It is easy to see that it maps v to
7'; moreover it fixes D1(p) N D;(q) by our assumption on 4, proving the first part of the
proposition.

The second part is proved in a completely similar way. O



Now Theorem 2 follows since for n = 3, Proposition 4.1 immediately implies that the
flag (p, q) is a Moufang path. Hence all flags are Moufang paths and the projective plane
is a Moufang plane.

5 Proof of Theorem 3

The following theorem generalizes Theorem 6.4.9 of [15].

5.1 Proposition Suppose 9 is a half Moufang generalized n-gon with n = 2m even,
and such that all the corresponding elations are central elations. Then 2 is a generalized
quadrangle or a Moufang generalized hexagon.

Proof. Let (z1,...,2,-1) be a Moufang path and suppose all corresponding elations
are central elations with center x,,,. Choose zy € D;(z1)\{z2} and z,, € D1(zy—1)\{zn-2}.
Let (2, Tpy1,-- -, Tan_1,%0) be an arbitrary path of length n joining x,, with xy such that
Ty # Ton_1. Let y be either an arbitrary element of D,,(x,,) N D,,(z3,,) or an arbitrary
element of Dy, i1(3me1) N Dyp—1(Tmy1), with y # xo. Applying the group of central
elations with center z,,, we easily see that D,,_1(z0) N Dyy1(Zn) = Dim—1(20) N Dypr1 (y).
It follows from Lemma 1 of [4] and the symmetry between ¢ and z,, that the pair (xq, ;)
is distance-(m—1)-regular, see 6.4.1 of [15] for a precise definition. Now, Theorem 6.4.5(7)
of [15] implies that m — 1 < 2 hence n < 6. For n = 6, the result follows from [7]. O

In the case of a half Moufang quadrangle, we will use the following result.

5.2 Proposition Suppose Q is a half Moufang generalized quadrangle and suppose that
all simple paths of length 2 starting with an element of type 1 are Moufang paths. More-
over, suppose that for every flag {p,q}, with p an element of type 1, the action on
Di(q) \ {p} of the elation group corresponding with any simple path (p',r,p), r # q,
is independent of (p',r). Then Q is a Moufang quadrangle and all elations are generated
by the elations corresponding with simple paths of length 2 starting with an element of

type 1.
Proof. See Proposition 3.6 of [9]. O

Throughout the rest of this section, we consider the standing hypotheses, and we
assume that G is highly transitive. We now embark on the proof of Theorem 3.

By Theorem 1, we know that n € {3,4,6,8,12}. If n = 3,8 or 12, then Z(U) consists
of central elations, which by the transitivity assumption on 7" are transitive for one type
of (n — 2)-paths. Thus the cases n = 8 and n = 12 are excluded by Proposition 5.1. If
n = 3, then, clearly, B is a Moufang projective plane.

If n = 6, then either Z(U) consists of central elations and we are done by Proposi-
tion 5.1, or, by Proposition 3.1, we have root elations of both types. By the transitivity
assumption on 7" we then see that 3 is Moufang.

Now consider the case n = 4. Assume first that Z(U) contains central elations, with
center ¢, say. Choose an element r € D;(p)\{q}. Let Uy be the group of all central elations



with center ¢. This group acts transitively as a regular abelian group on D;(r) \ {p}. Let
¢’ be arbitrary in Dy(p) \ {g,r}. Let g € G be such that g(q) = ¢’ and put U} = gUpg™".
Also Uj acts as a regular abelian group on D;(r)\ {p}. Every element of the commutator
Uy, U{) fixes Dy(q) U Do(q') pointwise, hence must be the identity. It follows that the
actions on Dj(r) of both Uy and Uj are the same (see e.g. [5] 4.2.A(v)). Thus we can
apply Lemma 5.2 to see that 3 is in fact a Moufang quadrangle and G contains the little
projective group.

Hence it remains to deal with the case n = 4 where Z(U) does not contain central
elations. We will exclude this situation by a series of lemmas. Note that we do not know
whether or not P admits central elations (necessarily not belonging to any conjugate of
U).

5.3 Lemma Let ‘P be as before, and let x be any element of B. Then the pointwise
stabilizer of Dy(x) in G acts freely on the set Dy(x).

Proof. In order to use our standard notation, we may without loss of generality suppose
that x is the unique element in D;(p) different from ¢ and contained in the apartment A.
Suppose the lemma is false, then there exists some element u € G\ {1} fixing D;(z) U A
pointwise. So u € B (recall that B is the pointwise stabilizer of the flag {p, ¢}), hence u
normalizes Z(U). Let p’ be the element of A incident with ¢ and distinct from p and let
¢ be incident with p’, different from ¢ and contained in A. If u fixes D;(p’) pointwise,
then u is the identity by 4.4.2(v) of [15]. Hence there exists y € D;(p’) with u(y) # y. Let
v € Z(U) be such that v(¢’) = y, then the commutator 0 := vuv~'u~! belongs to Z(U)
and fixes D;(x) pointwise. Hence it is a central elation with center p, and consequently
it must, by assumption, be the identity. But it clearly does not fix y, a contradiction. [

5.4 Lemma Let B be as before, and let v = (¢",p,q) be a simple path of length 2. If «
15 any elation for v, then « is in fact a central elation.

Proof. Since Z(U) acts transitively on D;(¢") \ {p}, every element of U fixing at
least one element of D;(q”) \ {p} fixes D1(¢") pointwise. So, by assumption, we obtain a
subgroup H* of U acting transitively on Dy(¢”) N Ds(q) and fixing D;(¢”) pointwise.

Now if « is a root elation for 7, then by Lemma 5.3 (putting z = ¢”), ais in H* < U
and hence must commute with all 5 € Z(U). But this says that « is a central elation. [J

5.5 Lemma Let B be as before, and let v = (¢",p,q,7',q') be a simple path of length 4.
If v is any elation for (p,q,p'), then o € Z(U).

Proof. By Lemma 5.4, « is a central elation. By similar arguments as in Lemma 5.4,
the subgroup H' of U fixing {q”, ¢'} fixes D;(p’) pointwise and acts transitively on D;(q")\
{p}. Thus, by Lemma 5.3, « € H' < U. If o ¢ Z(U), then there is some u € U such that
the commutator [a,u] is non-trivial. Clearly, the action of H" on D;(¢”) commutes with
the action of Z(U), and since Z(U) is regular and abelian, these actions agree. Hence
there is some v € Z(U) which induces the same action on D;(¢") as o does. Then v and
« agree on Dy(p) because otherwise av™! is an elation for (¢”,p, q) which is not a central
elation. But this is impossible. Thus [« u] is the identity on Di(q¢”), but since [, u] is
clearly also a central elation, this is a contradiction. Consequently o € Z(U). 0
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5.6 Lemma Let P be as before, and let v = (p,q,p',q") be a simple path of length 3
contained in A. Suppose that the group H fizing D1(p) U D1(q) U {q'} pointwise is non-
trivial. Then the path (p,q,p’) is a Moufang path.

Proof. By the transitivity of T, the group H acts transitively on Di(q¢’) \ {p'}. Let
(¢",p,q,7',q) be a simple path of length 4 contained in A, then, by symmetry, the group
H' fixing D1(p') U Di(q) U {¢"} pointwise acts transitively on D;(¢”) \ {p}. Hence for
every element h € H, there exists h’ € H’ such that h'h fixes A pointwise. Since it
also fixes Di(q) pointwise, it must be identity by Lemma 5.3. Hence h = R/ ! fixes
D;(p) U Di(q) U Dy(p") pointwise. Applying the transitivity of 7', the result now follows.

0]

We can now finish the proof of Theorem 3.

We keep the same notation as above, so we have the simple path (¢”,p,q,7’,q') and
a regular and abelian subgroup H' of U fixing {¢”,¢'} U D;(p’) pointwise and acting
transitively on Dy(¢”) \ {p}. Similarly, we obtain a group H < B fixing D1(q) U{¢,¢"}
pointwise and acting transitively on D;(¢") \ {p}.

Now consider the commutator group [H, H'| < HN H' (by Lemma 5.2). If [H, H'] is
non-trivial, then Lemma 5.6 implies that the path (p,q,p’) is Moufang, and Lemma 5.5
yields a contradiction. If on the other hand [H, H'| is trivial, then the action of H on
D1(q") agrees with the action of H' on D(q"). If H # H’, then there are elements h € H
and ' € H' such that hh' is non-trivial and fixes D;(¢")U{¢'}, contradicting Lemma 5.3.
Hence H = H' and Lemma 5.6 implies that the path (p, ¢,p’) is Moufang. Now Lemma 5.5
yields a contradiction. O
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