

LINES AND OPPOSITION IN LIE INCIDENCE GEOMETRIES OF EXCEPTIONAL TYPE

SIRA BUSCH AND HENDRIK VAN MALDEGHEM

ABSTRACT. We characterise sets of points of exceptional Lie incidence geometries, that is, the natural geometries arising from spherical buildings of exceptional types F_4 , E_6 , E_7 , E_8 and G_2 , that form a line using the opposition relation. With that, we obtain a classification of so-called “geometric lines” in many of these geometries. Furthermore, our results lead to a characterisation of geometric lines in finite exceptional Lie incidence geometries as minimal blocking sets, that is, point sets of the size of a line admitting no object opposite to all of their members, in most cases, and we classify all exceptions. As a further consequence, we obtain a characterisation of automorphisms of exceptional spherical buildings as certain opposition preserving maps.

1	CONTENTS	
2	1. Introduction	2
3	2. Preliminaries	4
4	2.1. Buildings and Lie incidence geometries	4
5	2.2. Lie incidence geometries of type $E_{6,1}$	7
6	2.3. Lie incidence geometries of type $E_{7,7}$	9
7	2.4. Lie incidence geometries of types $E_{6,2}$, $E_{7,1}$, $E_{8,8}$, $F_{4,1}$ and $F_{4,4}$.	10
8	2.5. Metasymplectic spaces	13
9	2.6. Generalised hexagons	14
10	2.7. Opposition and projections	14
11	3. Points and lines in the exceptional minuscule geometries	17
12	3.1. Points of Lie incidence geometries of type $E_{6,1}$	17
13	3.1.1. Blocking sets	17
14	3.1.2. Geometric lines	17
15	3.2. Lines of Lie incidence geometries of type $E_{6,1}$	17
16	3.2.1. Blocking sets	18
17	3.2.2. Geometric lines	19
18	3.3. Points of Lie incidence geometries of type $E_{7,7}$	20
19	3.3.1. Blocking sets	20
20	3.3.2. Geometric lines	21
21	3.4. Lines of Lie incidence geometries of type $E_{7,7}$	21
22	3.4.1. Blocking sets	21
23	3.4.2. Geometric lines	22
24	4. Points and lines of hexagonal Lie incidence geometries	23

1991 *Mathematics Subject Classification.* 05D25 (primary), 51E21, 51E24 (Secondary).

Key words and phrases. Spherical buildings, Blocking set, Exceptional type, geometric line, opposition.

The first author is funded by the Claussen-Simon-Stiftung and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC 2044-390685587, Mathematics Münster: Dynamics–Geometry–Structure. This work is part of the PhD project of the first author.

25	4.1. Points of hexagonal Lie incidence geometries	23
26	4.1.1. Blocking sets. Reduction to geometric lines	23
27	4.1.2. Classification of geometric lines	24
28	4.2. Lines of exceptional hexagonal Lie incidence geometries	26
29	4.2.1. Two lemmas in the residues	26
30	4.2.2. Description of mutual positions	26
31	4.2.3. Algorithms and end of the proof	33
32	4.2.4. The exceptional case $F_{4,4}(q, q^2)$	35
33	4.2.5. Geometric lines	37
34	5. Generalised hexagons	40
35	5.1. Blocking sets	40
36	5.2. Geometric lines	43
37	6. An application	45
38	References	46

1. INTRODUCTION

39

40 The intricate structure of — especially the exceptional — spherical buildings leads to the intro-
 41 duction of seemingly less complex, but certainly more accessible, point-line geometries describing
 42 essentially the same object. These geometries are usually called *Lie incidence geometries*. The
 43 procedure to construct such a geometry is nowadays standard: for a spherical building Δ , say of
 44 type X_n , pick a type i , consider all vertices of Δ of type i and call them *points*. Pick a chamber
 45 C and delete the vertex of type i to obtain a panel of cotype i . Call the set of vertices of type i
 46 completing this panel again to a chamber a *line*. Vary C over all chambers. Then this system
 47 of points and lines is a *Lie incidence geometry of type $X_{n,i}$* . It now turns out (as follows from
 48 [12, §3]) that the full automorphism group of this point-line geometry coincides with the full
 49 automorphism group of Δ that preserves the type i . In [21], Kasikova and the second author
 50 investigate the interaction of (this definition of) lines and the opposition relation in Δ . The
 51 opposition relation is something typical for spherical buildings, and it owes its existence to the
 52 strong relation with finite Coxeter groups, in which there is a so-called “longest word”. The
 53 main result of [21] characterises the lines of many Lie incidence geometries in terms of this
 54 opposition relation. This led to the introduction of the notion of a “geometric line”, which is a
 55 set of points with the property that an arbitrary object of the underlying spherical building is
 56 either opposite none of its elements, or not opposite exactly one of its members. In particular,
 57 a geometric line does not admit an object opposite all of its members. A set of points with the
 58 latter property can be viewed as a *blocking set (of points)*. Blocking sets are a popular subject
 59 in finite geometry, both because they have many applications and because they have a great
 60 auxiliary value. A line is always a blocking set, and in [10] the authors proved that in odd
 61 characteristic, geometric lines in finite classical Lie incidence geometries are the only minimal
 62 blocking sets. In characteristic 2 they found counterexamples. Their proof, however, makes
 63 very little use of the definition of a geometric line; the equivalence in odd characteristic just
 64 came out from the classification of minimal blocking sets, which uses a variety of tools from
 65 classical finite geometry.

66 In the present paper, the primary aim is to classify minimal blocking sets in many finite Lie
 67 incidence geometries of exceptional type. However, unlike in [10], in many cases it will turn
 68 out to be beneficial to do this by showing directly the equivalence to geometric lines; the
 69 exceptions in characteristic 2 become also apparent in this approach. We then either appeal
 70 to the classification of geometric lines as provided in [21], or we classify them ourselves (if not

71 available in [21]). This way, we lay the foundations to study more intensively blocking sets in
72 finite exceptional geometries.

73 More exactly, with the notation introduced in Section 2, we will show the following theorems.

74 **Main Result A.** *Let $X_n \in \{E_6, E_7, E_8, F_4, G_2\}$ and $1 \leq i \leq n$, with $i \notin \{2, 4, 5\}$ if $n = 7$ and
75 $i \in \{7, 8\}$ if $n = 8$.*

76 *If in an irreducible thick finite Moufang spherical building Δ of type X_n , $n \geq 2$, the panels of
77 cotype $\{i\}$ are s -thick (that is, every panel of cotype $\{i\}$ is contained in precisely $s+1$ chambers),
78 then every set of $s+1$ vertices of type i of Δ admits a common opposite vertex except precisely
79 in the following five cases.*

- 80 (1) *The $s+1$ vertices form a line in the corresponding Lie incidence geometry of type $X_{n,i}$.*
- 81 (2) *Δ is a split building of type F_4 , the type i corresponds to a short root in the underlying
82 root system, and the $s+1$ vertices correspond to a hyperbolic line in a (thick) symp of the
83 corresponding Lie incidence geometry of type $F_{4,i}$ isomorphic to a symplectic polar space,
84 and $i \in \{3, 4\}$.*
- 85 (3) *Δ has type F_4 , has residues isomorphic to Hermitian generalised quadrangles of order
86 (s, \sqrt{s}) , and the $s+1$ vertices form an ovoid in a (symplectic) subquadrangle of order
87 (\sqrt{s}, \sqrt{s}) .*
- 88 (4) *Δ is a split building of type G_2 and the $s+1$ vertices form a hyperbolic (or ideal) line in the
89 corresponding Lie incidence geometry of type $G_{2,2}$, which is a split Cayley hexagon.*
- 90 (5) *Δ is a building of type G_2 in characteristic 2 and the $s+1$ vertices form a distance-3 trace
91 in the corresponding Lie incidence geometry of type $G_{2,2}$, which is either a split Cayley
92 hexagon, or a twisted triality hexagon of order $(s, \sqrt[3]{s})$.*

93 Main Result A will follow

- 94 – from Proposition 3.1 for types $E_{6,1}$ and $E_{6,6}$;
- 95 – from Proposition 3.2 for types $E_{6,3}$ and $E_{6,5}$;
- 96 – from Proposition 3.7 for type $E_{7,7}$;
- 97 – from Proposition 3.8 for type $E_{7,6}$;
- 98 – from Proposition 4.1, Proposition 4.2 and Theorem 4.4 for types $E_{6,2}$, $E_{7,1}$, $E_{8,8}$, $F_{4,1}$ and $F_{4,4}$;
- 99 – from Proposition 4.11, Theorem 4.15 and Proposition 4.22 for types $E_{6,4}$, $E_{7,2}$, $E_{8,7}$, $F_{4,2}$ and $F_{4,3}$;
- 100 – from Corollary 5.3 for types $G_{2,1}$ and $G_{2,2}$.

101 **Main Result B.** *Let $X_n \in \{E_6, E_7, E_8, F_4, G_2\}$ and $1 \leq i \leq n$, with $i \notin \{2, 4, 5\}$ if $n = 7$ and
102 $i \in \{7, 8\}$ if $n = 8$.*

103 *Then a geometric line of the Lie incidence geometry of type $X_{n,i}$ associated to an irreducible
104 thick Moufang spherical building Δ of type X_n , $n \geq 2$, is one of the following.*

- 105 (1) *A line of the Lie incidence geometry.*
- 106 (2) *A hyperbolic line in a symp of the Lie incidence geometry whenever this symp is a symplectic
107 polar space (and this happens (only) in the split case for types $F_{4,3}$ and $F_{4,4}$).*
- 108 (3) *A hyperbolic (or ideal) line of a split Cayley hexagon.*
- 109 (4) *A distance-3 trace of a split Cayley hexagon over a perfect field of characteristic 2.*

110 Main Result B follows from [21, Corollary 5.6] for the types $E_{6,1}$, $E_{6,6}$ and $E_{7,7}$. It will follow

- 111 – from Proposition 3.6 for types $E_{6,3}$ and $E_{6,5}$;
- 112 – from Proposition 3.12 for type $E_{7,6}$;
- 113 – from Proposition 4.2 and Theorem 4.4 for types $E_{6,2}$, $E_{7,1}$, $E_{8,8}$, $F_{4,1}$ and $F_{4,4}$;
- 114 – from Proposition 4.22 for types $E_{6,4}$, $E_{7,2}$, $E_{8,7}$, $F_{4,2}$ and $F_{4,3}$;
- 115 – from Proposition 5.9 for types $G_{2,1}$ and $G_{2,2}$.

116 As an application, we deduce that certain opposition preserving maps and transformations of
117 a Lie incidence geometry are actually (bijective) collineations. This characterises collineations
118 using opposition. We refer to Section 6 for the exact statements.

119 As a further motivation, we note that some of the results obtained in the present paper are used
120 in [9] and [11] to determine projectivity groups.

121 **The paper is structured as follows.** We provide preliminary information in Section 2 about
122 the geometries we will work with, and about their well-known properties. We also derive many
123 new properties that are not available in the literature. Towards the end of that section, we
124 state a corollary to a result of Tits that enables one to construct blocking sets in buildings
125 from blocking sets in residues. Finally, we prove some general properties of round-up triples of
126 vertices in general spherical buildings, which we will use to classify such triples in several cases
127 in this paper. We then start the proofs of our main theorems. We chose to prove Main Result A
128 and Main Result B type-by-type in the same section, so that the properties of the geometry in
129 question are fresh in the memory. Section 3 treats the cases $E_{6,1}$, $E_{6,3}$, $E_{7,7}$ and $E_{7,6}$ using the
130 so-called exceptional *minuscule* geometries. These are the Lie incidence geometries of type $E_{6,1}$
131 and $E_{7,7}$. Then, in Section 4, we prove our main theorems for $E_{6,2}$, $E_{6,4}$, $E_{7,1}$, $E_{7,2}$, $E_{8,8}$, $E_{8,7}$ and
132 $F_{4,i}$, $i \in \{1, 2, 3, 4\}$. The relatively easy cases $E_{6,2}$, $E_{7,1}$, $E_{8,8}$ and $F_{4,i}$, $i \in \{1, 4\}$ are proved in
133 Section 4.1, whereas the other cases are treated in Section 4.2. This is by far the longest section
134 of the paper. Amongst other things, it classifies all possible mutual positions of two lines in a
135 given hexagonal Lie incidence geometry of exceptional type. This certainly has other potential
136 applications. Doing this enables us to reduce Main Result A for lines of exceptional hexagonal
137 Lie incidence geometries to the classification of geometric lines (Main Result B), except in the
138 case of geometries isomorphic to $F_{4,4}(q, q^2)$. We treat this case separately in Section 4.2.4. Then
139 in Section 4.2.5 we prove Main Result B uniformly for $E_{6,4}$, $E_{7,2}$, $E_{8,7}$ and $F_{4,i}$, $i \in \{2, 3\}$. Finally,
140 in Section 5, we prove our main results for type G_2 , that is, for generalised hexagons. Section 6
141 contains the application to certain opposition preserving maps in buildings of exceptional type
142 alluded to above.

143 **2. PRELIMINARIES**

144 **2.1. Buildings and Lie incidence geometries.** We are going to work with the buildings
145 of exceptional type via their well-established point-line geometries, which fit perfectly in the
146 framework of Cooperstein's theory of *parapolar spaces*. We will also adopt the corresponding
147 terminology. As a result, we will not spend too much space on pure building-theoretic theory,
148 but instead refer the interested reader to the literature, in particular to [1] and [30]. We content
149 ourselves with the following generalities.

150 We view buildings as thick numbered simplicial chamber complexes. The buildings we are
151 interested in are *spherical buildings* and, as such, there is the notion of *opposition* of simplices
152 (in particular vertices and chambers), expressing that the two given simplices are at maximal
153 distance apart. There is also the notion of *convexity* for subcomplexes, and the convex closure
154 of two opposite chambers is a thin finite chamber complex called an apartment and isomorphic
155 to a Coxeter complex. These apartments play a crucial role in building theory. By the definition
156 of a building, every pair of simplices is contained in an apartment and so the mutual position
157 between these two objects can be seen in this finite complex, which is also a triangulation of
158 a sphere. Opposite simplices in an apartment are then just antipodal on the sphere. Also,
159 recall that, since Δ is numbered, the vertices have *types*, and a chamber consists of a set of
160 vertices, one of each possible type. The number of types is the *rank* of the building. A *panel* of
161 cotype i is a simplex containing vertices of each type except for the type i . Opposition induces
162 a permutation on the types which is an automorphism of the Coxeter diagram. Two simplices
163 are *joinable* if their union is again a simplex.

164 We now quickly outline how point-line geometries arise from (spherical) buildings, a *point-line*
165 *geometry* being a pair (X, \mathcal{L}) consisting of a set X of *points*, and \mathcal{L} a set of subsets of X , each
166 member of which is called a *line*. Let Δ be a spherical building, which we will always assume to
167 be thick and irreducible. We consider the set X of vertices of a given type, say i . The set \mathcal{L} then
168 consists of the subsets of X whose elements each complete a given panel of cotype i to a chamber
169 (hence each panel defines a unique line of (X, \mathcal{L}) , but different panels may define the same line).

170 If the type of Δ is X_n , where n is the rank and X one of the Coxeter types A, B, C, D, E, F, G,
171 then we say that (X, \mathcal{L}) is a *Lie incidence geometry of type $X_{n,i}$* . Usually, we take as type
172 set $\{1, 2, \dots, n\}$, where the types can be read off the corresponding Coxeter or Dynkin diagram
173 using Bourbaki labelling [3]. If the diagram is simply laced, then Δ is completely determined by
174 the underlying skew field \mathbb{K} and we denote the Lie incidence geometry of type $X_{n,i}$ in this case
175 as $X_{n,i}(\mathbb{K})$. In such geometries, vertices of the building have interpretations as certain subspaces
176 (see below), and we will always call such subspaces *opposite* when the vertices are opposite in
177 the building. We adopt the notation $v \equiv v'$ for opposite vertices (and later, subspaces); the
178 negation is $v \not\equiv v'$, and the set of vertices (not) opposite v is denoted as $v^\equiv (v^\not\equiv)$.

179 When X_n is one of E_6, E_7, E_8, F_4 , then a Lie incidence geometry of type $X_{n,i}$ is always a parapolar
180 space. We provide a brief introduction.

181 First, we introduce some terminology concerning point-line geometries. Let $\Gamma = (X, \mathcal{L})$ be a
182 point-line geometry. Two points $x, y \in X$ contained in a common line are called *collinear* and
183 denoted $x \perp y$. The set of points collinear to x is denoted x^\perp and includes x if x is on some
184 line. Sets of points are called collinear if each point of either is collinear to each point of the
185 other. If each line contains exactly two (at least three) points, then Γ is called *thin* (*thick*,
186 respectively). A *subspace* of Γ is a set of points with the property that, if two distinct collinear
187 points belong to it, then all points of each line containing both x and y belong to it. We often
188 view a subspace as a point-line subgeometry in the obvious way. A subspace is a (*geometric*)
189 *hyperplane* if it intersects each line non-trivially; it is called *proper* if it does not coincide with
190 X itself, which is a trivial geometric hyperplane. The point-line geometry Γ is called a *partial*
191 *linear space* if every pair of collinear points is contained in exactly one line. In a partial linear
192 space, we denote the unique line containing two distinct collinear points x and y by xy , or
193 sometimes by $\langle x, y \rangle$, for clarity. A subspace of a point-line geometry is called *singular* if every
194 pair of its points is collinear. Trivial examples are the empty set, each singleton, and each line.
195 If there exists a natural number r such that every finite nested sequence of (distinct) singular
196 subspaces (including the empty space) has size at most $r + 1$, and there exists such a sequence
197 of size $r + 1$, then we say that Γ has singular rank r . A *maximal* singular subspace is a singular
198 subspace that is not properly contained in another one.

199 The *point graph* of a point-line geometry Γ is the graph with vertices the points of Γ , adjacent
200 when (distinct and) collinear. A set of points is called *convex* if for each pair $\{x, y\}$ of points
201 contained in it, all points of each shortest path between x and y in the point graph are also
202 contained in it.

203 We assume the reader is familiar with projective spaces, which are the Lie incidence geometries
204 $A_{n,1}(\mathbb{K})$, for skew fields \mathbb{K} , also sometimes denoted as $PG(n, \mathbb{K})$, or as $PG(V)$, where V is an
205 $(n + 1)$ -dimensional vector space over \mathbb{K} . One checks that $PG(n, \mathbb{K})$ has singular rank $n + 1$.
206 As a building, it has rank n , which is also its projective dimension. We extend the definition
207 of $PG(V)$ to infinite-dimensional vector spaces in the obvious way: the points of $PG(V)$ are the
208 1-spaces of V , the lines are the sets of 1-spaces contained in given 2-spaces.

209 The Lie incidence geometries of types $B_{n,1}$, $n \geq 2$ and $D_{n,1}$, $n \geq 3$, are *polar spaces (of rank n)*,
210 that is, thick point-line geometries (X, \mathcal{L}) of singular rank n such that for each point $x \in X$,
211 the set x^\perp is a proper geometric hyperplane. It follows that polar spaces are partial linear
212 spaces (see [8]). Also, the non-trivial singular subspaces of any polar space of rank at least 3
213 are projective spaces. If in a polar space of rank r , every $(r - 2)$ -dimensional singular subspace
214 is contained in exactly two (at least three) maximal singular subspaces, then we call the polar
215 space *top-thin* (*thick*, respectively). Buildings of type B_n correspond precisely to the thick polar
216 spaces of rank n , while buildings of type D_n , $n \geq 2$ (where we identify the type D_2 with the
217 reducible type $A_1 \times A_1$) yield top-thin polar spaces. The singular subspaces are also the only
218 subspaces of a polar space that are convex. In fact, every polar space of rank at least 2 is a Lie
219 incidence geometry of type $B_{n,1}$ or $D_{n,1}$, $n \geq 2$.

220 Polar spaces of type D_n have a peculiar property: their maximal singular subspaces are divided
221 into two *oriflamme classes*, where two maximal singular subspaces belong to different classes

222 if, and only if, the parity of the dimension of their intersection coincides with the parity of
 223 n . Each polar space $D_{n,1}(\mathbb{K})$, for \mathbb{K} a (commutative) field and $n \geq 3$, is isomorphic to the
 224 point-line geometry naturally associated to a hyperbolic quadric in $\text{PG}(2n-1, \mathbb{K})$, that is, the
 225 null set of a quadratic form $x_{-n}x_n + x_{-n+1}x_{n-1} + \cdots + x_{-1}x_1$ in the coordinates of a point.
 226 An oriflamme class of lines in a hyperbolic quadric in $\text{PG}(3, \mathbb{K})$ (the case $n = 2$ left out in
 227 our previous sentence) will be called a *regulus*. Top-thin polar spaces are also referred to as
 228 *hyperbolic* polar spaces.

229 The Lie incidence geometries of type $B_{n,n}$ are usually referred to as *dual polar spaces*.

230 We have defined Lie incidence geometries only for vertices of (spherical) buildings; a straight-
 231 forward generalisation to simplices is possible, and we will use such generalisation, but only for
 232 simplices of buildings of type A_n , where the simplices in question are point-hyperplane pairs
 233 of the corresponding projective space. Hence we can define the geometry $A_{n,1,n}(\mathbb{K})$, \mathbb{K} any
 234 skew field, as the point-line geometry with point set the set of incident point-hyperplane pairs
 235 of $\text{PG}(n, \mathbb{K})$, where the lines are of two types: one type of lines consists of the sets of point-
 236 hyperplane pairs with common hyperplane H and point ranging over a given line contained in
 237 H ; the other type is the dual.

238 Let us also remark that sometimes a Lie incidence geometry Δ_i of type $X_{n,i}$ can be defined
 239 using the one, say Δ_j , of type $X_{n,j}$ by considering the subspaces of Δ_i conforming to the
 240 vertices of type j of the associated building, as points, and interpreting then the lines of Δ_j
 241 in Δ_i to define them correctly. We give an example. Let Δ be a building of type D_n , $n \geq 4$,
 242 and let $\Delta_1 = (X_1, \mathcal{L}_1)$ be the associated polar space (a Lie incidence geometry of type $D_{n,1}$).
 243 Define X_2 as the set of lines of Δ_1 . Now let Δ_2 be the point-line geometry with point set
 244 X_2 , and let the set \mathcal{L}_2 of lines of Δ_2 be the set of planar line pencils. Then one checks that
 245 (X_2, \mathcal{L}_2) is the Lie incidence geometry of type $D_{n,2}$ corresponding to Δ . We say that Δ_2 is the
 246 *line-Grassmannian* of Δ_1 (and we use this expression also in other situations where a point-line
 247 geometry has planes, and hence planar line pencils).

248 All Lie incidence geometries, as we defined them, are parapolar spaces, except for the projective
 249 and polar spaces mentioned above, and for the Lie incidence geometries of buildings of rank 2.
 250 Let's define these objects. Unlike polar spaces, it is not known whether all parapolar spaces of
 251 sufficiently high symplectic rank are Lie incidence geometries.

252 A *parapolar space*, introduced by Cooperstein [14, 15], is a point-line geometry $\Gamma = (X, \mathcal{L})$
 253 satisfying the following axioms:

- 254 (i) Each pair of points at distance 2 in the point graph either is collinear to a unique point, or
 255 is contained in a convex subspace isomorphic to a polar space (such subspaces are called
 256 *symplecta*, or *symps* for short).
- 257 (ii) There exist at least two distinct symps, and each line is contained in a symp.

258 It follows easily that parapolar spaces are partial linear spaces. Now we introduce some specific
 259 terminology and notation concerning parapolar spaces. First, a pair of points x, y at distance 2
 260 in the point graph, collinear to a unique point z , will be called *special*, and we denote $z =: [x, y]$.
 261 We also say that x is *special to* y , or that x and y are special, in symbols $x \bowtie y$. The set of
 262 points special to a given point x will be denoted as x^\bowtie . A parapolar space without special pairs
 263 is called *strong*. The symp containing two given points x, y at distance 2 in the point graph and
 264 which are not special is denoted by $\xi(x, y)$. The pair x, y is called *symplectic*, and we also say
 265 that x is *symplectic to* y , or that x and y are symplectic, in symbols $x \perp\!\!\!\perp y$. The set of points
 266 symplectic to a given point x will be denoted as $x^{\perp\!\!\!\perp}$. The *diameter* of Γ is the diameter of its
 267 point graph. We say that Γ has *symplectic rank at least r* if every symp has rank at least r . If
 268 every symp has exactly rank r , then we say that Γ has *uniform rank r* .

269 Note that the line-Grassmannian of a polar space contains special pairs. If such a polar space ξ
 270 is a symp in a parapolar space, then we speak about *ξ -special lines*, with the obvious meaning;
 271 that is, disjoint lines containing points at distance 2 such that some point of either is collinear
 272 to all points of the other.

273 We can interpret residues (or links) of vertices from the theory of buildings in the corresponding
274 Lie incidence geometries as *point residuals*. Let $\Delta = (X, \mathcal{L})$ be a parapolar space with the
275 property that all singular subspaces are projective spaces and through each point we have at
276 least one plane. Then, at each point $x \in X$, we can define the point-residual $\text{Res}_\Delta(x)$, or $\text{Res}(x)$
277 if no confusion can arise, as the point-line geometry with point set the set of lines of Δ through
278 x and with as set of lines the planar line pencils of Δ at x (each line of the line pencil contains
279 x). As usual, the type of the point residuals can be read off the Coxeter diagram by deleting
280 the node corresponding to the points.

281 Parapolar spaces are so-called *gamma spaces*, that is, point-line geometries in which each point
282 is collinear to zero, one, or all points of a given line. We will frequently use this property, often
283 without reference.

284 We will be working with specific Lie incidence geometries, mainly of exceptional type. For
285 the classical types, the properties can be derived without much effort from the corresponding
286 projective or polar space. We now review the basic properties of the exceptional Lie incidence
287 geometries we will be working with. Along the way, we also prove some additional properties
288 that we will need.

289 The basic properties reflect the possible mutual positions of certain elements of the geometry,
290 usually points, subspaces, and symps. In the statements of facts, we will occasionally introduce
291 terminology and underline the introduced notions. Subspaces or symps through a common
292 point x will occasionally be called *locally opposite* (at x) if they correspond to opposite objects
293 in $\text{Res}(x)$. We also extend this terminology to all vertices x . In particular, if ξ is a symp, then
294 singular subspaces in ξ that are opposite in ξ as a polar space are called *locally opposite at* ξ ,
295 or briefly ξ -*opposite*. This extends the terminology for lines of ξ being ξ -special, introduced
296 before.

297 **2.2. Lie incidence geometries of type $E_{6,1}$.** For each field \mathbb{K} there exists a unique Lie
298 incidence geometry isomorphic to $E_{6,1}(\mathbb{K})$. It is a strong parapolar space of diameter 2 and
299 also called a *minuscule geometry*. The following properties can either be found in [28], or can
300 be easily derived from an apartment of the corresponding building (in this case the 1-skeleton
301 of such an apartment, where vertices are points of $E_{6,1}(\mathbb{K})$ and edges are lines, is the Schläfli
302 graph, see [6, §10.3.4]). One can also use the chain calculus introduced in [27], also explained
303 in [7, §4.5.4].

304 **Fact 2.1.** *Let p be a point and ξ a symp of $E_{6,1}(\mathbb{K})$. Then $p^\perp \cap \xi$ is either empty (and we say
305 that x and ξ are far; they are also opposite in the corresponding building) or a maximal singular
306 subspace of $E_{6,1}(\mathbb{K})$, which we call a 4'-space (and we say that x and ξ are close). Also, $\text{Res}(p)$
307 is the Lie incidence geometry $D_{5,5}(\mathbb{K})$.*

308 **Fact 2.2.** *Two symps intersect either in a point, or in a maximal singular subspace of either, in
309 which case we call the subspace a 4-space and the symps adjacent. The 4-spaces of a given symp
310 ξ constitute an oriflamme class of the symp, which is a polar space of type $D_{5,1}$; the 4'-spaces
311 contained in ξ form the other oriflamme class.*

312 The following lemmas can be read off the diagram, checked in an apartment, and is contained
313 in [28, §3.2], but can also be proved using the above lemmas.

314 **Fact 2.3.** *Each 3-space of $E_{6,1}(\mathbb{K})$ is the intersection of a unique 4-space and a unique 5-space.*

315 **Fact 2.4.** *There are two kinds of maximal singular subspaces in $E_{6,1}(\mathbb{K})$. One kind corresponds
316 to the 4-spaces, the other to 5-dimensional projective spaces, called 5-spaces, which contain 4'-
317 spaces. Let p be a point and W a 5-space. Then either $p \in W$, or $p^\perp \cap W$ is a 3-dimensional
318 space (called a 3-space; p and W are called close), or p is collinear to a unique point of W (and
319 p and W are called far). Let W and W' be two distinct 5-spaces. Then either $W \cap W'$ is a plane
320 (then W and W' are called adjacent), or $W \cap W'$ is just a point, or W and W' are disjoint and
321 there exists a unique 5-space intersecting both in a respective plane, or W and W' are disjoint*

322 and opposite in the building; in the latter case, every point of W is far from W' and every point
 323 of W' is far from W , and collinearity defines a collineation between W and W' . .

324 We can now prove some (new) lemmas.

325 **Lemma 2.5.** *Let x be a point and ξ a symp of $E_{6,1}(\mathbb{K})$. Then x is opposite ξ if, and only if,
 326 for some point $y \in \xi$, the symp $\xi(x, y)$ intersects ξ only in y if, and only if, for all points $y \in \xi$,
 327 the symp $\xi(x, y)$ intersects ξ only in y .*

328 *Proof.* If x is opposite ξ , then $\xi \cap \xi(x, y)$ can not be more than just the point y , for every $y \in \xi$,
 329 because otherwise, $\xi \cap \xi(x, y)$ is a 4-space by Fact 2.2 and x is collinear to a 3-space of that
 330 4-space, contradicting the fact that x is opposite ξ . Now suppose that $\xi \cap \xi(x, y) = \{y\}$, for
 331 some fixed $y \in \xi$. We want to see that x has to be opposite ξ . Suppose there exists some
 332 $z \in \xi$ at distance 2 from x , such that $\xi \cap \xi(x, z)$ is a 4-space (cf. Fact 2.1). Then y and x
 333 have to be collinear to 3-spaces U_y and U_x , respectively, of that 4-space, which will necessarily
 334 intersect in at least a plane π . But then π will also be contained in $\xi(x, y)$, by convexity, and
 335 hence $\xi \cap \xi(x, y)$ will be more than just the point y , which is a contradiction. So for every point
 336 $z \in \xi \setminus x^\perp$, we have $\xi(x, z) = \{z\}$. That means that x is not collinear to any point in ξ and
 337 thus, x is opposite ξ . \square

338 **Lemma 2.6.** *Let L be a line and ξ a symp of $E_{6,1}(\mathbb{K})$ with $L \cap \xi = \emptyset$. If no point of L is
 339 opposite ξ , then L is collinear to a unique plane of ξ .*

340 *Proof.* If no point of L is opposite ξ , then every point of L is collinear to a 4'-space of ξ . Two
 341 4'-spaces in a symp intersect in either a point or a plane or they coincide, because they belong
 342 to the same oriflamme class by Fact 2.4. If two points of L were collinear to the same 4'-space
 343 of ξ , then every point of that 4'-space would be collinear to every point of L and L and that
 344 4'-space would span a 6-space, which is impossible by Fact 2.4. Now, let x and y be two points
 345 of L , let V be the 4'-space that y is collinear to in ξ and let x' be some point of $\xi \setminus V$ that x is
 346 collinear to. Then x' has to be collinear to a 3-space $U \subseteq V$. The symp $\xi(y, x')$ contains U and
 347 x . With that, x has to be collinear to a plane π of U . That means $x^\perp \cap \xi$ and $y^\perp \cap \xi$ intersect
 348 in π and since every point of π is collinear to $x, y \in L$, and $E_{6,1}(\mathbb{K})$ is a gamma space, every
 349 point of π has to be collinear to every point of L . With that, L is collinear to a unique plane
 350 of ξ . \square

351 **Lemma 2.7.** *Let p be a point and M a 3-space of $E_{6,1}(\mathbb{K})$, such that no point of M is collinear
 352 to p . Then the unique maximal 4-space containing M does not contain any point collinear to p .*

353 *Proof.* Suppose a point p is collinear to a point q of a 4-space C containing a 3-space M which
 354 does not contain any point collinear to p . Put C in a symp ξ . If p is in ξ , then p is collinear to a
 355 3-space of C , which intersects M , a contradiction. If p is not in ξ , then p is collinear to a 4'-space
 356 W , which already intersects C in q . But the intersection must have odd codimension, hence the
 357 intersection $C \cap W$ is either a line or a 3-space. Both would intersect M , a contradiction. \square

358 **Lemma 2.8.** *Let W, W' be two opposite 5-spaces, and let U be a 4-space intersecting W in a
 359 3-space. Then there exists a unique point $p \in U \setminus W$ close to W' . Also, $p^\perp \cap W' = \{x' \in W' \mid
 360 (\exists x \in W)(x' \perp x)\}$.*

361 *Proof.* Putting W, W' and U in a common apartment, the existence of p readily follows. Lemma 2.7
 362 shows the second assertion, and then uniqueness of p also follows immediately. \square

363 **Lemma 2.9.** *Let L be a line, and let b be a point not collinear to any point of L in $E_{6,1}(\mathbb{K})$.
 364 Then $\langle b, b^\perp \cap L^\perp \rangle$ is a maximal 4-space.*

365 *Proof.* By convexity of symps. $\langle b, b^\perp \cap L^\perp \rangle$ is contained in each symp $\xi(b, p)$, with $p \in L$. Fix
 366 such a symp $\xi = \xi(b, p)$, for some $p \in L$. Fact 2.1 implies that L is collinear to a 4'-space U' of
 367 ξ . Then $U := \langle b, b^\perp \cap U' \rangle$ is a 4-space, because U and U' belong to different oriflamme classes.
 368 By Fact 2.4, U is a maximal singular subspace and the assertions are proved. \square

369 2.3. **Lie incidence geometries of type $E_{7,7}$.** For each field \mathbb{K} there exists a unique Lie
 370 incidence geometry isomorphic to $E_{7,7}(\mathbb{K})$. It is a strong parapolar space of diameter 3 and also
 371 called a *minuscule geometry*. The following properties can easily be derived from an apartment
 372 of the corresponding building (in this case the 1-skeleton of such an apartment, where vertices
 373 are points of $E_{7,7}(\mathbb{K})$ and edges are lines, is the Gosset graph; see [6, §10.3.5]).

374 **Fact 2.10.** *Let Δ be the Lie incidence geometry $E_{7,7}(\mathbb{K})$. Then the following assertions hold.*

- 375 (i) Δ is strong, has uniform symplectic rank 6, singular rank 7 and diameter 3. Points at
 376 distance 3 are opposite.
- 377 (ii) Symps in Δ are isomorphic to hyperbolic polar spaces $D_{6,1}(\mathbb{K})$.
- 378 (iii) Point residuals in Δ are isomorphic to $E_{6,1}(\mathbb{K})$.
- 379 (iv) The maximal singular subspaces of highest dimension in Δ are projective spaces of di-
 380 mension 6. Like before, we call 5-dimensional projective subspaces contained in 6-spaces
 381 5'-spaces.
- 382 (v) Maximal 5-spaces occur as the intersection of two symps. On the other hand, 5'-spaces
 383 occur as the intersection of a unique 6-space and a unique symp.
- 384 (vi) For each symp ξ , its 5-spaces form an oriflamme class, and its 5'-spaces form the other
 385 oriflamme class of ξ .

386 **Fact 2.11.** *Let p be a point and ξ a symp of $E_{7,7}(\mathbb{K})$, with $p \notin \xi$. Then precisely one of the
 387 following occurs.*

- 388 (i) p is collinear to a 5'-space A of ξ , p is symplectic to the points of $\xi \setminus A$, and we say that
 389 p is close to ξ .
- 390 (ii) p is collinear to a unique point $q \in \xi$, p is symplectic to the points of $\xi \cap (q^\perp \setminus \{q\})$, and
 391 p is opposite to the points $\xi \setminus q^\perp$. We say that p is far from ξ .

392 This fact implies that, on each line L , there is at least one point symplectic to a given point p
 393 (unique when L contains at least one point opposite p).

394 **Fact 2.12.** *Let ξ and ξ' be two distinct symps of $E_{7,7}(\mathbb{K})$. Then precisely one of the following
 395 occurs.*

- 396 (i) $\xi \cap \xi'$ is a 5-space, and we call ξ and ξ' adjacent.
- 397 (ii) $\xi \cap \xi'$ is a line L . Then points $x \in \xi \setminus \overline{L}$ and $x' \in \xi' \setminus \overline{L}$ are never collinear. We call
 398 $\{\xi, \xi'\}$ symplectic.
- 399 (iii) $\xi \cap \xi' = \emptyset$, and there is a unique symp ξ'' intersecting both ξ and ξ' in respective 5-spaces
 400 A and A' , which are opposite in ξ'' . All points of $\xi \setminus A$ are far from ξ' , and each point
 401 of A is close to ξ' . Each line containing a point of ξ and a point of ξ' contains a point
 402 of $A \cup A'$. We call $\{\xi, \xi'\}$ special.
- 403 (iv) $\xi \cap \xi' = \emptyset$, and every point of ξ is far from ξ' . In this situation, each point of ξ' is also
 404 far from ξ , and ξ and ξ' are opposite.

405 **Fact 2.13.** *Let ξ_1 and ξ_2 be two opposite symps of $E_{7,7}(\mathbb{K})$. Let \mathcal{L} be the set of all lines that
 406 contain a point of ξ_1 and a point of ξ_2 . Then, for each point p that is contained in a line of \mathcal{L} ,
 407 there exists a unique symp ξ_p that intersects each line $L \in \mathcal{L}$.*

408 We can now show the following lemma.

409 **Lemma 2.14.** *Let x, y be two points of $E_{7,7}(\mathbb{K})$. Then x and y are opposite if, and only if,
 410 they are contained in respective symps intersecting in a line L such that x and y are collinear
 411 to unique respective distinct points of L .*

412 *Proof.* First suppose that x and y are opposite. Let ξ_x be an arbitrary symp containing x .
 413 Fact 2.11(ii) implies that y is collinear to a unique point $z \in \xi_x$. Let ξ_y be an arbitrary symp
 414 through y and z . If ξ_x and ξ_y intersected in more than a line, they would intersect in a 5-space
 415 (cf. Fact 2.12), and both x and y would have to be collinear to 4-spaces of that 5-space. These
 416 would necessarily intersect, meaning that there would exist points collinear to both x and y ,

417 contradicting the fact that x and y are opposite. Hence $\xi_x \cap \xi_y$ is a line L . Now, clearly x and
418 y are not collinear to a common point on L , and the assertion follows.

419 Next suppose, conversely, that x and y are contained in respective symps ξ_x and ξ_y intersecting
420 in a line L such that x and y are collinear to unique respective distinct points x' and y' of L .
421 Suppose, for a contradiction, that x is collinear to a 5'-space U of ξ_y . Then $y'^\perp \cap x^\perp$ contains
422 points of U that do not belong to ξ_x , a contradiction. Hence x is far from ξ_y , and the assertion
423 follows from Fact 2.11(ii). □

424

425 **2.4. Lie incidence geometries of types $E_{6,2}$, $E_{7,1}$, $E_{8,8}$, $F_{4,1}$ and $F_{4,4}$.** These Lie incidence
426 geometries are examples of *hexagonal geometries*, as defined by Shult [26, Section 13.7], inspired
427 by his work with Kasikova [20]. We will not need the formal definition of such geometries; some
428 defining properties will be part of the facts that we state below. Since we are only concerned
429 with exceptional geometries, we will restrict ourselves to these cases. This implies, for instance,
430 that we can assume that the parapolar space in question has uniform symplectic rank (which is
431 at least 3). Other examples of hexagonal Lie incidence geometries are the line-Grassmannians
432 of polar spaces, which have symplectic rank at least 3 if the polar space has rank at least 4, and
433 uniform symplectic rank 3 if, and only if, the polar space has rank 4. Many facts stated below
434 also hold for these spaces, but can in that case easily be directly checked in the polar space.

435 The following facts can again be easily checked in an apartment (for models of such, see [33]),
436 or follow from the diagram. We will refer to the geometries in the title of this section as the
437 *exceptional hexagonal (Lie incidence) geometries*. The ones of type $F_{4,1}$ and $F_{4,4}$ are also known
438 as *(thick) metasymplectic spaces*. A detailed introduction to the latter is contained in [22]. We
439 will always assume thickness when mentioning metasymplectic spaces.

440 **Fact 2.15.** *Let x and y be two distinct non-collinear points of an exceptional hexagonal Lie
441 incidence geometry. Then x and y are either symplectic, special, or opposite. In the latter case,
442 the distance between x and y is 3. The set x^\neq is always a proper geometric hyperplane.*

443 The following fact can also be deduced from [13, Lemma 2(v)].

444 **Fact 2.16.** *Let x and u be two points of an exceptional hexagonal Lie incidence geometry. Let
445 $x \perp y \perp z \perp u$. Then x and u are opposite if, and only if, both $\{x, z\}$ and $\{y, u\}$ are special
446 pairs. In particular, if $x \perp\!\!\!\perp v \perp u$ for some point v , then x and u are not opposite.*

447 **Fact 2.17.** *Let x be a point and ξ a symp of an exceptional hexagonal Lie incidence geometry.
448 Then exactly one of the following occurs.*

- 449 (i) $x \in \xi$;
- 450 (ii) $x^\perp \cap \xi$ is a maximal singular subspace in ξ (this cannot happen in a metasymplectic space);
- 451 (iii) $x^\perp \cap \xi$ is a line L ;
- 452 (iv) $x^{\perp\!\!\!\perp} \cap \xi$ is a maximal singular subspace U ;
- 453 (v) $x^{\perp\!\!\!\perp} \cap \xi = \xi$ (this does not occur in types F_4 , E_8);
- 454 (vi) $x^{\perp\!\!\!\perp} \cap \xi$ is a unique point y .

455 The following fact follows from the diagrams by taking point residuals.

456 **Fact 2.18.** *Let x be a point of the parapolar space Δ isomorphic to either $E_{6,2}(\mathbb{K})$, $E_{7,1}(\mathbb{K})$, $E_{8,8}(\mathbb{K})$,
457 or a metasymplectic space. Then $\text{Res}_\Delta(x)$ is isomorphic to $A_{5,3}(\mathbb{K})$, $D_{6,6}(\mathbb{K})$, $E_{7,7}(\mathbb{K})$, or a dual
458 polar space of rank 3, respectively. Consequently, when two symps of Δ have a line in common,
459 then they have (at least) a plane in common. Two non-disjoint symps either intersect in a point,
460 a plane, or a maximal singular subspace. The singular rank of Δ is 5, 7, 8 or 3, respectively.*

461 In general, an i -dimensional singular subspace whose points do not correspond to the set of
462 vertices of the corresponding building contained in a simplex together with another given vertex,
463 will be called an i' -space. It usually arises as the intersection of a maximal singular subspace
464 with a symp.

465 We can now be more specific in Fact 2.17.

466 **Lemma 2.19.** *Let Δ be an exceptional hexagonalic Lie incidence geometry. Let x be a point of
467 Δ and ξ a symp of Δ . Then the following hold.*

468 (i) *If $x^\perp \cap \xi$ is a maximal singular subspace U in ξ , then each point of $\xi \setminus U$ is symplectic to
469 x ;*
470 (ii) *If $x^\perp \cap \xi$ is a line L , then each point y of $\xi \setminus L$ collinear to a unique point of L is special
471 to x (the other points of $\xi \setminus L$ are symplectic to x);*
472 (iii) *If $x^{\perp\perp} \cap \xi$ is a maximal singular subspace U , then each point of $\xi \setminus U$ is special to x ;*
473 (iv) *If $x^{\perp\perp} \cap \xi$ is a unique point y , then each point of ξ not collinear to y is opposite x (conse-
474 quently, each other point of $\xi \setminus \{y\}$ is special to x).*

475 *Proof.* (i) The maximal singular subspace U of ξ has dimension at least 2, hence for each
476 $y \in \xi \setminus U$, the set $y^\perp \cap U$ has at least three elements, implying, by the definition of
477 parapolar spaces, that x and y are symplectic.

478 (ii) Suppose x and y were symplectic. Then the symps ξ and $\xi(x, y)$ would have a line in
479 common, hence, by Fact 2.18, they would share a plane α , which has to contain L as
480 $x^\perp \cap \alpha$ is a line. Since also $y \in \alpha$, y is collinear to all points of L , which contradicts the
481 assumptions.

482 (iii) This follows immediately from Fact 2.16.

483 (iv) No point of ξ is collinear to x , as otherwise it follows from the other cases that y is not
484 unique. Hence all points of ξ collinear to y are special to x . Let z be such a point. Then,
485 by the previous possibilities, $z^\perp \cap \xi(x, y)$ is a line K and $u := [x, z] \in K$. Suppose, for a
486 contradiction, that $u^\perp \cap \xi$ is a maximal singular subspace U of ξ . Then, by Fact 2.17(ii)
487 and Fact 2.18, $\dim U \geq 3$ and any symp $\xi(u, w)$, with $w \in \xi \setminus u^\perp$, shares a maximal
488 singular subspace W with ξ . It follows from Fact 2.17 that $x^\perp \cap \xi(u, w)$ is at least a line
489 M . But then each point of $M^\perp \cap W$, which is at least 1-dimensional, is symplectic to x ,
490 a contradiction. So, $u^\perp \cap \xi$ is a line N , and it follows from the previous possibility that
491 $u \bowtie v$, for every point $v \in \xi \setminus y^\perp$. Now Fact 2.16 proves the assertion.

492 \square

493 **Lemma 2.20.** *Let x be a point of an exceptional hexagonalic Lie incidence geometry, and suppose
494 x is special to y_1 and y_2 , with $y_1 \perp y_2$. Then also the points $z_1 = [x, y_1]$ and $z_2 = [x, y_2]$ are
495 collinear.*

496 *Proof.* By Fact 2.16, z_1 and y_2 are symplectic. The point x is collinear to z_1 , and hence to a
497 line L of $\xi(z_1, y_2)$. Then y_2 has to be collinear to a point of L , but this point can only be z_2 ,
498 since x and y_2 are special. Note that it is possible that $z_1 = z_2$. \square

499 **Lemma 2.21.** *Let x and L be a point and line, respectively, of an exceptional hexagonalic Lie
500 incidence geometry, and suppose that x is special to each point of L . Then there exists a line M
501 consisting of the points collinear to x and some point of L . Consequently, if x is special to at
502 least two points y_1, y_2 of a line K , with $[x, y_1] = [x, y_2]$, then it is either collinear or symplectic
503 to a unique point of K , and special to the other points of K .*

504 *Proof.* Let y_1 and y_2 be two points on L and set $z_i := [x, y_i]$, $i = 1, 2$. By Fact 2.16, z_1 and y_2
505 are symplectic, and the symp $\xi(z_1, y_2) =: \xi$ contains y_1 . Since x has to be collinear to a line M
506 of ξ , z_2 is contained in M , and hence in ξ as well. Suppose $z_1 = z_2$. Let p be a point on M
507 distinct from z_1 , and let q be the projection of p onto L . Since z_1 is collinear to y_1 and y_2 , z_1
508 is collinear to every point on L , including q . Thus, q is collinear to every point of M , and it
509 follows that $x^\perp \cap q^\perp \supseteq M$, and thus, x and q are symplectic, which contradicts the assumptions.
510 Therefore, z_1 and z_2 are distinct. By Lemma 2.20 it follows that z_1 and z_2 are collinear and
511 $z_1 z_2 = M$. Now, for every point b on L , the point $[x, b]$ is the unique point on M collinear to
512 b . \square

513 Similarly, we can say something about a point being symplectic to all points of a line.

514 **Lemma 2.22.** *Let x and L be a point and line, respectively, of an exceptional hexagonal Lie
515 incidence geometry, and suppose that x is symplectic to each point of L . Then there exists
516 a maximal singular subspace W not contained in a symp, containing L , such that $x^\perp \cap W$ is
517 complementary to L in W , and each symp containing x and a point of L contains $x^\perp \cap W$.*

518 *Proof.* Pick $x_1, x_2 \in L$ and set $\xi_1 := \xi(x, x_1)$. Then $x_2^\perp \cap \xi_1$ is either a line or a maximal singular
519 subspace (cf. Fact 2.17). If it were a line M , then, by Lemma 2.19, x would be special to x_2 , as
520 $x_1 \in M$ and x_2 is not collinear to x . Hence $x_2^\perp \cap \xi_1$ is a maximal singular subspace U . Defining
521 W as the singular subspace generated by U and x_2 , the assertions follow. \square

522 **Lemma 2.23.** *Let ξ_1 and ξ_2 be two non-disjoint symps of an exceptional hexagonal Lie incidence
523 geometry, and let $x_i \in \xi_i$, $i = 1, 2$, be two points. Then $x_1 \equiv x_2$ if, and only if, $\xi_1 \cap \xi_2$ is a point
524 z , the symps ξ_1 and ξ_2 are locally opposite at z , and $\{x_i, z\}$ is a symplectic pair, $i = 1, 2$.*

525 *Proof.* This follows from Fact 2.16 and Lemma 2.19, taking into account that ξ_1 and ξ_2 are
526 locally opposite at an intersection point z if, and only if, each point $z_i \in \xi_i \setminus \{z\}$ is collinear
527 to a unique line of ξ_j , $\{i, j\} = \{1, 2\}$ (which can easily be seen in $\text{Res}(x)$; for instance, for
528 $\text{Res}(x) \cong E_{7,7}(\mathbb{K})$, this is Fact 2.12(iv)). \square

529 **Lemma 2.24.** *Let ξ_1 and ξ_2 be two opposite symps of an exceptional hexagonal Lie incidence
530 geometry, and let $L_1 \subseteq \xi_1$ be a line. Then the set of points of ξ_2 symplectic to some point of L_1
531 is a line L_2 of ξ_2 . All symps having a point on L_1 and a point on L_2 share a unique common
532 point x , which is collinear to both L_1 and L_2 .*

533 *Proof.* First, we note that, from general building-theoretic considerations, every point in ξ_1 has
534 an opposite in ξ_2 ; hence, if $x_1 \in L_1$ and $x_2 \in x_1^\perp \cap \xi_2$, then Lemma 2.23 implies that ξ_2 and
535 $\xi(x_1, x_2)$ are locally opposite at x_2 and, by Fact 2.17, every point of ξ_2 not collinear to x_2
536 is opposite x_1 . If such a point y_2 were symplectic to a point $y_1 \in L_1$, then Fact 2.17 would
537 again imply that x_1 , being collinear with y_1 , is special to y_2 , a contradiction. We conclude that
538 “being symplectic” preserves collinearity in both directions (interchanging the roles of ξ_1 and
539 ξ_2), and hence is an isomorphism between ξ_1 and ξ_2 . Let $L_2 \subseteq \xi_2$ correspond to L_1 under that
540 isomorphism.

541 Let $x'_1 \in L_1 \setminus \{x_1\}$. Then there is a unique point $[x'_1, x_2] =: x \in \xi(x_1, x_2)$ collinear to x_2 and
542 x'_1 . Clearly, $x \perp L_1$. Standard arguments switching roles of points on L_1 and L_2 imply that x
543 is independent of x_1 and x_2 , and so x is collinear to each point of $L_1 \cup L_2$. It is now easy to see
544 that x is contained in each symp containing a point of L_1 and a point of L_2 . Uniqueness of x
545 follows from the fact that $x = [x'_1, x_2]$. \square

546 **Lemma 2.25.** *Let Δ be an exceptional hexagonal Lie incidence geometry, and let $\{x_1, x_2\}$ be
547 a symplectic pair of points in Δ . Let x'_2 be another point in Δ symplectic to x_1 and collinear to
548 x_2 . Let x'_1 be a point such that $x_1 \perp x'_1 \perp x'_2$. Then x'_1 and x_2 cannot be special.*

549 *Proof.* The point x'_1 is collinear to (at least) a line L of $\xi(x_1, x_2)$, which contains x_1 and a
550 point y collinear to x_2 . If x'_1 were special to x_2 , then $y = [x'_1, x_2] = x'_2 \perp\!\!\!\perp x_1$, contradicting
551 $y \perp x_1$. \square

552 Lemma 2.19 implies that, whenever two points x, y of an exceptional hexagonal Lie incidence
553 geometry Δ are opposite, then every symp through x contains a unique point symplectic to y .
554 This way, one obtains all points $x^\perp \cap y^\perp$. This defines a subspace of Δ which we call the *equator*
555 *geometry (with poles x and y)* and denote as $E(x, y)$. We view these as point-line geometries as
556 soon as they contain lines. The latter is the case in the simply laced case (types A_n, D_n, E_6, E_7
557 and E_8). In all those cases, these equator geometries can be defined in exactly the same way
558 for the corresponding hexagonal geometries (here the Lie incidence geometries of types $A_{n,\{1,n\}}$,

559 $D_{n,2}$, and the exceptional ones not of type F_4), and we have the following sequences (where
560 $\Delta \rightarrow \Delta'$ means that Δ' is an equator geometry of Δ), which can be deduced from [16]:

$$\begin{cases} E_{8,8}(\mathbb{K}) \rightarrow E_{7,1}(\mathbb{K}) \rightarrow D_{6,2}(\mathbb{K}), \\ E_{6,2}(\mathbb{K}) \rightarrow A_{5,\{1,5\}}(\mathbb{K}) \rightarrow A_{3,\{1,3\}}(\mathbb{K}). \end{cases}$$

561

562 In the case of type F_4 , equator geometries as defined here have no lines. We shall give an
563 alternative definition for that case in the next paragraph.

564 **2.5. Metasymplectic spaces.** The previous paragraph includes the metasymplectic spaces,
565 that is, the Lie incidence geometries of types $F_{4,1}$ and $F_{4,4}$. We now introduce some notation
566 making apparent the differences between $F_{4,1}$ and $F_{4,4}$, based on the Dynkin diagram of type
567 F_4 rather than the Coxeter diagram. Everything in the paragraph can be found in [22] and is,
568 of course, based on the fundamental work of Tits in [30].

569 Given a field \mathbb{K} , a quadratic algebra \mathbb{A} over \mathbb{K} is an algebra that admits a bilinear form $b : \mathbb{A} \rightarrow \mathbb{K}$
570 such that for every $x \in \mathbb{A}$ we have $x^2 - (b(1, x) + b(x, 1))x + b(x, x) = 0$. The element $b(x, x)$
571 is called the *norm* of x and briefly denoted as $n(x)$. We assume that \mathbb{A} is *alternative*, that is,
572 \mathbb{A} satisfies the alternative laws $(ab)b = ab^2$ and $a(ab) = a^2b$, and that \mathbb{A} is a *unital division*
573 algebra, that is, it has an identity and every element has an inverse. We can associate a polar
574 space of rank $r \geq 2$ with every quadratic alternative unital division algebra as follows. Let V
575 be the vector space isomorphic to the direct sum of \mathbb{A} and $2r$ copies of \mathbb{K} . Then define the
576 quadratic form

$$\beta : V \rightarrow \mathbb{K} : (x_{-r}, x_{-r+1}, \dots, x_{-1}, x_0, x_1, \dots, x_r) \mapsto x_{-1}x_1 + x_{-2}x_2 + \dots + x_{-r}x_r - n(x_0),$$

577 where $x_0 \in \mathbb{A}$ and $x_i \in \mathbb{K}$, for all $i \in \{-r, -r+1, \dots, -1, 1, 2, \dots, r\}$. Then the null set of β
578 defines a quadric of Witt index r , whose natural point-line geometry is a polar space of rank r ,
579 which we denote by $B_{r,1}(\mathbb{K}, \mathbb{A})$.

580 From the classification of buildings of type F_4 in [30], we know that such a building is uniquely
581 determined by a field \mathbb{K} and a quadratic alternative unital division algebra \mathbb{A} over \mathbb{K} . We denote
582 that building by $F_4(\mathbb{K}, \mathbb{A})$, where we usually substitute \mathbb{K} and \mathbb{A} with their sizes if they are finite.
583 Now, we assign the type function to the diagram in such a way that the symps of $F_{4,1}(\mathbb{K}, \mathbb{A})$
584 are isomorphic to the polar space $B_{3,1}(\mathbb{K}, \mathbb{A})$. The building $F_4(\mathbb{K}, \mathbb{K})$ will sometimes be referred
585 to as “split”. It is also characterised by the fact that the residues of type 4 correspond to
586 *symplectic* polar spaces, that is, polar spaces defined by a non-degenerate alternating bilinear
587 form, or equivalently, a null polarity. If we define a *hyperbolic line* of a polar space as the set
588 $(x^\perp \cap y^\perp)^\perp = \{x, y\}^{\perp\perp}$, for two non-collinear points x and y , then, in a symplectic polar space,
589 a hyperbolic line is an ordinary line of the ambient projective space which is not a line of the
590 polar space.

591 We now define equator geometries. Let p, q be two opposite points of $F_{4,1}(\mathbb{K}, \mathbb{A})$, $i \in \{1, 4\}$.
592 The *equator* $E(p, q)$ is the set of points that are symplectic simultaneously to p and q . The
593 intersection of $E(p, q)$ with the union of the symps through a given plane containing either p
594 or q is, by definition, a line of the *equator geometry*. One checks that, replacing “plane” with
595 “maximal singular subspace contained in a symp”, this definition applied to the simply laced
596 case provides the same equator geometries as defined earlier (this is proved explicitly in many
597 cases in [16]).

598 We are going to briefly need the extended equator geometry, but only for the split case $\mathbb{A} = \mathbb{K}$.
599 Let $E(p, q)$ be an equator of $F_{4,4}(\mathbb{K}, \mathbb{K})$ and define $\widehat{E}(p, q)$ as the set of points symplectic to at
600 least two opposite points of $E(p, q)$. Endow $\widehat{E}(p, q)$ with all lines of each equator geometry in-
601 cluded in it. Then we obtain the *extended equator geometry*, also denoted by $\widehat{E}(p, q)$. This time,
602 $p, q \in \widehat{E}(p, q)$. It is always isomorphic to $B_{4,1}(\mathbb{K}, \mathbb{K})$, see [22]. If \mathbb{K} is perfect of characteristic 2,
603 then notice that $B_{4,1}(\mathbb{K}, \mathbb{K})$ is a symplectic polar space.

604 **2.6. Generalised hexagons.** Our results include buildings of type G_2 ; the associated point-
 605 line geometries are better known as generalised hexagons, introduced by Tits [29]. For $n \geq 3$, a
 606 *generalised n -gon*, or *generalised polygon* if we do not want to specify n , is a point-line geometry
 607 $\Gamma = (X, \mathcal{L})$ such that the (bipartite) graph on $X \cup \mathcal{L}$, with $x \in X$ adjacent to $L \in \mathcal{L}$ if $x \in L$,
 608 has diameter n and girth $2n$ (we call this graph the *incidence graph of Γ*). We also assume that
 609 every line has at least three points and every point is contained in at least three lines (thickness
 610 of the associated building). Generalised 3-gons are the same things as projective planes, and
 611 generalised 4-gons, also known as generalised quadrangles, are polar spaces of rank 2. For more
 612 general background and results on generalised n -gons, see [32]. Finite generalised quadrangles
 613 are studied in detail in [23]. We recall the following definitions. The *order* of a generalised n -gon
 614 is the pair (s, t) such that each line contains precisely $s + 1$ points and each point is contained in
 615 precisely $t + 1$ lines. A *spread* in a generalised quadrangle $\Gamma = (X, \mathcal{L})$ is a partition of X into
 616 members of \mathcal{L} . If Γ has order (s, t) , then a spread contains exactly $1 + st$ lines. A *subpolygon* of
 617 a generalised polygon is the generalised polygon induced on a convex subgraph of the incidence
 618 graph of Γ .

619 Here, we are particularly interested in generalised hexagons, and more specifically in those
 620 that satisfy the *Moufang condition*, as these are the counterparts of type G_2 of the spherical
 621 buildings of rank at least 3 (since these automatically satisfy such condition) and are the natural
 622 geometries for the simple algebraic groups of that type. Recall from [31] that a Moufang hexagon
 623 is determined by a field \mathbb{K} and a quadratic Jordan division algebra \mathbb{J} over \mathbb{K} ; using the Bourbaki
 624 labelling of nodes for Dynkin diagrams, we define $G_{2,2}(\mathbb{K}, \mathbb{J})$ as the hexagon where the point
 625 rows are parametrised by \mathbb{J} and the line pencils by \mathbb{K} . There is perhaps ambiguity when $\mathbb{J} = \mathbb{K}$,
 626 but we take that ambiguity away by mentioning that, in this case, $G_{2,2}(\mathbb{K}, \mathbb{K})$ is the hexagon
 627 arising from a triality of type I_{1d} , as defined by Tits [29]. Such a hexagon shall be called the
 628 *split Cayley hexagon* (as in [32]), and the corresponding building is referred to as being *split*.
 629 The *triality hexagon* is $G_{2,2}(\mathbb{K}, \mathbb{J})$, where \mathbb{J} is a cubic Galois field extension of \mathbb{K} . We will only
 630 need this hexagon in the finite case. The finite triality hexagon has order (q^3, q) , for some prime
 631 power q . In the finite case, we replace the field and the Jordan algebra with their sizes in the
 632 notation, just like we did for finite metasymplectic spaces.

633 Let $\Gamma = (X, \mathcal{L})$ be a generalised hexagon. We use the notation and terminology of parapolar
 634 spaces to express the mutual position of two points, with the obvious meaning. In particular,
 635 points are special if they are not collinear but they are collinear to a unique common point.
 636 With that, a *hyperbolic line* H in Γ is a set of mutual special points collinear to a common given
 637 point p such that, for each point q opposite p , we have $q^\times \cap p^\perp = H$ as soon as $|q^\times \cap H| \geq 2$. If
 638 we call a point of Γ *close to* a line if it is collinear to a unique point of that line, then a *distance-3*
 639 *trace* in Γ is the set of points close to two given opposite lines L and M . We denote it by $[L, M]_3$.
 640 It is called *regular* if $[N, M]_3 = [L, M]_3$ whenever N is opposite M and $|[N, M]_3 \cap [L, M]_3| \geq 2$.
 641 There are reasons to call a distance-3 trace in a split Cayley hexagon over a perfect field in
 642 characteristic 2 an *imaginary line*, as we shall explain in the proof of Proposition 5.9. We have
 643 adopted this terminology in Main Result A and Main Result B above, too. The terminology
 644 between parentheses, namely *ideal line*, is Ronan's terminology [25].

645 **2.7. Opposition and projections.** In this final paragraph of the preliminaries, we invoke
 646 some general theory about opposition, define projections, and note down some consequences
 647 which are rather interesting in our context because they unify some arguments across all types.
 648 Let F and F' be opposite simplices in a spherical building Ω . For us, F and F' will almost
 649 always be vertices, but we choose to state and define things slightly more generally. Then, by
 650 [30, look up], for every chamber $C \supseteq F$ there exists a unique chamber $C' \supseteq F'$ at nearest
 651 (gallery) distance from C . By [30, look up], the map $C \mapsto C'$ induces an isomorphism from
 652 $\text{Res}_\Omega(F)$ to $\text{Res}_\Omega(F')$. This means that for every vertex v joinable to F , there exists a unique
 653 vertex v' joinable to F' and closest to v ; we denote $v' = \text{proj}_{F'}^F(v)$ and we call v' the *projection*
 654 of v onto F' . If F is obvious or not important, we sometimes write $\text{proj}_{F'}$ instead of $\text{proj}_{F'}^F$.

655 For example, the map in the proof of Lemma 2.24 between the two opposite symps ξ_1 and ξ_2 of
 656 an exceptional hexagonal Lie incidence geometry Δ , given on the points by “being symplectic”,
 657 coincides with the pair of projections $\text{proj}_{\xi'}^{\xi}$ and $\text{proj}_{\xi}^{\xi'}$. As a second example, the projection
 658 proj_x^y from a point x to an opposite point y in an exceptional hexagonal Lie incidence geometry
 659 maps a line L through x to the unique line through y containing a point collinear to some point
 660 of L .

661 The following notion will be very convenient to classify geometric lines. Let Ω be any spherical
 662 building and let v_1, v_2, v_3 be three vertices of the same type. Then, using the terminology of
 663 [21], we call $\{v_1, v_2, v_3\}$ a *round-up triple* if no vertex of Ω is opposite exactly one of v_1, v_2, v_3 .
 664 Then, by definition, round-up triples in Lie incidence geometries correspond to round-up triples
 665 in the corresponding building. We will make extensive use of round-up triples when classifying
 666 geometric lines in this paper.

667 We have the following connection between global and local opposition.

668 **Proposition 2.26** (Proposition 3.29 of [30]). *Let F and F' be opposite simplices of a spherical
 669 building Ω . Let v be a vertex of Ω adjacent to each vertex of F , and let i be the type of v . Then
 670 the type i' of the vertex $\text{proj}_{F'}^F(v)$ is the opposite in $\text{Res}(F')$ of the opposite type of i in Ω . Also,
 671 vertices $v \sim F$ and $v' \sim F'$ are opposite in Ω if, and only if, v' is opposite $\text{proj}_{F'}^F(v)$ in $\text{Res}_{\Omega}(F')$.*

672 **Corollary 2.27.** *Let F be a simplex of a spherical building Ω . Then a collection T of vertices
 673 in $\text{Res}(F)$ admits an opposite in $\text{Res}(F)$ (viewed as a spherical building on its own) if and only
 674 if it admits an opposite vertex in Ω . Also, a set of vertices in $\text{Res}(F)$ is a geometric line of
 675 $\text{Res}(F)$ if, and only if, it is a geometric line of Ω . A triplet of vertices is a round-up triple in
 676 $\text{Res}(F)$ if, and only if, it is a round-up triple in Ω .*

677 *Proof.* If v is a vertex in $\text{Res}(F)$ opposite each vertex of T in $\text{Res}(F)$, then, for any simplex F'
 678 opposite F , the vertex $\text{proj}_{F'}^F(v)$ is opposite every member of T by Proposition 2.26. Conversely,
 679 let v' be a vertex of Ω opposite each member of T . Select $t \in T$. Applying Proposition 2.26,
 680 we find a simplex F' in $\text{proj}_{v'}^t(F)$ opposite F . Then, again by Proposition 2.26, $\text{proj}_F^{F'}(v')$ is, in
 681 $\text{Res}(F)$, opposite every member of T . The second and third assertions now also follow. \square

682 If we want to use Corollary 2.27, then we have to know something about blocking sets, geometric
 683 lines, or round-up triples in residues; if these are classical, then from [4], [10], and [21], we infer:

684 **Proposition 2.28.** (1) *Let T be a set of $q + 1$ vertices of type j in either $A_n(q)$, $1 \leq j \leq n$,
 685 $n \geq 2$, or $D_n(q)$, $1 \leq j \leq n$, $n \geq 4$, such that no vertex is opposite all of them. Then T is a
 686 line in the corresponding Lie incidence geometry $A_{n,j}(q)$, or $D_{n,j}(\mathbb{K})$, respectively.*
 687 (2) *Every geometric line of $A_{n,j}(\mathbb{K})$, $1 \leq j \leq n$, $n \geq 2$, for \mathbb{K} an arbitrary skew field, is an
 688 ordinary line. Hence, every round-up triple of points in such a geometry is contained in an
 689 ordinary line. The same holds in $D_{n,j}(\mathbb{K})$, $1 \leq j \leq n$, $n \geq 4$, for \mathbb{K} an arbitrary field.*

690 **Proposition 2.29.** (1) *Let L be a geometric line of a Lie incidence geometry Γ of type $B_{n,j}$,
 691 $1 \leq j \leq n$. Then L is either a line of Γ , or $j \neq n$, Γ is the j -Grassmannian of a symplectic
 692 polar space Δ , there exists a singular subspace U of dimension $j - 2$ of Δ , and L corresponds
 693 to a hyperbolic line of $\text{Res}_{\Delta}(U)$, or $j = n$, all symps of Γ are symplectic polar spaces of
 694 rank 2, and L is a hyperbolic line in a symp.*

695 (2) *Let T be a round-up triple of points of a Lie incidence geometry Γ of type $B_{n,j}$, $1 \leq j \leq n$,
 696 and let Δ be the associated polar space. Then L is either contained in a line of Γ , or $j \neq n$,
 697 there exists a singular subspace U of Δ of dimension $j - 2$, and T is contained in a hyperbolic
 698 line of $\text{Res}_{\Delta}(U)$, or $j = n$, and L is contained in a hyperbolic line of a symp of Γ .*

699 (3) *Let T be a set of at most $q + 1$ vertices of type j in a finite (thick) building Δ of type B_n ,
 700 $j \leq n - 1$, $n \geq 3$, such that each panel of cotype j is contained in exactly $q + 1$ chambers.
 701 Suppose no vertex of Δ is opposite all members of T . Then T is either a geometric line in the
 702 corresponding Lie incidence geometry of type $B_{n,j}$, or Δ has a rank 2 residue corresponding
 703 to a generalised quadrangle with order (\sqrt{q}, q) , and T is a spread in a subquadrangle Γ' of*

704 order (\sqrt{q}, \sqrt{q}) . In the latter case, Γ' is a symplectic polar space, and q is a power of 2. In
 705 particular, if $|T| \leq q$, then it always admits a vertex opposite all its members.

706 Also, let us quote the following property, which we will use regularly.

707 **Proposition 2.30** (Proposition 8.5 of [9]). *If every panel of a spherical building is contained in
 708 at least $s+1$ chambers, then every set of s chambers admits an opposite chamber. In particular,
 709 every set of s vertices admits an opposite vertex.*

710 Noting that in any apartment each vertex has a unique opposite, the following assertion is
 711 immediate by considering an apartment through S_1 and S_2 .

712 **Lemma 2.31.** *If S_1 and S_2 are two distinct simplices of a spherical building, then there exists
 713 at least one simplex opposite S_1 , but not opposite S_2 .*

714 One more property we will use frequently is the following.

715 **Proposition 2.32.** *Suppose every round-up triple of points in a Lie incidence geometry Δ is
 716 contained in a line. Then each geometric line of Δ is an ordinary line.*

717 *Proof.* Let L be a geometric line of Δ . By Proposition 2.30, L contains at least three elements.
 718 Pick $x_1, x_2 \in L$. Clearly, every triple of elements of L containing x_1, x_2 is a round-up triple and
 719 hence contained in a line M , which coincides with the unique line through x_1 and x_2 . Hence
 720 $L \subseteq M$. If $L \neq M$, then each point opposite x_1 and not opposite some point of $M \setminus L$ would
 721 be opposite all members of L , a contradiction. The proposition is proved. □

722

723 In the present paper, we will have to classify round-up triples in many geometries. The following
 724 general properties will come in handy.

725 **Lemma 2.33.** *Let $\{v_1, v_2, v_3\}$ be a round-up triple of vertices of some common type in a spherical
 726 building Δ . If v_1 and v_2 are joinable to a common vertex v , then also v_3 is joinable to v .
 727 Hence, in this case, $\{v_1, v_2, v_3\}$ is a round-up triple in the residue of v .*

728 *Proof.* Consider an apartment Σ of Δ containing v and v_3 , and let w be the unique vertex of
 729 Σ opposite v_3 . By the definition of round-up triple, we may assume that w is opposite v_1 . Let
 730 Σ' be an apartment containing w and the simplex $\{v, v_1\}$. Let $\varphi : \Sigma' \rightarrow \Sigma$ be an isomorphism
 731 of complexes fixing both w and v (as required to exist by the definition of a building). Then
 732 $\varphi(v_1) = v_3$ as opposition is preserved. Hence v is joinable to v_3 , as φ preserves the simplicial
 733 structure. □

734 **Lemma 2.34.** *Let $\{v_1, v_2, v_3\}$ be a round-up triple of vertices of some common type in a spherical
 735 building Δ . Suppose there are simplices $\{v, w_1\}$ and $\{v, w_2\}$ such that w_i is joinable to v_i ,
 736 $i = 1, 2$. Suppose also that v_1 and v_2 are not joinable to a common vertex. Then there exists a
 737 vertex w_3 joinable to both v and v_3 , and the type of w_3 can be chosen equal to the type of either
 738 w_1 or w_2 .*

739 *Proof.* Consider an apartment Σ of Δ containing $\{v, w_1\}$ and v_3 , and let w be the unique
 740 vertex of Σ opposite v_3 . Assume, for a contradiction, that v_1 is opposite w . Let Σ^* be an
 741 apartment containing $\{v_1, w_1\}$ and w , and let $\varphi^* : \Sigma^* \rightarrow \Sigma$ be an isomorphism fixing w and w_1 .
 742 Then $\varphi^*(v_1) = v_3$ by uniqueness of opposites in apartments. Hence w_1 is joinable to v_3 , and
 743 Lemma 2.33 implies that it is also joinable to v_2 , contradicting our assumptions. We conclude
 744 that w is opposite v_2 . Let Σ' be an apartment containing $\{v_2, w_2\}$ and w , and let Σ'' be an
 745 apartment containing $\{v, w_2\}$ and w .

746 Let $\varphi'' : \Sigma'' \rightarrow \Sigma$ be an isomorphism fixing w and v , and denote $\varphi''(w_2)$ briefly as w_3 . Note that,
 747 by the definition of buildings, we may assume that φ'' is type-preserving, implying that w_3 has
 748 the same type as w_2 . Also, w_3 is joinable to v , as w_2 is. Let $\varphi' : \Sigma' \rightarrow \Sigma''$ be an isomorphism
 749 fixing w_2 and w . Then $\varphi = \varphi'' \circ \varphi' : \Sigma' \rightarrow \Sigma$ is an isomorphism fixing w , hence mapping v_2 to

750 v_3 . But $\varphi(w_2) = w_3$. Hence w_3 is joinable to both v_3 and v . Interchanging the roles of v_1 and
751 v_2 , we can also choose the type of w_3 to be the same as that of w_1 .

752 This completes the proof of the lemma. □

753 Setting $v_2 = w_2$ in the previous lemma, noting that the only vertex of the same type as v_2
754 joinable to v_3 is v_3 itself, and then also noting the symmetry of the situation, we obtain the
755 following consequence.

756 **Corollary 2.35.** *Let $\{v_1, v_2, v_3\}$ be a round-up triple of vertices of some common type in a
757 spherical building Δ . Suppose there exists a simplex $\{w_1, w_2\}$ such that w_i is joinable to v_i ,
758 $i = 1, 2$. Suppose also that v_1 and v_2 are not joinable to a common vertex. Then v_3 is joinable
759 to both w_1 and w_2 .*

760 Finally, we note that we called certain objects “far” from each other. It was always the case that
761 these objects referred to vertices of the corresponding building, and either they were opposite
762 (for example, a point and a symp in $E_{6,1}(\mathbb{K})$), or one vertex was joinable to a vertex opposite
763 the other. We will extend now this notion of *far* to all such situations. Hence two objects in a
764 Lie incidence geometry will be called *far (from each other)* if they correspond to vertices in the
765 building and one vertex is joinable to a vertex opposite the other.

766 3. POINTS AND LINES IN THE EXCEPTIONAL MINUSCULE GEOMETRIES

767 3.1. Points of Lie incidence geometries of type $E_{6,1}$.

768 3.1.1. Blocking sets.

769 **Proposition 3.1.** *If every line of a parapolar space Γ of type $E_{6,1}$ contains exactly $s + 1$ points,
770 then there exists a symp opposite each point of an arbitrary set S of $s + 1$ (distinct) points,
771 except if these points are contained in a single line.*

772 *Proof.* Let S be a set of $s + 1$ distinct points p_0, \dots, p_s in Γ that are not all on a common line.
773 Assume first that all points of S are mutually collinear. Then p_0, \dots, p_s are either contained
774 in a common 4-space or in a common 5-space. Since both are residues in the corresponding
775 building, Corollary 2.27 and Proposition 2.28 imply that S is a line, proving the assertion.

776 So, we may assume that at least two points of S have distance 2. Let p_0 and p_1 be two non-
777 collinear points of S . Consider the symp $\xi_0 = \xi(p_0, p_1)$. For each point of S close to ξ_0 , we
778 choose an arbitrary point in ξ_0 collinear with it. Let S' be the set of points thus obtained,
779 complemented with the points of S contained in ξ_0 . By the main result of [10], in particular
780 Lemma 3.5 therein, we find a point b in ξ_0 non-collinear to each member of S' , and hence non-
781 collinear to each member of S . Let Ξ be the set of symps $\xi(b, p_i)$, for $i \in \{0, 1, \dots, s\}$. There
782 are at most s such different symps, as $\xi(b, p_0) = \xi(b, p_1)$. Applying Proposition 2.30 in $\text{Res}(b)$,
783 we find a symp ξ through b intersecting each member of Ξ in exactly b . Then, by Lemma 2.5,
784 the symp ξ is far from all points of S .

785 The proof is complete. □

786 3.1.2. *Geometric lines.* Corollary 5.6 of [21] states that geometric lines of Lie incidence geometries of type $E_{6,1}$ are the same things as lines.

788 3.2. **Lines of Lie incidence geometries of type $E_{6,1}$.** We now look at the lines of Lie
789 incidence geometries of type $E_{6,1}$.

790 3.2.1. *Blocking sets.*

791 **Proposition 3.2.** *Let Δ be Lie incidence geometry of type $E_{6,1}$ such that every line has $s+1$ 792 points. Let $T = \{L_0, \dots, L_s\}$ be a set of $s+1$ different lines in Δ such that they do not form a 793 line pencil in a plane. Then there exists a 4-space opposite all lines L_0, \dots, L_s in Δ .*

794 *Proof.* We may put L_0, \dots, L_s in respective symps not containing a common 4-space. Then (the 795 dual of) Proposition 3.1 yields a point b opposite all of those symps. Then Lemma 2.9 yields 796 3-spaces $U_i = b^\perp \cap L_i^\perp$.

797 In $\text{Res}(b) \cong D_{5,5}(\mathbb{K})$, the $\langle b, U_i \rangle$ are 3-spaces. Viewed as $D_{5,1}(\mathbb{K})$, they become lines. If they do 798 not form a planar line pencil, then Proposition 2.28 yields a line opposite all of them, which 799 translates into a 4-space W through b locally opposite each $\langle b, U_i \rangle$. Proposition 2.26 implies 800 that W is opposite each member of T . So, we may suppose that the $\langle b, U_i \rangle$ form a planar line 801 pencil in $\text{Res}(b)$, viewed as a polar space. Since points and planes of that polar space correspond 802 to symps and lines of $\text{Res}(b)$, viewed as $D_{5,5}(\mathbb{K})$, we may assume that the 4-spaces $\langle b, U_i \rangle$ form 803 the set of 4-spaces through a given plane β of Δ contained in a given symp ξ .

804 All U_i intersect β in lines N_i not containing b . Set $W_i = \langle U_i, L_i \rangle$.

805 We can find a 5-space opposite all W_i unless all W_i intersect in a common plane α .

806 **Case 1:** Suppose first that all W_i do not intersect in a common plane and denote by B a 807 5-space opposite all of them. The last assertion of Fact 2.4 yields lines L'_i in B such that each 808 point of L_i is collinear to a unique point of L'_i , but no point of $B - \bigcup_{i=0}^s L'_i$ is collinear to any 809 point of any L_i .

810 If the L'_i do not form a planar line pencil in B , then we can find a 3-space M in B opposite each 811 L'_i . By Fact 2.3, that 3-space is contained in a unique maximal 4-space that we will denote by 812 C , and, by Lemma 2.7, C is opposite all L_i . So suppose the L'_i form a planar line pencil in B . 813 We will denote the corresponding plane as γ and the intersection $L'_0 \cap L'_1 \cap \dots \cap L'_s$ as d .

814 Lemma 2.8 yields a point $q_0 \in \langle b, U_0 \rangle \setminus U_0$ collinear to a 3-space of B disjoint from L_0 , and hence 815 intersecting γ in a unique point q'_0 . Without loss of generality, we may assume that $q'_0 \in L'_1$. 816 Hence there is a unique point $q_1 \in L_1$ collinear to q'_0 . Since $q_0 \notin U_1$, the symp $\xi(q_0, q_1)$ is 817 well-defined and contains both q'_1 and N_1 . But then N_1 , which is contained $\langle L_1, U_1 \rangle$, contains 818 a point collinear to q'_1 . Since b is collinear to all points of N_1 and to no point of L_1 , these lines 819 are disjoint. This contradicts the last assertion of Fact 2.4. We conclude that Case 1 cannot 820 occur.

821 **Case 2:** Now suppose that all W_i intersect in a common plane α . Let $i \in \{0, 1, \dots, s\}$. Since 822 $U_i \subseteq \xi$, the 5-space W_i intersects ξ in a 4'-space V_i . Since, by Fact 2.1, W_i is determined by ξ 823 and any point of $W_i \setminus V_i$, the plane α is contained in ξ . Hence the V_i form the set of 4'-spaces 824 through α . Since $U_i = b^\perp \cap V_i$, each line N_i coincides with $L := \alpha \cap b^\perp \subseteq U_i$.

825 By the choice of b , the line L_i is not contained in ξ , and a fortiori neither in α .

826 Let A_0 be a 5-space containing L_0 that does not contain the plane α . Then we can find a 827 5-space B opposite all 5-spaces A_0, W_1, \dots, W_s .

828 Again, since $\langle b, U_i \rangle$ is a 4-space and B a 5-space, we can find a point q_1 in $\langle b, U_1 \rangle$ that is collinear 829 to a 3-space of B . As in Case 1, $q_1 \notin U_1$. Since every 3-space of B intersects γ , q_1 is collinear 830 to a point q'_1 in γ that is collinear to some point q_k of L_k , for some $k \in \{0, 1, \dots, s\}$.

831 As in Case 1, $k \neq 0$ leads again to a contradiction. Hence, considering $\xi(q_0, q_1)$, we see that q'_1 832 is collinear to some line q_0q , with $q \in L$. We now make some observations and define planes ϵ 833 and ϵ' .

834

- Since W_0 and A_0 have the line L_0 in common, $A_0 \cap W_0$ is a plane and hence they are 835 adjacent. Since δ is in A_0 and A_0 is opposite B , every point of δ is far from B .
- Since W_0 and B cannot be opposite, but W_0 is adjacent to the opposite ϵ to B , Fact 2.16 836 yields a 5-space W intersecting both W_0 and B in planes denoted by ϵ and ϵ' , respectively.
- Every point of ϵ is close to B , and every point of α is far from B . Therefore, the planes 837 α and ϵ cannot intersect.

840 As $L_0 \subseteq A_0$, no point of L_0 is in ϵ . But since each point of L_0 has to be collinear to a point of
 841 ϵ' , and every point of L_0 is collinear to a unique point of B on L'_0 , it follows that L'_0 is contained
 842 in ϵ' . In particular $d \in \epsilon'$. It follows that $d^\perp \cap W_0$ is a 3-space containing ϵ , hence intersecting
 843 α in a unique point e . Since $d \in L'_i$, $i = 1, 2, \dots, s$, it is collinear to a unique point of W_i , and
 844 that point is on L_i . hence $e \in L_1 \cap L_2 \cap \dots \cap L_s$. We conclude $\{e\} = \xi \cap L_i$. Switching the roles
 845 of L_0 and L_1 , we obtain $L_0 \cap \xi = L_2 \cap \xi = \{e\}$.

846 Now T belongs to $\text{Res}_\Delta(e)$ and the assertion follows from Corollary 2.27. □

847

848 3.2.2. *Geometric lines.* Now we classify geometric lines in Lie incidence geometries of type $E_{6,3}$.
 849 In order to do so, we classify round-up triples of lines in $E_{6,1}(\mathbb{K})$, for an arbitrary field \mathbb{K} .

850 **Lemma 3.3.** *Let $\{L_1, L_2, L_3\}$ be a round-up triple of lines in the exceptional Lie incidence
 851 geometry $E_{6,1}(\mathbb{K})$ such that L_1 and L_2 have at least one point in common. Then exactly one of
 852 the following holds.*

853 (i) $L_1 = L_2 = L_3$;
 854 (ii) L_1, L_2, L_3 are three lines in a common planar line pencil.

855 *Proof.* If $L_1 = L_2 \neq L_3$, then a 4-space opposite L_1 but not opposite L_3 (which exists by
 856 Lemma 2.31) violates the defining property of a round-up triple. Hence, if $L_1 = L_2$, then (i)
 857 holds.

858 Now assume $L_1 \cap L_2 = \{x\}$. By Lemma 2.33, $x \in L_3$. Then Corollary 2.27 and Proposition 2.28
 859 imply that L_1, L_2, L_3 are contained in a plane, and (ii) follows. □

860 **Lemma 3.4.** *Let $\{L_1, L_2, L_3\}$ be a round-up triple of pairwise disjoint lines in the exceptional
 861 Lie incidence geometry $E_{6,1}(\mathbb{K})$. Let y_1 be an arbitrary point of L_1 . If y_1 is symplectic to some
 862 point of L_2 , then it is collinear to some point of L_3 .*

863 *Proof.* Suppose $y_i \in L_i$, $i = 1, 2$, with $y_1 \perp\!\!\!\perp y_2$. We claim that there exists a point $u \in y_1^\perp \cap y_2^\perp$
 864 not collinear to any point of L_3 . Indeed, suppose each point of $y_1^\perp \cap y_2^\perp$ is collinear to some
 865 point of L_3 . If that point of L_3 is unique, then, since $\{y_1, y_2\}^\perp = \{y_1, y_2\}$ in each hyperbolic
 866 quadric, either y_1 or y_2 belongs to L_3 , a contradiction. If L_3 were contained in $\xi(y_1, y_2)$, then y_1
 867 would be collinear to a point of L_3 , and the assertion would follow. If L_3 intersected $\xi(y_1, y_2)$
 868 in a point z , then for each point $z_3 \in L_3$ we would have $z_3^\perp \cap \xi(y_1, y_2) \subseteq z^\perp \cap \xi(y_1, y_2)$, and this
 869 only contains $y_1^\perp \cap y_2^\perp$ if $z \in \{y_1, y_2\}$, a contradiction again. Hence L_3 is disjoint from $\xi(y_1, y_2)$.
 870 Now Lemma 2.6 implies that L_3 is collinear to a plane π of $\xi(y_1, y_2)$, and all points of $\xi(y_1, y_2)$
 871 collinear to some point of L_3 are collinear to all points of π , a contradiction since $y_1^\perp \cap y_2^\perp$ is
 872 only collinear to $\{y_1, y_2\}$. The claim is proved.

873 Now, by Proposition 2.26, a 4-space U through u locally opposite the projection of L_3 onto u
 874 is opposite L_3 , but not opposite either L_1 or L_2 , as u is collinear to both $y_1 \in L_1$ and $y_2 \in L_2$.
 875 This final contradiction proves the lemma. □

876 **Lemma 3.5.** *Let $\{L_1, L_2, L_3\}$ be a round-up triple of lines in the exceptional Lie incidence
 877 geometry $E_{6,1}(\mathbb{K})$. Then exactly one of the following holds.*

878 (i) $L_1 = L_2 = L_3$;
 879 (ii) L_1, L_2, L_3 are three lines in a common planar line pencil.

880 *Proof.* By Lemma 3.3, the statement is true if, for some $i, j \in \{1, 2, 3\}$, $i \neq j$, the lines L_i and
 881 L_j have a point in common. So we may assume that L_1, L_2, L_3 are pairwise disjoint.

882 By Lemma 3.4, we may assume that some point $x_1 \in L_1$ is collinear to some point $x_2 \in L_2$. Set
 883 $M := x_1 x_2$. Lemma 2.34 implies that M also intersects L_3 . So $M \cap L_3$ is also a point x_3 . Now
 884 select $y_1 \in L_1 \setminus \{x_1\}$. By Lemma 3.4, we may again assume that y_1 is collinear to some point
 885 y_2 of L_2 . Then, as in the previous paragraph, the line L_3 has a point y_3 in common with $y_1 y_2$.
 886 Clearly $y_3 \neq x_3$, as otherwise L_1, L_2 are contained in the plane generated by the lines M and

887 y_1y_2 , contradicting our assumption that $L_1 \cap L_2 = \emptyset$. Similarly, $y_2 \neq x_2$. If all of x_1, x_2, x_3 are
 888 collinear to all of y_1, y_2, y_3 , then all of L_1, L_2, L_3 are contained in a singular 3-space, which is
 889 a residue of a simplex of type $\{2, 5, 6\}$ in the corresponding building. Then Corollary 2.27 and
 890 Proposition 2.28 lead to the contradiction that L_1, L_2, L_3 are coplanar and hence not disjoint.
 891 So we may assume that x_1 is not collinear to y_2 . But then all of L_1, L_2, L_3 are contained in the
 892 symp $\xi(x_1, y_2)$, which is again a residue, and so Corollary 2.27 and Proposition 2.28 again lead
 893 to a contradiction.

894 The lemma is proved. □

895 **Proposition 3.6.** *Every geometric line of $E_{6,3}(\mathbb{K})$ is an ordinary line.*

896 *Proof.* This follows directly from Proposition 2.32 and Lemma 3.5. □

897 **3.3. Points of Lie incidence geometries of type $E_{7,7}$.**

898 **3.3.1. Blocking sets.**

899 **Proposition 3.7.** *If every line of a parapolar space Γ of type $E_{7,7}$ contains exactly $s+1$ points,
 900 then there exists a point at distance 3 from each point of an arbitrary set S of $s+1$ (distinct)
 901 points, except if these points are contained in a single line.*

902 *Proof.* Suppose S is not a line. Set $S = \{p_0, \dots, p_s\}$. We distinguish several cases.

903 (i) *Suppose all points in S are pairwise collinear.* Then S is contained in a (maximal) singular
 904 subspace. As this corresponds to a residue in the corresponding building, Corollary 2.27
 905 and Proposition 2.28 lead to a contradiction.

906 (ii) *Suppose some pair of points from S is symplectic.* Suppose p_0 and p_1 are symplectic and
 907 let ξ be the symp containing them. Let the set T of points of Δ consist of the points of
 908 S in ξ , the set of points of ξ collinear to a point of T far from ξ , and, for each point p_i
 909 of S close to ξ , an arbitrary point of ξ collinear to p_i . Then T is a set of at most $s+1$
 910 points not forming a line (as p_0 and p_1 belong to T and are not collinear). Hence, by
 911 Proposition 2.28 (or more precisely, [10, Lemma 3.5]), we find a point $b \in \xi$ not collinear
 912 to any member of T . Hence, for each point $p_i \in S$ not far from ξ , there is a unique symp ξ_i
 913 containing b and p_i . Since $\xi = \xi_0 = \xi_1$, there are at most s such symps. Proposition 2.30
 914 yields a line L through b locally opposite each such symp, which means that each point
 915 of $L \setminus \{b\}$ is far from each such symp. This implies that each point of $L \setminus \{b\}$ is opposite
 916 each point of S that is not far from ξ . But since b is opposite every point of S that is
 917 far from ξ by construction, the line L contains points opposite each member of S . Hence,
 918 each point p_i , $i = 0, 1, \dots, s$, has a unique projection p'_i onto L . Since $b = p'_0 = p'_1$, there
 919 is at least one point of L opposite each point of S .

920 (iii) *Some pair of points from S is opposite and there are no symplectic pairs in S .* It follows
 921 that collinearity is an equivalence relation in S . Let $C \subseteq S$ be a corresponding equivalence
 922 class of minimal size (then certainly $|C| < 1 + s/2$ and $|S \setminus C| \geq 2$). Let ξ be a symp
 923 either containing C (if the latter is contained in a singular 5-space or a singular 5'-space;
 924 we assume $p_0 \in C$), or containing at least one point, say again p_0 , of C and intersecting
 925 the 6-space spanned by C in a 5'-space (if C generates a 6-space; Fact 2.10 allows for
 926 this). Either way, let W be the singular subspace of ξ obtained by intersecting ξ with the
 927 singular subspace generated by C . Let $S' \neq \emptyset$ be the set of points of ξ collinear to a point
 928 of $S \setminus C$.

929 Select $q \in S'$ arbitrarily and suppose $q \perp p_1 \in S \setminus C$. As $|S \setminus C| \geq 2$, we can select
 930 a line M in ξ through q disjoint from W and not containing S' . With that, M contains
 931 at least one point $b \perp q$ such that $b \notin S'$ and b is not collinear to a member of C . It
 932 follows that b is not collinear to any point of S . So we can consider the set Ξ of symps
 933 containing b and some point of S . Since p_0 and p_1 are opposite, the symps $\xi = \xi(b, p_0)$
 934 and $\xi(b, p_1)$ only intersect in the line bq . Hence, in the residue of b , the set Ξ does not
 935 correspond to the set of symps containing a given maximal singular subspace. Hence, the

936 dual of Proposition 3.1 yields a line L through b locally opposite each member of Ξ . As
 937 in (i) above, the line L is far from each member of S , but p_0 and p_1 project to the same
 938 point of L , implying that there is at least one point on L opposite every member of S . \square

939 3.3.2. *Geometric lines.* Corollary 5.6 of [21] states that a geometric line of a Lie incidence
 940 geometry of type $E_{7,7}$ is the same thing as a line.

941 3.4. **Lines of Lie incidence geometries of type $E_{7,7}$.** We now look at the lines of Lie
 942 incidence geometries of type $E_{7,7}$.

943 3.4.1. *Blocking sets.*

944 **Proposition 3.8.** *If every line of a parapolar space Γ of type $E_{7,7}$ contains exactly $s+1$ points,
 945 then there exists a line opposite each member of an arbitrary set T of $s+1$ (distinct) lines,
 946 except if these lines form a planar line pencil.*

947 *Proof.* Since symps are vertices of type 1 in the corresponding building, Proposition 4.11 and
 948 Proposition 4.22, proved independently, allow us to consider symps $\widehat{\xi}_0, \widehat{\xi}_1, \dots, \widehat{\xi}_s$, such that
 949 $L_i \in \widehat{\xi}_i$ and such that there exists a symp ξ opposite every $\widehat{\xi}_i$, for $i \in \{0, 1, \dots, s\}$. Then, in
 950 view of Fact 2.12, every point of any $\widehat{\xi}_i$ is collinear to a unique point of ξ . The points of ξ ,
 951 which are in bijection with the points of $L_i \in \widehat{\xi}_i$, form a line again that we will denote by L'_i .
 952 Suppose the lines L'_i do not form a planar line pencil. Then, by Theorem A of [10], or more
 953 in particular Lemma 3.15 therein (see also Proposition 2.28), we can find a line M in ξ that is
 954 locally opposite all L'_i at ξ (viewed as a residue). With Proposition 2.26, it follows that M is
 955 opposite all L_i .

956 Now suppose the L'_i do form a planar line pencil in ξ and denote the plane by π . Let p be the
 957 point in which all L'_i intersect and let q be a point in $\xi \setminus \pi$, not collinear to p . Then $\text{proj}_\pi(q)$ (in
 958 ξ) is a line K , which intersects each L'_i in some point p'_i . Set $p_i = \text{proj}_{L_i} p'_i$. Since p_i and q are
 959 both collinear to p'_i , they are symplectic and we denote the symp spanned by p_i and q by ξ_i . If
 960 the ξ_i do not all intersect in a common 5-space, then we can find a line M through q locally
 961 opposite all ξ_i and, by Proposition 2.26, M is opposite all L_i .

962 So we may assume from now on that all ξ_i intersect in a common 5-space Q . Note that they are
 963 pairwise distinct, as every ξ_i intersects ξ in exactly the line qp'_i . Let q_0 be a point on qp'_0 distinct
 964 from q and p'_0 . The point q_0 is in the plane $\alpha := \langle q, K \rangle$ and with that $\text{proj}_\pi(q_0) = \text{proj}_\pi(q) = K$.
 965 Hence, q_0 is symplectic to each p_i as well. We will denote the symps spanned by p_i and q_0 by ξ_i^0 .
 966 Since q_0 is on qp'_0 , ξ_0^0 coincides with ξ_0 . Similarly to before, we may assume that all ξ_i^0 intersect
 967 in a common 5-space Q^0 . For each $j \in \{1, 2, \dots, s\}$, we have that $\xi_j \neq \xi_j^0$ and ξ_j^0 intersects ξ in
 968 exactly the line $q_0 p_j$.

969 The 5-spaces Q and Q^0 are distinct, but both contained in ξ_0 . Since symps in Δ are polar spaces
 970 of type $D_{6,1}$, two 5-spaces in ξ_0 intersect in even codimension and hence either in nothing, a
 971 line, a 3-space, or they coincide.

972 Note that p_j , for $j \in \{1, 2, \dots, s\}$, cannot be contained in ξ_0 , since otherwise $\xi_0 = \xi(q, p_j) = \xi_j$,
 973 a contradiction. We have that $\text{proj}_{\xi_0}(p_j)$ (in Δ) is a 5'-space A_j . We know that $\text{proj}_Q(p_j)$ is a
 974 4-space $U_j \subseteq A_j$ and $\text{proj}_{Q^0}(p_j)$ is a 4-space $U_j^0 \subseteq A_j$. Since $U_j \cap U_j^0 \subseteq Q \cap Q^0$, it follows that
 975 $Q \cap Q^0 = U_j \cap U_j^0 =: V$ is a 3-space independent of $j \in \{1, 2, \dots, s\}$.

976 Let q_1 be a point of $qp'_1 \setminus \{q, p'_1\}$. Without loss of generality, assume $p'_2 \in q_0 q_1$. Then the symps
 977 $\xi(q_1, p_1)$ and $\xi(q_1, p_2)$ contain both V , and it follows again that all symps $\xi(q_1, p_i)$ contain V .
 978 Since they also contain q_1 , we find $q_1 \perp V$. Since q_1 was essentially arbitrary, we conclude that
 979 V is the intersection of all symps defined by p_i and some point of $\alpha \setminus K$. Moreover, $\alpha \perp V$ and
 980 $W := \langle \alpha, V \rangle$ is a (maximal) 6-space. Since both p_0 and V are in the intersection of $\xi(q, p_0)$ and
 981 $\xi(q_1, p_0)$, we also deduce $p_0 \perp V$.

982 We observe that $A_j = \text{proj}_{\xi_0}(p_j) = \langle \text{proj}_Q(p_j), \text{proj}_{Q^0}(p_j) \rangle = \langle U_j, U_j^0 \rangle$ and that all A_j contain V .
 983 We define U_0 and U_0^0 as the 4-spaces $\text{proj}_Q(p_0)$ and $\text{proj}_{Q^0}(p_0)$, respectively. By the foregoing,
 984 $V = U_0^0 \cap U_0$.

985 The point q is contained in Q and the point q_0 is contained in Q^0 . In a 5-space, there can only
 986 be $s+1$ different 4-spaces which contain a given 3-space. Since none of the U_i (U_i^0 respectively)
 987 can contain q (q_0 respectively), at least two of the U_i (U_i^0 respectively) have to coincide. If
 988 $U_m = U_n$ for some $m, n \in \{0, 1, \dots, s\}$, then it follows that $U_m^0 = U_n^0$, since otherwise A_m and
 989 A_n would intersect in a 4-space. We conclude that two A_i , for $i \in \{0, 1, \dots, s\}$, have to coincide.
 990 Let $m, n \in \{0, 1, \dots, s\}$ be such that $A_m = A_n$. Since, by Fact 2.10, 6-spaces cannot intersect
 991 in 5'-spaces, $\langle p_m, A_m \rangle$ and $\langle p_n, A_m \rangle$ have to be equal. Hence p_m and p_n are collinear.

992 We now claim that all p_i are contained in a common symp. Indeed, by Fact 2.10, there is
 993 a unique symp ζ containing the 5'-space $\langle V, K \rangle$. Now ξ_0 and ζ have the 4-space $\langle p_0', V \rangle$ in
 994 common, and hence they intersect in the 5-space $\langle p_0, p_0', V \rangle$, since this is the unique 5-space of
 995 ξ_0 containing $\langle p_0', V \rangle$. We get $p_0 \in \zeta$. Similarly, $p_i \in \zeta$, for all $i \in \{1, 2, \dots, s\}$, and the claim is
 996 proved.

997 We now vary K over all lines of π not containing p . We obtain s^2 distinct pairs of collinear
 998 points, where each pair of points is contained in two different lines L_i, L_j , $i \neq j$, and no point
 999 of such pair is collinear to p . Since we only have $\binom{s+1}{2} = \frac{1}{2}s(s+1) < s^2$ pairs of lines, there
 1000 must exist $n, m \in \{0, 1, \dots, s\}$, $n \neq m$, and distinct point pairs $\{a_n, a_m\}$ and $\{b_n, b_m\}$, with
 1001 $a_n, b_n \in L_n$ and $a_m, b_m \in L_m$, such that $a_n \perp a_m$ and $b_n \perp b_m$. There are two cases.

1002 *Case (a): $a_n \neq b_n$ and $a_m \neq b_m$.*

1003 In this case, it is easy to see that L_n and L_m are contained in a common symp ξ^* . We claim
 1004 that all points of $L_0 \cup L_1 \cup \dots \cup L_s$ are mutually collinear. Indeed, suppose not, then there
 1005 exists some symplectic pair of points on that union, contained in a unique symp ξ^{**} . Then we
 1006 re-choose $\widehat{\xi_n}$ as ξ^* , and we re-choose $\widehat{\xi_m}$ as ξ^{**} . Since we have some freedom to choose the other
 1007 $s-1$ symps, we have a new symp ξ' opposite each of these $s+1$ symps. But the projection
 1008 of the L_i onto ξ' contains a symplectic pair (due to the presence of ξ^{**}), hence cannot be a
 1009 planar line pencil. As before, this leads to a line opposite all of the L_i . The claim is proved.
 1010 Hence, S is contained in a singular subspace, and Corollary 2.27 and Proposition 2.28 lead to
 1011 the assertion.

1012 *Case (b): without loss of generality $a_n = b_n$ and $a_m \neq b_m$.*

1013 In this case, a_n is collinear to the line L_m . Let $c_n \in L_n$ be different from a_n and not collinear
 1014 to p . If $c_n \perp a_m$, then we are back in Case (a). So we may assume that c_n is not collinear
 1015 to a_m . Then, interchanging the role of K with that of the line of π containing the respective
 1016 points collinear to c_n and a_m , we see that there exists a unique symp ζ_n containing c_n, a_m , and
 1017 a point c_i of each L_i , $i \in \{0, 1, \dots, s\} \setminus \{n, m\}$. It also contains L_n . We may now re-choose $\widehat{\xi_n}$
 1018 as ζ_n . As c_n and a_m are not collinear, this again leads, as in Case (a) above, to a line opposite
 1019 each L_i , and the proposition is proved. \square

1020 3.4.2. *Geometric lines.* Now we classify geometric lines in Lie incidence geometries of type $E_{7,6}$.
 1021 This will follow from the classification of round-up triples of lines.

1022 **Lemma 3.9.** *Let $\{L_1, L_2, L_3\}$ be a round-up triple of lines in the exceptional Lie incidence
 1023 geometry Γ of type $E_{7,7}$, such that L_1 and L_2 intersect. Then exactly one of the following holds.*

1024 (i) $L_1 = L_2 = L_3$;
 1025 (ii) L_1, L_2, L_3 are three lines in a common planar line pencil.

1026 *Proof.* Clearly, if $L_1 = L_2$, then also $L_3 = L_1$, since otherwise there exists a line opposite L_3
 1027 and not opposite L_1 . So we may assume $L_1 \cap L_2 = \{x\}$. By Lemma 2.33, we see that $x \in L_3$,
 1028 and Corollary 2.27, in combination with Proposition 2.28, implies (ii). \square

1029 **Lemma 3.10.** *Let $\{L_1, L_2, L_3\}$ be a round-up triple of pairwise disjoint lines in an exceptional
 1030 Lie incidence geometry of type $E_{7,7}$. Then no point of L_2 is collinear to any point of L_1 .*

1031 *Proof.* Let, for a contradiction, M be a line joining a point $x_1 \in L_1$ to a point $x_2 \in L_2$. Note
 1032 that $L_1 \neq M \neq L_2$. Applying Lemma 2.34, we find that M intersects L_3 . Set $x_i := M \cap L_i$,
 1033 $i = 1, 2, 3$.

1034 Assume, for a contradiction, that x_1 is symplectic to some point $y_3 \in L_3$. Set $\xi := \xi(x_1, y_3)$.
 1035 Noting that $M \subseteq \xi$, Corollary 2.35 yields $x_1 \in L_2 \subseteq \xi$, a contradiction. Hence, x_1 is collinear
 1036 to each point of L_3 . But then again, every line through x_1 intersecting L_3 meets L_2 , and so
 1037 L_2, L_3 are contained in a common plane, hence intersecting, contradicting our assumptions.
 1038 The lemma is proved. \square

1039 **Proposition 3.11.** *Let $\{L_1, L_2, L_3\}$ be a round-up triple of lines in the exceptional Lie incidence
 1040 geometry Γ of type $E_{7,7}$. Then exactly one of the following holds.*

1041 (i) $L_1 = L_2 = L_3$;
 1042 (ii) L_1, L_2, L_3 are three lines in a common planar line pencil.

1043 *Proof.* In view of Lemma 3.9 and Lemma 3.10, it suffices to show that no round-up triple
 1044 $\{L_1, L_2, L_3\}$ exists for which no point of L_i coincides with or is collinear to any point of L_j ,
 1045 $i, j \in \{1, 2, 3\}$, $i \neq j$. So suppose, for a contradiction, such a triple does exist. Select $x_1 \in L_1$.
 1046 Then there exists $x_2 \in L_2$ symplectic to x_1 . Set $\xi := \xi(x_1, x_2)$. Suppose, for a contradiction,
 1047 that some point $x_3 \in L_3$ is opposite some point $y_{12} \in x_1^\perp \cap x_2^\perp$. Then we can find a line through
 1048 y_{12} opposite L_3 , but that line is certainly not opposite either L_1 or L_2 , as it contains a point
 1049 y_{12} collinear to points of L_1 and L_2 . Hence no point of L_3 is opposite any point of $x_1^\perp \cap x_2^\perp$. If
 1050 some point $x_3 \in L_3$ were far from ξ , this would imply that the unique point x'_3 of ξ collinear
 1051 to x_3 is collinear to all of $x_1^\perp \cap x_2^\perp$, forcing $x'_3 \in \{x_1, x_2\}$, contradicting our assumption that no
 1052 point of L_3 is collinear or equal to any point of $L_1 \cup L_2$. Hence all points of L_3 are close to ξ .
 1053 Note also that, by Lemma 2.34, some point $x_3 \in L_3$ belongs to ξ . By interchanging the roles
 1054 of L_3 and L_i , $i = 1, 2$, we see that each point of $L_1 \cup L_2$ is close to ξ . Since ξ is hyperbolic,
 1055 there exists a point $y \in L_2^\perp \cap x_3^\perp \setminus x_1^\perp$. Let M be a line through y locally opposite ξ and select
 1056 $z \in M \setminus \{y\}$. However, if y is not collinear to all points of L_3 , then we (re)choose M locally not
 1057 opposite the symp through y and L_3 . In any case, z is not opposite any point of $L_2 \cup L_3$. Since
 1058 it is opposite x_1 , we find a line K through z opposite L_1 . But K is not opposite either L_2 or
 1059 L_3 by the properties of z , a contradiction.

1060 The lemma is proved. \square

1061 We conclude:

1062 **Proposition 3.12.** *Every geometric line of $E_{7,6}(\mathbb{K})$ is an ordinary line.*

1063 *Proof.* This follows directly from Proposition 2.32 and Proposition 3.11. \square

1064 4. POINTS AND LINES OF HEXAGONIC LIE INCIDENCE GEOMETRIES

1065 4.1. **Points of hexagonal Lie incidence geometries.** Here we prove Main Results A and B
 1066 for the points of the exceptional hexagonal geometries.

1067 4.1.1. *Blocking sets. Reduction to geometric lines.*

1068 **Proposition 4.1.** *Let Γ be an exceptional hexagonal geometry with $s+1$ points per line. Then
 1069 a given set T of $s+1$ points of Γ admits an opposite point if, and only if, T is not a geometric
 1070 line of Γ .*

1071 *Proof.* Clearly, if T is a geometric line, then T does not admit any point opposite all its points.
 1072 Now suppose T does not admit any point opposite all of its points. We show that T is a
 1073 geometric line. Suppose, for a contradiction, that T is not a geometric line. Then there exists a
 1074 point x not opposite at least two points of T , but opposite at least one point of T , and we shall
 1075 call each such point a *spoilsport*. Suppose x is not opposite $r \geq 2$ points of T , with $r \leq s$, and
 1076 let S be that set of points. We adopt the following notation. For each point $p \in S$ not equal or

1077 symplectic to x , we denote the line through x closest to p by $L_{x,p}$. If $p \in S$ is symplectic to x ,
1078 then we denote by $\mathcal{L}_{x,p}$ the set of lines of $\xi(x,p)$ through x .

1079 Note that each point $z \neq x$ on any line K through x locally opposite some member of $\mathcal{L}_{x,p}$ is
1080 special to p .

1081 (i) Suppose $x \in T$. For each point $p \in S$ symplectic to x , we choose an arbitrary line
1082 $L_{x,p} \in \mathcal{L}_{x,p}$. Then, by

1083 Proposition 2.29 for F_4 , and by Proposition 2.30 for the other cases,

1084 we find a line $L \ni x$ locally opposite all of $L_{x,p}$, for p ranging through $S \setminus \{x\}$. Since
1085 $T \setminus S$ contains at most $s - 1$ elements, there is a point x' on L opposite all members of
1086 $T \setminus S$. If S contains at least one point collinear or symplectic to x , then $x' \notin T$ is a
1087 spoilsport. If $S \setminus \{x\}$ only contains points special to x , then some point of L at distance 2
1088 of at least one member of $T \setminus S$ is a spoilsport not contained in T . Hence we may assume
1089 from now on that $x \notin T$.

1090 (ii) Suppose $x \notin T$ and S contains at least one point collinear or symplectic to x . Again, we
1091 choose an arbitrary line $L_{x,p} \in \mathcal{L}_{x,p}$ for each $p \in S$ symplectic to x , and we find a line L
1092 through x locally opposite all $L_{x,p}$, $p \in S$. There are two possibilities. First assume that
1093 S contains at least one point special to x . Then we select a point $x' \in L$ at distance 2
1094 from at least one member of $T \setminus S$, and we see that x' is a spoilsport not collinear and not
1095 symplectic to any point of T . Secondly, assume that S does not contain any point special
1096 to x . Then we select a point $x'' \in L \setminus \{x\}$ distinct from the at most $(s + 1) - r \leq s - 1$
1097 points at distance 2 from some member of $T \setminus S$. Then x'' is opposite every member of
1098 $T \setminus S$ and special to each member of S , and hence x'' is a spoilsport. So, in both cases we
1099 constructed a spoilsport not collinear and not symplectic to any point of T . So from now
1100 we may assume that x is special to each point of S .

1101 (iii) Suppose x is special to each point of S . Then we can find a line L locally opposite each
1102 $L_{x,p}$, with $p \in S$, and a point $y \in L \setminus \{x\}$ opposite each member of $T \setminus S$. The point y is
1103 opposite each member of T , a contradiction.

1104 We conclude that T is a geometric line. □

1105 Proposition 4.1 reduces the classification of point sets T in a finite exceptional hexagonal geom-
1106 etry, where T has the size of a line and does not admit a point opposite each of its members,
1107 to the classification of geometric lines in such geometries. This is the goal of the next theorem.
1108 It completes the partial classification given in [21], which we now briefly repeat.

1109 **Proposition 4.2** (Theorem 6.5 in [21]). *Let L be a geometric line in an exceptional hexagonal
1110 geometry Γ . Then exactly one of the following cases occurs.*

1111 (1) *L is an ordinary line of Γ ;*

1112 (2) *L is a hyperbolic line in a symplecton of Γ isomorphic to a symplectic polar space (and this
1113 only occurs in the hexagonal geometries of type $F_{4,4}$ that arise from a split building of type
1114 F_4);*

1115 (3) *L consists of mutually opposite points.*

1116 In view of Proposition 4.2, it remains to classify geometric lines in exceptional hexagonal ge-
1117 omtries consisting of mutually opposite points.

1118 4.1.2. *Classification of geometric lines.* The following lemma will be very efficient for such
1119 classification.

1120 **Lemma 4.3.** *Each geometric line L containing opposite points of any (exceptional) hexagonal
1121 geometry Γ is a geometric line of any equator geometry of Γ containing at least two points of L .*

1122 *Proof.* Let x, y be two points of the geometric line L , consisting of mutually opposite points
1123 of Γ . We claim that no point of L is special to any point of $E(x, y)$, the equator geometry
1124 with poles x and y . Indeed, suppose $z \in L$ is special to $u \in E(x, y)$. Extend the unique path
1125 $z \perp [u, z] \perp u$ to a path $z \perp [u, z] \perp u \perp v$, with $v \bowtie [u, z]$. Then v is opposite $z \in L$, but

1126 since $x \perp u \perp v$, Fact 2.16 implies that v is not opposite x . Similarly, v is not opposite y , a
1127 contradiction to L being a geometric line. The claim is proved.

1128 It immediately follows from the previous claim that no point of L is either collinear to any point
1129 of $E(x, y)$, or belongs to $E(x, y)$. Indeed, if $z \in L$ were collinear to $u \in E(x, y)$, then we can
1130 consider the unique point v on the line uz not opposite some point $w \in E(x, y)$ opposite u . The
1131 claim in the previous paragraph implies $v \neq z$. But then $w \equiv z$, while w is not opposite either
1132 x or y , a contradiction. If $z \in L \cap E(x, y)$, then a point $u \in E(x, y)$ opposite z is not opposite
1133 both x and y , again a contradiction. For the same reason, no point of L is opposite any point
1134 of $E(x, y)$.

1135 Hence we have shown that each point of L is symplectic to each point of $E(x, y)$. Taking two
1136 opposite points $a, b \in E(x, y)$, this implies $L \subseteq E(a, b)$. Since opposition in $E(x, y)$ as a Lie
1137 incidence geometry coincides with the opposition inherited from Γ , the assertion follows. \square

1138 Counterexamples to the converse of Lemma 4.3 will be given in type F_4 (see the proof of the
1139 next theorem).

1140 We can now prove the announced classification.

1141 **Theorem 4.4.** *Let L be a geometric line in an exceptional hexagonal geometry Γ . Then L does
1142 not consist of mutually opposite points.*

1143 *Proof.* By Lemma 4.3, the non-existence of geometric lines consisting of mutually opposite
1144 points in hexagonal geometries of types E_6 , E_7 and E_8 follows from the non-existence of such
1145 geometric lines in the Lie incidence geometries of types $D_{6,2}$ and $A_{5,\{1,5\}}$.

1146 The former case is taken care of by Proposition 2.28. In the latter case, by taking again equator
1147 geometries, see the last paragraphs of Section 2.4, we reduce the question to the case $A_{3,\{1,3\}}$.
1148 Then by Lemma 4.3, we see that L consists of incident point-plane pairs in $\text{PG}(3, \mathbb{K})$ with the
1149 point ranging over a given line K and the plane determined by the point and a given line
1150 K' skew to K . Consider a point $x \notin K \cup K'$ and a plane α through x intersecting both K
1151 and K' in respective unique points, say y and y' , respectively. Then $\{x, \alpha\}$ is not opposite
1152 $\{\langle K', x \rangle \cap K, \langle K', x \rangle\}$ and not opposite $\{y, \langle y, K' \rangle\}$, but opposite every other member of L , a
1153 contradiction.

1154 This shows that no geometric line of Γ consists of opposite points, for Γ of types $E_{6,2}$, $E_{7,1}$ or $E_{8,8}$.
1155 Hence we may suppose that Γ has type F_4 . In that case, a geometric line T consisting of
1156 mutually opposite points is a geometric line of the polar space Δ of rank 3 corresponding to a
1157 point residual of Γ . It follows from [21, Lemma 4.8] that Δ is a symplectic polar space (hence
1158 Γ is split—but possibly over a non-perfect field) and T is a hyperbolic line. By the obvious
1159 transitivity of the automorphism group on the set of hyperbolic lines, we may assume that
1160 every hyperbolic line of each equator geometry is a geometric line. Now let x, y be two points
1161 and $E(x, y)$ the corresponding equator geometry. Let ξ be a symp corresponding to a line L of
1162 $E(x, y)$. Assume first that the underlying field is not perfect of characteristic 2. Then, again by
1163 [21, Lemma 4.8], there exists a point $a \in \xi$ either collinear to at least two points of L but not
1164 all, or not collinear to any point of L . Also, more precisely, since Δ is split, ξ is a polar space
1165 corresponding to a quadric in $\text{PG}(6, \mathbb{K})$, L is the intersection of the perps of two opposite lines,
1166 and so, a is collinear to either 0 or 2 points of L . Let b be a point of Γ far from ξ and symplectic
1167 to a . Then $b \neq a$ intersects every hyperbolic line of $E(x, y)$ in one or all its points (as these are all
1168 assumed to be geometric lines), L in 0 or 2 points, and, by the above argument for a applied to
1169 other appropriate points, intersecting every line in either 0, 1, 2 or all points. We view $E(x, y)$
1170 in its natural embedding in $\text{PG}(5, \mathbb{K})$. Let π be a non-singular plane of $\text{PG}(5, \mathbb{K})$ (with respect
1171 to the underlying non-degenerate alternating form) containing L . We can choose π such that
1172 the unique point $x_L \in L$ for which $\pi \subseteq p_L^\perp$ is opposite b . Let $\ell \neq x_L$ be another point on L
1173 opposite b in Γ (which exists by our assumptions above and the fact that there are at least four
1174 points on a line—indeed, \mathbb{F}_2 is perfect of characteristic 2, and so $|\mathbb{K}| \geq 3$) and let h_1, h_2, h_3 be
1175 three distinct hyperbolic lines of $E(x, y)$ in π through ℓ . Then there are unique points $a_1 \in h_1$,

1176 $a_2 \in h_2$ and $a_3 \in h_3$ not opposite ℓ . Suppose first that a_1, a_2, a_3 lie on the same line L' of π .
 1177 Then the whole line L' belongs to $b^\#$, and hence at least one point $L \cap L'$ of L does. But then
 1178 two points of L do, and connecting that second point, which does not coincide with x_L , with
 1179 all points of L' leads to $\pi \subseteq b^\#$, a contradiction. Hence we may assume that a_1, a_2, a_3 are not
 1180 contained in the same line of π . Then it is easy to see that joining with hyperbolic lines yields
 1181 all points of π , except for x_L . Since $|\mathbb{K}| > 2$, this is again a contradiction to $|b^\# \cap L| \in \{0, 2\}$.

1182 Now assume that \mathbb{K} is perfect of characteristic 2. We may embed every equator geometry in an
 1183 extended equator geometry \widehat{E} , which is then isomorphic to a symplectic polar space of rank 4
 1184 (see Section 2.5). By [17, Corollary 5.38], there exists a point b of Γ such that $H := b^\# \cap \widehat{E}$ is a
 1185 (hyperbolic) polar subspace of type $D_{4,1}$. Note that we still may assume that every hyperbolic
 1186 line is a geometric line. Then H is also a geometric hyperplane of the ambient projective space
 1187 $PG(7, \mathbb{K})$ of \widehat{E} , and hence coincides with p^\perp for some point $p \in \widehat{E}$ (where the perp \perp is now
 1188 with respect to the symplectic polar space). This is clearly a contradiction.

1189 The theorem is proved. □

1190 4.2. Lines of exceptional hexagonal Lie incidence geometries.

1191 4.2.1. *Two lemmas in the residues.* We begin with two results in the point residuals of hexagonal
 1192 geometries. The first one summarises earlier findings.

1193 **Lemma 4.5.** *Let Δ be either a Lie incidence geometry of type $A_{5,3}$, $D_{6,6}$ or $E_{7,7}$, or a dual
 1194 polar space of rank 3. Suppose each line has exactly $s + 1$ points. Suppose also that Δ is not
 1195 isomorphic to $B_{3,3}(\sqrt{s}, s)$. Then a set of at most $s + 1$ points of Δ admits no common opposite
 1196 point if, and only if, the points form a geometric line. In particular, if there are at most s
 1197 points, or if there exists a point opposite at least one point of the set, and not opposite at least
 1198 two points of the set, then the set admits an opposite point.*

1199 *Proof.* This follows from Main Results A and B of [10] for types $A_{5,3}$, $D_{6,6}$, and for dual polar
 1200 spaces, and from Proposition 3.7 and [21, Corollary 5.6] for type $E_{7,7}$. □

1201 **Lemma 4.6.** *Let Δ be either a Lie incidence geometry of type $A_{5,3}$, $D_{6,6}$ or $E_{7,7}$, or a dual
 1202 polar space of rank 3. Suppose each line contains precisely $s + 1$ points and let p be a point.
 1203 Let $Q := \{q_1, \dots, q_\ell\}$ be a set of points not containing p , $\ell \leq s$. Then there exists a point p'
 1204 opposite each member of Q , and not opposite p .*

1205 *Proof.* We first construct a symp ξ through p far from each member of Q . If $q \in Q$ is opposite
 1206 p , each symp through p qualifies. If $q \in Q$ is symplectic to p , let K_q be an arbitrary line through
 1207 p in the symp containing p and q ; if $q \perp p$ then let K_q be the line containing p and q . Since
 1208 $\ell \leq s$, we infer from Proposition 2.30 and Proposition 2.29 that there exists a symp ξ through p
 1209 locally opposite all K_q , $q \in Q$. Then ξ is far from each member of Q . Now the same references
 1210 yield a point p' in ξ (locally) opposite in ξ each intersection $\xi \cap q^\perp$, for $q \in Q$. The point p' is
 1211 opposite each member of Q and not opposite p . □

1212 4.2.2. *Description of mutual positions.* We will describe the mutual position $\delta(L, M)$ of two lines
 1213 L and M of an exceptional hexagonal Lie incidence geometry with four parameters (a, b, c, d) ,
 1214 chosen in the set $\{=, \perp, \nparallel, \bowtie, \equiv\}$, where a, b, c, d are defined as follows. If there is a unique
 1215 point on L closest to M , we call it x ; otherwise, x is an arbitrary point on L . Similarly, if there
 1216 is a point on M nearest to L , call it y ; if not, but there is a point on M nearest to x , call this y .
 1217 If not, then y is an arbitrary point. Let x' be any point on L distinct from x . If there is a point
 1218 on M nearest to x' , and it is different from y , call it y' ; otherwise, y' is any point on the second
 1219 line distinct from y . Then a is the relation between x and y , while b is the relation between x
 1220 and y' . Also, c is the relation between x' and y , whereas d is the relation between x' and y' . It
 1221 will turn out that such a 4-tuple unambiguously determines the mutual position.

1222 In a shorthand alternative notation, we write 0 for $=$, 1 for \perp , $\frac{3}{2}$ for \nparallel , 2 for \bowtie and 3 for \equiv .
 1223 The inverse of $\delta(L, M)$ is $\delta(M, L)$. The dual of $\delta(L, M)$ is $\delta(M, K)$, for the line K opposite L

1224 in any apartment containing L and M . On the level of point distances, 0 is dual to 3, 1 to 2,
1225 and $\frac{3}{2}$ is self-dual. We sometimes call $\delta(L, M)$ the *distance* between L and M .

1226 There are basically four classes of positions $\delta(L, M)$, if one takes into account the homogeneity
1227 with respect to the points of the lines L and M . The classes are the following (where we use
1228 the notation of the previous paragraphs).

1229 **Class I — Completely homogeneous**

1230 In this class, every point of either line has the same distance to each point of the other line. All
1231 positions here are equal to their inverse. The cases are:

1232 (1111) $(\perp, \perp, \perp, \perp)$: the two lines L, M span a singular 3-space.

1233 $(\frac{3}{2} \frac{3}{2} \frac{3}{2})$ $(\perp\perp, \perp\perp, \perp\perp, \perp\perp)$: each point of each line is symplectic to each point of the other line.

1234 The dual of (1111) is the following:

1235 (2222) $(\bowtie, \bowtie, \bowtie, \bowtie)$: each point of each line is special to each point of the other line.

1236 **Class II — Projection homogeneous**

1237 In this class, each point of each line has a unique projection onto the other line; the distances
1238 between corresponding points are constant, and the other distances as well. All distances are
1239 their own inverse. The cases are:

1240 (0110) $(=, \perp, \perp, =)$: the lines are equal, that is, $L = M$.

1241 $(1\frac{3}{2} \frac{3}{2} 1)$ $(\perp, \perp\perp, \perp\perp, \perp)$: the lines are opposite in a symp.

1242 $(\frac{3}{2} 22 \frac{3}{2})$ $(\perp\perp, \bowtie, \bowtie, \perp\perp)$: the lines are each other's projection from a symp to an opposite symp.

1243 (2332) $(\bowtie, \equiv, \equiv, \bowtie)$: the lines are opposite, that is, $L \equiv M$.

1244 **Class III — Symmetric non-homogeneous**

1245 In this class, both lines contain a unique projection point with respect to the other line. More-
1246 over, all the positions are their own inverse again. The cases are:

1247 (0111) $(=, \perp, \perp, \perp)$: the lines are coplanar.

1248 $(011\frac{3}{2})$ $(=, \perp, \perp, \perp\perp)$: the lines meet and determine a unique symp.

1249 (0112) $(=, \perp, \perp, \bowtie)$: the lines meet and are locally opposite.

1250 $(111\frac{3}{2})$ $(\perp, \perp, \perp, \perp\perp)$: the lines are special in (the line-Grassmannian of) a symp.

1251 $(1\frac{3}{2} \frac{3}{2} \frac{3}{2})$ $(\perp, \perp\perp, \perp\perp, \perp\perp)$: the projection point x of M onto L is contained in a symp ξ with M ,
1252 while L is locally close to ξ at x ; the same holds with the roles of L and M interchanged.

1253 $(1\frac{3}{2} \frac{3}{2} 2)$ $(\perp, \perp\perp, \perp\perp, \bowtie)$: the projection point x on L is contained in a symp ξ with M , while L is
1254 locally opposite the line connecting the two projection points x and y at x , and hence
1255 locally far from ξ at x ; the same holds with the roles of L and M interchanged.

1256 $(\frac{3}{2} \frac{3}{2} \frac{3}{2} 2)$ $(\perp\perp, \perp\perp, \perp\perp, \bowtie)$: the projection points x and y are symplectic, the lines L and M are
1257 locally close to the symp $\xi(x, y)$, and the projections of the lines L, M onto $\xi(x, y)$ (which
1258 are maximal singular subspaces of $\xi(x, y)$) intersect in a unique point.

1259 $(\frac{3}{2} 222)$ $(\perp\perp, \bowtie, \bowtie, \bowtie)$: the points x and y are symplectic, the lines L and M are locally far from
1260 $\xi(x, y)$, and the projections of the lines L, M onto $\xi(x, y)$, which are lines themselves,
1261 are $\xi(x, y)$ -special.

1262 (1223) $(\perp, \bowtie, \bowtie, \equiv)$: the lines L, M are each other's projection from a point x' or y' to an
1263 opposite point y' or x' , respectively.

1264 $(\frac{3}{2} 223)$ $(\perp\perp, \bowtie, \bowtie, \equiv)$: the lines are locally far from the symp ξ determined by the projection
1265 points x and y (which are symplectic), and the projections of the lines onto ξ are ξ -
1266 opposite lines.

1267 (2223) $(\bowtie, \bowtie, \bowtie, \equiv)$: There is a pair of opposite points $x' \in L$ and $y' \in M$, and the projection
1268 of L (or M) onto y' (or x') is locally symplectic to M (or L) at y' (or x' , respectively);
1269 equivalently, L and M lie in opposite symps and the projection of L (or M) onto the
1270 symp through M (or L) is special to M (or L , respectively) in (the line Grassmannian
1271 of) that symp.

1272 **Class IV — Asymmetric positions**

1273 Up to now, in all 4-tuples, the second and third entry coincided. This is going to change
 1274 now. The — final — class that we consider in this paragraph contains the asymmetric mutual
 1275 positions, that is, those that do not coincide with their inverse. There are four cases with two
 1276 projection points. These cases are:

1277 $(1\frac{3}{2}12)$ ($\perp, \perp\perp, \perp, \bowtie$): the line L is coplanar with y ; the line M and the plane $\langle L, y \rangle$ are locally
 1278 far at y .

1279 $(11\frac{3}{2}2)$ ($\perp, \perp, \perp\perp, \bowtie$): the line M is coplanar with x ; the line L and the plane $\langle M, x \rangle$ are locally
 1280 far at x .

1281 $(1\frac{3}{2}22)$ ($\perp, \perp\perp, \bowtie, \bowtie$): the line M and the point x are in a unique symp ξ ; the line L is locally
 1282 far from ξ at x and locally opposite the line xy at x (and x and y are collinear).

1283 $(12\frac{3}{2}2)$ ($\perp, \bowtie, \perp\perp, \bowtie$): the line L and the point y are in a unique symp ξ ; the line M is locally
 1284 far from ξ at y and locally opposite the line xy at y (and x and y are collinear).

1285 Finally, there are four cases where only one line has a projection point. Hence, there will be
 1286 only two distinct distances around, and the corresponding 4-tuples have the shape (a, a, b, b) or
 1287 (a, b, a, b) (where these are each other's inverse). In a Lie incidence geometry of type $A_{5,3}, D_{6,6}$
 1288 or $E_{7,7}$, or a dual polar space of rank 3, we call a point and a line *almost far* if every point of
 1289 the line is symplectic to the point (however, this does not exist in dual polar spaces).

1290 $(1\frac{3}{2}1\frac{3}{2})$ ($\perp, \perp\perp, \perp, \perp\perp$): the line L is coplanar with y (which is the projection point of L on M);
 1291 the line M and the plane $\langle L, y \rangle$ are locally almost far at y .

1292 $(11\frac{3}{2}\frac{3}{2})$ ($\perp, \perp, \perp\perp, \perp\perp$): the line M is coplanar with x (which is the projection point of M on L);
 1293 the line L and the plane $\langle M, x \rangle$ are locally almost far at x .

1294 $(\frac{3}{2}\frac{3}{2}22)$ ($\perp\perp, \perp\perp, \bowtie, \bowtie$): the line M is contained in a symp ξ close to the projection point x of M
 1295 onto L , and x is collinear to a line of ξ that is ξ -opposite M .

1296 $(\frac{3}{2}2\frac{3}{2}2)$ ($\perp\perp, \bowtie, \perp\perp, \bowtie$): the line L is contained in a symp ξ close to the projection point y of L
 1297 onto M , and y is collinear to a line of ξ that is ξ -opposite L

1298 We note that dual distances are obtained from each other by interchanging and dualising the
 1299 first and fourth entry, and dualising the second and third entry.

1300 We now have the following result.

1301 **Lemma 4.7.** *Let L and M be two arbitrary lines of an exceptional hexagonal Lie incidence
 1302 geometry Δ of uniform symplectic rank r . Then $\delta(L, M)$ is one of the 4-tuples enumerated
 1303 above in **Class I** up to **Class IV**. All cases occur, except for metasymplectic spaces, where
 1304 the following positions cannot occur: (1111) , $(\frac{3}{2}\frac{3}{2}\frac{3}{2}\frac{3}{2})$, (2222) , $(1\frac{3}{2}\frac{3}{2}\frac{3}{2})$, $(\frac{3}{2}\frac{3}{2}\frac{3}{2}2)$, $(1\frac{3}{2}1\frac{3}{2})$, $(11\frac{3}{2}\frac{3}{2})$,
 1305 $(\frac{3}{2}\frac{3}{2}22)$ and $(\frac{3}{2}2\frac{3}{2}2)$.*

1306 *Proof.* We note that existence of a given mutual position is equivalent to the existence of its
 1307 dual.

1308 **Part I.** It is convenient to first consider the case where all points of L have the same distance
 1309 to all points of M . Then clearly we have one of the three completely homogeneous cases. The
 1310 existence of (1111) is easy: consider two lines in a common singular subspace of dimension at
 1311 least 3. Conversely, clearly, if $\delta(L, M) = (1111)$, then L and M span a singular subspace of
 1312 dimension 3. Since these do not exist in metasymplectic spaces, this mutual distance occurs if
 1313 and only if Δ is not a metasymplectic space. By duality, the same holds for (2222) .

1314 Let $\delta(L, M) = (\frac{3}{2}\frac{3}{2}\frac{3}{2}\frac{3}{2})$. Pick $x, x' \in L$ and $y, y' \in M$, $x \neq x', y \neq y'$. If y' were collinear to
 1315 only a line of $\xi(x, y)$, then, by Lemma 2.19(ii), x and y' would be special, a contradiction (and
 1316 it follows that Δ does not have type F_4). It follows that $x^\perp \cap M^\perp$ is a singular subspace U of
 1317 dimension $r - 2$. We claim that $x'^\perp \cap U$ is $(r - 5)$ -dimensional. To fix the ideas, suppose Δ
 1318 has type $E_{8,8}$. Since $x'^\perp \cap \xi(x, y)$ is a 6'-space and $\langle x, U \rangle$ is a 6-space, we have that $x'^\perp \cap \langle x, U \rangle$
 1319 contains a line K . In $\text{Res}_\Delta(K)$, we have a point z' (corresponding to x') close to each symp
 1320 through a given 4-space W (corresponding to $\langle x, U \rangle$). If $z'^\perp \cap W = \emptyset$, then there exist non-
 1321 collinear points a and b in different symps through W , both collinear to z' . The symp $\xi(a, b)$

1322 contains z' and a plane α of W ; hence z is collinear to a line of W after all, a contradiction. So
1323 $z'^\perp \cap W \neq \emptyset$ and, by parity, it is a line. The claim follows. It is now easy to see that,

1324 (i) in case of $E_{8,8}$, L and M arise from opposite lines in the residue of a plane (which is a
1325 parapolar space of type $D_{5,5}$);
1326 (ii) in case of $E_{7,1}$, L and M arise from opposite lines in a given para of type $D_{5,5}$ in a given
1327 point residual;
1328 (iii) in case of $E_{6,2}$, L and M are opposite lines in a given para of type $D_{5,5}$.

1329 The last claim might be the least straightforward, as in this case $L^\perp \cap M^\perp = \emptyset$. So let us
1330 prove this case as an example (the other cases are then easier because the parapolar spaces in
1331 the respective residues are simpler; they have types $D_{5,5}$ and $D_{6,6}$, respectively). Translated to
1332 type $E_{6,1}$, we have to prove that, if each 5-space through a given plane α intersects each 5-space
1333 through another given plane β in exactly a point, then either α meets β in a point at which they
1334 are locally opposite, or α and β are contained in a symp in which they are (locally) opposite.
1335 So suppose α and β do not intersect. Then one checks that, if U_1, U_2 are two distinct 5-spaces
1336 through α and W_1, W_2 two distinct 5-spaces through β , the points $p_{ij} = U_i \cap W_j$, $i, j \in \{1, 2\}$,
1337 form a quadrangle. That quadrangle is contained in a unique symp ξ that contains both α and
1338 β . If the latter are not ξ -opposite, then, arguing in the polar space $D_{5,1}(\mathbb{K})$, we find 4'-spaces
1339 through them that intersect in a plane; hence this yields adjacent 5-spaces through them, a
1340 contradiction.

1341 This concludes the completely homogeneous case. We obtain all members of Class I.

1342 **Part II.** Next we consider the case where each point of $L \cup M$ has a unique nearest point on the
1343 other line. It is easy to deduce that the distances between such nearest points are always the
1344 same. This distance can be equal, collinear, symplectic or special, in which case the other pairs
1345 are collinear, symplectic, special or opposite, respectively (use Fact 2.16 for instance). Then it
1346 is easy to see that the lines are equal, opposite in a symp, the projection of each other from
1347 opposite symps, or opposite, respectively. Hence we obtain precisely all cases of Class II.

1348 **Part III.** Having done the more homogeneous cases separately, we can proceed to consider the
1349 smallest distance that can occur between points of L and M . In order to do so, we let $p \in L$
1350 and $q \in M$ be points at minimal distance.

1351 **Case 1:** $p = q$. Here the lines L and M meet in $p = q$, and we clearly have only the three
1352 possibilities (0111) , $(011\frac{3}{2})$ and (0112) of Class III. Existence is trivial in these cases.

1353 **Case 2:** $p \perp q$. We set K equal to the line through p and q . We now consider the different
1354 possible mutual positions of L and K , and of K and M . First suppose that K and M are
1355 coplanar; say they span the plane α . Then α and L are contained in a common symp if and
1356 only if one of the following two possibilities occurs:

1357 (1) $L \perp M$; then we have case (1111) ,
1358 (2) $|L^\perp \cap M| = 1$; then case $(111\frac{3}{2})$ occurs.

1359 So we may assume that no point of $L \setminus \{p\}$ is collinear to any point of $\alpha \setminus \{p\}$. Let ξ be a symp
1360 containing α . There are again two possibilities.

1361 (1) $L^\perp \cap \xi$ is a line N . Then N is not contained in α , so that there is a unique point $q' \in M$
1362 collinear to all points of N . Then $q' \perp\!\!\!\perp p'$, for all $p' \in L \setminus \{p\}$, and $q'' \bowtie p'$, for all
1363 $q'' \in M \setminus \{q'\}$ and all $p' \in L \setminus \{p\}$. We get $(11\frac{3}{2}2)$.

1364 (2) $L^\perp \cap \xi$ is a maximal singular subspace U . Then $U \cap M = \emptyset$, and each point of M is
1365 symplectic to each point of $L \setminus \{p\}$. We obtain $(11\frac{3}{2}\frac{3}{2})$.

1366 If L and K are coplanar, then we obtain the inverse distances (1111) , $(111\frac{3}{2})$, $(1\frac{3}{2}12)$ and
1367 $(1\frac{3}{2}1\frac{3}{2})$. Hence we may assume that K is not coplanar with either L or M . Pick $p' \in L \setminus \{p\}$
1368 and $q' \in M \setminus \{q\}$. If both pairs $\{p', q\}$ and $\{p, q'\}$ are special, then we have (1223) . So we may
1369 assume $\{p, q'\}$ is symplectic. Again, there are some possibilities.

1370 (1) $L^\perp \cap \xi(p, q')$ is a line N not $\xi(p, q')$ -opposite M . Then our assumptions imply that $q \perp N$,
1371 and so we obtain $(1\frac{3}{2}\frac{3}{2}2)$.

1372 (2) $L^\perp \cap \xi(p, q')$ is a line N which is $\xi(p, q')$ -opposite M . Clearly, this gives rise to $(1\frac{3}{2}22)$.

1373 (3) $L^\perp \cap \xi(p, q')$ is a maximal singular subspace U . Then we clearly have $(1\frac{3}{2}\frac{3}{2}\frac{3}{2})$.

1374 The case where L and K are contained in a common symp gives additionally rise to the inverse
1375 $(12\frac{3}{2}2)$ of $(1\frac{3}{2}22)$. This takes care of all distances beginning with “collinear”.

1376 **Case 3:** $p \perp\!\!\!\perp q$. Let ξ be the symp containing both p and q . Note that neither L nor M is
1377 contained in ξ , as otherwise we are back in the previous case. There are a few possibilities.

1378 (1) Both $L^\perp \cap \xi$ and $M^\perp \cap \xi$ are maximal singular subspaces, and they intersect in a subspace
1379 of dimension at least 1. Then we are in the homogeneous case $(\frac{3}{2}\frac{3}{2}\frac{3}{2}\frac{3}{2})$, which we already
1380 discussed in detail in Part I.

1381 (2) Both $L^\perp \cap \xi$ and $M^\perp \cap \xi$ are maximal singular subspaces, and they intersect in exactly a
1382 point. By Part I, we are not in case $(\frac{3}{2}\frac{3}{2}\frac{3}{2}\frac{3}{2})$; hence we have distance $(\frac{3}{2}\frac{3}{2}\frac{3}{2}2)$.

1383 (3) Both $L^\perp \cap \xi$ and $M^\perp \cap \xi$ are maximal singular subspaces, and they are disjoint. Select
1384 $p' \in L \setminus \{p\}$ and $q' \in M \setminus \{q\}$. We claim that $p' \perp\!\!\!\perp q'$. Indeed, the only alternative is $p' \bowtie q'$.
1385 If so, let $p' \perp r \perp q'$. Then, by considering symps through points of $U := L^\perp \cap \xi$ and q' , we
1386 see that $r \perp U$; likewise, r is collinear to each point of $M^\perp \cap \xi$, a contradiction. Hence this
1387 leads to $(\frac{3}{2}\frac{3}{2}\frac{3}{2}\frac{3}{2})$, which we discussed in Part I.

1388 (4) Suppose $L^\perp \cap \xi$ is a maximal singular subspace U of ξ and $M^\perp \cap \xi$ is a line K . If $K \cap U$ is a
1389 point x , then $\langle x, L \rangle$ and $\langle x, M \rangle$ are planes intersecting in x , and it follows from Lemma 2.21
1390 that each point of L is symplectic to either a unique point of M , or all points of M . This
1391 now clearly leads to $(\frac{3}{2}\frac{3}{2}\frac{3}{2})$ again (and replacing p with the unique point on L symplectic
1392 to all points of M , we are back to (2)). Hence we may assume that $K \cap U = \emptyset$. If some
1393 point p' of $L \setminus \{p\}$ were symplectic to some point of $M \setminus \{q\}$, then we could replace p by p'
1394 and are back to situation (2). If no point of $L \setminus \{p\}$ is symplectic to any point of $M \setminus \{q\}$,
1395 then we have distance $(\frac{3}{2}2\frac{3}{2}2)$.

1396 (5) Similarly, $L^\perp \cap \xi$ a line and $M^\perp \cap \xi$ a maximal singular subspace lead to $(\frac{3}{2}\frac{3}{2}\frac{3}{2}2)$ or $(\frac{3}{2}2\frac{3}{2}2)$.

1397 (6) Finally, suppose $L^\perp \cap \xi$ is a line K and $M^\perp \cap \xi$ is a line N . If K and N intersect, then we
1398 are back to a previous case already handled, namely $(\frac{3}{2}22\frac{3}{2})$. If K and N are ξ -special, then
1399 we claim that we have distance $(\frac{3}{2}222)$. Indeed, the alternative would be that some point
1400 $q' \in M \setminus \{q\}$ is symplectic to some point $p' \in L \setminus \{p\}$. This would imply that p' is locally
1401 close to the symp determined by q' and $N^\perp \cap K$. But this implies that q is symplectic to
1402 p' , which contradicts the fact that q is not collinear to all points of K . If K and N are
1403 ξ -opposite, then, using similar arguments, we have distance $(\frac{3}{2}223)$.

1404 This takes care of the case $p \perp\!\!\!\perp q$.

1405 **Case 4:** $p \bowtie q$. Since we may assume we are not in the “Completely homogeneous” case,
1406 there are opposite pairs of points on $L \cup M$. Since we may also assume that we are not in the
1407 “Projection homogeneous” case, we may assume that no point of $L \setminus \{p\}$ is special to any point
1408 of $M \setminus \{q\}$. But then every point of L is special to q and every point of M is special to p ,
1409 whereas each point of $L \setminus \{p\}$ is opposite each point of $M \setminus \{q\}$. This is distance (2223) .

1410 One checks that the cases involving a singular subspace of dimension at least 3 (this includes
1411 each case where some point is collinear to a maximal singular subspace of a symp) are precisely
1412 the positions (1111) , $(\frac{3}{2}\frac{3}{2}\frac{3}{2}\frac{3}{2})$, (2222) , $(1\frac{3}{2}\frac{3}{2}\frac{3}{2})$, $(\frac{3}{2}\frac{3}{2}\frac{3}{2}2)$, $(1\frac{3}{2}1\frac{3}{2})$, $(11\frac{3}{2}\frac{3}{2})$, $(\frac{3}{2}\frac{3}{2}22)$ and $(\frac{3}{2}2\frac{3}{2}2)$.

1413 The lemma is completely proved. □

1414 For any ordered pair of lines (L, M) , we call each point of L distinct from the projection point,
1415 if it exists, a *free point* (for (L, M)); hence if there is no projection point, every point is free.

1416 We define the following order $0 < 1 < \frac{3}{2} < 2 < 3$. We have the following lemma.

1417 **Lemma 4.8.** *Let $L, M \in \mathcal{L}$ be two lines of an exceptional hexagonal Lie incidence geometry
1418 $\Delta = (X, \mathcal{L})$. Let $x \in L$ be a free point for (L, M) . Then there exists a line K through x , not
1419 locally opposite L at x , such that, if $\delta(L, M) = (abcd)$, then whenever $L' \ni x$ is locally opposite
1420 K at x , then $\delta(L', M) = (cdef)$, for some e, f , if $c \leq d$, otherwise $\delta(L', M) = (dcef)$, where*

1421 (cdef) or (dcef) is determined according to Table 1. Applying this assertion to (L', M) again
 1422 and again, we eventually arrive at an opposite pair. In Table 1, we list the consecutive distances
 1423 when we apply this algorithm. The penultimate column lists the local mutual position of L and
 1424 K (with respect to the first arrow in the row), and the last column mentions when K is not
 1425 unique.

{1}	(0110)	\rightarrow	(0112)	\rightarrow	(1223)	\rightarrow	(2332)	equal	
{2}	(0111)	\rightarrow	(11 $\frac{3}{2}$ 2)	\rightarrow	($\frac{3}{2}$ 223)	\rightarrow	(2332)	eq or coll	not unique
{3}	(011 $\frac{3}{2}$)	\rightarrow	(1 $\frac{3}{2}$ 22)	\rightarrow	(2223)	\rightarrow	(2332)	equal	
{4}	(111 $\frac{3}{2}$)	\rightarrow	(1 $\frac{3}{2}$ 22)	\rightarrow	(2223)	\rightarrow	(2332)	collinear	
{5}	(1 $\frac{3}{2}$ 21)	\rightarrow	(1 $\frac{3}{2}$ 22)	\rightarrow	(2223)	\rightarrow	(2332)	symplectic	
{6}	(0112)	\rightarrow	(1223)	\rightarrow	(2332)			equal	
{7}	(1 $\frac{3}{2}$ 12)	\rightarrow	(1223)	\rightarrow	(2332)			collinear	
{8}	(11 $\frac{3}{2}$ 2)	\rightarrow	($\frac{3}{2}$ 223)	\rightarrow	(2332)			equal	
{9}	(1 $\frac{3}{2}$ $\frac{3}{2}$ 2)	\rightarrow	($\frac{3}{2}$ 223)	\rightarrow	(2332)			collinear	
{10}	(12 $\frac{3}{2}$ 2)	\rightarrow	($\frac{3}{2}$ 223)	\rightarrow	(2332)			symplectic	
{11}	($\frac{3}{2}$ 22 $\frac{3}{2}$)	\rightarrow	($\frac{3}{2}$ 223)	\rightarrow	(2332)			collinear	
{12}	(1223)	\rightarrow	(2332)					equal	
{13}	(1 $\frac{3}{2}$ 22)	\rightarrow	(2223)	\rightarrow	(2332)			eq or coll	not unique
{14}	($\frac{3}{2}$ 222)	\rightarrow	(2223)	\rightarrow	(2332)			coll or sympl	not unique
{15}	($\frac{3}{2}$ 223)	\rightarrow	(2332)					collinear	
{16}	(2223)	\rightarrow	(2332)					symplectic	
{17}	(2332)	\rightarrow	(2332)					special	
{18}	(1111)	\rightarrow	(11 $\frac{3}{2}$ 2)	\rightarrow	($\frac{3}{2}$ 223)	\rightarrow	(2332)	collinear	not unique
{19}	($\frac{3}{2}$ 3333)	\rightarrow	($\frac{3}{2}$ 22)	\rightarrow	(2223)	\rightarrow	(2332)	collinear	not unique
{20}	(2222)	\rightarrow	(2223)	\rightarrow	(2332)			symplectic	not unique
{21}	(1 $\frac{3}{2}$ 1 $\frac{3}{2}$)	\rightarrow	(1 $\frac{3}{2}$ 22)	\rightarrow	(2223)	\rightarrow	(2332)	collinear	
{22}	(11 $\frac{3}{2}$ $\frac{3}{2}$)	\rightarrow	($\frac{3}{2}$ 322)	\rightarrow	(2223)	\rightarrow	(2332)	equal	
{23}	(1 $\frac{3}{2}$ $\frac{3}{2}$ 33)	\rightarrow	($\frac{3}{2}$ 22)	\rightarrow	(2223)	\rightarrow	(2332)	collinear	not unique
{24}	($\frac{3}{2}$ 322)	\rightarrow	(2223)	\rightarrow	(2332)			collinear	not unique
{25}	($\frac{3}{2}$ 2 $\frac{3}{2}$ 2)	\rightarrow	($\frac{3}{2}$ 223)	\rightarrow	(2332)			symplectic	
{26}	($\frac{3}{2}$ 3 $\frac{3}{2}$ 2)	\rightarrow	($\frac{3}{2}$ 223)	\rightarrow	(2332)			collinear	

TABLE 1. Combing distances between lines

1426 *Proof.* We have to treat the 26 cases one by one. However, some cases are immediate or at
 1427 least easy, and we skip those. It concerns many of the cases where $K = L$, namely {1}, {3},
 1428 {6}, {12}. Other cases are easy once one knows K , and we only give that information below.
 1429 Basically, K can always be thought of as a kind of projection of M onto x . In cases {12}, {15},
 1430 {16} and {17}, the point x is opposite some point of M , and then K is really that projection,
 1431 and so these cases are straightforward and we skip them, too. More tricky cases are treated in
 1432 full detail. It concerns in particular the cases that cannot occur in type F_4 .

1433 {2} $(=, \perp, \perp, \perp) \rightarrow (\perp, \perp, \perp\perp, \bowtie)$.

1434 The line K is any line through x in the plane spanned by L and M .

1435 {4} $(\perp, \perp, \perp, \perp\perp) \rightarrow (\perp, \perp\perp, \bowtie, \bowtie)$.

1436 The line K is the line joining x with the unique point of M collinear to each point of L .

1437 {5} $(\perp, \perp\perp, \perp\perp, \perp) \rightarrow (\perp, \perp\perp, \bowtie, \bowtie)$.

1438 Here, K is the line joining x with the unique point $y \in M$ collinear to x . Then let
 1439 N be a line through x locally opposite K and pick $z \in N \setminus \{x\}$. Let ξ be the sympl
 1440 containing L and M and set $z^\perp \cap \xi = M'$. Then M' and M are ξ -opposite, since if they
 1441 were not, either x would be collinear to M (which contradicts the fact that L and M

1442 are ξ -opposite), or y would be collinear to all points of M' (which contradicts the fact
 1443 that $z \bowtie y$ by the choice of N locally opposite K).

1444 {7} $(\perp, \perp\perp, \perp, \bowtie) \rightarrow (\perp, \bowtie, \bowtie, \equiv)$.

1445 Let $y \in M$ be collinear to each point of L . Then $K = xy$, and the rest follows from
 1446 Fact 2.16.

1447 {8} $(\perp, \perp, \perp\perp, \bowtie) \rightarrow (\perp\perp, \bowtie, \bowtie, \equiv)$.

1448 Here $K = L$. Set $p \in L$ the unique point collinear to each point of M and $q \in M$ the
 1449 unique point of M symplectic to x . By Fact 2.16, every other point of M is opposite
 1450 each point of $L' \setminus \{x\}$. It follows that the distance between L' to M is $(\frac{3}{2}223)$.

1451 {9} $(\perp, \perp\perp, \perp\perp, \bowtie) \rightarrow (\perp\perp, \bowtie, \bowtie, \equiv)$.

1452 Let $p \in L$ and $q \in M$ be collinear. Let ξ be the symp through M and p and let z be
 1453 the unique point of ξ collinear to M and collinear to x . Set $K = xz$. Then, precisely
 1454 like in the previous case {8}, we conclude that the distance between L' to M is $(\frac{3}{2}223)$.

1455 {10} $(\perp, \bowtie, \perp\perp, \bowtie) \rightarrow (\perp\perp, \bowtie, \bowtie, \equiv)$.

1456 Let ξ be the symp containing L and a unique point $q \in M$. Then there is a unique point
 1457 $z \in \xi$ collinear to M and x . Putting $K = xz$, the rest of the argument is the same as
 1458 for the previous cases {8} and {9}.

1459 {11} $(\perp\perp, \bowtie, \bowtie, \perp\perp) \rightarrow (\perp\perp, \bowtie, \bowtie, \equiv)$.

1460 Lemma 2.24 yields a point z collinear to each point of $L \cup M$. Then $K = xz$, and the
 1461 same arguments as in the three previous cases imply that the distance between L' to M
 1462 is $(\frac{3}{2}223)$.

1463 {13} $(\perp, \perp\perp, \bowtie, \bowtie) \rightarrow (\bowtie, \bowtie, \bowtie, \equiv)$.

1464 Let $p \in L$ be the point of L contained in a common symp ξ with M . Then $x \neq p$ is
 1465 collinear to a line N of ξ . This line N is ξ -opposite M . Then K is any line through x
 1466 in the plane spanned by x and N . Set $K \cap N = \{p'\}$ and $p'^\perp \cap M = \{q'\}$. Then the
 1467 position (2223) between L' and M follows from the facts that L' is locally opposite K
 1468 at x ; K is locally opposite $p'q'$ at p' , and $p'q'$ locally symplectic to M at q' .

1469 {14} $(\perp\perp, \bowtie, \bowtie, \bowtie) \rightarrow (\bowtie, \bowtie, \bowtie, \equiv)$.

1470 Let ξ be the symp through the unique points $p \in L$ and $q \in M$. Set $N := x^\perp \cap \xi$, and
 1471 let z be the point on N collinear to q . Lemma 2.21 yields a line $N' \ni z$ consisting of
 1472 all points collinear to a point of M and x . Then K is any line through x in the plane
 1473 $\langle x, N' \rangle$. Similar arguments as in the previous case {13} show that the mutual position
 1474 of L' and M is (2223).

1475 {18} $(\perp, \perp, \perp, \perp) \rightarrow (\perp, \perp, \perp\perp, \bowtie)$.

1476 Let K be any line through x intersecting M . Then, by Lemma 2.21, there is a unique
 1477 point on M symplectic to the points of $L' \setminus \{x\}$. This implies that the mutual position
 1478 between L' and M is $(11\frac{3}{2}2)$.

1479 {19} $(\perp\perp, \perp\perp, \perp\perp, \perp\perp) \rightarrow (\perp\perp, \perp\perp, \bowtie, \bowtie)$.

1480 Pick two points y_1, y_2 on M . By Lemma 2.19, the point y_2 is collinear to a maximal
 1481 singular subspace U of $\xi(x, y_1)$. Then x is collinear to a hyperplane W of U , and K is
 1482 any line joining x with a point z of W . Let $u \in L' \setminus \{x\}$ be arbitrary. Then u and z are
 1483 special.

1484 Suppose u were symplectic to some point of M , and we may without loss of generality
 1485 assume that point is y_1 . Then u would have to be collinear to a line N of $\xi(x, y_1)$
 1486 including x and y_1 . But x is not collinear to any point of M . It follows that u is special
 1487 to every point of M . With that, L' contains exactly one point, which is x , symplectic
 1488 to all points of L_2 ; and otherwise, all remaining points of L' are special to all points of
 1489 L_2 , since $u \in M$ was arbitrary.

1490 {20} $(\bowtie, \bowtie, \bowtie, \bowtie) \rightarrow (\bowtie, \bowtie, \bowtie, \equiv)$.

1491 Lemma 2.21 yields a line N consisting of all points collinear to x and some point of M .
 1492 Then K is any line through x in the plane $\langle x, N \rangle$. Note that K is locally symplectic to
 1493 L at x . Let $u \in L' \setminus \{x\}$. Then there is a unique point on N symplectic to u ; all other
 1494 points of N are special to u . Fact 2.16 implies that u is opposite all but exactly one

1495 point of M . Since x is special to all points of M , the mutual distance between L' and
 1496 M is (2223).

1497 {21} $(\perp, \perp\perp, \perp, \perp\perp) \rightarrow (\perp, \perp\perp, \bowtie, \bowtie)$.

1498 Let q be the unique point of M collinear to all points of L . Then K is the line qx .

1499 Let q' be any point of $M \setminus \{q\}$. Then M is contained in the symp $\xi(q', x)$. Let u be
 1500 an arbitrary point of L' not equal to x . Then u and q are special, and consequently u
 1501 can only be collinear to a line of the symp $\xi(q', x)$ through x , which implies that u and
 1502 q' are special. In summary, q is collinear to x and special to every other point of L' , and
 1503 every point in $M \setminus \{q\}$ is symplectic to x and special to every point in $L' \setminus \{x\}$.

1504 {22} $(\perp, \perp, \perp\perp, \perp\perp) \rightarrow (\perp\perp, \perp\perp, \bowtie, \bowtie)$.

1505 Let p be the point of L collinear to every point of M . Then $x \neq p$. Here, $K = L$. Let u
 1506 be some arbitrary point of L' not equal to x . Then u and p are special. The point x is
 1507 symplectic to every point of M . Considering the symp ξ containing x and an arbitrary
 1508 point $y \in M$, we see that $u^\perp \cap \xi$ is a line N through x (indeed, $p \in \xi$ and $u \bowtie p$). Now,
 1509 y is only collinear to a unique point of L , since y is not collinear to x . It follows, with
 1510 Lemma 2.19, that u is special to y . We obtain $(\frac{3}{2} \frac{3}{2} 22)$.

1511 {23} $(\perp, \perp\perp, \perp\perp, \perp\perp) \rightarrow (\perp\perp, \perp\perp, \bowtie, \bowtie)$.

1512 Let ξ be the symp through M and the unique point p of L collinear to some point q of
 1513 M . It is easy to see that $x^\perp \cap \xi$ is a maximal singular subspace U of ξ . Then K is any
 1514 line through x and a point of $M^\perp \cap U$. Considering the respective symps through x and
 1515 the points of M , we see that the points of M and $L' \setminus \{x\}$ are special. Hence we obtain
 1516 $(\frac{3}{2} \frac{3}{2} 22)$.

1517 {24} $(\perp\perp, \perp\perp, \bowtie, \bowtie) \rightarrow (\bowtie, \bowtie, \bowtie, \equiv)$.

1518 Let $p \in L$ be symplectic to all points of M . Lemma 2.22 yields a singular subspace
 1519 $U = p^\perp \cap M^\perp$ contained in each symplecton containing p and a point of M , and such
 1520 that $\langle p, U \rangle$ is a maximal singular subspace of each such symp. Combining this with
 1521 Lemma 2.21, we find a line $N \subseteq U$ consisting of all points collinear to x and some point
 1522 of M . Then K is an arbitrary line through x in the plane $\langle x, N \rangle$. Taking into account
 1523 that N and M are contained in a common symp ξ in which they are ξ -opposite, we
 1524 arrive at (2223) for the distance between L' to M .

1525 {25} $(\perp\perp, \bowtie, \perp\perp, \bowtie) \rightarrow (\perp\perp, \bowtie, \bowtie, \equiv)$.

1526 Here, there is a unique point $q \in M$ symplectic to each point of L , in particular to x .
 1527 The line M is collinear to a unique line N of $\xi(q, x)$, and x is collinear to a unique point
 1528 z of N . Then K is the line xz , and it is immediate that L' and M are at mutual distance
 1529 $(\frac{3}{2} 223)$.

1530 {26} $(\perp\perp, \perp\perp, \perp\perp, \bowtie) \rightarrow (\perp\perp, \bowtie, \bowtie, \equiv)$.

1531 Let $p \in L$ be the point symplectic to all points of M , and let $q \in M$ be the point
 1532 symplectic to all points of L . Then M is collinear to a unique line N of $\xi(q, x)$, and x
 1533 is collinear to a unique point z of N . We define $K = xz$. Then Fact 2.16 implies that
 1534 each point of $L' \setminus \{x\}$ is opposite each point of $M \setminus \{q\}$. Since $x \perp\perp q$ and x is special
 1535 to all points of $M \setminus \{q\}$, we conclude that the mutual distance of L' and M is given by
 1536 $(\frac{3}{2} 223)$.

1537 This completes the proof of the lemma. □

1538 The length of the sequence in the previous lemma is called the *level* of the corresponding line
 1539 M (with respect to L), except that when M is opposite L , we say it has level 0.

1540 4.2.3. *Algorithms and end of the proof.* Let $\Delta = (X, \mathcal{L})$ be a finite exceptional hexagonal Lie
 1541 incidence geometry whose lines carry exactly $s + 1$ points. We introduce two algorithms, that
 1542 we will call *combing algorithms*. They require that certain conditions are met, and we will also
 1543 introduce these. Naturally, we will only run them when all conditions are satisfied. They are
 1544 defined as follows.

1545 **Definition 4.9** (The combing algorithms). Let $L_0, L_1, \dots, L_s \in \mathcal{L}$ be $s+1$ lines of Δ and let
1546 L be another arbitrary line. Suppose

1547 (ALG1) There exists a point $x \in L$ which is free for every pair (L, L_i) , $i = 0, 1, \dots, s$.

1548 Condition (ALG1) just means that the set of projection points on L with respect to the lines
1549 L_i , $i = 0, 1, \dots, s$, does not cover L .

1550 For each L_i , $i \in \{0, 1, \dots, s\}$, and each point x on L that is free with respect to each line L_j ,
1551 $j \in \{0, 1, \dots, s\}$, we define a line M_i as follows. If L_i is opposite L , then M_i is the unique line
1552 through x containing a point collinear to L_i . The pair $\{L, M_i\}$ has distance (0112), or is, in
1553 other words, locally opposite at x . If L_i is not opposite L , then we set M_i equal to the line K ,
1554 as (perhaps not uniquely) defined in Lemma 4.8. If the line K is not uniquely defined there,
1555 then we arbitrarily choose one (and one may think of taking the closest to L , if this exists). We
1556 set $\mathcal{M} = \{M_i \mid i \in \{0, 1, \dots, s\}\}$.

1557 (ALG2) There exists a line L' through x locally opposite each member of \mathcal{M} at x .

1558 The line L' is the outcome of the first combing algorithm. We then replace L with L' .

1559 (ALG3) There exists a line $M \in \mathcal{M}$ locally opposite L at x and there exists a line L'' through
1560 x locally opposite each member of $\mathcal{M} \setminus \{M\}$ (where we view \mathcal{M} as a set and not as a
1561 multiset) and not opposite M .

1562 The line L'' is the outcome of the second combing algorithm (combing back at M). We then
1563 replace L with L'' .

1564 We observe:

1565 **Lemma 4.10.** *Under the second combing algorithm, level 0 always goes to level at most 1.*

1566 We will always use Lemma 4.5 to be able to perform the first combing algorithm, whereas
1567 Lemma 4.6 will allow us to perform the second combing algorithm. This is roughly the content
1568 of the proof of the next result.

1569 **Proposition 4.11.** *Every set $T = \{L_0, L_1, \dots, L_s\}$ of $s+1$ lines in a metasymplectic space, not
1570 isomorphic to $F_{4,4}(\sqrt{s}, s)$, or in an exceptional long root subgroup geometry of type E_6 , E_7 or E_8 ,
1571 where every line has exactly $s+1$ points, such that every other line is not opposite at least one
1572 member of T , is a geometric line in the line-Grassmannian geometry, that is, has the property
1573 that every other line is either not opposite a unique member of T , or opposite no member of T .*

1574 *Proof.* Obviously, a geometric line has the stated property. So assume now that T is not a
1575 geometric line, but every other line is not opposite at least one member of T . The only way
1576 in which we can violate the defining property of a geometric line is to assume the existence
1577 of a line L not opposite at least 2 members of T and opposite at least one member of T . We
1578 prove that this leads to a contradiction. The rough idea is to apply the combing algorithms to
1579 L and T until we find a line opposite all members of T . Since our proof will be inductive in
1580 some sense, it is important that after each application of the combing algorithm, the new line
1581 L satisfies the same assumption, that is, the new line L is not opposite at least two members
1582 of T and opposite at least one member of T , or the proof (locally) ends and L is opposite each
1583 member of T . (We say in these cases that the new line L is *legal*.) This little condition implies
1584 that we cannot blindly run the combing algorithms, but we have to choose the right one. The
1585 way we do this goes as follows.

1586 We start by noting that a line $M_i \in \mathcal{M}$ is locally opposite L if and only if $L_i \equiv L$. Hence, since
1587 at least two lines of T are not opposite L , and at least one line of T is opposite L , Lemma 4.5
1588 implies that (ALG2) is satisfied. Also, since opposite lines do not define projection points, and
1589 there is at least one line in T opposite L , (ALG1) is satisfied. Moreover, Lemma 4.6 allows us
1590 to run the second combing algorithm since T contains at least one line opposite L .

1591 Now we combine the two combing algorithms in one overarching algorithm that proves the
1592 theorem. That algorithm goes as follows.

- If T contains at least two members at level at least 2, then we apply the first combing algorithm. Note that elements of T opposite L remain opposite L' , and elements of T at level $k \geq 1$ with respect to L are at level $k - 1$ with respect to L' . Hence L' is legal, and the maximum level decreases.
- If T contains exactly one member L_0 at level at least 2 (and hence at least one member L_1 of level 1), then we apply the second combing algorithm combing back at an arbitrary $M_2 \in \mathcal{M}$ locally opposite L . Then L_0 comes at level at least 1, L_1 at level 0, and L_2 at level 1. Hence L'' is legal. Moreover, Lemma 4.10 guarantees that the maximum level again decreases.
- We apply the previous two steps as long as the maximal level is at least 2. If the maximal level is or becomes 1, then we apply the first combing algorithm and obtain a line L' opposite each member of T , a contradiction that proves the assertion. \square

1604 4.2.4. *The exceptional case $\mathsf{F}_{4,4}(q, q^2)$.* The above does not work for lines of metasymplectic
 1605 spaces Δ isomorphic to $\mathsf{F}_{4,4}(q, q^2)$, because we cannot apply Lemma 4.5 since in the polar space
 1606 $\mathsf{B}_{3,1}(q, q^2)$, corresponding to the residue of a point p , there are sets of $q^2 + 1$ planes admitting
 1607 no common opposite plane, and yet not isomorphic to a geometric line (pencil of planes). The
 1608 examples are sets of planes through a common point b forming a spread in a subquadrangle of
 1609 order (q, q) of the residue at b . We will call such an example an *OBS* (*ovoidal blocking set*). So
 1610 we have to provide a different proof.

1611 Note that, viewed in Δ , the point b is a *symp*, and the elements of an OBS are lines through a
 1612 common point forming an ovoid in a subquadrangle of order (q, q) of the residue at that common
 1613 point. Also, such a set will be called an OBS.

1614 Also, note that, viewed in $\mathsf{F}_{4,1}(q, q^2)$, the point p is a *symp*, and the elements of an OBS are
 1615 planes through a common point b of the *symp* p forming a spread in a subquadrangle of order
 1616 (q, q) of the residue at b .

1617 We first observe that it is really an example of a blocking set.

1618 **Lemma 4.12.** *Let T be a set of $q^2 + 1$ lines of $\Delta = \mathsf{F}_{4,4}(q, q^2)$ incident with a common point b
 1619 and forming an ovoid in a subquadrangle of the residue $\text{Res}_\xi(b)$ at b of some *symp* ξ through b .
 1620 Then no line of Δ is opposite each member of T .*

1621 *Proof.* This follows directly from Corollary 2.27. \square

1622 We now show a converse to Lemma 4.12, that is, any set T of $q^2 + 1$ lines of $\Delta = \mathsf{F}_{4,4}(q, q^2)$
 1623 with the property that no line of Δ is opposite each member of T is either a planar line pencil,
 1624 or an OBS.

1625 Let $T = \{L_0, \dots, L_t\}$, $t = q^2$, be a set of lines of $\Delta \cong \mathsf{F}_{4,4}(q, q^2)$ admitting no common opposite
 1626 line.

1627 Note that each point of a singular subspace S is opposite some point of a given *symp* ξ if, and
 1628 only if, S and ξ are far. Indeed, if there is a *symp* through S opposite ξ , then clearly, each
 1629 point of S is opposite some point of ξ . Now suppose each point of S is opposite some point of
 1630 ξ . Pick $x \in S$ and let ζ be the unique *symp* through x intersecting ξ . Our assumption implies
 1631 that S and ζ intersect just in x . Hence we can find a *symp* ζ' through S locally opposite ζ in
 1632 x . Then ζ' is opposite ξ by Proposition 2.26.

1633 **Lemma 4.13.** *There exist a point b and a *symp* ξ in Δ , with $b \in \xi$, such that both b and ξ are
 1634 far from each member of T . For each such b and ξ we have that the projections of the members
 1635 of T onto b and ξ , respectively, form either both a planar line pencil, or both an OBS.*

1636 *Proof.* We can choose points b_i contained in L_i such that the b_i do not form a geometric line
 1637 in Δ . Then Proposition 4.1, Proposition 4.2 and Theorem 4.4 yield a point b opposite all b_i ,
 1638 $i \in \{0, 1, \dots, s\}$. So, b is far from each member of T . Now set $T' = \{L'_i = \text{proj}_b^{b_i}(L_i) \mid i \in$
 1639 $\{0, 1, \dots, s\}\}$. If T' is not an OBS and not a planar line pencil, then we can find a line L
 1640 through b locally opposite each member of T' , and so, by Proposition 2.26, L is opposite each

1641 member of T , a contradiction. We conclude that T' is contained in a symp ζ through b . Now
 1642 let ξ be a symp locally opposite ζ at b . Then, again by Proposition 2.26, the projection ξ_i of
 1643 ζ onto b_i is opposite ξ . However, ξ_i contains L_i as ζ contains L'_i , $i = 0, 1, \dots, s$. Hence ξ is far
 1644 from each member of T .

1645 Now let L''_i be the projection of L_i onto ξ and let L'''_i be the unique line of ξ collinear to L'_i . We
 1646 claim that L''_i intersects L'''_i , which then shows that the projection of T' onto ξ coincides with
 1647 the projection onto b of the projection of T onto ξ , and hence T' is isomorphic to the projection
 1648 of T onto ξ and the lemma follows.

1649 Let M'''_i be the unique line through b intersecting L''_i , say in the point x''_i . Since $x''_i \in L''_i$, there
 1650 is a unique point $x_i \in L_i$ symplectic to x''_i . Then b is collinear to a unique line K_i of $\xi(x_i, x''_i)$
 1651 through x''_i , and x_i is collinear to a unique point x'_i of K_i . Now $x_i \perp x'_i \perp b$ defines a path of
 1652 length 2 from $x_i \in L_i$ to b , hence $bx'_i = L'_i$ and $M''_i = L'''_i$ and the claim follows. \square

1653 **Lemma 4.14.** *Each pair of members of T is either contained in a symp, or has a point in
 1654 common.*

1655 *Proof.* It is convenient to consider the dual situation, that is, T corresponds to a set T^* of planes
 1656 $\{\alpha_0, \dots, \alpha_s\}$, $s = q^2$, of $\mathsf{F}_{4,1}(q, q^2)$. By Lemma 4.13 we can find a symp ξ far from each member
 1657 of T^* . Hence we can project all planes α_i onto ξ and obtain planes α'_i . By Corollary 2.27 and
 1658 Proposition 2.29, the α'_i form a full plane pencil or an OBS. In particular, all planes α'_i contain
 1659 a common point q , and for each line L_0 of α'_0 through q , except for the possible intersection
 1660 line with α'_1 , there exist q^2 lines L_1 of α'_1 through q not coplanar with L_0 . Let z_0 and z_1 be two
 1661 arbitrary points on L_0 and L_1 , respectively. Select a point p in ξ not collinear to q , but collinear
 1662 to both z_0 and z_1 . Let p_i and x_i be the unique points in α_i symplectic to z_i and q , respectively,
 1663 $i = 0, 1$. Since p is collinear to a unique line of $\xi(p_i, z_i)$, there is a unique point y_i in $\xi(p_i, z_i)$
 1664 collinear to p_i, z_i and p , $i = 0, 1$. The line $L''_i = py_i$ is the projection of L_i from x_i onto p . By the
 1665 “dual” of Lemma 4.13, the points y_0 and y_1 are either collinear or symplectic. But since $\xi(p_i, z_i)$
 1666 is symplectic to ξ , and z_0 is symplectic to z_1 , the symps $\xi(p_0, z_0)$ and $\xi(p_1, z_1)$ are opposite (use
 1667 Proposition 2.26 together with the observation that symplectic symps are locally opposite at
 1668 their intersection point). Hence y_0 and y_1 are symplectic. Let q_i be the unique point of $\xi(p_i, z_i)$
 1669 collinear to q, p_i and z_i , $i = 0, 1$. Then, varying p over all points of ξ not collinear to q , but
 1670 collinear to both z_0 and z_1 , we deduce that $p_0^\perp \cap z_0^\perp \setminus q_0^\perp$ corresponds to $p_1^\perp \cap z_1^\perp \setminus q_1^\perp$ under the
 1671 projection map from $\xi(p_0, z_0)$ to $\xi(p_1, z_1)$ given on the points by “being symplectic”. It easily
 1672 follows that $p_0^\perp \cap z_0^\perp$ corresponds to $p_1^\perp \cap z_1^\perp$. Hence $(p_0^\perp \cap z_0^\perp)^\perp$ corresponds to $(p_1^\perp \cap z_1^\perp)^\perp$. Since
 1673 symps are isomorphic to quadrics $Q^-(7, q)$, which are embedded in non-degenerate (symplectic)
 1674 polarities, we have $(p_i^\perp \cap z_i^\perp)^\perp = \{p_i, z_i\}$, $i = 0, 1$. Since z_0 corresponds to z_1 , we conclude that
 1675 p_0 and p_1 are symplectic.

1676 We have shown that p_0 is symplectic to all points of α_1 , except possibly the points of a unique
 1677 line. It then easily follows that p_0 is collinear or symplectic to any given point of α_1 . By the
 1678 arbitrariness of p_0 in $\alpha_0 \setminus \{z_0\}$, we deduce that any pair of points in $\alpha_0 \cup \alpha_1$ is symplectic,
 1679 collinear or identical. Consider any symp ξ_1 through α_1 . If $p_0 \in \xi_1$, then p_0 is collinear to at
 1680 least a line of α_1 . If $p_0 \notin \xi_1$, then it must be close to it and the line $p_0^\perp \cap \xi_1$ must be contained
 1681 in α_1 . Hence in any case, there is a line of α_1 collinear to p_0 , and so we can assume that ξ_1
 1682 contains p_0 . Suppose some point $r_0 \in \alpha_0$ does not belong to ξ_1 . Then $r_0^\perp \cap \xi_1 \subseteq \alpha_1$, as before,
 1683 showing $p_0 \in \alpha_1$.

1684 Hence we have shown that either α_0 and α_1 are contained in a symp, or they have a point in
 1685 common. This means that, if α_i corresponds to L_i , then L_0 and L_1 either intersect in a point,
 1686 or are contained in a common symp.

1687 The assertion follows by the arbitrariness of L_0 and L_1 in T . \square

1688 We can now classify the blocking sets of lines of size $q^2 + 1$ in $\mathsf{F}_{4,4}(q, q^2)$.

1689 **Theorem 4.15.** *Let T be a set of $q^2 + 1$ lines of $\Delta = \mathsf{F}_{4,4}(q, q^2)$. Then all members of T
 1690 are incident with a common point b and form either a planar line pencil, or an ovoid in a*

1691 subquadrangle of the residue $\text{Res}_\xi(b)$ at b of some symp ξ through b if, and only if, no line of Δ
1692 is opposite each member of T .

1693 *Proof.* The “only if” part is Lemma 4.12. We now show the “if” part. We first claim that each
1694 pair of members of T intersect nontrivially. Indeed, we may assume for a contradiction that
1695 L_0 and L_1 do not intersect. Then by Lemma 4.14 they are contained in a common symp ζ .
1696 Lemma 4.13 yields a symp ξ far from each member of T . Also, the same Lemma 4.13 implies
1697 that the projection of L_0, L_1 from ζ onto ξ is a pair of intersecting lines. Since the projection
1698 from ζ to ξ is an isomorphism of polar spaces, this implies that L_0 and L_1 also intersect. The
1699 claim follows.

1700 We next claim that all members of T are either contained in a plane, or contain a common
1701 point. Suppose the latter does not hold. Then there are three lines L_0, L_1, L_2 forming a triangle
1702 in a plane. Clearly, all other members of T have to be contained in that plane. The claim is
1703 proved.

1704 Since we now have that T belongs to a point residual, or the residue of a plane, the theorem
1705 follows from Corollary 2.27, Proposition 2.28 and Proposition 2.29. \square

1706 4.2.5. *Geometric lines.* We now classify geometric lines in the line-Grassmannian of hexagonalic
1707 Lie incidence geometries. This will follow from the classification of round-up triples of lines.

1708 **Lemma 4.16.** *Let $\{L_1, L_2, L_3\}$ be a round-up triple of lines in an exceptional hexagonalic Lie
1709 incidence geometry Δ of rank at least 3, such that L_1 and L_2 intersect. Then exactly one of the
1710 following holds.*

- 1711 (i) $L_1 = L_2 = L_3$;
- 1712 (ii) L_1, L_2, L_3 are three lines in a common planar line pencil;
- 1713 (iii) L_1, L_2, L_3 are three lines in a common symp ξ containing a common point p and contained
1714 in a common hyperbolic line of $\text{Res}_\xi(p)$. This only happens if Δ corresponds to a building
1715 of type F_4 .

1716 *Proof.* Clearly, if $L_1 = L_2$, then also $L_3 = L_1$ since otherwise there exists a line opposite
1717 L_3 and not opposite L_1 . So we may assume $L_1 \cap L_2 = \{x\}$. By Lemma 2.33, also $x \in$
1718 L_3 . By Corollary 2.27, $\{L_1, L_2, L_3\}$ is a round-up triple in $\text{Res}(x)$. The result now follows
1719 from Proposition 2.28 for types E_6 and E_7 , from Proposition 2.29 for type F_4 , and from [21,
1720 Corollary 5.5] for type E_8 . \square

1721 **Lemma 4.17.** *Let $\{L_1, L_2, L_3\}$ be a round-up triple of disjoint lines in an exceptional hexagonalic
1722 Lie incidence geometry of rank at least 3. Then no point of L_2 is collinear to any point of L_1 .*

1723 *Proof.* Let, for a contradiction, M be a line joining a point $x_1 \in L_1$ to a point $x_2 \in L_2$. Note
1724 that $L_1 \neq M \neq L_2$. Lemma 2.34 shows that M intersects L_3 , say in the point x_3 . Assume first
1725 that M and L_i are locally opposite at x_i , for every $i \in \{1, 2, 3\}$. Let π be any plane containing
1726 M . Let K_i be the line in π through x_i not locally opposite L_i at x_i , guaranteed to exist by
1727 Lemma 2.21. Suppose first that $z := K_1 \cap K_2$ does not belong to K_3 . Let N be a line locally
1728 opposite zx_3 at z . Then any point $u \in N \setminus \{z\}$ is opposite some point of L_3 , but is not opposite
1729 any point of $L_1 \cup L_2$. It follows that there exists a line through u opposite L_3 , but not opposite
1730 either L_1 or L_2 , a contradiction. Hence we may assume that there exists some line $K'_3 \subseteq \pi$
1731 through x_3 intersecting K_2 in some point $y_2 \notin K_1$, with y_2 special to every point of $L_3 \setminus \{x_3\}$.
1732 Then we pick a line N' through y_2 locally opposite K'_3 at y_2 , but not locally opposite x_1y_2 at
1733 y_2 . Then no point w on N' is opposite some point of $L_1 \cup L_2$ since the pair $\{w, x_1\}$ is collinear
1734 or symplectic, and the pair $\{y_2, y'_2\}$, with $y'_2 \in L_2 \setminus \{x_2\}$, is symplectic. As above, there exists
1735 a line through w opposite L_3 , but not opposite either L_1 or L_2 .

1736 So, we may assume without loss of generality that M and L_3 are contained in a symp ξ . Then
1737 Corollary 2.35 implies $x_1 \in L_2 \subseteq \xi$, contrary to our assumptions. The lemma is proved. \square

1738 **Lemma 4.18.** *Let $\{L_1, L_2, L_3\}$ be a round-up triple of lines in an exceptional hexagonal Lie
1739 incidence geometry Δ of rank at least 3, such that no point of L_i is collinear to any point of L_j ,
1740 for all $i, j \in \{1, 2, 3\}$, $i \neq j$. Then no point of L_1 is symplectic to any point of L_2 .*

1741 *Proof.* Suppose for a contradiction that some point $x_1 \in L_1$ is symplectic to some point $x_2 \in L_2$.
1742 Let ξ be the corresponding symp. By Lemma 2.34, L_3 shares a point x_3 with ξ .

1743 We claim that L_3 is collinear to a maximal singular subspace of ξ . Indeed, suppose not. Then
1744 $L_3^\perp \cap \xi$ is a line L_3^* . There are two cases.

1745 (1) *Suppose every point of $x_1^\perp \cap x_2^\perp$ is collinear to x_3 .* Then $x_3 \in \{x_1, x_2\}^{\perp\perp}$ and Δ corresponds
1746 to type F_4 . Let ξ_3 be an arbitrary symp not containing L_3 and locally opposite ξ at x_3 .
1747 Select $z_3 \in \xi_3 \setminus x_3^\perp$. Since $x_1 \equiv z_3 \equiv x_2$, we can define $M_i := \text{proj}_{z_3}^{x_i}(L_i)$, $i = 1, 2$. If
1748 $M_1 \neq M_2$, we can take a line K through z_3 locally opposite M_1 at z_3 , but not locally
1749 opposite M_2 at z_3 , and then K is opposite L_1 , and not opposite either L_2 or L_3 (the latter
1750 because z_3 is symplectic to every point of L_3), a contradiction. Hence, we may assume that
1751 $M_1 = M_2$. Set $u_i := M_i \cap x_i^\perp$, $i = 1, 2$. If $u_1 \neq u_2$, then we may replace z_3 with any point
1752 in $(M_1^\perp \cap \xi_3) \setminus \{z_3\}$ and apply the previous argument. So, we may assume $u_1 = u_2$. Let
1753 N_i be the line through u_i intersecting L_i , say in the point w_i , $i = 1, 2$. Then, since by
1754 Fact 2.16, x_1 and w_2 are not opposite, the same Fact 2.16 implies that N_1 and N_2 are not
1755 locally opposite at u_1 . Hence w_1 and w_2 are symplectic (as we may assume that they are
1756 not collinear by Lemma 4.17).

1757 Hence, by Lemma 2.34, the line L_3 intersects $\xi(w_1, w_2)$ in a point w_3 , which we may
1758 assume to belong to $\{w_1, w_2\}^{\perp\perp}$ (as otherwise we are in case (2) below). Hence $u_1 \perp w_3$
1759 and so $u_1 = [w_3, u_1]$, which, however, is contained in ξ_3 and coincides with $L_3^\perp \cap \xi_3 \cap u_1^\perp$.
1760 Hence $u_1 \perp x_3$. But then, similarly, $w_1 = [u_1, x_1] \in \xi$, implying $w_1 = x_1$, clearly a
1761 contradiction.

1762 (2) *Suppose some point $y \in x_1^\perp \cap x_2^\perp$ is not collinear to x_3 .* Select $y_3 \in L_3 \setminus \{x_3\}$. Then, $y_3 \bowtie y$
1763 and $u = [y, y_3] \in L_3^* \setminus \{x_3\}$. Let M be some line through y locally opposite yu at y . Let m
1764 be some arbitrary point on M not equal to y . Let L'_3 be the projection of L_3 onto m . Note
1765 that $L'_3 \neq M$ as $L_3 \neq u y_3$. Hence there exists a line K through m locally opposite L'_3 but
1766 not locally opposite M . Then K is opposite L_3 but not opposite L_1 and L_2 , because, by
1767 Fact 2.16, no point of K is opposite x_1 or x_2 .

1768 Since both cases lead to contradictions, we conclude that L_3 is collinear to a maximal singular
1769 subspace U_3 of ξ . Likewise, L_1 and L_2 are also collinear to respective maximal singular subspaces
1770 U_1 and U_2 of ξ . Note that this implies that ξ is top-thin (or hyperbolic).

1771 It follows that, since x_1 is not collinear to $x_2 \in U_2$, the set $x_3^\perp \cap U_2$ contains some point z_2
1772 that is not collinear to x_1 . Let y_3 be an arbitrary point of $L_3 \setminus \{x_3\}$. If $y_3 \perp\!\!\!\perp z_2$, let ξ_3 be the
1773 symp through y_3 and z_2 . If $y_3 \perp z_2$, then let ξ_3 be a symp containing L_3 and z_2 . Let ξ_2 be a
1774 symp through z_2 locally opposite ξ but not locally opposite ξ_3 . Let $w_2 \in \xi_2$ be symplectic to
1775 z_2 . Then, since z_2 is collinear to each point of L_2 , Fact 2.16 implies that w_2 is not opposite
1776 any point of L_2 . Also, since ξ_2 is not locally opposite ξ_3 , the point w_2 is not opposite any point
1777 of L_3 . But w_2 is opposite x_1 and so there is a line K through w_2 opposite L_1 , and K is not
1778 opposite either L_2 or L_3 , a contradiction.

1779 This completes the proof of the lemma. \square

1780 **Lemma 4.19.** *Let $\{L_1, L_2, L_3\}$ be a round-up triple of lines in an exceptional hexagonal Lie
1781 incidence geometry of rank at least 3. Let $x_1 \in L_1$ and $x_2 \in L_2$ be collinear to a common point
1782 y . Then y is collinear to a point of L_3 .*

1783 *Proof.* Suppose y is not collinear to any point of L_3 . Let Σ be an apartment containing L_3 and
1784 y . Since y is not collinear to any point of L_3 , it is not special to and not opposite at least two
1785 points of the line L_3^* that is opposite L_3 in Σ . But then y is equal, collinear or symplectic with
1786 each point of L_3^* , implying that no point of L_3^* is opposite either x_1 or x_2 . Hence L_3^* is opposite
1787 L_3 , but not opposite either L_1 or L_2 , a contradiction. \square

1788 **Lemma 4.20.** *Let $\{L_1, L_2, L_3\}$ be a round-up triple of lines in an exceptional hexagonal Lie
 1789 incidence geometry Δ of rank at least 3, such that each point of L_1 is special to each point of
 1790 L_2 . Then some point of L_3 is symplectic, collinear or equal to some point of $L_1 \cup L_2$.*

1791 *Proof.* Using Lemma 2.21, we see that the set of points collinear to a point of L_1 and to a point
 1792 of L_2 is a hyperbolic quadric Q_{12} (of rank 2). Each line of Q_{12} is collinear to a unique point
 1793 of $L_1 \cup L_2$. We claim that non-collinear points on Q_{12} are also non-collinear in Δ . Indeed, one
 1794 checks that in that case Q_{12} generates a 3-space U . Picking non-collinear respective points in
 1795 Q_{12} and L_1 , we see that they are symplectic and the corresponding symps contain L_1 and at
 1796 least a plane of U . The intersection of two such symps (with different planes in U) contains a
 1797 3-space. Hence the symps coincide. Now the symp through L_1 and U has a 3-space in common
 1798 with the symp through L_2 and U and hence L_1 and L_2 are contained in a common symp, a
 1799 contradiction.

1800 By Lemma 4.19, each point of Q_{12} is also collinear to a unique point of L_3 (unique indeed since,
 1801 if not, then Lemma 2.21 would yield a point of L_3 collinear or symplectic to some point of L_1 ,
 1802 contradicting Lemma 4.17 and Lemma 4.18). It follows that, for any line L in Q_{12} , collinearity
 1803 defines either a bijection between L and L_3 , or a constant transformation from L to L_3 . In the
 1804 latter case, the unique points of L_3 and $L_1 \cup L_2$ collinear with all points of L are symplectic,
 1805 contradicting Lemma 4.18. In the former case, pick $p \in L$ and let L' be the unique line of
 1806 Q_{12} through p distinct from L . Then again, collinearity defines a bijection between L' and L_3 .
 1807 Hence there is a point of L_3 collinear to two non-collinear points of Q_{12} , and since these points
 1808 are also non-collinear in Δ , this contradicts Lemma 2.21.

1809 The lemma is proved. □

1810 **Lemma 4.21.** *Let L_1, L_2, L_3 be three lines of an exceptional hexagonal Lie incidence geometry
 1811 of rank at least 3, such that each point of L_1 is special to or opposite each point of L_2 . Then
 1812 $\{L_1, L_2, L_3\}$ is not a round-up triple.*

1813 *Proof.* By Lemmas 4.16, 4.17 and 4.18, we may assume that no point of L_3 is equal, collinear or
 1814 symplectic to any point of $L_1 \cup L_2$. Moreover, by Lemma 4.20, we may also assume that some
 1815 point of L_3 is opposite L_1 and some point of L_3 is opposite some point of L_2 . This implies that
 1816 the mutual positions of L_i and L_j , $i, j \in \{1, 2, 3\}$, $i \neq j$, are given by either (2223) or (2332).

1817 We may assume that $\{L_1, L_2, L_3\}$ is a round-up triple. By the nature of (2223) and (2332),
 1818 there exists at most one point of L_3 that is not opposite all points of L_1 , and at most one point
 1819 of L_3 that is not opposite all points of L_2 . Hence we find a point $x_3 \in L_3$ that is opposite at
 1820 least one point x_1 of L_1 and at least one point x_2 of L_2 . We can then project L_i , $i = 1, 2$, from
 1821 x_i onto x_3 and obtain lines L'_i and points $y_i \in L'_i$ collinear to a point of L_i . Lemma 4.19 and
 1822 the uniqueness of the projections yield $L'_1 = L'_2 =: M_3$ and $y_1 = y_2 =: y$.

1823 Let M_i , $i = 1, 2$, be the lines through y intersecting L_i . Our assumptions imply that these lines
 1824 are pairwise locally opposite at y . By Proposition 2.28, Proposition 2.29 and [21, Corollary 5.6],
 1825 $\{M_1, M_2, M_3\}$ is not a round-up triple in the point residual $\text{Res}(y)$. Hence, up to renumbering,
 1826 we find a line $M \ni y$ locally opposite M_1 , and not locally opposite either M_2 or M_3 at y . Pick
 1827 $z \in M \setminus \{y\}$. Then Fact 2.16 implies that z is opposite x_1 , but not opposite any point of $L_2 \cup L_3$.
 1828 It follows that each line K through z opposite L_1 (which exists) is not opposite either L_2 or L_3 ,
 1829 a contradiction.

1830 This proves the lemma completely. □

1831 **Proposition 4.22.** *Let T be a geometric line of the line-Grassmannian of an exceptional hexagonal Lie
 1832 incidence geometry Δ of rank at least 3. Then exactly one of the following holds.*

1833 (i) T is an ordinary line of the corresponding line-Grassmannian parapolar space, that is, a
 1834 planar line pencil of Δ ;
 1835 (ii) Δ is $F_{4,4}(\mathbb{K}, \mathbb{K})$ and T is a cone over a hyperbolic line in a symplectic symp.

1836 *Proof.* If Δ is not $F_{4,4}(\mathbb{K}, \mathbb{K})$, then Proposition 2.32, together with Lemmas 4.16, 4.17, 4.18,
 1837 4.20 and 4.21 imply (i).

1838 Suppose now $\Delta \cong F_{4,4}(\mathbb{K}, \mathbb{K})$. If some pair of elements of T is contained in an ordinary line
 1839 K of the line-Grassmannian of Δ , then, again by the previous lemmas and the fact that every
 1840 triple of members of T is a round-up triple, all elements are contained in that line, hence all
 1841 triples are and Proposition 2.32 implies that $T = K$.

1842 Next suppose that two elements L, M of T are not coplanar. Then, again by Lemmas 4.16,
 1843 4.17, 4.18, 4.20 and 4.21, they are contained in a hyperbolic line H of the point residual of a
 1844 $\text{symp } \xi$. The same lemmas now imply that $T \subseteq H$ and Proposition 2.29(ii) yields $T = H$ and
 1845 ξ is a symplectic polar space. The proposition is proved. \square

1846 5. GENERALISED HEXAGONS

1847 **5.1. Blocking sets.** We start with a nonexistence result of a class of hexagons with certain
 1848 parameters.

1849 **Lemma 5.1.** *Let t be a natural number at least 2. Then there does not exist a generalised
 1850 hexagon of order (s, t) , with $s = t + t^2$.*

1851 *Proof.* Since by [18] the number st is a perfect square, we have that $t^2 + t^3$ is a perfect square.
 1852 Hence $t + 1$ is a perfect square, say $t = a^2 - 1$. Then $s = a^2(a^2 - 1)$. Now, by [18], we know
 1853 that the rational number

$$\frac{st(1 + s + t + st)(1 + \sqrt{st} + st)}{2(s + t + \sqrt{st})}$$

1854 is an integer. The denominator of that expression is equal to $2(a - 1)(a + 1)(a^2 + a + 1) =$
 1855 $2t(a^2 + a + 1)$. Hence $a^2 + a + 1$ divides the numerator divided by t . We now observe, taking
 1856 into account that $a^2 + a + 1$ is odd, the following facts.

- 1857 • Clearly $\gcd(a^2, a^2 + a + 1) = 1$.
- 1858 • Since $a^2 - 1 = (a^2 + a + 1) - (a + 2)$ and $a^2 + a + 1 = (a + 2)^2 - 3(a + 2) + 3$, we find
 1859 $\gcd(a^2 - 1, a^2 + a + 1) \in \{1, 3\}$.
- 1860 • We have $1 + s + t + st = a^2(a^4 - a^2 + 1)$. Since

$$a^4 - a^2 + 1 = a^2(a^2 + a + 1) - a(a^2 + a + 1) - (a^2 + a + 1) + 2(a + 1),$$

1861 we find $\gcd(a^4 - a^2 + 1, a^2 + a + 1) = \gcd(a + 1, a^2 + a + 1) = 1$.

- 1862 • We have $1 + \sqrt{st} + st = a^6 - 2a^4 + a^3 + a^2 - a + 1$. Since

$$a^6 - 2a^4 + a^3 + a^2 - a + 1 = (a^4 - a^3 - 2a^2 + 4a - 1)(a^2 + a + 1) - 4a + 2,$$

1863 we find

$$\gcd(1 + \sqrt{st} + st, a^2 + a + 1) = \gcd(2a - 1, a^2 + a + 1),$$

1864 which, in view of $4a^2 + 4a + 4 = (2a - 1)^2 + 4(2a - 1) + 7$, is either 1 or 7. In the latter
 1865 case, $2a - 1$ is divisible by 7, implying in particular $a \geq 4$.

1866 We conclude that the greatest common divisor of $s(1 + s + t + st)(1 + \sqrt{st} + st)$ and $a^2 + a + 1$
 1867 is one of 1, 3, 7, 21. It follows that $a^2 + a + 1 \in \{3, 7, 21\}$, hence $a \in \{2, 4\}$ (remember $a > 1$).
 1868 But then, by the last bullet point above, $a = 4$.

1869 But in this case, one calculates that the number

$$\frac{st(1 + s + t + st)(1 - \sqrt{st} + st)}{2(s + t - \sqrt{st})}$$

1870 is not an integer (the denominator is divisible by 13, whereas this is not the case for the
 1871 numerator), as is required by [18]. \square

1872 Every point x of a generalised hexagon has a projection onto a given line L , which is x itself if
1873 $x \in L$, which is the unique point of L collinear to x if x is close to L , and which is special to x
1874 if x is far from L . We call this projection occasionally the *nearest point to x on L* . Also, recall
1875 that, if the nearest point to x on L is collinear to but distinct from x , then we called x and L
1876 close (as we also did above).

1877 **Proposition 5.2.** *If a set of $s + 1$ points $S = \{p_0, p_1, \dots, p_s\}$ of a generalised hexagon Δ of
1878 finite order (s, t) , $s, t > 1$, admits no opposite point, then it is either*

1879 (i) a line, or
1880 (ii) a hyperbolic line (and then $s = t$), or
1881 (iii) a regular distance-3 trace (and then $s \geq t$).

1882 *Proof.* Suppose $S = \{p_0, p_1, \dots, p_s\}$ is a set of $s + 1$ points in Δ such that no point of Δ is
1883 opposite every point of S . We proceed with proving some claims.

1884 **Claim 1.** *If $p_0 \perp x \perp p_1$, with p_0 not collinear to p_1 , and $x \notin S$, then every line through x
1885 contains at least one member of S .*

1886 Indeed, suppose the line L through x is disjoint from S . Since p_0 and p_1 project onto the same
1887 point x of L , there exists some point $y \in L$ not collinear to any member of S . Consider a line
1888 $M \neq L$ through y . No point of S is contained in M or is close to M (since this would lead to a
1889 4-gon or 5-gon containing y). Hence they are all far from M . Since p_0 and p_1 project onto the
1890 same point y of M , there is a point $z \in M$ opposite each member of S , a contradiction.

1891 Claim 1 is proved.

1892 **Claim 2.** *If p_0 and p_1 are collinear, then S is a line of Δ .*

1893 Indeed, suppose first that there exists a point $x \in L := p_0 p_1$ that does not coincide with a
1894 projection of some member of S onto L . Consider a line $M \neq L$ containing x . Then the only
1895 points of S close to M are on L . Since p_0 and p_1 project onto the same point x of M , there
1896 exists some point $y \in M$ which is not the projection of any member of S onto M . We deduce
1897 that every line $K \neq M$ through y is far from every member of S . Since p_0 and p_1 project onto
1898 the same point y of such a line K , there exists a point opposite every member of S on each such
1899 line K , a contradiction.

1900 Hence every point q_i on L is the projection of a unique point p_i of S . Suppose $S \neq L$. Then
1901 we may assume that $p_2 \notin L$ and so p_2 is either special to or opposite p_0 . If p_2 is special to
1902 p_0 , then by Claim 1 each line through p_2 contains a point, say p_3 , of S , implying that $p_2 = p_3$,
1903 contradicting the uniqueness of p_2 . So p_2 is far from L . Select a line M' through p_2 distinct
1904 from L and far from p_2 (M' exists since $t \geq 2$). Then, since $p_2 \neq q_i$, the point p_i is either on
1905 L or opposite p_2 , for each $i \in \{3, 4, \dots, s\}$. It follows that, with M' in the role of M in the
1906 previous paragraph, we again reach the same contradiction.

1907 Claim 2 is proved. From now on, we may assume that S does not contain two collinear points.

1908 **Claim 3.** *If p_0 and p_1 are opposite, and some line L close to both contains no point of S , then
1909 L is close to each point of S and each point of L is collinear to a unique point of S .*

1910

1911 Let x_i be the nearest point to p_i on L , $i \in \{0, 1, \dots, s\}$, and note that $x_i \neq p_i$ by assumption.
1912 Suppose there exists a point $x \in L \setminus \{x_0, x_1, \dots, x_s\}$. Let $M \neq L$ be any line through x . Then
1913 M is far from each point of S . Since x is special to at least two points p_0, p_1 of S , there is some
1914 point of M opposite each point of S , a contradiction. Hence $L = \{x_0, x_1, \dots, x_s\}$. Suppose
1915 some point, say p_2 , of S is not collinear to its projection x_2 onto L . Let M_2 be a line through
1916 x_2 not close to x_2 and distinct from L (which exists as $t > 1$).

1917 Then M_2 is far from each point of S , but p_0, p_1 and p_2 have the same projection x_2 , yielding a
1918 point $y_2 \in M_2$ opposite each point of S , a contradiction. Hence $p_i \perp x_i$, for all $i \in \{0, 1, \dots, s\}$.

1919 **Claim 4.** *If S only contains pairwise opposite points, then $s \geq t$ and S is a regular distance-3
1920 trace. The assumptions of Step 3 are satisfied for each line close to both p_0 and p_1 . Hence every*

1921 point of S is collinear to some point of each line that is close to both p_0 and p_1 . We conclude
1922 that S is a regular distance-3 trace. We now show that $s \geq t$.

1923 Let z be any point special to both p_0 and p_1 , and not on a line close to p_0 and p_1 . Note that z is
1924 not collinear to any point of S , as $z \perp p_2$ would imply, by interchanging the roles of p_1 and p_2 ,
1925 that the line through z close to p_0 is also close to p_1 , which is not the case by the assumptions
1926 on z . Then, similarly as before, every line through z is close to some point of S , but not to two
1927 such points, as this would mean that z is already collinear to some point of S (by the definition
1928 of distance-3 trace), contradicting our note above. We conclude $t \leq s$.

1929 **Claim 5.** *If S only contains pairwise special points, then $s = t$ and S is a hyperbolic line.*
1930 Indeed, set $x = [p_0, p_1]$. By Claim 1, every line through x contains a point of S . Hence $t \leq s$. If
1931 $t = s$, then let y be a point opposite x , but not opposite either p_0 or p_1 . We claim that p_i is not
1932 opposite y , for every $i \in 2, 3, \dots, s$. Indeed, suppose p_2 is opposite y and let L_y be the unique
1933 line through y not opposite xp_2 . No point p_i , $i \in \{0, 1, \dots, s\}$, is collinear to some point q_i of
1934 L_y , as this would induce a 5-gon containing x, p_i, q_i and the lines L_y and xp_i . Hence all points
1935 p_i have a unique point on L_y to which they are not opposite. But p_0 and p_1 are not opposite
1936 the same point, yielding a point on L_y opposite all members of S , a contradiction. The claim
1937 is proved. This now implies that S is a hyperbolic line.

1938 Suppose now that $t < s$. Claim 1 implies that S is a t -cloud, in the terminology of [5]. By [5,
1939 Lemma 1] and the remark following Lemma 1 of [5], it follows that $S \cup S^*$, where S^* is the set
1940 of points collinear to at least two points of S , is the point set of a subhexagon of order $(1, t)$,
1941 and as such S and S^* are the point and line set, respectively, of a projective plane of order t .
1942 Hence $s = t^2 + t$. This contradicts Lemma 5.1.

1943 There remains one case to take care of.

1944 **Claim 6.** *If S contains opposite pairs, then it does not contain special pairs.* Indeed, let
1945 $p_0 \equiv p_1$. Suppose, for a contradiction, that S contains a special pair, too. We first show that
1946 every line L close to p_0 and p_1 , respectively, contains a (unique) point of S . Indeed, suppose
1947 not. Then Claim 3 implies that each point of L is collinear to a unique point of S , implying
1948 that each pair of points of S is opposite, contradicting our assumption. Hence L contains some
1949 point p_2 of S , unique by Claim 2. It also follows from Step 1 that each line through $[p_j, p_2]$,
1950 $j = 0, 1$, contains a unique point of S .

1951 Now let T be the set of points of Δ with the property that each line through them contains a
1952 point of S . Let \mathcal{L} be the set of lines of Δ through such points and note that each member of \mathcal{L}
1953 contains at least one point of T and exactly one point of S . Then we prove that $\Gamma = (S \cup T, \mathcal{L})$
1954 is a subhexagon. Indeed, if L, L' are two distinct lines containing points collinear to p_0 and p_1 ,
1955 respectively, then p_0, p_1, L, L' are contained in an ordinary hexagon H , implying that the girth
1956 of the incidence graph of Γ is equal to 12.

1957 In order to show that the diameter of the said graph is 6, it suffices to prove that for every
1958 point $x \in S \cup T$ and every line $L \in \mathcal{L}$, the unique minimal path joining x and L in Δ belongs
1959 to Γ . If $x \in L$, then this is trivial. Suppose now $x \in M \ni y \in L$, with $x \notin L$. If $x \in S$, then
1960 $y \notin S$ and so L contains a point of S distinct from y . It follows that $y \in T$ and consequently
1961 $M \in \mathcal{L}$. Suppose now $x \in T$. Then there exists some point $x' \in S \cap M$. It again follows that
1962 $y \in T$ and $M \in \mathcal{L}$. At last suppose $x \in M \ni y \in K \ni z \in L$, with $x \neq y \neq z$ and $M \neq K \neq L$.
1963 If $x \in T$, then there exists $x' \in M \cap S$. If $x' = y$, then the previous case proves the assertion; if
1964 $x' \neq y$, then we replace x with x' and hence we may assume $x \in S$. If $z \in S$, then $y \in T$ and
1965 the assertion follows easily. So suppose $z \notin S$. Then some point $q \in L$ different from z belongs
1966 to S . By the first paragraph, the line K contains a point of S . It follows that $y, z \in T$ and the
1967 assertion follows. Since it is easy to see that every point of Δ (and hence of Γ) is opposite at
1968 least one point of H , we see that all lines through any point of $S \cup T$ belong to \mathcal{L} . Hence, by
1969 [32, Lemma 1.3.6] in combination with [32, Theorem 1.6.2], Γ is a subhexagon of order (s', t) ,
1970 $1 \leq s' \leq s$. Since, with the above notation, the line L contains at least three points of $S \cup T$,
1971 we have $s' > 1$. Now, by the definition of \mathcal{L} , every member of \mathcal{L} contains a unique member of

1972 S . A standard count reveals that $|S| = 1 + s't + (s't)^2$ points. It follows that $s = s't + (s't)^2$.
 1973 Now, both st and $s't$ are perfect squares by [18]. It follows that $s/t = s'(1 + s't)$ is a perfect
 1974 square. Since s' and $1 + s't$ are relatively prime, both s' and $1 + s't$ are perfect squares, which
 1975 contradicts the fact that $s't$ is a perfect square. This completes the proof of Claim 5.

1976 This also completes the proof of the proposition. \square

1977 The following result classifies very explicitly all sets of size $s + 1$ admitting no global opposite
 1978 point in finite Moufang hexagons of order (s, t) .

1979 **Corollary 5.3.** *A set S of $s + 1$ points of a Moufang generalised hexagon of finite order (s, t) ,
 1980 $s, t > 1$, admits no opposite point if, and only if, it is either*
 1981 *(i) a line, or*
 1982 *(ii) a hyperbolic line in the split Cayley hexagon $G_{2,2}(s, s)$, or*
 1983 *(iii) a distance-3 trace in the split Cayley hexagon $G_{2,2}(s, s)$ with s even, or in the twisted
 1984 triality hexagon $G_{2,2}(t, s)$, with $t^3 = s$ even.*

1985 *Proof.* In view of Proposition 5.2, (ii) follows from [32, Remark 6.3.5] and (iii) follows from [19,
 1986 Theorem 1]. \square

1987 Note that the previous corollary implies that not every regular distance-3 trace is a set of $s + 1$
 1988 points such that no point is opposite each point of that set. Indeed, the split Cayley hexagons
 1989 and the twisted triality hexagons in odd characteristic are counterexamples.

1990 **Remark 5.4.** In Claim 4 of the proof of Proposition 5.2, hexagons of order $(t^2 + t, t)$ appear
 1991 as possible counterexamples, but, as we assume thickness, they are killed by Lemma 5.1. If
 1992 we drop the thickness assumption, it is curious to note that the arguments of that step give
 1993 rise to a rather exceptional example of a set F of $s + 1$ point-line flags in a projective plane
 1994 of order s such that no point-line flag is opposite all members of S . Indeed, putting $t = 1$,
 1995 we obtain a hexagon of order $(2, 1)$, which arises from $\text{PG}(2, 2)$, and S consists of three flags
 1996 $\{p_0, p_0p_1\}, \{p_1, p_1p_2\}, \{p_2, p_0p_2\}$ from a triangle $\{p_0, p_1, p_2\}$. The points of these flags do not
 1997 form a line, and the lines of these flags do not form a line pencil. We conjecture that this is the
 1998 only example of size $s + 1$ in any projective plane of order s with that property and such that
 1999 no flag of the plane is opposite all of its members.

2000 **5.2. Geometric lines.** We now classify geometric lines in Moufang hexagons. We first consider
 2001 the general case and then specify further. As usual, we deal with round-up triples.

2002 **Lemma 5.5.** *Let $\Gamma = (X, \mathcal{L})$ be a generalised hexagon and $\{x_1, x_2, x_3\}$ a round-up triple of
 2003 points. Suppose $x_1 \perp x_2$. Then x_1, x_2, x_3 are contained in a common line.*

2004 *Proof.* Let L be the line containing x_1 and x_2 . If $x_3 \notin L$, then some point u of L is special to
 2005 x_3 . Let z be a point collinear to u but special to $[x_3, u]$. Then $z \equiv x_3$, whereas $x_1 \not\equiv z \not\equiv x_2$, a
 2006 contradiction. \square

2007 **Lemma 5.6.** *Let $\Gamma = (X, \mathcal{L})$ be a generalised hexagon and $\{x_1, x_2, x_3\}$ a round-up triple of
 2008 points. Suppose $x_1 \bowtie x_2$. Then x_1, x_2, x_3 are contained in $[x_1, x_2]^\perp \cap y^\bowtie$, for every point
 2009 $y \in [x_1, x_2]^\equiv \cap x_1^\bowtie \cap x_2^\bowtie$.*

2010 *Proof.* By Lemma 5.5 we have $x_3 \neq [x_1, x_2]$. If $x_3 \perp [x_1, x_2]$, then the assertion follows directly
 2011 from the definition of a round-up triple. If $x_3 \bowtie [x_1, x_2]$, then any point $z \in [x_1, x_2]^\perp \setminus$
 2012 $\langle [x_1, x_2], [[x_1, x_2], x_3] \rangle$ is opposite x_3 , but not opposite either x_1 or x_2 , a contradiction. Finally,
 2013 if $x_3 \equiv [x_1, x_2]$, then $[x_1, x_2]$ obviously violates the defining property of $\{x_1, x_2, x_3\}$ being a
 2014 round-up triple. \square

2015 **Lemma 5.7.** *Let $\Gamma = (X, \mathcal{L})$ be a generalised hexagon and $\{x_1, x_2, x_3\}$ a round-up triple of
 2016 points. Suppose $x_1 \equiv x_2$. Then x_1, x_2, x_3 are contained in every distance-3 trace containing at
 2017 least two of them.*

2018 *Proof.* Let L be an arbitrary line of Γ containing a point x'_1 collinear to x_1 and also a point
 2019 x'_2 collinear to x_2 . By Lemma 5.6, $x_3 \notin L$. Assume x_3 is special to some point $y \in L$ with
 2020 $[x_3, y] \notin L$. Then any point of $L \setminus \{y\}$ is opposite x_3 and not opposite both x_1, x_2 . So x_3 is
 2021 collinear to some point of L , distinct from both x'_1 and x'_2 (use Lemma 5.6 again). Now it is
 2022 clear that the assertion follows. \square

2023 **Proposition 5.8.** *Let $\Gamma = (X, \mathcal{L})$ be a generalised hexagon and let T be a geometric line of Γ .
 2024 Then T is either a line, a hyperbolic line, or a regular distance-3 trace.*

2025 *Proof.* Since every triple of points of a geometric line is a round-up triple, the previous three
 2026 lemmas imply that T is contained in either a line, or a hyperbolic line, or a distance-3 trace.
 2027 But if T were not equal to one of these objects, then, in each case, it is easy to find a point
 2028 opposite every member of T , a contradiction. \square

2029 We can now prove Main Result B for type G_2 .

2030 **Proposition 5.9.** *Let $\Gamma = (X, \mathcal{L})$ be a Moufang generalised hexagon and let T be a geometric
 2031 line. Then T is either*

- 2032 (1) *an ordinary line, or*
- 2033 (2) *a hyperbolic line in a split Cayley hexagon, or*
- 2034 (3) *a distance-3 trace in a split Cayley hexagon over a perfect field in characteristic 2.*

2035 *Proof.* By Proposition 5.8 there are three possibilities for T . The first one is a line, which leads
 2036 to (1). The second one is a hyperbolic line. Let T be collinear to the unique point c . Since T is
 2037 a geometric line, every hyperbolic line in c^\perp intersects T in exactly one point. By transitivity
 2038 of the automorphism group on paths $x_1 \perp x_2 \perp x_3$, with $x_1 \bowtie x_3$, which follows readily from
 2039 the Moufang condition, we see that every pair of hyperbolic lines in c^\perp intersects. Then [32,
 2040 Corollary 5.14] implies that Γ is a split Cayley hexagon.

2041 The third possibility is that T is a regular distance-3 trace. Let $x, y \in T$. Then we obviously
 2042 can write $T = \{x, y\}^{\# \neq}$. Let $L \in \mathcal{L}$ be arbitrary but such that it contains unique points x'
 2043 and y' special to x and y , respectively, with $x' \neq y'$. That at least one such line exists is easily
 2044 seen. Now every point of L is special to precisely one point of T , since T is a geometric line.
 2045 This means that, in the terminology of [32, Definitions 6.5.5], the set T is a long imaginary
 2046 line, and [32, Theorem 6.5.6] now implies that Γ is a split Cayley hexagon over a perfect field
 2047 in characteristic 2. \square

2048 **Remark 5.10.** For every natural number $n \geq 5$, there exists an (obvious) analogue of Proposition
 2049 5.8 for the class of (thick) generalised n -gons. This requires defining a “regular” distance- i
 2050 trace, $2 \leq i \leq \frac{n}{2}$, similarly to a hyperbolic line (which would be a regular distance-2 trace) and a
 2051 regular distance 3-trace for a generalised hexagon. Proofs are straightforward generalisations of
 2052 the above proofs for hexagons. Restricting to Moufang octagons (the only class of exceptional
 2053 Moufang buildings not yet considered in this paper), one obtains that, using the results in [2]
 2054 (see also [32, Section 6.5]), the only geometric lines in Moufang octagons are the ordinary lines.
 2055 However, the classification of minimal blocking sets in finite Moufang octagons is still open;
 2056 however, see also Remark 5.11.

2057 **Remark 5.11.** S. Petit and G. Van de Voorde [24, Theorem 6] prove that, if $s \leq t$, then every
 2058 blocking set of $s+1$ points in a finite generalised polygon of order (s, t) is either a line or a
 2059 regular distance- i trace. Together with Remark 5.10, this leads to a classification of blocking
 2060 sets of size $s+1$ in the Moufang octagons of order (s, s^2) : only lines occur. The case of Moufang
 2061 octagons of order (s, \sqrt{s}) is hence the only open case for finite Moufang polygons. Note that
 2062 Proposition 5.2 extends [24, Theorem 6] for generalised hexagons to arbitrary order.

2064 **Proposition 6.1.** *Let Δ and Δ' be two buildings of the same exceptional type F_4, E_6, E_7 or E_8 .
 2065 Let, with Bourbaki labelling, T_i and T'_i be the set of vertices of type i of Δ and Δ' , respectively,
 2066 where*

2067 • $i \in \{1, 2, 3, 4\}$ is arbitrary if Δ has type F_4 ;
 2068 • $i \in \{1, 2, 3, 4, 5, 6\}$ is arbitrary if Δ has type E_6 ;
 2069 • $i \in \{1, 2, 6, 7\}$ if Δ has type E_7 ;
 2070 • $i \in \{7, 8\}$ if Δ has type E_8 .

2071 *Then any surjective map $\varphi: T_i \rightarrow T'_i$ preserving opposition and non-opposition is induced by an
 2072 isomorphism of buildings.*

2073 *Proof.* It suffices to show that φ is a bijective collineation between the corresponding i -Grassmannian
 2074 geometries. We first show that φ is bijective. Suppose, for a contradiction, that two vertices
 2075 $v, u \in T_i$ are mapped onto the same vertex. Lemma 2.31 yields a vertex $w \in T_i$ opposite v
 2076 but not opposite u . Then our assumptions imply $\varphi(v) \equiv \varphi(w) \not\equiv \varphi(u) = \varphi(v)$, a contradiction.
 2077 Hence φ is a bijection. Since opposition and non-opposition are preserved, one deduces that
 2078 geometric lines are mapped onto geometric lines. If the only geometric lines are the ordinary
 2079 lines, then this concludes the proof of the proposition.

2080 By [21, Corollary 6.6] and Proposition 4.22, we may assume $i = 3$ and Δ has type F_4 . It suffices
 2081 to recognise the planar line pencils of $F_{4,4}(\mathbb{K}, \mathbb{K})$ among all geometric lines of $F_{4,3}(\mathbb{K}, \mathbb{K})$. Let Γ
 2082 be the point-line geometry with point set the points of $F_{4,3}(\mathbb{K}, \mathbb{K})$ and line set the set of ordinary
 2083 and geometric lines of $F_{4,3}(\mathbb{K}, \mathbb{K})$. We claim that no geometric line different from an ordinary line
 2084 of $F_{4,3}(\mathbb{K}, \mathbb{K})$ is contained in a maximal subspace of Γ isomorphic to a projective plane. Suppose,
 2085 for a contradiction, that the geometric line Z is contained in a maximal singular subspace α of
 2086 Γ isomorphic to a projective plane, and that Z is not an ordinary line of $F_{4,3}(\mathbb{K}, \mathbb{K})$. We argue
 2087 in $F_{4,4}(\mathbb{K}, \mathbb{K})$, where Z is a cone in a symp with vertex p over a hyperbolic line h . Suppose
 2088 first that α does not contain any ordinary line of $F_{4,3}(\mathbb{K}, \mathbb{K})$. So, the point set of α corresponds
 2089 to a set Π of lines through p , and the cones over hyperbolic lines correspond to the lines of α .
 2090 Consequently, any two points on distinct lines of Π are symplectic, and the unique hyperbolic
 2091 line through them is contained in the union of all lines of Π . We select a point q opposite p .
 2092 Then every line $L \in \Pi$ contains a unique point p_L special to q .

2093 We claim that the set $\beta = \{p_L \mid L \in \Pi\}$, endowed with the hyperbolic lines contained in it,
 2094 is a projective plane. Indeed, in view of the fact that Π is the point set of a projective plane
 2095 whose lines are geometric lines of $F_{4,3}(\mathbb{K}, \mathbb{K})$, it suffices to prove that β is closed under taking
 2096 hyperbolic lines through two arbitrary distinct points y_1 and y_2 of β . Since $p \in \xi(y_1, y_2)$, q is
 2097 far from $\xi(y_1, y_2)$. Since y_1 and y_2 are collinear to the unique point q' of $\xi(y_1, y_2)$ symplectic
 2098 to q , all points of the hyperbolic line $h(y_1, y_2)$ defined by y_1, y_2 are collinear to q' , by the very
 2099 definition of hyperbolic line. The claim is proved.

2100 Now [17, Lemma 5.21] implies that β is contained in an extended equator geometry \widehat{E} . Then
 2101 [17, Proposition 5.24] implies that p is collinear to a set γ of points of \widehat{E} that forms a 3-
 2102 dimensional projective space when endowed with the hyperbolic lines it contains. Hence the
 2103 line set $\{px \mid x \in \gamma\}$ forms a projective 3-space in Γ . So, α is not maximal, a contradiction.

2104 Consequently, we may suppose that α contains at least one ordinary line of $F_{4,3}(\mathbb{K}, \mathbb{K})$. Then
 2105 we have a plane π of $F_{4,4}(\mathbb{K}, \mathbb{K})$ through p intersecting h in some point x . Select $y \in h \setminus \{x\}$
 2106 and $z \in \pi \setminus px$. Let ξ be the symp containing h ; we have $p \in \xi$. Suppose, for a contradiction,
 2107 that z is not contained in ξ . Since $z \perp px$ and $y \notin px$, we deduce $z \perp y$. Hence $y \perp px$, a
 2108 contradiction. Consequently $z \in \xi$ and so $\pi \subseteq \xi$. Now the set of lines of ξ through p forms a
 2109 3-dimensional projective space of Γ , contradicting the maximality of α .

2110 Hence Z is not contained in a maximal singular subspace of Γ isomorphic to a projective plane.
 2111 Evidently, any line of $F_{4,4}(\mathbb{K}, \mathbb{K})$ is contained in an ordinary projective plane of $F_{4,4}(\mathbb{K}, \mathbb{K})$,

2112 which gives rise to a maximal singular subspace of Γ of dimension 2. Hence we can recognise
 2113 the ordinary lines of $F_{4,3}(\mathbb{K}, \mathbb{K})$, and the proof of the proposition is complete. \square

2114 The following is an immediate consequence.

2115 **Corollary 6.2.** *Let Δ be a finite building of exceptional type F_4, E_6, E_7 or E_8 . Let, with Bourbaki
 2116 labelling, T_i be the set of vertices of type i of Δ , where*

- 2117 • $i \in \{1, 2, 3, 4\}$ is arbitrary if Δ has type F_4 ;
- 2118 • $i \in \{1, 2, 3, 4, 5, 6\}$ is arbitrary if Δ has type E_6 ;
- 2119 • $i \in \{1, 2, 6, 7\}$ if Δ has type E_7 ;
- 2120 • $i \in \{7, 8\}$ if Δ has type E_8 .

2121 Then any map $\varphi : T_i \rightarrow T'_i$ preserving opposition and non-opposition is induced by an automor-
 2122 phism of Δ .

2123 *Proof.* We only have to establish the surjectivity of φ in order to be able to apply Proposition 6.1.
 2124 Therefore, we note that the injectivity of φ is proved in a completely similar way as in the first
 2125 paragraph of the proof of Proposition 6.1. Now the assertion follows from the trivial fact that
 2126 an injective transformation of a finite set is always surjective. \square

2127 REFERENCES

- 2128 [1] P. Abramenko & K. S. Brown, *Buildings. Theory and applications*, Graduate Texts in Math. **248**, Springer,
 2129 New York, 2008.
- 2130 [2] J. van Bon, H. Cuypers & H Van Maldeghem, Hyperbolic lines in generalized polygons, *Forum Math.* **8**
 2131 (1996), 343–362.
- 2132 [3] N. Bourbaki, *Groupes et Algèbres de Lie*, Chapitres 4, 5 et 6, *Actu. Sci. Ind.* **1337**, Hermann, Paris, 1968.
- 2133 [4] R. C. Bose and R. C. Burton, A characterization of flat spaces in a Finite geometry and the uniqueness of
 2134 the Hamming and the MacDonald codes, *J. Combin. Theory* **1** (1966), 96–104.
- 2135 [5] L. Brouns, J. A. Thas & H. Van Maldeghem, m -Clouds in generalized hexagons, *Discrete Math.* **255** (2002),
 2136 25–33.
- 2137 [6] A. E. Brouwer, A. M. Cohen & A. Neumaier, *Distance-Regular Graphs*, Springer-Verlag, Berlin, New York,
 2138 1989.
- 2139 [7] A. E. Brouwer & H. Van Maldeghem, *Strongly regular graphs*, Encyclopedia of Mathematics and its Applications **182**, Cambridge University Press, Cambridge, 2022.
- 2141 [8] F. Buekenhout & E. E. Shult, On the foundations of polar geometry, *Geom. Dedicata* **3** (1974), 155–170.
- 2142 [9] S. Busch, J. Schillewaert & H. Van Maldeghem, Groups of projectivities and Levi subgroups in spherical
 2143 buildings of simply laced type, to appear in *J. Group Th.*
- 2144 [10] S. Busch & H. Van Maldeghem, A characterisation of lines in finite Lie incidence geometries of classical type,
 2145 *Discrete Math.* **349** (2026), Paper No. 114711, 15pp.
- 2146 [11] S. Busch & H. Van Maldeghem, Groups of projectivities in spherical buildings of non-simply laced type,
 2147 submitted.
- 2148 [12] A. M. Cohen, Point-line characterizations of buildings, in: “Buildings and the geometry of diagrams,” Proc.
 2149 Como 1984 (L.A Rosati, ed.), Springer, Berlin, *Lecture Notes in Math.* **1181** (1986). 191–206.
- 2150 [13] A. M. Cohen and G. Ivanyos, Root shadow spaces, *European J. Combin.*, **28**:5 (2007), 1419–1441.
- 2151 [14] B. N. Cooperstein, Some geometries associated with parabolic representations of groups of Lie type, *Canad.
 2152 J. Math.* **28** (1976), 1021–1031.
- 2153 [15] B. N. Cooperstein, A characterization of some Lie incidence structures, *Geom. Dedicata* **6** (1977), 205–258.
- 2154 [16] A. De Schepper and H. Van Maldeghem, On inclusions of exceptional long root geometries of type E , *Innov.
 2155 Incid. Geom.* **20** (2023), 247–293.
- 2156 [17] A. De Schepper, N. S. N. Sastry & H. Van Maldeghem, Split buildings of type F_4 in buildings of type E_6 ,
 2157 *Abh. Math. Sem. Univ. Hamburg* **88** (2018), 97–160.
- 2158 [18] W. Feit & G. Higman, The non-existence of certain generalized polygons, *J. Algebra* **1** (1964), 114–131.
- 2159 [19] E. Govaert, A combinatorial characterization of some finite classical generalized hexagons, *J. Combin. Theory
 2160 Ser. A* **80** (1997), 339–346.
- 2161 [20] A. Kasikova & E. Shult, Point-line characterisations of Lie incidence geometries, *Adv. Geom.* **2** (2002),
 2162 147–188.
- 2163 [21] A. Kasikova & H. Van Maldeghem, Vertex opposition in spherical buildings, *Des. Codes Cryptogr.* **68** (2013),
 2164 285–318.
- 2165 [22] L. Lambrecht & H. Van Maldeghem, Automorphisms and opposition in spherical buildings of exceptional
 2166 type, III. Metasymplectic spaces, *Selecta Math.* **32** (2026), Paper No. 8, 102pp.

2167 [23] S. E. Payne & J. A. Thas, *Finite Generalized Quadrangles*, Research notes in Math. **110**, Pittman, 1984;
 2168 second edition: Europ. Math. Soc. Series of Lectures in Mathematics, 2009.

2169 [24] S. Petit & G. Van de Voorde, On certain blocking sets and the minimum weight of the code of generalised
 2170 polygons, *Des. Codes Cryptogr.* **94**, Paper No. 27, 18pp.

2171 [25] M. A. Ronan, A geometric characterization of Moufang hexagons, *Invent. Math.* **57** (1980), 227–262.

2172 [26] E. E. Shult, *Points and Lines: Characterizing the Classical Geometries*, Universitext, Springer-Verlag, Berlin
 2173 Heidelberg, 2011.

2174 [27] J. Tits, Les groupes de Lie exceptionnels et leur interprétation géométrique, *Bull. Soc. Math. Belg.* **8** (1956),
 2175 48–81.

2176 [28] J. Tits, Sur la géométrie des R -espaces, *J. Math. Pure Appl.* (9) **36** (1957), 17–38.

2177 [29] J. Tits, Sur la trialité et certains groupes qui s'en déduisent, *Inst. Hautes Études Sci. Publ. Math.* **2** (1959),
 2178 13–60.

2179 [30] J. Tits, *Buildings of spherical type and finite BN-pairs*, Lecture Notes in Math. **386**, Springer-Verlag, Berlin,
 2180 1974 (2nd printing, 1986).

2181 [31] J. Tits & R. Weiss, *Moufang Polygons*, Springer Monographs in Mathematics, Springer, 2002.

2182 [32] H. Van Maldeghem, *Generalized Polygons*, Monographs in Mathematics **93**, Birkhaeuser, 1998.

2183 [33] H. Van Maldeghem & M. Victoor, On Severi varieties as intersections of a minimum number of quadrics,
 2184 *Cubo* **24** (2022), 307–331.

2185 *Current address:* Mathematisches Institut, Universität Münster, Orléans-Ring 10, D–48149 Münster, GERMANY

2186 *Email address:* s_busc16@uni-muenster.de

2187 ORCID: 0009-0009-0939-6543

2188 *Current address:* Department of Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan
 2189 299-S9, B–9000 Ghent, BELGIUM

2190 *Email address:* Hendrik.VanMaldeghem@UGent.be

2191 ORCID: 0000-0002-8022-0040