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Abstract. We characterise sets of points of exceptional Lie incidence geometries, that is, the
natural geometries arising from spherical buildings of exceptional types F4, E6, E7, E8 and
G2, that form a line using the opposition relation. With that, we obtain a classification of
so-called “geometric lines” in many of these geometries. Furthermore, our results lead to a
characterisation of geometric lines in finite exceptional Lie incidence geometries as minimal
blocking sets, that is, point sets of the size of a line admitting no object opposite to all of their
members, in most cases, and we classify all exceptions. As a further consequence, we obtain
a characterisation of automorphisms of exceptional spherical buildings as certain opposition
preserving maps.
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1. Introduction39

The intricate structure of — especially the exceptional — spherical buildings leads to the intro-40

duction of seemingly less complex, but certainly more accessible, point-line geometries describing41

essentially the same object. These geometries are usually called Lie incidence geometries. The42

procedure to construct such a geometry is nowadays standard: for a spherical building ∆, say of43

type Xn, pick a type i, consider all vertices of ∆ of type i and call them points. Pick a chamber44

C and delete the vertex of type i to obtain a panel of cotype i. Call the set of vertices of type i45

completing this panel again to a chamber a line. Vary C over all chambers. Then this system46

of points and lines is a Lie incidence geometry of type Xn,i. It now turns out (as follows from47

[12, §3]) that the full automorphism group of this point-line geometry coincides with the full48

automorphism group of ∆ that preserves the type i. In [21], Kasikova and the second author49

investigate the interaction of (this definition of) lines and the opposition relation in ∆. The50

opposition relation is something typical for spherical buildings, and it owes its existence to the51

strong relation with finite Coxeter groups, in which there is a so-called “longest word”. The52

main result of [21] characterises the lines of many Lie incidence geometries in terms of this53

opposition relation. This led to the introduction of the notion of a “geometric line”, which is a54

set of points with the property that an arbitrary object of the underlying spherical building is55

either opposite none of its elements, or not opposite exactly one of its members. In particular,56

a geometric line does not admit an object opposite all of its members. A set of points with the57

latter property can be viewed as a blocking set (of points). Blocking sets are a popular subject58

in finite geometry, both because they have many applications and because they have a great59

auxiliary value. A line is always a blocking set, and in [10] the authors proved that in odd60

characteristic, geometric lines in finite classical Lie incidence geometries are the only minimal61

blocking sets. In characteristic 2 they found counterexamples. Their proof, however, makes62

very little use of the definition of a geometric line; the equivalence in odd characteristic just63

came out from the classification of minimal blocking sets, which uses a variety of tools from64

classical finite geometry.65

In the present paper, the primary aim is to classify minimal blocking sets in many finite Lie66

incidence geometries of exceptional type. However, unlike in [10], in many cases it will turn67

out to be beneficial to do this by showing directly the equivalence to geometric lines; the68

exceptions in characteristic 2 become also apparent in this approach. We then either appeal69

to the classification of geometric lines as provided in [21], or we classify them ourselves (if not70
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available in [21]). This way, we lay the foundations to study more intensively blocking sets in71

finite exceptional geometries.72

More exactly, with the notation introduced in Section 2, we will show the following theorems.73

Main Result A. Let Xn ∈ {E6,E7,E8,F4,G2} and 1 ≤ i ≤ n, with i /∈ {2, 4, 5} if n = 7 and74

i ∈ {7, 8} if n = 8.75

If in an irreducible thick finite Moufang spherical building ∆ of type Xn, n ≥ 2, the panels of76

cotype {i} are s-thick (that is, every panel of cotype {i} is contained in precisely s+1 chambers),77

then every set of s+ 1 vertices of type i of ∆ admits a common opposite vertex except precisely78

in the following five cases.79

(1) The s+ 1 vertices form a line in the corresponding Lie incidence geometry of type Xn,i.80

(2) ∆ is a split building of type F4, the type i corresponds to a short root in the underlying81

root system, and the s+ 1 vertices correspond to a hyperbolic line in a (thick) symp of the82

corresponding Lie incidence geometry of type F4,i isomorphic to a symplectic polar space,83

and i ∈ {3, 4}.84

(3) ∆ has type F4, has residues isomorphic to Hermitian generalised quadrangles of order85

(s,
√
s), and the s + 1 vertices form an ovoid in a (symplectic) subquadrangle of order86

(
√
s,
√
s).87

(4) ∆ is a split building of type G2 and the s+ 1 vertices form a hyperbolic (or ideal) line in the88

corresponding Lie incidence geometry of type G2,2, which is a split Cayley hexagon.89

(5) ∆ is a building of type G2 in characteristic 2 and the s+ 1 vertices form a distance-3 trace90

in the corresponding Lie incidence geometry of type G2,2, which is either a split Cayley91

hexagon, or a twisted triality hexagon of order (s, 3
√
s).92

Main Result A will follow93

− from Proposition 3.1 for types E6,1 and E6,6;94

− from Proposition 3.2 for types E6,3 and E6,5;95

− from Proposition 3.7 for type E7,7;96

− from Proposition 3.8 for type E7,6;97

− from Proposition 4.1, Proposition 4.2 and Theorem 4.4 for types E6,2,E7,1,E8,8,F4,1 and F4,4;98

− from Proposition 4.11, Theorem 4.15 and Proposition 4.22 for types E6,4,E7,2,E8,7,F4,2 and F4,3;99

− from Corollary 5.3 for types G2,1 and G2,2.100

Main Result B. Let Xn ∈ {E6,E7,E8,F4,G2} and 1 ≤ i ≤ n, with i /∈ {2, 4, 5} if n = 7 and101

i ∈ {7, 8} if n = 8.102

Then a geometric line of the Lie incidence geometry of type Xn,i associated to an irreducible103

thick Moufang spherical building ∆ of type Xn, n ≥ 2, is one of the following.104

(1) A line of the Lie incidence geometry.105

(2) A hyperbolic line in a symp of the Lie incidence geometry whenever this symp is a symplectic106

polar space (and this happens (only) in the split case for types F4,3 and F4,4).107

(3) A hyperbolic (or ideal) line of a split Cayley hexagon.108

(4) A distance-3 trace of a split Cayley hexagon over a perfect field of characteristic 2.109

Main Result B follows from [21, Corollary 5.6] for the types E6,1,E6,6 and E7,7. It will follow110

− from Proposition 3.6 for types E6,3 and E6,5;111

− from Proposition 3.12 for type E7,6;112

− from Proposition 4.2 and Theorem 4.4 for types E6,2,E7,1,E8,8,F4,1 and F4,4;113

− from Proposition 4.22 for types E6,4,E7,2,E8,7,F4,2 and F4,3;114

− from Proposition 5.9 for types G2,1 and G2,2.115

As an application, we deduce that certain opposition preserving maps and transformations of116

a Lie incidence geometry are actually (bijective) collineations. This characterises collineations117

using opposition. We refer to Section 6 for the exact statements.118
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As a further motivation, we note that some of the results obtained in the present paper are used119

in [9] and [11] to determine projectivity groups.120

The paper is structured as follows. We provide preliminary information in Section 2 about121

the geometries we will work with, and about their well-known properties. We also derive many122

new properties that are not available in the literature. Towards the end of that section, we123

state a corollary to a result of Tits that enables one to construct blocking sets in buildings124

from blocking sets in residues. Finally, we prove some general properties of round-up triples of125

vertices in general spherical buildings, which we will use to classify such triples in several cases126

in this paper. We then start the proofs of our main theorems. We chose to prove Main Result A127

and Main Result B type-by-type in the same section, so that the properties of the geometry in128

question are fresh in the memory. Section 3 treats the cases E6,1,E6,3,E7,7 and E7,6 using the129

so-called exceptional minuscule geometries. These are the Lie incidence geometries of type E6,1130

and E7,7. Then, in Section 4, we prove our main theorems for E6,2,E6,4,E7,1,E7,2,E8,8,E8,7 and131

F4,i, i ∈ {1, 2, 3, 4}. The relatively easy cases E6,2,E7,1,E8,8 and F4,i, i ∈ {1, 4} are proved in132

Section 4.1, whereas the other cases are treated in Section 4.2. This is by far the longest section133

of the paper. Amongst other things, it classifies all possible mutual positions of two lines in a134

given hexagonic Lie incidence geometry of exceptional type. This certainly has other potential135

applications. Doing this enables us to reduce Main Result A for lines of exceptional hexagonic136

Lie incidence geometries to the classification of geometric lines (Main Result B), except in the137

case of geometries isomorphic to F4,4(q, q
2). We treat this case separately in Section 4.2.4. Then138

in Section 4.2.5 we prove Main Result B uniformly for E6,4,E7,2,E8,7 and F4,i, i ∈ {2, 3}. Finally,139

in Section 5, we prove our main results for type G2, that is, for generalised hexagons. Section 6140

contains the application to certain opposition preserving maps in buildings of exceptional type141

alluded to above.142

2. Preliminaries143

2.1. Buildings and Lie incidence geometries. We are going to work with the buildings144

of exceptional type via their well-established point-line geometries, which fit perfectly in the145

framework of Cooperstein’s theory of parapolar spaces. We will also adopt the corresponding146

terminology. As a result, we will not spend too much space on pure building-theoretic theory,147

but instead refer the interested reader to the literature, in particular to [1] and [30]. We content148

ourselves with the following generalities.149

We view buildings as thick numbered simplicial chamber complexes. The buildings we are150

interested in are spherical buildings and, as such, there is the notion of opposition of simplices151

(in particular vertices and chambers), expressing that the two given simplices are at maximal152

distance apart. There is also the notion of convexity for subcomplexes, and the convex closure153

of two opposite chambers is a thin finite chamber complex called an apartment and isomorphic154

to a Coxeter complex. These apartments play a crucial role in building theory. By the definition155

of a building, every pair of simplices is contained in an apartment and so the mutual position156

between these two objects can be seen in this finite complex, which is also a triangulation of157

a sphere. Opposite simplices in an apartment are then just antipodal on the sphere. Also,158

recall that, since ∆ is numbered, the vertices have types, and a chamber consists of a set of159

vertices, one of each possible type. The number of types is the rank of the building. A panel of160

cotype i is a simplex containing vertices of each type except for the type i. Opposition induces161

a permutation on the types which is an automorphism of the Coxeter diagram. Two simplices162

are joinable if their union is again a simplex.163

We now quickly outline how point-line geometries arise from (spherical) buildings, a point-line164

geometry being a pair (X,L ) consisting of a set X of points, and L a set of subsets of X, each165

member of which is called a line. Let ∆ be a spherical building, which we will always assume to166

be thick and irreducible. We consider the set X of vertices of a given type, say i. The set L then167

consists of the subsets of X whose elements each complete a given panel of cotype i to a chamber168

(hence each panel defines a unique line of (X,L ), but different panels may define the same line).169
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If the type of ∆ is Xn, where n is the rank and X one of the Coxeter types A,B,C,D,E,F,G,170

then we say that (X,L ) is a Lie incidence geometry of type Xn,i. Usually, we take as type171

set {1, 2, . . . , n}, where the types can be read off the corresponding Coxeter or Dynkin diagram172

using Bourbaki labelling [3]. If the diagram is simply laced, then ∆ is completely determined by173

the underlying skew field K and we denote the Lie incidence geometry of type Xn,i in this case174

as Xn,i(K). In such geometries, vertices of the building have interpretations as certain subspaces175

(see below), and we will always call such subspaces opposite when the vertices are opposite in176

the building. We adopt the notation v ≡ v′ for opposite vertices (and later, subspaces); the177

negation is v 6≡ v′, and the set of vertices (not) opposite v is denoted as v≡ (v 6≡).178

When Xn is one of E6,E7,E8,F4, then a Lie incidence geometry of type Xn,i is always a parapolar179

space. We provide a brief introduction.180

First, we introduce some terminology concerning point-line geometries. Let Γ = (X,L ) be a181

point-line geometry. Two points x, y ∈ X contained in a common line are called collinear and182

denoted x ⊥ y. The set of points collinear to x is denoted x⊥ and includes x if x is on some183

line. Sets of points are called collinear if each point of either is collinear to each point of the184

other. If each line contains exactly two (at least three) points, then Γ is called thin (thick,185

respectively). A subspace of Γ is a set of points with the property that, if two distinct collinear186

points belong to it, then all points of each line containing both x and y belong to it. We often187

view a subspace as a point-line subgeometry in the obvious way. A subspace is a (geometric)188

hyperplane if it intersects each line non-trivially; it is called proper if it does not coincide with189

X itself, which is a trivial geometric hyperplane. The point-line geometry Γ is called a partial190

linear space if every pair of collinear points is contained in exactly one line. In a partial linear191

space, we denote the unique line containing two distinct collinear points x and y by xy, or192

sometimes by 〈x, y〉, for clarity. A subspace of a point-line geometry is called singular if every193

pair of its points is collinear. Trivial examples are the empty set, each singleton, and each line.194

If there exists a natural number r such that every finite nested sequence of (distinct) singular195

subspaces (including the empty space) has size at most r + 1, and there exists such a sequence196

of size r+ 1, then we say that Γ has singular rank r. A maximal singular subspace is a singular197

subspace that is not properly contained in another one.198

The point graph of a point-line geometry Γ is the graph with vertices the points of Γ, adjacent199

when (distinct and) collinear. A set of points is called convex if for each pair {x, y} of points200

contained in it, all points of each shortest path between x and y in the point graph are also201

contained in it.202

We assume the reader is familiar with projective spaces, which are the Lie incidence geometries203

An,1(K), for skew fields K, also sometimes denoted as PG(n,K), or as PG(V ), where V is an204

(n + 1)-dimensional vector space over K. One checks that PG(n,K) has singular rank n + 1.205

As a building, it has rank n, which is also its projective dimension. We extend the definition206

of PG(V ) to infinite-dimensional vector spaces in the obvious way: the points of PG(V ) are the207

1-spaces of V , the lines are the sets of 1-spaces contained in given 2-spaces.208

The Lie incidence geometries of types Bn,1, n ≥ 2 and Dn,1, n ≥ 3, are polar spaces (of rank n),209

that is, thick point-line geometries (X,L ) of singular rank n such that for each point x ∈ X,210

the set x⊥ is a proper geometric hyperplane. It follows that polar spaces are partial linear211

spaces (see [8]). Also, the non-trivial singular subspaces of any polar space of rank at least 3212

are projective spaces. If in a polar space of rank r, every (r− 2)-dimensional singular subspace213

is contained in exactly two (at least three) maximal singular subspaces, then we call the polar214

space top-thin (thick, respectively). Buildings of type Bn correspond precisely to the thick polar215

spaces of rank n, while buildings of type Dn, n ≥ 2 (where we identify the type D2 with the216

reducible type A1 × A1) yield top-thin polar spaces. The singular subspaces are also the only217

subspaces of a polar space that are convex. In fact, every polar space of rank at least 2 is a Lie218

incidence geometry of type Bn,1 or Dn,1, n ≥ 2.219

Polar spaces of type Dn have a peculiar property: their maximal singular subspaces are divided220

into two oriflamme classes, where two maximal singular subspaces belong to different classes221
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if, and only if, the parity of the dimension of their intersection coincides with the parity of222

n. Each polar space Dn,1(K), for K a (commutative) field and n ≥ 3, is isomorphic to the223

point-line geometry naturally associated to a hyperbolic quadric in PG(2n− 1,K), that is, the224

null set of a quadratic form x−nxn + x−n+1xn−1 + · · · + x−1x1 in the coordinates of a point.225

An oriflamme class of lines in a hyperbolic quadric in PG(3,K) (the case n = 2 left out in226

our previous sentence) will be called a regulus. Top-thin polar spaces are also referred to as227

hyperbolic polar spaces.228

The Lie incidence geometries of type Bn,n are usually referred to as dual polar spaces.229

We have defined Lie incidence geometries only for vertices of (spherical) buildings; a straight-230

forward generalisation to simplices is possible, and we will use such generalisation, but only for231

simplices of buildings of type An, where the simplices in question are point-hyperplane pairs232

of the corresponding projective space. Hence we can define the geometry An, 1, n(K), K any233

skew field, as the point-line geometry with point set the set of incident point-hyperplane pairs234

of PG(n,K), where the lines are of two types: one type of lines consists of the sets of point-235

hyperplane pairs with common hyperplane H and point ranging over a given line contained in236

H; the other type is the dual.237

Let us also remark that sometimes a Lie incidence geometry ∆i of type Xn, i can be defined238

using the one, say ∆j , of type Xn, j by considering the subspaces of ∆i conforming to the239

vertices of type j of the associated building, as points, and interpreting then the lines of ∆j240

in ∆i to define them correctly. We give an example. Let ∆ be a building of type Dn, n ≥ 4,241

and let ∆1 = (X1,L1) be the associated polar space (a Lie incidence geometry of type Dn,1).242

Define X2 as the set of lines of ∆1. Now let ∆2 be the point-line geometry with point set243

X2, and let the set L2 of lines of ∆2 be the set of planar line pencils. Then one checks that244

(X2,L2) is the Lie incidence geometry of type Dn,2 corresponding to ∆. We say that ∆2 is the245

line-Grassmannian of ∆1 (and we use this expression also in other situations where a point-line246

geometry has planes, and hence planar line pencils).247

All Lie incidence geometries, as we defined them, are parapolar spaces, except for the projective248

and polar spaces mentioned above, and for the Lie incidence geometries of buildings of rank 2.249

Let’s define these objects. Unlike polar spaces, it is not known whether all parapolar spaces of250

sufficiently high symplectic rank are Lie incidence geometries.251

A parapolar space, introduced by Cooperstein [14, 15], is a point-line geometry Γ = (X,L )252

satisfying the following axioms:253

(i) Each pair of points at distance 2 in the point graph either is collinear to a unique point, or254

is contained in a convex subspace isomorphic to a polar space (such subspaces are called255

symplecta, or symps for short).256

(ii) There exist at least two distinct symps, and each line is contained in a symp.257

It follows easily that parapolar spaces are partial linear spaces. Now we introduce some specific258

terminology and notation concerning parapolar spaces. First, a pair of points x, y at distance 2259

in the point graph, collinear to a unique point z, will be called special, and we denote z =: [x, y].260

We also say that x is special to y, or that x and y are special, in symbols x on y. The set of261

points special to a given point x will be denoted as xon. A parapolar space without special pairs262

is called strong. The symp containing two given points x, y at distance 2 in the point graph and263

which are not special is denoted by ξ(x, y). The pair x, y is called symplectic, and we also say264

that x is symplectic to y, or that x and y are symplectic, in symbols x ⊥⊥ y. The set of points265

symplectic to a given point x will be denoted as x⊥⊥. The diameter of Γ is the diameter of its266

point graph. We say that Γ has symplectic rank at least r if every symp has rank at least r. If267

every symp has exactly rank r, then we say that Γ has uniform rank r.268

Note that the line-Grassmannian of a polar space contains special pairs. If such a polar space ξ269

is a symp in a parapolar space, then we speak about ξ-special lines, with the obvious meaning;270

that is, disjoint lines containing points at distance 2 such that some point of either is collinear271

to all points of the other.272

6



We can interpret residues (or links) of vertices from the theory of buildings in the corresponding273

Lie incidence geometries as point residuals. Let ∆ = (X,L ) be a parapolar space with the274

property that all singular subspaces are projective spaces and through each point we have at275

least one plane. Then, at each point x ∈ X, we can define the point-residual Res∆(x), or Res(x)276

if no confusion can arise, as the point-line geometry with point set the set of lines of ∆ through277

x and with as set of lines the planar line pencils of ∆ at x (each line of the line pencil contains278

x). As usual, the type of the point residuals can be read off the Coxeter diagram by deleting279

the node corresponding to the points.280

Parapolar spaces are so-called gamma spaces, that is, point-line geometries in which each point281

is collinear to zero, one, or all points of a given line. We will frequently use this property, often282

without reference.283

We will be working with specific Lie incidence geometries, mainly of exceptional type. For284

the classical types, the properties can be derived without much effort from the corresponding285

projective or polar space. We now review the basic properties of the exceptional Lie incidence286

geometries we will be working with. Along the way, we also prove some additional properties287

that we will need.288

The basic properties reflect the possible mutual positions of certain elements of the geometry,289

usually points, subspaces, and symps. In the statements of facts, we will occasionally introduce290

terminology and underline the introduced notions. Subspaces or symps through a common291

point x will occasionally be called locally opposite (at x) if they correspond to opposite objects292

in Res(x). We also extend this terminology to all vertices x. In particular, if ξ is a symp, then293

singular subspaces in ξ that are opposite in ξ as a polar space are called locally opposite at ξ,294

or briefly ξ-opposite. This extends the terminology for lines of ξ being ξ-special, introduced295

before.296

2.2. Lie incidence geometries of type E6,1. For each field K there exists a unique Lie297

incidence geometry isomorphic to E6,1(K). It is a strong parapolar space of diameter 2 and298

also called a minuscule geometry. The following properties can either be found in [28], or can299

be easily derived from an apartment of the corresponding building (in this case the 1-skeleton300

of such an apartment, where vertices are points of E6,1(K) and edges are lines, is the Schläfli301

graph, see [6, §10.3.4]). One can also use the chain calculus introduced in [27], also explained302

in [7, §4.5.4].303

Fact 2.1. Let p be a point and ξ a symp of E6,1(K). Then p⊥ ∩ ξ is either empty (and we say304

that x and ξ are far; they are also opposite in the corresponding building) or a maximal singular305

subspace of E6,1(K), which we call a 4′-space (and we say that x and ξ are close). Also, Res(p)306

is the Lie incidence geometry D5,5(K).307

Fact 2.2. Two symps intersect either in a point, or in a maximal singular subspace of either, in308

which case we call the subspace a 4-space and the symps adjacent. The 4-spaces of a given symp309

ξ constitute an oriflamme class of the symp, which is a polar space of type D5,1; the 4′-spaces310

contained in ξ form the other oriflamme class.311

The following lemmas can be read off the diagram, checked in an apartment, and is contained312

in [28, §3.2], but can also be proved using the above lemmas.313

Fact 2.3. Each 3-space of E6,1(K) is the intersection of a unique 4-space and a unique 5-space.314

Fact 2.4. There are two kinds of maximal singular subspaces in E6,1(K). One kind corresponds315

to the 4-spaces, the other to 5-dimensional projective spaces, called 5-spaces, which contain 4′-316

spaces. Let p be a point and W a 5-space. Then either p ∈ W , or p⊥ ∩W is a 3-dimensional317

space (called a 3-space; p and W are called close), or p is collinear to a unique point of W (and318

p and W are called far). Let W and W ′ be two distinct 5-spaces. Then either W ∩W ′ is a plane319

(then W and W ′ are called adjacent), or W ∩W ′ is just a point, or W and W ′ are disjoint and320

there exists a unique 5-space intersecting both in a respective plane, or W and W ′ are disjoint321
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and opposite in the building; in the latter case, every point of W is far from W ′ and every point322

of W ′ is far from W , and collinearity defines a collineation between W and W ′. .323

We can now prove some (new) lemmas.324

Lemma 2.5. Let x be a point and ξ a symp of E6,1(K). Then x is opposite ξ if, and only if,325

for some point y ∈ ξ, the symp ξ(x, y) intersects ξ only in y if, and only if, for all points y ∈ ξ,326

the symp ξ(x, y) intersects ξ only in y.327

Proof. If x is opposite ξ, then ξ ∩ ξ(x, y) can not be more than just the point y, for every y ∈ ξ,328

because otherwise, ξ ∩ ξ(x, y) is a 4-space by Fact 2.2 and x is collinear to a 3-space of that329

4-space, contradicting the fact that x is opposite ξ. Now suppose that ξ ∩ ξ(x, y) = {y}, for330

some fixed y ∈ ξ. We want to see that x has to be opposite ξ. Suppose there exists some331

z ∈ ξ at distance 2 from x, such that ξ ∩ ξ(x, z) is a 4-space (cf. Fact 2.1). Then y and x332

have to be collinear to 3-spaces Uy and Ux, respectively, of that 4-space, which will necessarily333

intersect in at least a plane π. But then π will also be contained in ξ(x, y), by convexity, and334

hence ξ∩ ξ(x, y) will be more than just the point y, which is a contradiction. So for every point335

z ∈ ξ \ x⊥, we have ξ(x, z) = {z}. That means that x is not collinear to any point in ξ and336

thus, x is opposite ξ. �337

Lemma 2.6. Let L be a line and ξ a symp of E6,1(K) with L ∩ ξ = ∅. If no point of L is338

opposite ξ, then L is collinear to a unique plane of ξ.339

Proof. If no point of L is opposite ξ, then every point of L is collinear to a 4′-space of ξ. Two340

4′-spaces in a symp intersect in either a point or a plane or they coincide, because they belong341

to the same oriflamme class by Fact 2.4. If two points of L were collinear to the same 4′-space342

of ξ, then every point of that 4′-space would be collinear to every point of L and L and that343

4′-space would span a 6-space, which is impossible by Fact 2.4. Now, let x and y be two points344

of L, let V be the 4′-space that y is collinear to in ξ and let x′ be some point of ξ \ V that x is345

collinear to. Then x′ has to be collinear to a 3-space U ⊆ V . The symp ξ(y, x′) contains U and346

x. With that, x has to be collinear to a plane π of U . That means x⊥ ∩ ξ and y⊥ ∩ ξ intersect347

in π and since every point of π is collinear to x, y ∈ L, and E6,1(K) is a gamma space, every348

point of π has to be collinear to every point of L. With that, L is collinear to a unique plane349

of ξ. �350

Lemma 2.7. Let p be a point and M a 3-space of E6,1(K), such that no point of M is collinear351

to p. Then the unique maximal 4-space containing M does not contain any point collinear to p.352

Proof. Suppose a point p is collinear to a point q of a 4-space C containing a 3-space M which353

does not contain any point collinear to p. Put C in a symp ξ. If p is in ξ, then p is collinear to a354

3-space of C, which intersects M , a contradiction. If p is not in ξ, then p is collinear to a 4′-space355

W , which already intersects C in q. But the intersection must have odd codimension, hence the356

intersection C ∩W is either a line or a 3-space. Both would intersect M , a contradiction. �357

Lemma 2.8. Let W,W ′ be two opposite 5-spaces, and let U be a 4-space intersecting W in a358

3-space. Then there exists a unique point p ∈ U \W close to W ′. Also, p⊥ ∩W ′ = {x′ ∈ W ′ |359

(∃x ∈W )(x′ ⊥ x)}.360

Proof. PuttingW,W ′ and U in a common apartment, the existence of p readily follows. Lemma 2.7361

shows the second assertion, and then uniqueness of p also follows immediately. �362

Lemma 2.9. Let L be a line, and let b be a point not collinear to any point of L in E6,1(K).363

Then 〈b, b⊥ ∩ L⊥〉 is a maximal 4-space.364

Proof. By convexity of symps. 〈b, b⊥ ∩ L⊥〉 is contained in each symp ξ(b, p), with p ∈ L. Fix365

such a symp ξ = ξ(b, p), for some p ∈ L. Fact 2.1 implies that L is collinear to a 4′-space U ′ of366

ξ. Then U := 〈b, b⊥ ∩ U ′〉 is a 4-space, because U and U ′ belong to different oriflamme classes.367

By Fact 2.4, U is a maximal singular subspace and the assertions are proved. �368
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2.3. Lie incidence geometries of type E7,7. For each field K there exists a unique Lie369

incidence geometry isomorphic to E7,7(K). It is a strong parapolar space of diameter 3 and also370

called a minuscule geometry. The following properties can easily be derived from an apartment371

of the corresponding building (in this case the 1-skeleton of such an apartment, where vertices372

are points of E7,7(K) and edges are lines, is the Gosset graph; see [6, §10.3.5]).373

Fact 2.10. Let ∆ be the Lie incidence geometry E7,7(K). Then the following assertions hold.374

(i) ∆ is strong, has uniform symplectic rank 6, singular rank 7 and diameter 3. Points at375

distance 3 are opposite.376

(ii) Symps in ∆ are isomorphic to hyperbolic polar spaces D6,1(K).377

(iii) Point residuals in ∆ are isomorphic to E6,1(K).378

(iv) The maximal singular subspaces of highest dimension in ∆ are projective spaces of di-379

mension 6. Like before, we call 5-dimensional projective subspaces contained in 6-spaces380

5′-spaces.381

(v) Maximal 5-spaces occur as the intersection of two symps. On the other hand, 5′-spaces382

occur as the intersection of a unique 6-space and a unique symp.383

(vi) For each symp ξ, its 5-spaces form an oriflamme class, and its 5′-spaces form the other384

oriflamme class of ξ.385

Fact 2.11. Let p be a point and ξ a symp of E7,7(K), with p /∈ ξ. Then precisely one of the386

following occurs.387

(i) p is collinear to a 5′-space A of ξ, p is symplectic to the points of ξ \ A, and we say that388

p is close to ξ.389

(ii) p is collinear to a unique point q ∈ ξ, p is symplectic to the points of ξ ∩ (q⊥ \ {q}), and390

p is opposite to the points ξ \ q⊥. We say that p is far from ξ.391

This fact implies that, on each line L, there is at least one point symplectic to a given point p392

(unique when L contains at least one point opposite p).393

Fact 2.12. Let ξ and ξ′ be two distinct symps of E7,7(K). Then precisely one of the following394

occurs.395

(i) ξ ∩ ξ′ is a 5-space, and we call ξ and ξ′ adjacent.396

(ii) ξ ∩ ξ′ is a line L. Then points x ∈ ξ \ L and x′ ∈ ξ′ \ L are never collinear. We call397

{ξ, ξ′} symplectic.398

(iii) ξ∩ξ′ = ∅, and there is a unique symp ξ′′ intersecting both ξ and ξ′ in respective 5-spaces399

A and A′, which are opposite in ξ′′. All points of ξ \ A are far from ξ′, and each point400

of A is close to ξ′. Each line containing a point of ξ and a point of ξ′ contains a point401

of A ∪A′. We call {ξ, ξ′} special.402

(iv) ξ ∩ ξ′ = ∅, and every point of ξ is far from ξ′. In this situation, each point of ξ′ is also403

far from ξ, and ξ and ξ′ are opposite.404

Fact 2.13. Let ξ1 and ξ2 be two opposite symps of E7,7(K). Let L be the set of all lines that405

contain a point of ξ1 and a point of ξ2. Then, for each point p that is contained in a line of L ,406

there exists a unique symp ξp that intersects each line L ∈ L .407

We can now show the following lemma.408

Lemma 2.14. Let x, y be two points of E7,7(K). Then x and y are opposite if, and only if,409

they are contained in respective symps intersecting in a line L such that x and y are collinear410

to unique respective distinct points of L.411

Proof. First suppose that x and y are opposite. Let ξx be an arbitrary symp containing x.412

Fact 2.11(ii) implies that y is collinear to a unique point z ∈ ξx. Let ξy be an arbitrary symp413

through y and z. If ξx and ξy intersected in more than a line, they would intersect in a 5-space414

(cf. Fact 2.12), and both x and y would have to be collinear to 4-spaces of that 5-space. These415

would necessarily intersect, meaning that there would exist points collinear to both x and y,416
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contradicting the fact that x and y are opposite. Hence ξx ∩ ξy is a line L. Now, clearly x and417

y are not collinear to a common point on L, and the assertion follows.418

Next suppose, conversely, that x and y are contained in respective symps ξx and ξy intersecting419

in a line L such that x and y are collinear to unique respective distinct points x′ and y′ of L.420

Suppose, for a contradiction, that x is collinear to a 5′-space U of ξy. Then y′⊥ ∩ x⊥ contains421

points of U that do not belong to ξx, a contradiction. Hence x is far from ξy, and the assertion422

follows from Fact 2.11(ii).423

�424

2.4. Lie incidence geometries of types E6,2,E7,1,E8,8,F4,1 and F4,4. These Lie incidence425

geometries are examples of hexagonic geometries, as defined by Shult [26, Section 13.7], inspired426

by his work with Kasikova [20]. We will not need the formal definition of such geometries; some427

defining properties will be part of the facts that we state below. Since we are only concerned428

with exceptional geometries, we will restrict ourselves to these cases. This implies, for instance,429

that we can assume that the parapolar space in question has uniform symplectic rank (which is430

at least 3). Other examples of hexagonic Lie incidence geometries are the line-Grassmannians431

of polar spaces, which have symplectic rank at least 3 if the polar space has rank at least 4, and432

uniform symplectic rank 3 if, and only if, the polar space has rank 4. Many facts stated below433

also hold for these spaces, but can in that case easily be directly checked in the polar space.434

The following facts can again be easily checked in an apartment (for models of such, see [33]),435

or follow from the diagram. We will refer to the geometries in the title of this section as the436

exceptional hexagonic (Lie incidence) geometries. The ones of type F4,1 and F4,4 are also known437

as (thick) metasymplectic spaces. A detailed introduction to the latter is contained in [22]. We438

will always assume thickness when mentioning metasymplectic spaces.439

Fact 2.15. Let x and y be two distinct non-collinear points of an exceptional hexagonic Lie440

incidence geometry. Then x and y are either symplectic, special, or opposite. In the latter case,441

the distance between x and y is 3. The set x6≡ is always a proper geometric hyperplane.442

The following fact can also be deduced from [13, Lemma 2(v)].443

Fact 2.16. Let x and u be two points of an exceptional hexagonic Lie incidence geometry. Let444

x ⊥ y ⊥ z ⊥ u. Then x and u are opposite if, and only if, both {x, z} and {y, u} are special445

pairs. In particular, if x ⊥⊥ v ⊥ u for some point v, then x and u are not opposite.446

Fact 2.17. Let x be a point and ξ a symp of an exceptional hexagonic Lie incidence geometry.447

Then exactly one of the following occurs.448

(i) x ∈ ξ;449

(ii) x⊥∩ξ is a maximal singular subspace in ξ (this cannot happen in a metasymplectic space);450

(iii) x⊥ ∩ ξ is a line L;451

(iv) x⊥⊥ ∩ ξ is a maximal singular subspace U ;452

(v) x⊥⊥ ∩ ξ = ξ (this does not occur in types F4,E8);453

(vi) x⊥⊥ ∩ ξ is a unique point y.454

The following fact follows from the diagrams by taking point residuals.455

Fact 2.18. Let x be a point of the parapolar space ∆ isomorphic to either E6,2(K),E7,1(K),E8,8(K),456

or a metasymplectic space. Then Res∆(x) is isomorphic to A5,3(K),D6,6(K),E7,7(K), or a dual457

polar space of rank 3, respectively. Consequently, when two symps of ∆ have a line in common,458

then they have (at least) a plane in common. Two non-disjoint symps either intersect in a point,459

a plane, or a maximal singular subspace. The singular rank of ∆ is 5, 7, 8 or 3, respectively.460

In general, an i-dimensional singular subspace whose points do not correspond to the set of461

vertices of the corresponding building contained in a simplex together with another given vertex,462

will be called an i′-space. It usually arises as the intersection of a maximal singular subspace463

with a symp.464
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We can now be more specific in Fact 2.17.465

Lemma 2.19. Let ∆ be an exceptional hexagonic Lie incidence geometry. Let x be a point of466

∆ and ξ a symp of ∆. Then the following hold.467

(i) If x⊥ ∩ ξ is a maximal singular subspace U in ξ, then each point of ξ \ U is symplectic to468

x;469

(ii) If x⊥ ∩ ξ is a line L, then each point y of ξ \ L collinear to a unique point of L is special470

to x (the other points of ξ \ L are symplectic to x);471

(iii) If x⊥⊥ ∩ ξ is a maximal singular subspace U , then each point of ξ \ U is special to x;472

(iv) If x⊥⊥ ∩ ξ is a unique point y, then each point of ξ not collinear to y is opposite x (conse-473

quently, each other point of ξ \ {y} is special to x).474

Proof. (i) The maximal singular subspace U of ξ has dimension at least 2, hence for each475

y ∈ ξ \ U , the set y⊥ ∩ U has at least three elements, implying, by the definition of476

parapolar spaces, that x and y are symplectic.477

(ii) Suppose x and y were symplectic. Then the symps ξ and ξ(x, y) would have a line in478

common, hence, by Fact 2.18, they would share a plane α, which has to contain L as479

x⊥ ∩ α is a line. Since also y ∈ α, y is collinear to all points of L, which contradicts the480

assumptions.481

(iii) This follows immediately from Fact 2.16.482

(iv) No point of ξ is collinear to x, as otherwise it follows from the other cases that y is not483

unique. Hence all points of ξ collinear to y are special to x. Let z be such a point. Then,484

by the previous possibilities, z⊥ ∩ ξ(x, y) is a line K and u := [x, z] ∈ K. Suppose, for a485

contradiction, that u⊥ ∩ ξ is a maximal singular subspace U of ξ. Then, by Fact 2.17(ii)486

and Fact 2.18, dimU ≥ 3 and any symp ξ(u,w), with w ∈ ξ \ u⊥, shares a maximal487

singular subspace W with ξ. It follows from Fact 2.17 that x⊥ ∩ ξ(u,w) is at least a line488

M . But then each point of M⊥ ∩W , which is at least 1-dimensional, is symplectic to x,489

a contradiction. So, u⊥ ∩ ξ is a line N , and it follows from the previous possibility that490

u on v, for every point v ∈ ξ \ y⊥. Now Fact 2.16 proves the assertion.491

�492

Lemma 2.20. Let x be a point of an exceptional hexagonic Lie incidence geometry, and suppose493

x is special to y1 and y2, with y1 ⊥ y2. Then also the points z1 = [x, y1] and z2 = [x, y2] are494

collinear.495

Proof. By Fact 2.16, z1 and y2 are symplectic. The point x is collinear to z1, and hence to a496

line L of ξ(z1, y2). Then y2 has to be collinear to a point of L, but this point can only be z2,497

since x and y2 are special. Note that it is possible that z1 = z2. �498

Lemma 2.21. Let x and L be a point and line, respectively, of an exceptional hexagonic Lie499

incidence geometry, and suppose that x is special to each point of L. Then there exists a line M500

consisting of the points collinear to x and some point of L. Consequently, if x is special to at501

least two points y1, y2 of a line K, with [x, y1] = [x, y2], then it is either collinear or symplectic502

to a unique point of K, and special to the other points of K.503

Proof. Let y1 and y2 be two points on L and set zi := [x, yi], i = 1, 2. By Fact 2.16, z1 and y2504

are symplectic, and the symp ξ(z1, y2) =: ξ contains y1. Since x has to be collinear to a line M505

of ξ, z2 is contained in M , and hence in ξ as well. Suppose z1 = z2. Let p be a point on M506

distinct from z1, and let q be the projection of p onto L. Since z1 is collinear to y1 and y2, z1507

is collinear to every point on L, including q. Thus, q is collinear to every point of M , and it508

follows that x⊥∩q⊥ ⊇M , and thus, x and q are symplectic, which contradicts the assumptions.509

Therefore, z1 and z2 are distinct. By Lemma 2.20 it follows that z1 and z2 are collinear and510

z1z2 = M . Now, for every point b on L, the point [x, b] is the unique point on M collinear to511

b. �512
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Similarly, we can say something about a point being symplectic to all points of a line.513

Lemma 2.22. Let x and L be a point and line, respectively, of an exceptional hexagonic Lie514

incidence geometry, and suppose that x is symplectic to each point of L. Then there exists515

a maximal singular subspace W not contained in a symp, containing L, such that x⊥ ∩W is516

complementary to L in W , and each symp containing x and a point of L contains x⊥ ∩W .517

Proof. Pick x1, x2 ∈ L and set ξ1 := ξ(x, x1). Then x⊥2 ∩ξ1 is either a line or a maximal singular518

subspace (cf. Fact 2.17). If it were a line M , then, by Lemma 2.19, x would be special to x2, as519

x1 ∈M and x2 is not collinear to x. Hence x⊥2 ∩ ξ1 is a maximal singular subspace U . Defining520

W as the singular subspace generated by U and x2, the assertions follow. �521

Lemma 2.23. Let ξ1 and ξ2 be two non-disjoint symps of an exceptional hexagonic Lie incidence522

geometry, and let xi ∈ ξi, i = 1, 2, be two points. Then x1 ≡ x2 if, and only if, ξ1 ∩ ξ2 is a point523

z, the symps ξ1 and ξ2 are locally opposite at z, and {xi, z} is a symplectic pair, i = 1, 2.524

Proof. This follows from Fact 2.16 and Lemma 2.19, taking into account that ξ1 and ξ2 are525

locally opposite at an intersection point z if, and only if, each point zi ∈ ξi \ {z} is collinear526

to a unique line of ξj , {i, j} = {1, 2} (which can easily be seen in Res(x); for instance, for527

Res(x) ∼= E7,7(K), this is Fact 2.12(iv)). �528

Lemma 2.24. Let ξ1 and ξ2 be two opposite symps of an exceptional hexagonic Lie incidence529

geometry, and let L1 ⊆ ξ1 be a line. Then the set of points of ξ2 symplectic to some point of L1530

is a line L2 of ξ2. All symps having a point on L1 and a point on L2 share a unique common531

point x, which is collinear to both L1 and L2.532

Proof. First, we note that, from general building-theoretic considerations, every point in ξ1 has533

an opposite in ξ2; hence, if x1 ∈ L1 and x2 ∈ x⊥⊥1 ∩ ξ2, then Lemma 2.23 implies that ξ2 and534

ξ(x1, x2) are locally opposite at x2 and, by Fact 2.17, every point of ξ2 not collinear to x2535

is opposite x1. If such a point y2 were symplectic to a point y1 ∈ L1, then Fact 2.17 would536

again imply that x1, being collinear with y1, is special to y2, a contradiction. We conclude that537

“being symplectic” preserves collinearity in both directions (interchanging the roles of ξ1 and538

ξ2), and hence is an isomorphism between ξ1 and ξ2. Let L2 ⊆ ξ2 correspond to L1 under that539

isomorphism.540

Let x′1 ∈ L1 \ {x1}. Then there is a unique point [x′1, x2] =: x ∈ ξ(x1, x2) collinear to x2 and541

x′1. Clearly, x ⊥ L1. Standard arguments switching roles of points on L1 and L2 imply that x542

is independent of x1 and x2, and so x is collinear to each point of L1 ∪L2. It is now easy to see543

that x is contained in each symp containing a point of L1 and a point of L2. Uniqueness of x544

follows from the fact that x = [x′1, x2]. �545

Lemma 2.25. Let ∆ be an exceptional hexagonic Lie incidence geometry, and let {x1, x2} be546

a symplectic pair of points in ∆. Let x′2 be another point in ∆ symplectic to x1 and collinear to547

x2. Let x′1 be a point such that x1 ⊥ x′1 ⊥ x′2. Then x′1 and x2 cannot be special.548

Proof. The point x′1 is collinear to (at least) a line L of ξ(x1, x2), which contains x1 and a549

point y collinear to x2. If x′1 were special to x2, then y = [x′1, x2] = x′2 ⊥⊥ x1, contradicting550

y ⊥ x1. �551

Lemma 2.19 implies that, whenever two points x, y of an exceptional hexagonic Lie incidence552

geometry ∆ are opposite, then every symp through x contains a unique point symplectic to y.553

This way, one obtains all points x⊥⊥∩y⊥⊥. This defines a subspace of ∆ which we call the equator554

geometry (with poles x and y) and denote as E(x, y). We view these as point-line geometries as555

soon as they contain lines. The latter is the case in the simply laced case (types An,Dn,E6,E7556

and E8). In all those cases, these equator geometries can be defined in exactly the same way557

for the corresponding hexagonic geometries (here the Lie incidence geometries of types An,{1,n},558
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Dn,2, and the exceptional ones not of type F4), and we have the following sequences (where559

∆→ ∆′ means that ∆′ is an equator geometry of ∆), which can be deduced from [16]:560 {
E8,8(K)→ E7,1(K)→ D6,2(K),

E6,2(K)→ A5,{1,5}(K)→ A3,{1,3}(K).

561

In the case of type F4, equator geometries as defined here have no lines. We shall give an562

alternative definition for that case in the next paragraph.563

2.5. Metasymplectic spaces. The previous paragraph includes the metasymplectic spaces,564

that is, the Lie incidence geometries of types F4,1 and F4,4. We now introduce some notation565

making apparent the differences between F4,1 and F4,4, based on the Dynkin diagram of type566

F4 rather than the Coxeter diagram. Everything in the paragraph can be found in [22] and is,567

of course, based on the fundamental work of Tits in [30].568

Given a field K, a quadratic algebra A over K is an algebra that admits a bilinear form b : A→ K569

such that for every x ∈ A we have x2 − (b(1, x) + b(x, 1))x + b(x, x) = 0. The element b(x, x)570

is called the norm of x and briefly denoted as n(x). We assume that A is alternative, that is,571

A satisfies the alternative laws (ab)b = ab2 and a(ab) = a2b, and that A is a unital division572

algebra, that is, it has an identity and every element has an inverse. We can associate a polar573

space of rank r ≥ 2 with every quadratic alternative unital division algebra as follows. Let V574

be the vector space isomorphic to the direct sum of A and 2r copies of K. Then define the575

quadratic form576

β : V → K : (x−r, x−r+1, . . . , x−1, x0, x1, . . . , xr) 7→ x−1x1 + x−2x2 + · · ·+ x−rxr − n(x0),

where x0 ∈ A and xi ∈ K, for all i ∈ {−r,−r + 1, . . . ,−1, 1, 2, . . . , r}. Then the null set of β577

defines a quadric of Witt index r, whose natural point-line geometry is a polar space of rank r,578

which we denote by Br,1(K,A).579

From the classification of buildings of type F4 in [30], we know that such a building is uniquely580

determined by a field K and a quadratic alternative unital division algebra A over K. We denote581

that building by F4(K,A), where we usually substitute K and A with their sizes if they are finite.582

Now, we assign the type function to the diagram in such a way that the symps of F4,1(K,A)583

are isomorphic to the polar space B3,1(K,A). The building F4(K,K) will sometimes be referred584

to as “split”. It is also characterised by the fact that the residues of type 4 correspond to585

symplectic polar spaces, that is, polar spaces defined by a non-degenerate alternating bilinear586

form, or equivalently, a null polarity. If we define a hyperbolic line of a polar space as the set587

(x⊥ ∩ y⊥)⊥ = {x, y}⊥⊥, for two non-collinear points x and y, then, in a symplectic polar space,588

a hyperbolic line is an ordinary line of the ambient projective space which is not a line of the589

polar space.590

We now define equator geometries. Let p, q be two opposite points of F4,1(K,A), i ∈ {1, 4}.591

The equator E(p, q) is the set of points that are symplectic simultaneously to p and q. The592

intersection of E(p, q) with the union of the symps through a given plane containing either p593

or q is, by definition, a line of the equator geometry. One checks that, replacing “plane” with594

“maximal singular subspace contained in a symp”, this definition applied to the simply laced595

case provides the same equator geometries as defined earlier (this is proved explicitly in many596

cases in [16]).597

We are going to briefly need the extended equator geometry, but only for the split case A = K.598

Let E(p, q) be an equator of F4,4(K,K) and define Ê(p, q) as the set of points symplectic to at599

least two opposite points of E(p, q). Endow Ê(p, q) with all lines of each equator geometry in-600

cluded in it. Then we obtain the extended equator geometry, also denoted by Ê(p, q). This time,601

p, q ∈ Ê(p, q). It is always isomorphic to B4,1(K,K), see [22]. If K is perfect of characteristic 2,602

then notice that B4,1(K,K) is a symplectic polar space.603
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2.6. Generalised hexagons. Our results include buildings of type G2; the associated point-604

line geometries are better known as generalised hexagons, introduced by Tits [29]. For n ≥ 3, a605

generalised n-gon, or generalised polygon if we do not want to specify n, is a point-line geometry606

Γ = (X,L ) such that the (bipartite) graph on X ∪L , with x ∈ X adjacent to L ∈ L if x ∈ L,607

has diameter n and girth 2n (we call this graph the incidence graph of Γ). We also assume that608

every line has at least three points and every point is contained in at least three lines (thickness609

of the associated building). Generalised 3-gons are the same things as projective planes, and610

generalised 4-gons, also known as generalised quadrangles, are polar spaces of rank 2. For more611

general background and results on generalised n-gons, see [32]. Finite generalised quadrangles612

are studied in detail in [23]. We recall the following definitions. The order of a generalised n-gon613

is the pair (s, t) such that each line contains precisely s+1 points and each point is contained in614

precisely t+ 1 lines. A spread in a generalised quadrangle Γ = (X,L ) is a partition of X into615

members of L . If Γ has order (s, t), then a spread contains exactly 1+st lines. A subpolygon of616

a generalised polygon is the generalised polygon induced on a convex subgraph of the incidence617

graph of Γ.618

Here, we are particularly interested in generalised hexagons, and more specifically in those619

that satisfy the Moufang condition, as these are the counterparts of type G2 of the spherical620

buildings of rank at least 3 (since these automatically satisfy such condition) and are the natural621

geometries for the simple algebraic groups of that type. Recall from [31] that a Moufang hexagon622

is determined by a field K and a quadratic Jordan division algebra J over K; using the Bourbaki623

labelling of nodes for Dynkin diagrams, we define G2,2(K, J) as the hexagon where the point624

rows are parametrised by J and the line pencils by K. There is perhaps ambiguity when J = K,625

but we take that ambiguity away by mentioning that, in this case, G2,2(K,K) is the hexagon626

arising from a triality of type Iid, as defined by Tits [29]. Such a hexagon shall be called the627

split Cayley hexagon (as in [32]), and the corresponding building is referred to as being split.628

The triality hexagon is G2,2(K, J), where J is a cubic Galois field extension of K. We will only629

need this hexagon in the finite case. The finite triality hexagon has order (q3, q), for some prime630

power q. In the finite case, we replace the field and the Jordan algebra with their sizes in the631

notation, just like we did for finite metasymplectic spaces.632

Let Γ = (X,L ) be a generalised hexagon. We use the notation and terminology of parapolar633

spaces to express the mutual position of two points, with the obvious meaning. In particular,634

points are special if they are not collinear but they are collinear to a unique common point.635

With that, a hyperbolic line H in Γ is a set of mutual special points collinear to a common given636

point p such that, for each point q opposite p, we have qon ∩ p⊥ = H as soon as |qon ∩H| ≥ 2. If637

we call a point of Γ close to a line if it is collinear to a unique point of that line, then a distance-3638

trace in Γ is the set of points close to two given opposite lines L and M . We denote it by [L,M ]3.639

It is called regular if [N,M ]3 = [L,M ]3 whenever N is opposite M and |[N,M ]3 ∩ [L,M ]3| ≥ 2.640

There are reasons to call a distance-3 trace in a split Cayley hexagon over a perfect field in641

characteristic 2 an imaginary line, as we shall explain in the proof of Proposition 5.9. We have642

adopted this terminology in Main Result A and Main Result B above, too. The terminology643

between parentheses, namely ideal line, is Ronan’s terminology [25].644

2.7. Opposition and projections. In this final paragraph of the preliminaries, we invoke645

some general theory about opposition, define projections, and note down some consequences646

which are rather interesting in our context because they unify some arguments across all types.647

Let F and F ′ be opposite simplices in a spherical building Ω. For us, F and F ′ will almost648

always be vertices, but we choose to state and define things slightly more generally. Then, by649

[30, look up], for every chamber C ⊇ F there exists a unique chamber C ′ ⊇ F ′ at nearest650

(gallery) distance from C. By [30, look up], the map C 7→ C ′ induces an isomorphism from651

ResΩ(F ) to ResΩ(F ′). This means that for every vertex v joinable to F , there exists a unique652

vertex v′ joinable to F ′ and closest to v; we denote v′ = projFF ′(v) and we call v′ the projection653

of v onto F ′. If F is obvious or not important, we sometimes write projF ′ instead of projFF ′ .654
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For example, the map in the proof of Lemma 2.24 between the two opposite symps ξ1 and ξ2 of655

an exceptional hexagonic Lie incidence geometry ∆, given on the points by “being symplectic”,656

coincides with the pair of projections projξξ′ and projξ
′

ξ . As a second example, the projection657

projyx from a point x to an opposite point y in an exceptional hexagonic Lie incidence geometry658

maps a line L through x to the unique line through y containing a point collinear to some point659

of L.660

The following notion will be very convenient to classify geometric lines. Let Ω be any spherical661

building and let v1, v2, v3 be three vertices of the same type. Then, using the terminology of662

[21], we call {v1, v2, v3} a round-up triple if no vertex of Ω is opposite exactly one of v1, v2, v3.663

Then, by definition, round-up triples in Lie incidence geometries correspond to round-up triples664

in the corresponding building. We will make extensive use of round-up triples when classifying665

geometric lines in this paper.666

We have the following connection between global and local opposition.667

Proposition 2.26 (Proposition 3.29 of [30]). Let F and F ′ be opposite simplices of a spherical668

building Ω. Let v be a vertex of Ω adjacent to each vertex of F , and let i be the type of v. Then669

the type i′ of the vertex projFF ′(v) is the opposite in Res(F ′) of the opposite type of i in Ω. Also,670

vertices v ∼ F and v′ ∼ F ′ are opposite in Ω if, and only if, v′ is opposite projFF ′(v) in ResΩ(F ′).671

Corollary 2.27. Let F be a simplex of a spherical building Ω. Then a collection T of vertices672

in Res(F ) admits an opposite in Res(F ) (viewed as a spherical building on its own) if and only673

if it admits an opposite vertex in Ω. Also, a set of vertices in Res(F ) is a geometric line of674

Res(F ) if, and only if, it is a geometric line of Ω. A triplet of vertices is a round-up triple in675

Res(F ) if, and only if, it is a round-up triple in Ω.676

Proof. If v is a vertex in Res(F ) opposite each vertex of T in Res(F ), then, for any simplex F ′677

opposite F , the vertex projFF ′(v) is opposite every member of T by Proposition 2.26. Conversely,678

let v′ be a vertex of Ω opposite each member of T . Select t ∈ T . Applying Proposition 2.26,679

we find a simplex F ′ in projtv′(F ) opposite F . Then, again by Proposition 2.26, projF
′

F (v′) is, in680

Res(F ), opposite every member of T . The second and third assertions now also follow. �681

If we want to use Corollary 2.27, then we have to know something about blocking sets, geometric682

lines, or round-up triples in residues; if these are classical, then from [4], [10], and [21], we infer:683

Proposition 2.28. (1) Let T be a set of q + 1 vertices of type j in either An(q), 1 ≤ j ≤ n,684

n ≥ 2, or Dn(q), 1 ≤ j ≤ n, n ≥ 4, such that no vertex is opposite all of them. Then T is a685

line in the corresponding Lie incidence geometry An,j(q), or Dn,j(K), respectively.686

(2) Every geometric line of An,j(K), 1 ≤ j ≤ n, n ≥ 2, for K an arbitrary skew field, is an687

ordinary line. Hence, every round-up triple of points in such a geometry is contained in an688

ordinary line. The same holds in Dn,j(K), 1 ≤ j ≤ n, n ≥ 4, for K an arbitrary field.689

Proposition 2.29. (1) Let L be a geometric line of a Lie incidence geometry Γ of type Bn,j,690

1 ≤ j ≤ n. Then L is either a line of Γ, or j 6= n, Γ is the j-Grassmannian of a symplectic691

polar space ∆, there exists a singular subspace U of dimension j−2 of ∆, and L corresponds692

to a hyperbolic line of Res∆(U), or j = n, all symps of Γ are symplectic polar spaces of693

rank 2, and L is a hyperbolic line in a symp.694

(2) Let T be a round-up triple of points of a Lie incidence geometry Γ of type Bn,j, 1 ≤ j ≤ n,695

and let ∆ be the associated polar space. Then L is either contained in a line of Γ, or j 6= n,696

there exists a singular subspace U of ∆ of dimension j−2, and T is contained in a hyperbolic697

line of Res∆(U), or j = n, and L is contained in a hyperbolic line of a symp of Γ.698

(3) Let T be a set of at most q + 1 vertices of type j in a finite (thick) building ∆ of type Bn,699

j ≤ n − 1, n ≥ 3, such that each panel of cotype j is contained in exactly q + 1 chambers.700

Suppose no vertex of ∆ is opposite all members of T . Then T is either a geometric line in the701

corresponding Lie incidence geometry of type Bn,j, or ∆ has a rank 2 residue corresponding702

to a generalised quadrangle with order (
√
q, q), and T is a spread in a subquadrangle Γ′ of703
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order (
√
q,
√
q). In the latter case, Γ′ is a symplectic polar space, and q is a power of 2. In704

particular, if |T | ≤ q, then it always admits a vertex opposite all its members.705

Also, let us quote the following property, which we will use regularly.706

Proposition 2.30 (Proposition 8.5 of [9]). If every panel of a spherical building is contained in707

at least s+1 chambers, then every set of s chambers admits an opposite chamber. In particular,708

every set of s vertices admits an opposite vertex.709

Noting that in any apartment each vertex has a unique opposite, the following assertion is710

immediate by considering an apartment through S1 and S2.711

Lemma 2.31. If S1 and S2 are two distinct simplices of a spherical building, then there exists712

at least one simplex opposite S1, but not opposite S2.713

One more property we will use frequently is the following.714

Proposition 2.32. Suppose every round-up triple of points in a Lie incidence geometry ∆ is715

contained in a line. Then each geometric line of ∆ is an ordinary line.716

Proof. Let L be a geometric line of ∆. By Proposition 2.30, L contains at least three elements.717

Pick x1, x2 ∈ L. Clearly, every triple of elements of L containing x1, x2 is a round-up triple and718

hence contained in a line M , which coincides with the unique line through x1 and x2. Hence719

L ⊆ M . If L 6= M , then each point opposite x1 and not opposite some point of M \ L would720

be opposite all members of L, a contradiction. The proposition is proved.721

�722

In the present paper, we will have to classify round-up triples in many geometries. The following723

general properties will come in handy.724

Lemma 2.33. Let {v1, v2, v3} be a round-up triple of vertices of some common type in a spher-725

ical building ∆. If v1 and v2 are joinable to a common vertex v, then also v3 is joinable to v.726

Hence, in this case, {v1, v2, v3} is a round-up triple in the residue of v.727

Proof. Consider an apartment Σ of ∆ containing v and v3, and let w be the unique vertex of728

Σ opposite v3. By the definition of round-up triple, we may assume that w is opposite v1. Let729

Σ′ be an apartment containing w and the simplex {v, v1}. Let ϕ : Σ′ → Σ be an isomorphism730

of complexes fixing both w and v (as required to exist by the definition of a building). Then731

ϕ(v1) = v3 as opposition is preserved. Hence v is joinable to v3, as ϕ preserves the simplicial732

structure. �733

Lemma 2.34. Let {v1, v2, v3} be a round-up triple of vertices of some common type in a spher-734

ical building ∆. Suppose there are simplices {v, w1} and {v, w2} such that wi is joinable to vi,735

i = 1, 2. Suppose also that v1 and v2 are not joinable to a common vertex. Then there exists a736

vertex w3 joinable to both v and v3, and the type of w3 can be chosen equal to the type of either737

w1 or w2.738

Proof. Consider an apartment Σ of ∆ containing {v, w1} and v3, and let w be the unique739

vertex of Σ opposite v3. Assume, for a contradiction, that v1 is opposite w. Let Σ∗ be an740

apartment containing {v1, w1} and w, and let ϕ∗ : Σ∗ → Σ be an isomorphism fixing w and w1.741

Then ϕ∗(v1) = v3 by uniqueness of opposites in apartments. Hence w1 is joinable to v3, and742

Lemma 2.33 implies that it is also joinable to v2, contradicting our assumptions. We conclude743

that w is opposite v2. Let Σ′ be an apartment containing {v2, w2} and w, and let Σ′′ be an744

apartment containing {v, w2} and w.745

Let ϕ′′ : Σ′′ → Σ be an isomorphism fixing w and v, and denote ϕ′′(w2) briefly as w3. Note that,746

by the definition of buildings, we may assume that ϕ′′ is type-preserving, implying that w3 has747

the same type as w2. Also, w3 is joinable to v, as w2 is. Let ϕ′ : Σ′ → Σ′′ be an isomorphism748

fixing w2 and w. Then ϕ = ϕ′′ ◦ ϕ′ : Σ′ → Σ is an isomorphism fixing w, hence mapping v2 to749
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v3. But ϕ(w2) = w3. Hence w3 is joinable to both v3 and v. Interchanging the roles of v1 and750

v2, we can also choose the type of w3 to be the same as that of w1.751

This completes the proof of the lemma. �752

Setting v2 = w2 in the previous lemma, noting that the only vertex of the same type as v2753

joinable to v3 is v3 itself, and then also noting the symmetry of the situation, we obtain the754

following consequence.755

Corollary 2.35. Let {v1, v2, v3} be a round-up triple of vertices of some common type in a756

spherical building ∆. Suppose there exists a simplex {w1, w2} such that wi is joinable to vi,757

i = 1, 2. Suppose also that v1 and v2 are not joinable to a common vertex. Then v3 is joinable758

to both w1 and w2.759

Finally, we note that we called certain objects “far” from each other. It was always the case that760

these objects referred to vertices of the corresponding building, and either they were opposite761

(for example, a point and a symp in E6,1(K)), or one vertex was joinable to a vertex opposite762

the other. We will extend now this notion of far to all such situations. Hence two objects in a763

Lie incidence geometry will be called far (from each other) if they correspond to vertices in the764

building and one vertex is joinable to a vertex opposite the other.765

3. Points and lines in the exceptional minuscule geometries766

3.1. Points of Lie incidence geometries of type E6,1.767

3.1.1. Blocking sets.768

Proposition 3.1. If every line of a parapolar space Γ of type E6,1 contains exactly s+ 1 points,769

then there exists a symp opposite each point of an arbitrary set S of s + 1 (distinct) points,770

except if these points are contained in a single line.771

Proof. Let S be a set of s+ 1 distinct points p0, . . . , ps in Γ that are not all on a common line.772

Assume first that all points of S are mutually collinear. Then p0, . . . , ps are either contained773

in a common 4-space or in a common 5-space. Since both are residues in the corresponding774

building, Corollary 2.27 and Proposition 2.28 imply that S is a line, proving the assertion.775

So, we may assume that at least two points of S have distance 2. Let p0 and p1 be two non-776

collinear points of S. Consider the symp ξ0 = ξ(p0, p1). For each point of S close to ξ0, we777

choose an arbitrary point in ξ0 collinear with it. Let S′ be the set of points thus obtained,778

complemented with the points of S contained in ξ0. By the main result of [10], in particular779

Lemma 3.5 therein, we find a point b in ξ0 non-collinear to each member of S′, and hence non-780

collinear to each member of S. Let Ξ be the set of symps ξ(b, pi), for i ∈ {0, 1, . . . , s}. There781

are at most s such different symps, as ξ(b, p0) = ξ(b, p1). Applying Proposition 2.30 in Res(b),782

we find a symp ξ through b intersecting each member of Ξ in exactly b. Then, by Lemma 2.5,783

the symp ξ is far from all points of S.784

The proof is complete. �785

3.1.2. Geometric lines. Corollary 5.6 of [21] states that geometric lines of Lie incidence geome-786

tries of type E6,1 are the same things as lines.787

3.2. Lines of Lie incidence geometries of type E6,1. We now look at the lines of Lie788

incidence geometries of type E6,1.789
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3.2.1. Blocking sets.790

Proposition 3.2. Let ∆ be Lie incidence geometry of type E6,1 such that every line has s+ 1791

points. Let T = {L0, . . . , Ls} be a set of s+ 1 different lines in ∆ such that they do not form a792

line pencil in a plane. Then there exists a 4-space opposite all lines L0, . . . , Ls in ∆.793

Proof. We may put L0, . . . , Ls in respective symps not containing a common 4-space. Then (the794

dual of) Proposition 3.1 yields a point b opposite all of those symps. Then Lemma 2.9 yields795

3-spaces Ui = b⊥ ∩ L⊥i .796

In Res(b) ∼= D5,5(K), the 〈b, Ui〉 are 3-spaces. Viewed as D5,1(K), they become lines. If they do797

not form a planar line pencil, then Proposition 2.28 yields a line opposite all of them, which798

translates into a 4-space W through b locally opposite each 〈p, Ui〉. Proposition 2.26 implies799

that W is opposite each member of T . So, we may suppose that the 〈b, Ui〉 form a planar line800

pencil in Res(b), viewed as a polar space. Since points and planes of that polar space correspond801

to symps and lines of Res(b), viewed as D5,5(K), we may assume that the 4-spaces 〈b, Ui〉 form802

the set of 4-spaces through a given plane β of ∆ contained in a given symp ξ.803

All Ui intersect β in lines Ni not containing b. Set Wi = 〈Ui, Li〉.804

We can find a 5-space opposite all Wi unless all Wi intersect in a common plane α.805

Case 1: Suppose first that all Wi do not intersect in a common plane and denote by B a806

5-space opposite all of them. The last assertion of Fact 2.4 yields lines L′i in B such that each807

point of Li is collinear to a unique point of L′i, but no point of B −
⋃s
i=0 L

′
i is collinear to any808

point of any Li.809

If the L′i do not form a planar line pencil in B, then we can find a 3-space M in B opposite each810

L′i. By Fact 2.3, that 3-space is contained in a unique maximal 4-space that we will denote by811

C, and, by Lemma 2.7, C is opposite all Li. So suppose the L′i form a planar line pencil in B.812

We will denote the corresponding plane as γ and the intersection L′0 ∩ L′1 ∩ · · ·L′s as d.813

Lemma 2.8 yields a point q0 ∈ 〈b, U0〉\U0 collinear to a 3-space of B disjoint from L0, and hence814

intersecting γ in a unique point q′0. Without loss of generality, we may assume that q′0 ∈ L′1.815

Hence there is a unique point q1 ∈ L1 collinear to q′0. Since q0 /∈ U1, the symp ξ(q0, q1) is816

well-defined and contains both q′1 and N1. But then N1, which is contained 〈L1, U1〉, contains817

a point collinear to q′1. Since b is collinear to all points of N1 and to no point of L1, these lines818

are disjoint. This contradicts the last assertion of Fact 2.4. We conclude that Case 1 cannot819

occur.820

Case 2: Now suppose that all Wi intersect in a common plane α. Let i ∈ {0, 1, . . . , s}. Since821

Ui ⊆ ξ, the 5-space Wi intersects ξ in a 4′-space Vi. Since, by Fact 2.1, Wi is determined by ξ822

and any point of Wi \ Vi, the plane α is contained in ξ. Hence the Vi form the set of 4′-spaces823

through α. Since Ui = b⊥ ∩ Vi, each line Ni coincides with L := α ∩ b⊥ ⊆ Ui.824

By the choice of b, the line Li is not contained in ξ, and a fortiori neither in α.825

Let A0 be a 5-space containing L0 that does not contain the plane α. Then we can find a826

5-space B opposite all 5-spaces A0, W1, . . . ,Ws.827

Again, since 〈b, Ui〉 is a 4-space and B a 5-space, we can find a point q1 in 〈b, U1〉 that is collinear828

to a 3-space of B. As in Case 1, q1 /∈ U1. Since every 3-space of B intersects γ, q1 is collinear829

to a point q′1 in γ that is collinear to some point qk of Lk, for some k ∈ {0, 2, 3 . . . , s}.830

As in Case 1, k 6= 0 leads again to a contradiction. Hence, considering ξ(q0, q1), we see that q′1831

is collinear to some line q0q, with q ∈ L. We now make some observations and define planes ε832

and ε′.833

• Since W0 and A0 have the line L0 in common, A0 ∩W0 is a plane and hence they are834

adjacent. Since δ is in A0 and A0 is opposite B, every point of δ is far from B.835

• Since W0 and B cannot be opposite, but W0 is adjacent to the opposite 0 to B, Fact 2.16836

yields a 5-spaceW intersecting bothW0 andB in planes denoted by ε and ε′, respectively.837

• Every point of ε is close to B, and every point of α is far from B. Therefore, the planes838

α and ε cannot intersect.839

18



As L0 ⊆ A0, no point of L0 is in ε. But since each point of L0 has to be collinear to a point of840

ε′, and every point of L0 is collinear to a unique point of B on L′0, it follows that L′0 is contained841

in ε′. In particular d ∈ ε′. It follows that d⊥ ∩W0 is a 3-space containing ε, hence intersecting842

α in a unique point e. Since d ∈ L′i, i = 1, 2, . . . , s, it is collinear to a unique point of Wi, and843

that point is on Li. hence e ∈ L1 ∩L2 ∩ · · · ∩Ls. We conclude {e} = ξ ∩Li. Switching the roles844

of L0 and L1, we obtain L0 ∩ ξ = L2 ∩ ξ = {e}.845

Now T belongs to Res∆(e) and the assertion follows from Corollary 2.27.846

�847

3.2.2. Geometric lines. Now we classify geometric lines in Lie incidence geometries of type E6,3.848

In order to do so, we classify round-up triples of lines in E6,1(K), for an arbitrary field K.849

Lemma 3.3. Let {L1, L2, L3} be a round-up triple of lines in the exceptional Lie incidence850

geometry E6,1(K) such that L1 and L2 have at least one point in common. Then exactly one of851

the following holds.852

(i) L1 = L2 = L3;853

(ii) L1, L2, L3 are three lines in a common planar line pencil.854

Proof. If L1 = L2 6= L3, then a 4-space opposite L1 but not opposite L3 (which exists by855

Lemma 2.31) violates the defining property of a round-up triple. Hence, if L1 = L2, then (i)856

holds.857

Now assume L1∩L2 = {x}. By Lemma 2.33, x ∈ L3. Then Corollary 2.27 and Proposition 2.28858

imply that L1, L2, L3 are contained in a plane, and (ii) follows. �859

Lemma 3.4. Let {L1, L2, L3} be a round-up triple of pairwise disjoint lines in the exceptional860

Lie incidence geometry E6,1(K). Let y1 be an arbitrary point of L1. If y1 is symplectic to some861

point of L2, then it is collinear to some point of L3.862

Proof. Suppose yi ∈ Li, i = 1, 2, with y1 ⊥⊥ y2. We claim that there exists a point u ∈ y⊥1 ∩ y⊥2863

not collinear to any point of L3. Indeed, suppose each point of y⊥1 ∩ y⊥2 is collinear to some864

point of L3. If that point of L3 is unique, then, since {y1, y2}⊥⊥ = {y1, y2} in each hyperbolic865

quadric, either y1 or y2 belongs to L3, a contradiction. If L3 were contained in ξ(y1, y2), then y1866

would be collinear to a point of L3, and the assertion would follow. If L3 intersected ξ(y1, y2)867

in a point z, then for each point z3 ∈ L3 we would have z⊥3 ∩ ξ(y1, y2) ⊆ z⊥ ∩ ξ(y1, y2), and this868

only contains y⊥1 ∩ y⊥2 if z ∈ {y1, y2}, a contradiction again. Hence L3 is disjoint from ξ(y1, y2).869

Now Lemma 2.6 implies that L3 is collinear to a plane π of ξ(y1, y2), and all points of ξ(y1, y2)870

collinear to some point of L3 are collinear to all points of π, a contradiction since y⊥1 ∩ y⊥2 is871

only collinear to {y1, y2}. The claim is proved.872

Now, by Proposition 2.26, a 4-space U through u locally opposite the projection of L3 onto u873

is opposite L3, but not opposite either L1 or L2, as u is collinear to both y1 ∈ L1 and y2 ∈ L2.874

This final contradiction proves the lemma. �875

Lemma 3.5. Let {L1, L2, L3} be a round-up triple of lines in the exceptional Lie incidence876

geometry E6,1(K). Then exactly one of the following holds.877

(i) L1 = L2 = L3;878

(ii) L1, L2, L3 are three lines in a common planar line pencil.879

Proof. By Lemma 3.3, the statement is true if, for some i, j ∈ {1, 2, 3}, i 6= j, the lines Li and880

Lj have a point in common. So we may assume that L1, L2, L3 are pairwise disjoint.881

By Lemma 3.4, we may assume that some point x1 ∈ L1 is collinear to some point x2 ∈ L2. Set882

M := x1x2. Lemma 2.34 implies that M also intersects L3. So M ∩ L3 is also a point x3. Now883

select y1 ∈ L1 \ {x1}. By Lemma 3.4, we may again assume that y1 is collinear to some point884

y2 of L2. Then, as in the previous paragraph, the line L3 has a point y3 in common with y1y2.885

Clearly y3 6= x3, as otherwise L1, L2 are contained in the plane generated by the lines M and886
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y1y2, contradicting our assumption that L1 ∩ L2 = ∅. Similarly, y2 6= x2. If all of x1, x2, x3 are887

collinear to all of y1, y2, y3, then all of L1, L2, L3 are contained in a singular 3-space, which is888

a residue of a simplex of type {2, 5, 6} in the corresponding building. Then Corollary 2.27 and889

Proposition 2.28 lead to the contradiction that L1, L2, L3 are coplanar and hence not disjoint.890

So we may assume that x1 is not collinear to y2. But then all of L1, L2, L3 are contained in the891

symp ξ(x1, y2), which is again a residue, and so Corollary 2.27 and Proposition 2.28 again lead892

to a contradiction.893

The lemma is proved. �894

Proposition 3.6. Every geometric line of E6,3(K) is an ordinary line.895

Proof. This follows directly from Proposition 2.32 and Lemma 3.5. �896

3.3. Points of Lie incidence geometries of type E7,7.897

3.3.1. Blocking sets.898

Proposition 3.7. If every line of a parapolar space Γ of type E7,7 contains exactly s+ 1 points,899

then there exists a point at distance 3 from each point of an arbitrary set S of s + 1 (distinct)900

points, except if these points are contained in a single line.901

Proof. Suppose S is not a line. Set S = {p0, . . . , ps}. We distinguish several cases.902

(i) Suppose all points in S are pairwise collinear. Then S is contained in a (maximal) singular903

subspace. As this corresponds to a residue in the corresponding building, Corollary 2.27904

and Proposition 2.28 lead to a contradiction.905

(ii) Suppose some pair of points from S is symplectic. Suppose p0 and p1 are symplectic and906

let ξ be the symp containing them. Let the set T of points of ∆ consist of the points of907

S in ξ, the set of points of ξ collinear to a point of T far from ξ, and, for each point pi908

of S close to ξ, an arbitrary point of ξ collinear to pi. Then T is a set of at most s + 1909

points not forming a line (as p0 and p1 belong to T and are not collinear). Hence, by910

Proposition 2.28 (or more precisely, [10, Lemma 3.5]), we find a point b ∈ ξ not collinear911

to any member of T . Hence, for each point pi ∈ S not far from ξ, there is a unique symp ξi912

containing b and pi. Since ξ = ξ0 = ξ1, there are at most s such symps. Proposition 2.30913

yields a line L through b locally opposite each such symp, which means that each point914

of L \ {b} is far from each such symp. This implies that each point of L \ {b} is opposite915

each point of S that is not far from ξ. But since b is opposite every point of S that is916

far from ξ by construction, the line L contains points opposite each member of S. Hence,917

each point pi, i = 0, 1, . . . , s, has a unique projection p′i onto L. Since b = p′0 = p′1, there918

is at least one point of L opposite each point of S.919

(iii) Some pair of points from S is opposite and there are no symplectic pairs in S. It follows920

that collinearity is an equivalence relation in S. Let C ⊆ S be a corresponding equivalence921

class of minimal size (then certainly |C| < 1 + s/2 and |S \ C| ≥ 2). Let ξ be a symp922

either containing C (if the latter is contained in a singular 5-space or a singular 5′-space;923

we assume p0 ∈ C), or containing at least one point, say again p0, of C and intersecting924

the 6-space spanned by C in a 5′-space (if C generates a 6-space; Fact 2.10 allows for925

this). Either way, let W be the singular subspace of ξ obtained by intersecting ξ with the926

singular subspace generated by C. Let S′ 6= ∅ be the set of points of ξ collinear to a point927

of S \ C.928

Select q ∈ S′ arbitrarily and suppose q ⊥ p1 ∈ S \ C. As |S \ C| ≥ 2, we can select929

a line M in ξ through q disjoint from W and not containing S′. With that, M contains930

at least one point b ⊥ q such that b /∈ S′ and b is not collinear to a member of C. It931

follows that b is not collinear to any point of S. So we can consider the set Ξ of symps932

containing b and some point of S. Since p0 and p1 are opposite, the symps ξ = ξ(b, p0)933

and ξ(b, p1) only intersect in the line bq. Hence, in the residue of b, the set Ξ does not934

correspond to the set of symps containing a given maximal singular subspace. Hence, the935
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dual of Proposition 3.1 yields a line L through b locally opposite each member of Ξ. As936

in (i) above, the line L is far from each member of S, but p0 and p1 project to the same937

point of L, implying that there is at least one point on L opposite every member of S. �938

3.3.2. Geometric lines. Corollary 5.6 of [21] states that a geometric line of a Lie incidence939

geometry of type E7,7 is the same thing as a line.940

3.4. Lines of Lie incidence geometries of type E7,7. We now look at the lines of Lie941

incidence geometries of type E7,7.942

3.4.1. Blocking sets.943

Proposition 3.8. If every line of a parapolar space Γ of type E7,7 contains exactly s+ 1 points,944

then there exists a line opposite each member of an arbitrary set T of s + 1 (distinct) lines,945

except if these lines form a planar line pencil.946

Proof. Since symps are vertices of type 1 in the corresponding building, Proposition 4.11 and947

Proposition 4.22, proved independently, allow us to consider symps ξ̂0, ξ̂1, . . . , ξ̂s, such that948

Li ∈ ξ̂i and such that there exists a symp ξ opposite every ξ̂i, for i ∈ {0, 1, . . . , s}. Then, in949

view of Fact 2.12, every point of any ξ̂i is collinear to a unique point of ξ. The points of ξ,950

which are in bijection with the points of Li ∈ ξ̂i, form a line again that we will denote by L′i.951

Suppose the lines L′i do not form a planar line pencil. Then, by Theorem A of [10], or more952

in particular Lemma 3.15 therein (see also Proposition 2.28), we can find a line M in ξ that is953

locally opposite all L′i at ξ (viewed as a residue). With Proposition 2.26, it follows that M is954

opposite all Li.955

Now suppose the L′i do form a planar line pencil in ξ and denote the plane by π. Let p be the956

point in which all L′i intersect and let q be a point in ξ \π, not collinear to p. Then projπ(q) (in957

ξ) is a line K, which intersects each L′i in some point p′i. Set pi = projLi
p′i. Since pi and q are958

both collinear to p′i, they are symplectic and we denote the symp spanned by pi and q by ξi. If959

the ξi do not all intersect in a common 5-space, then we can find a line M through q locally960

opposite all ξi and, by Proposition 2.26, M is opposite all Li.961

So we may assume from now on that all ξi intersect in a common 5-space Q. Note that they are962

pairwise distinct, as every ξi intersects ξ in exactly the line qp′i. Let q0 be a point on qp′0 distinct963

from q and p′0. The point q0 is in the plane α := 〈q,K〉 and with that projπ(q0) = projπ(q) = K.964

Hence, q0 is symplectic to each pi as well. We will denote the symps spanned by pi and q0 by ξ0
i .965

Since q0 is on qp′0, ξ0
0 coincides with ξ0. Similarly to before, we may assume that all ξ0

i intersect966

in a common 5-space Q0. For each j ∈ {1, 2, . . . , s}, we have that ξj 6= ξ0
j and ξ0

j intersects ξ in967

exactly the line q0pj .968

The 5-spaces Q and Q0 are distinct, but both contained in ξ0. Since symps in ∆ are polar spaces969

of type D6,1, two 5-spaces in ξ0 intersect in even codimension and hence either in nothing, a970

line, a 3-space, or they coincide.971

Note that pj , for j ∈ {1, 2, . . . , s}, cannot be contained in ξ0, since otherwise ξ0 = ξ(q, pj) = ξj ,972

a contradiction. We have that projξ0(pj) (in ∆) is a 5′-space Aj . We know that projQ(pj) is a973

4-space Uj ⊆ Aj and projQ0(pj) is a 4-space U0
j ⊆ Aj . Since Uj ∩ U0

j ⊆ Q ∩Q0, it follows that974

Q ∩Q0 = Uj ∩ U0
j =: V is a 3-space independent of j ∈ {1, 2, . . . , s}.975

Let q1 be a point of qp′1 \ {q, p′1}. Without loss of generality, assume p′2 ∈ q0q1. Then the symps976

ξ(q1, p1) and ξ(q1, p2) contain both V , and it follows again that all symps ξ(q1, pi) contain V .977

Since they also contain q1, we find q1 ⊥ V . Since q1 was essentially arbitrary, we conclude that978

V is the intersection of all symps defined by pi and some point of α \K. Moreover, α ⊥ V and979

W := 〈α, V 〉 is a (maximal) 6-space. Since both p0 and V are in the intersection of ξ(q, p0) and980

ξ(q1, p0), we also deduce p0 ⊥ V .981
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We observe that Aj = projξ0(pj) = 〈projQ(pj), projQ0(pj)〉 = 〈Uj , U0
j 〉 and that all Aj contain V .982

We define U0 and U0
0 as the 4-spaces projQ(p0) and projQ0(p0), respectively. By the foregoing,983

V = U0
0 ∩ U0.984

The point q is contained in Q and the point q0 is contained in Q0. In a 5-space, there can only985

be s+ 1 different 4-spaces which contain a given 3-space. Since none of the Ui (U0
i respectively)986

can contain q (q0 respectively), at least two of the Ui (U0
i respectively) have to coincide. If987

Um = Un for some m,n ∈ {0, 1, . . . , s}, then it follows that U0
m = U0

n, since otherwise Am and988

An would intersect in a 4-space. We conclude that two Ai, for i ∈ {0, 1, . . . , s}, have to coincide.989

Let m,n ∈ {0, 1, . . . , s} be such that Am = An. Since, by Fact 2.10, 6-spaces cannot intersect990

in 5′-spaces, 〈pm, Am〉 and 〈pn, Am〉 have to be equal. Hence pm and pn are collinear.991

We now claim that all pi are contained in a common symp. Indeed, by Fact 2.10, there is992

a unique symp ζ containing the 5′-space 〈V,K〉. Now ξ0 and ζ have the 4-space 〈p′0, V 〉 in993

common, and hence they intersect in the 5-space 〈p0, p
′
0, V 〉, since this is the unique 5-space of994

ξ0 containing 〈p′0, V 〉. We get p0 ∈ ζ. Similarly, pi ∈ ζ, for all i ∈ {1, 2, . . . , s}, and the claim is995

proved.996

We now vary K over all lines of π not containing p. We obtain s2 distinct pairs of collinear997

points, where each pair of points is contained in two different lines Li, Lj , i 6= j, and no point998

of such pair is collinear to p. Since we only have
(
s+1

2

)
= 1

2s(s + 1) < s2 pairs of lines, there999

must exist n,m ∈ {0, 1, . . . , s}, n 6= m, and distinct point pairs {an, am} and {bn, bm}, with1000

an, bn ∈ Ln and am, bm ∈ Lm, such that an ⊥ am and bn ⊥ bm. There are two cases.1001

Case (a): an 6= bn and am 6= bm.1002

In this case, it is easy to see that Ln and Lm are contained in a common symp ξ∗. We claim1003

that all points of L0 ∪ L1 ∪ · · · ∪ Ls are mutually collinear. Indeed, suppose not, then there1004

exists some symplectic pair of points on that union, contained in a unique symp ξ∗∗. Then we1005

re-choose ξ̂n as ξ∗, and we re-choose ξ̂m as ξ∗∗. Since we have some freedom to choose the other1006

s − 1 symps, we have a new symp ξ′ opposite each of these s + 1 symps. But the projection1007

of the Li onto ξ′ contains a symplectic pair (due to the presence of ξ∗∗), hence cannot be a1008

planar line pencil. As before, this leads to a line opposite all of the Li. The claim is proved.1009

Hence, S is contained in a singular subspace, and Corollary 2.27 and Proposition 2.28 lead to1010

the assertion.1011

Case (b): without loss of generality an = bn and am 6= bm.1012

In this case, an is collinear to the line Lm. Let cn ∈ Ln be different from an and not collinear1013

to p. If cn ⊥ am, then we are back in Case (a). So we may assume that cn is not collinear1014

to am. Then, interchanging the role of K with that of the line of π containing the respective1015

points collinear to cn and am, we see that there exists a unique symp ζn containing cn, am, and1016

a point ci of each Li, i ∈ {0, 1, . . . , s} \ {n,m}. It also contains Ln. We may now re-choose ξ̂n1017

as ζn. As cn and am are not collinear, this again leads, as in Case (a) above, to a line opposite1018

each Li, and the proposition is proved. �1019

3.4.2. Geometric lines. Now we classify geometric lines in Lie incidence geometries of type E7,6.1020

This will follow from the classification of round-up triples of lines.1021

Lemma 3.9. Let {L1, L2, L3} be a round-up triple of lines in the exceptional Lie incidence1022

geometry Γ of type E7,7, such that L1 and L2 intersect. Then exactly one of the following holds.1023

(i) L1 = L2 = L3;1024

(ii) L1, L2, L3 are three lines in a common planar line pencil.1025

Proof. Clearly, if L1 = L2, then also L3 = L1, since otherwise there exists a line opposite L31026

and not opposite L1. So we may assume L1 ∩ L2 = {x}. By Lemma 2.33, we see that x ∈ L3,1027

and Corollary 2.27, in combination with Proposition 2.28, implies (ii). �1028

Lemma 3.10. Let {L1, L2, L3} be a round-up triple of pairwise disjoint lines in an exceptional1029

Lie incidence geometry of type E7,7. Then no point of L2 is collinear to any point of L1.1030

22



Proof. Let, for a contradiction, M be a line joining a point x1 ∈ L1 to a point x2 ∈ L2. Note1031

that L1 6= M 6= L2. Applying Lemma 2.34, we find that M intersects L3. Set xi := M ∩ Li,1032

i = 1, 2, 3.1033

Assume, for a contradiction, that x1 is symplectic to some point y3 ∈ L3. Set ξ := ξ(x1, y3).1034

Noting that M ⊆ ξ, Corollary 2.35 yields x1 ∈ L2 ⊆ ξ, a contradiction. Hence, x1 is collinear1035

to each point of L3. But then again, every line through x1 intersecting L3 meets L2, and so1036

L2, L3 are contained in a common plane, hence intersecting, contradicting our assumptions.1037

The lemma is proved. �1038

Proposition 3.11. Let {L1, L2, L3} be a round-up triple of lines in the exceptional Lie incidence1039

geometry Γ of type E7,7. Then exactly one of the following holds.1040

(i) L1 = L2 = L3;1041

(ii) L1, L2, L3 are three lines in a common planar line pencil.1042

Proof. In view of Lemma 3.9 and Lemma 3.10, it suffices to show that no round-up triple1043

{L1, L2, L3} exists for which no point of Li coincides with or is collinear to any point of Lj ,1044

i, j ∈ {1, 2, 3}, i 6= j. So suppose, for a contradiction, such a triple does exist. Select x1 ∈ L1.1045

Then there exists x2 ∈ L2 symplectic to x1. Set ξ := ξ(x1, x2). Suppose, for a contradiction,1046

that some point x3 ∈ L3 is opposite some point y12 ∈ x⊥1 ∩x⊥2 . Then we can find a line through1047

y12 opposite L3, but that line is certainly not opposite either L1 or L2, as it contains a point1048

y12 collinear to points of L1 and L2. Hence no point of L3 is opposite any point of x⊥1 ∩ x⊥2 . If1049

some point x3 ∈ L3 were far from ξ, this would imply that the unique point x′3 of ξ collinear1050

to x3 is collinear to all of x⊥1 ∩ x⊥2 , forcing x′3 ∈ {x1, x2}, contradicting our assumption that no1051

point of L3 is collinear or equal to any point of L1 ∪ L2. Hence all points of L3 are close to ξ.1052

Note also that, by Lemma 2.34, some point x3 ∈ L3 belongs to ξ. By interchanging the roles1053

of L3 and Li, i = 1, 2, we see that each point of L1 ∪ L2 is close to ξ. Since ξ is hyperbolic,1054

there exists a point y ∈ L⊥2 ∩ x⊥3 \ x⊥1 . Let M be a line through y locally opposite ξ and select1055

z ∈M \ {y}. However, if y is not collinear to all points of L3, then we (re)choose M locally not1056

opposite the symp through y and L3. In any case, z is not opposite any point of L2 ∪L3. Since1057

it is opposite x1, we find a line K through z opposite L1. But K is not opposite either L2 or1058

L3 by the properties of z, a contradiction.1059

The lemma is proved. �1060

We conclude:1061

Proposition 3.12. Every geometric line of E7,6(K) is an ordinary line.1062

Proof. This follows directly from Proposition 2.32 and Proposition 3.11. �1063

4. Points and lines of hexagonic Lie incidence geometries1064

4.1. Points of hexagonic Lie incidence geometries. Here we prove Main Results A and B1065

for the points of the exceptional hexagonic geometries.1066

4.1.1. Blocking sets. Reduction to geometric lines.1067

Proposition 4.1. Let Γ be an exceptional hexagonic geometry with s+ 1 points per line. Then1068

a given set T of s+ 1 points of Γ admits an opposite point if, and only if, T is not a geometric1069

line of Γ.1070

Proof. Clearly, if T is a geometric line, then T does not admit any point opposite all its points.1071

Now suppose T does not admit any point opposite all of its points. We show that T is a1072

geometric line. Suppose, for a contradiction, that T is not a geometric line. Then there exists a1073

point x not opposite at least two points of T , but opposite at least one point of T , and we shall1074

call each such point a spoilsport. Suppose x is not opposite r ≥ 2 points of T , with r ≤ s, and1075

let S be that set of points. We adopt the following notation. For each point p ∈ S not equal or1076
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symplectic to x, we denote the line through x closest to p by Lx,p. If p ∈ S is symplectic to x,1077

then we denote by Lx,p the set of lines of ξ(x, p) through x.1078

Note that each point z 6= x on any line K through x locally opposite some member of Lx,p is1079

special to p.1080

(i) Suppose x ∈ T . For each point p ∈ S symplectic to x, we choose an arbitrary line1081

Lx,p ∈ Lx,p. Then, by1082

Proposition 2.29 for F4, and by Proposition 2.30 for the other cases,1083

we find a line L 3 x locally opposite all of Lx,p, for p ranging through S \ {x}. Since1084

T \ S contains at most s − 1 elements, there is a point x′ on L opposite all members of1085

T \ S. If S contains at least one point collinear or symplectic to x, then x′ /∈ T is a1086

spoilsport. If S \ {x} only contains points special to x, then some point of L at distance 21087

of at least one member of T \ S is a spoilsport not contained in T . Hence we may assume1088

from now on that x /∈ T .1089

(ii) Suppose x /∈ T and S contains at least one point collinear or symplectic to x. Again, we1090

choose an arbitrary line Lx,p ∈ Lx,p for each p ∈ S symplectic to x, and we find a line L1091

through x locally opposite all Lx,p, p ∈ S. There are two possibilities. First assume that1092

S contains at least one point special to x. Then we select a point x′ ∈ L at distance 21093

from at least one member of T \S, and we see that x′ is a spoilsport not collinear and not1094

symplectic to any point of T . Secondly, assume that S does not contain any point special1095

to x. Then we select a point x′′ ∈ L \ {x} distinct from the at most (s + 1) − r ≤ s − 11096

points at distance 2 from some member of T \ S. Then x′′ is opposite every member of1097

T \S and special to each member of S, and hence x′′ is a spoilsport. So, in both cases we1098

constructed a spoilsport not collinear and not symplectic to any point of T . So from now1099

we may assume that x is special to each point of S.1100

(iii) Suppose x is special to each point of S. Then we can find a line L locally opposite each1101

Lx,p, with p ∈ S, and a point y ∈ L \ {x} opposite each member of T \ S. The point y is1102

opposite each member of T , a contradiction.1103

We conclude that T is a geometric line. �1104

Proposition 4.1 reduces the classification of point sets T in a finite exceptional hexagonic geom-1105

etry, where T has the size of a line and does not admit a point opposite each of its members,1106

to the classification of geometric lines in such geometries. This is the goal of the next theorem.1107

It completes the partial classification given in [21], which we now briefly repeat.1108

Proposition 4.2 (Theorem 6.5 in [21]). Let L be a geometric line in an exceptional hexagonic1109

geometry Γ. Then exactly one of the following cases occurs.1110

(1) L is an ordinary line of Γ;1111

(2) L is a hyperbolic line in a symplecton of Γ isomorphic to a symplectic polar space (and this1112

only occurs in the hexagonic geometries of type F4,4 that arise from a split building of type1113

F4);1114

(3) L consists of mutually opposite points.1115

In view of Proposition 4.2, it remains to classify geometric lines in exceptional hexagonic ge-1116

ometries consisting of mutually opposite points.1117

4.1.2. Classification of geometric lines. The following lemma will be very efficient for such1118

classification.1119

Lemma 4.3. Each geometric line L containing opposite points of any (exceptional) hexagonic1120

geometry Γ is a geometric line of any equator geometry of Γ containing at least two points of L.1121

Proof. Let x, y be two points of the geometric line L, consisting of mutually opposite points1122

of Γ. We claim that no point of L is special to any point of E(x, y), the equator geometry1123

with poles x and y. Indeed, suppose z ∈ L is special to u ∈ E(x, y). Extend the unique path1124

z ⊥ [u, z] ⊥ u to a path z ⊥ [u, z] ⊥ u ⊥ v, with v on [u, z]. Then v is opposite z ∈ L, but1125
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since x ⊥⊥ u ⊥ v, Fact 2.16 implies that v is not opposite x. Similarly, v is not opposite y, a1126

contradiction to L being a geometric line. The claim is proved.1127

It immediately follows from the previous claim that no point of L is either collinear to any point1128

of E(x, y), or belongs to E(x, y). Indeed, if z ∈ L were collinear to u ∈ E(x, y), then we can1129

consider the unique point v on the line uz not opposite some point w ∈ E(x, y) opposite u. The1130

claim in the previous paragraph implies v 6= z. But then w ≡ z, while w is not opposite either1131

x or y, a contradiction. If z ∈ L ∩ E(x, y), then a point u ∈ E(x, y) opposite z is not opposite1132

both x and y, again a contradiction. For the same reason, no point of L is opposite any point1133

of E(x, y).1134

Hence we have shown that each point of L is symplectic to each point of E(x, y). Taking two1135

opposite points a, b ∈ E(x, y), this implies L ⊆ E(a, b). Since opposition in E(x, y) as a Lie1136

incidence geometry coincides with the opposition inherited from Γ, the assertion follows. �1137

Counterexamples to the converse of Lemma 4.3 will be given in type F4 (see the proof of the1138

next theorem).1139

We can now prove the announced classification.1140

Theorem 4.4. Let L be a geometric line in an exceptional hexagonic geometry Γ. Then L does1141

not consist of mutually opposite points.1142

Proof. By Lemma 4.3, the non-existence of geometric lines consisting of mutually opposite1143

points in hexagonic geometries of types E6, E7 and E8 follows from the non-existence of such1144

geometric lines in the Lie incidence geometries of types D6,2 and A5,{1,5}.1145

The former case is taken care of by Proposition 2.28. In the latter case, by taking again equator1146

geometries, see the last paragraphs of Section 2.4, we reduce the question to the case A3,{1,3}.1147

Then by Lemma 4.3, we see that L consists of incident point-plane pairs in PG(3,K) with the1148

point ranging over a given line K and the plane determined by the point and a given line1149

K ′ skew to K. Consider a point x /∈ K ∪ K ′ and a plane α through x intersecting both K1150

and K ′ in respective unique points, say y and y′, respectively. Then {x, α} is not opposite1151

{〈K ′, x〉 ∩K, 〈K ′, x〉} and not opposite {y, 〈y,K ′〉}, but opposite every other member of L, a1152

contradiction.1153

This shows that no geometric line of Γ consists of opposite points, for Γ of types E6,2,E7,1 or E8,8.1154

Hence we may suppose that Γ has type F4. In that case, a geometric line T consisting of1155

mutually opposite points is a geometric line of the polar space ∆ of rank 3 corresponding to a1156

point residual of Γ. It follows from [21, Lemma 4.8] that ∆ is a symplectic polar space (hence1157

Γ is split—but possibly over a non-perfect field) and T is a hyperbolic line. By the obvious1158

transitivity of the automorphism group on the set of hyperbolic lines, we may assume that1159

every hyperbolic line of each equator geometry is a geometric line. Now let x, y be two points1160

and E(x, y) the corresponding equator geometry. Let ξ be a symp corresponding to a line L of1161

E(x, y). Assume first that the underlying field is not perfect of characteristic 2. Then, again by1162

[21, Lemma 4.8], there exists a point a ∈ ξ either collinear to at least two points of L but not1163

all, or not collinear to any point of L. Also, more precisely, since ∆ is split, ξ is a polar space1164

corresponding to a quadric in PG(6,K), L is the intersection of the perps of two opposite lines,1165

and so, a is collinear to either 0 or 2 points of L. Let b be a point of Γ far from ξ and symplectic1166

to a. Then b6≡ intersects every hyperbolic line of E(x, y) in one or all its points (as these are all1167

assumed to be geometric lines), L in 0 or 2 points, and, by the above argument for a applied to1168

other appropriate points, intersecting every line in either 0, 1, 2 or all points. We view E(x, y)1169

in its natural embedding in PG(5,K). Let π be a non-singular plane of PG(5,K) (with respect1170

to the underlying non-degenerate alternating form) containing L. We can choose π such that1171

the unique point xL ∈ L for which π ⊆ p⊥L is opposite b. Let ` 6= xL be another point on L1172

opposite b in Γ (which exists by our assumptions above and the fact that there are at least four1173

points on a line—indeed, F2 is perfect of characteristic 2, and so |K| ≥ 3) and let h1, h2, h3 be1174

three distinct hyperbolic lines of E(x, y) in π through `. Then there are unique points a1 ∈ h1,1175
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a2 ∈ h2 and a3 ∈ h3 not opposite `. Suppose first that a1, a2, a3 lie on the same line L′ of π.1176

Then the whole line L′ belongs to b6≡, and hence at least one point L ∩ L′ of L does. But then1177

two points of L do, and connecting that second point, which does not coincide with xL, with1178

all points of L′ leads to π ⊆ b6≡, a contradiction. Hence we may assume that a1, a2, a3 are not1179

contained in the same line of π. Then it is easy to see that joining with hyperbolic lines yields1180

all points of π, except for xL. Since |K| > 2, this is again a contradiction to |b6≡ ∩ L| ∈ {0, 2}.1181

Now assume that K is perfect of characteristic 2. We may embed every equator geometry in an1182

extended equator geometry Ê, which is then isomorphic to a symplectic polar space of rank 41183

(see Section 2.5). By [17, Corollary 5.38], there exists a point b of Γ such that H := b6≡ ∩ Ê is a1184

(hyperbolic) polar subspace of type D4,1. Note that we still may assume that every hyperbolic1185

line is a geometric line. Then H is also a geometric hyperplane of the ambient projective space1186

PG(7,K) of Ê, and hence coincides with p⊥ for some point p ∈ Ê (where the perp ⊥ is now1187

with respect to the symplectic polar space). This is clearly a contradiction.1188

The theorem is proved. �1189

4.2. Lines of exceptional hexagonic Lie incidence geometries.1190

4.2.1. Two lemmas in the residues. We begin with two results in the point residuals of hexagonic1191

geometries. The first one summarises earlier findings.1192

Lemma 4.5. Let ∆ be either a Lie incidence geometry of type A5,3, D6,6 or E7,7, or a dual1193

polar space of rank 3. Suppose each line has exactly s + 1 points. Suppose also that ∆ is not1194

isomorphic to B3,3(
√
s, s). Then a set of at most s+ 1 points of ∆ admits no common opposite1195

point if, and only if, the points form a geometric line. In particular, if there are at most s1196

points, or if there exists a point opposite at least one point of the set, and not opposite at least1197

two points of the set, then the set admits an opposite point.1198

Proof. This follows from Main Results A and B of [10] for types A5,3, D6,6, and for dual polar1199

spaces, and from Proposition 3.7 and [21, Corollary 5.6] for type E7,7. �1200

Lemma 4.6. Let ∆ be either a Lie incidence geometry of type A5,3, D6,6 or E7,7, or a dual1201

polar space of rank 3. Suppose each line contains precisely s + 1 points and let p be a point.1202

Let Q := {q1, . . . , q`} be a set of points not containing p, ` ≤ s. Then there exists a point p′1203

opposite each member of Q, and not opposite p.1204

Proof. We first construct a symp ξ through p far from each member of Q. If q ∈ Q is opposite1205

p, each symp through p qualifies. If q ∈ Q is symplectic to p, let Kq be an arbitrary line through1206

p in the symp containing p and q; if q ⊥ p then let Kq be the line containing p and q. Since1207

` ≤ s, we infer from Proposition 2.30 and Proposition 2.29 that there exists a symp ξ through p1208

locally opposite all Kq, q ∈ Q. Then ξ is far from each member of Q. Now the same references1209

yield a point p′ in ξ (locally) opposite in ξ each intersection ξ ∩ q⊥, for q ∈ Q. The point p′ is1210

opposite each member of Q and not opposite p. �1211

4.2.2. Description of mutual positions. We will describe the mutual position δ(L,M) of two lines1212

L and M of an exceptional hexagonic Lie incidence geometry with four parameters (a, b, c, d),1213

chosen in the set {=,⊥,⊥⊥,on,≡}, where a, b, c, d are defined as follows. If there is a unique1214

point on L closest to M , we call it x; otherwise, x is an arbitrary point on L. Similarly, if there1215

is a point on M nearest to L, call it y; if not, but there is a point on M nearest to x, call this y.1216

If not, then y is an arbitrary point. Let x′ be any point on L distinct from x. If there is a point1217

on M nearest to x′, and it is different from y, call it y′; otherwise, y′ is any point on the second1218

line distinct from y. Then a is the relation between x and y, while b is the relation between x1219

and y′. Also, c is the relation between x′ and y, whereas d is the relation between x′ and y′. It1220

will turn out that such a 4-tuple unambiguously determines the mutual position.1221

In a shorthand alternative notation, we write 0 for =, 1 for ⊥, 3
2 for ⊥⊥, 2 for on and 3 for ≡.1222

The inverse of δ(L,M) is δ(M,L). The dual of δ(L,M) is δ(M,K), for the line K opposite L1223
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in any apartment containing L and M . On the level of point distances, 0 is dual to 3, 1 to 2,1224

and 3
2 is self-dual. We sometimes call δ(L,M) the distance between L and M .1225

There are basically four classes of positions δ(L,M), if one takes into account the homogeneity1226

with respect to the points of the lines L and M . The classes are the following (where we use1227

the notation of the previous paragraphs).1228

Class I — Completely homogeneous1229

In this class, every point of either line has the same distance to each point of the other line. All1230

positions here are equal to their inverse. The cases are:1231

(1111) (⊥,⊥,⊥,⊥): the two lines L,M span a singular 3-space.1232

(3
2

3
2

3
2

3
2) (⊥⊥,⊥⊥,⊥⊥,⊥⊥): each point of each line is symplectic to each point of the other line.1233

The dual of (1111) is the following:1234

(2222) (on,on,on,on): each point of each line is special to each point of the other line.1235

Class II — Projection homogeneous1236

In this class, each point of each line has a unique projection onto the other line; the distances1237

between corresponding points are constant, and the other distances as well. All distances are1238

their own inverse. The cases are:1239

(0110) (=,⊥,⊥,=): the lines are equal, that is, L = M .1240

(13
2

3
21) (⊥,⊥⊥,⊥⊥,⊥): the lines are opposite in a symp.1241

(3
2223

2) (⊥⊥,on,on,⊥⊥): the lines are each other’s projection from a symp to an opposite symp.1242

(2332) (on,≡,≡,on): the lines are opposite, that is, L ≡M .1243

Class III — Symmetric non-homogeneous1244

In this class, both lines contain a unique projection point with respect to the other line. More-1245

over, all the positions are their own inverse again. The cases are:1246

(0111) (=,⊥,⊥,⊥): the lines are coplanar.1247

(0113
2) (=,⊥,⊥,⊥⊥): the lines meet and determine a unique symp.1248

(0112) (=,⊥,⊥,on): the lines meet and are locally opposite.1249

(1113
2) (⊥,⊥,⊥,⊥⊥): the lines are special in (the line-Grassmannian of) a symp.1250

(13
2

3
2

3
2) (⊥,⊥⊥,⊥⊥,⊥⊥): the projection point x of M onto L is contained in a symp ξ with M ,1251

while L is locally close to ξ at x; the same holds with the roles of L and M interchanged.1252

(13
2

3
22) (⊥,⊥⊥,⊥⊥,on): the projection point x on L is contained in a symp ξ with M , while L is1253

locally opposite the line connecting the two projection points x and y at x, and hence1254

locally far from ξ at x; the same holds with the roles of L and M interchanged.1255

(3
2

3
2

3
22) (⊥⊥,⊥⊥,⊥⊥,on): the projection points x and y are symplectic, the lines L and M are1256

locally close to the symp ξ(x, y), and the projections of the lines L,M onto ξ(x, y) (which1257

are maximal singular subspaces of ξ(x, y)) intersect in a unique point.1258

(3
2222) (⊥⊥,on,on,on): the points x and y are symplectic, the lines L and M are locally far from1259

ξ(x, y), and the projections of the lines L,M onto ξ(x, y), which are lines themselves,1260

are ξ(x, y)-special.1261

(1223) (⊥,on,on,≡): the lines L,M are each other’s projection from a point x′ or y′ to an1262

opposite point y′ or x′, respectively.1263

(3
2223) (⊥⊥,on,on,≡): the lines are locally far from the symp ξ determined by the projection1264

points x and y (which are symplectic), and the projections of the lines onto ξ are ξ-1265

opposite lines.1266

(2223) (on,on,on,≡): There is a pair of opposite points x′ ∈ L and y′ ∈ M , and the projection1267

of L (or M) onto y′ (or x′) is locally symplectic to M (or L) at y′ (or x′, respectively);1268

equivalently, L and M lie in opposite symps and the projection of L (or M) onto the1269

symp through M (or L) is special to M (or L, respectively) in (the line Grassmannian1270

of) that symp.1271

Class IV — Asymmetric positions1272
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Up to now, in all 4-tuples, the second and third entry coincided. This is going to change1273

now. The — final — class that we consider in this paragraph contains the asymmetric mutual1274

positions, that is, those that do not coincide with their inverse. There are four cases with two1275

projection points. These cases are:1276

(13
212) (⊥,⊥⊥,⊥,on): the line L is coplanar with y; the line M and the plane 〈L, y〉 are locally1277

far at y.1278

(113
22) (⊥,⊥,⊥⊥,on): the line M is coplanar with x; the line L and the plane 〈M,x〉 are locally1279

far at x.1280

(13
222) (⊥,⊥⊥,on,on): the line M and the point x are in a unique symp ξ; the line L is locally1281

far from ξ at x and locally opposite the line xy at x (and x and y are collinear).1282

(123
22) (⊥,on,⊥⊥,on): the line L and the point y are in a unique symp ξ; the line M is locally1283

far from ξ at y and locally opposite the line xy at y (and x and y are collinear).1284

Finally, there are four cases where only one line has a projection point. Hence, there will be1285

only two distinct distances around, and the corresponding 4-tuples have the shape (a, a, b, b) or1286

(a, b, a, b) (where these are each other’s inverse). In a Lie incidence geometry of type A5,3, D6,61287

or E7,7, or a dual polar space of rank 3, we call a point and a line almost far if every point of1288

the line is symplectic to the point (however, this does not exist in dual polar spaces).1289

(13
213

2) (⊥,⊥⊥,⊥,⊥⊥): the line L is coplanar with y (which is the projection point of L on M);1290

the line M and the plane 〈L, y〉 are locally almost far at y.1291

(113
2

3
2) (⊥,⊥,⊥⊥,⊥⊥): the line M is coplanar with x (which is the projection point of M on L);1292

the line L and the plane 〈M,x〉 are locally almost far at x.1293

(3
2

3
222) (⊥⊥,⊥⊥,on,on): the line M is contained in a symp ξ close to the projection point x of M1294

onto L, and x is collinear to a line of ξ that is ξ-opposite M .1295

(3
223

22) (⊥⊥,on,⊥⊥,on): the line L is contained in a symp ξ close to the projection point y of L1296

onto M , and y is collinear to a line of ξ that is ξ-opposite L1297

We note that dual distances are obtained from each other by interchanging and dualising the1298

first and fourth entry, and dualising the second and third entry.1299

We now have the following result.1300

Lemma 4.7. Let L and M be two arbitrary lines of an exceptional hexagonic Lie incidence1301

geometry ∆ of uniform symplectic rank r. Then δ(L,M) is one of the 4-tuples enumerated1302

above in Class I up to Class IV. All cases occur, except for metasymplectic spaces, where1303

the following positions cannot occur: (1111), (3
2

3
2

3
2

3
2), (2222), (13

2
3
2

3
2), (3

2
3
2

3
22), (13

213
2), (113

2
3
2),1304

(3
2

3
222) and (3

223
22).1305

Proof. We note that existence of a given mutual position is equivalent to the existence of its1306

dual.1307

Part I. It is convenient to first consider the case where all points of L have the same distance1308

to all points of M . Then clearly we have one of the three completely homogeneous cases. The1309

existence of (1111) is easy: consider two lines in a common singular subspace of dimension at1310

least 3. Conversely, clearly, if δ(L,M) = (1111), then L and M span a singular subspace of1311

dimension 3. Since these do not exist in metasymplectic spaces, this mutual distance occurs if1312

and only if ∆ is not a metasymplectic space. By duality, the same holds for (2222).1313

Let δ(L,M) = (3
2

3
2

3
2

3
2). Pick x, x′ ∈ L and y, y′ ∈ M , x 6= x′, y 6= y′. If y′ were collinear to1314

only a line of ξ(x, y), then, by Lemma 2.19(ii), x and y′ would be special, a contradiction (and1315

it follows that ∆ does not have type F4). It follows that x⊥ ∩M⊥ is a singular subspace U of1316

dimension r − 2. We claim that x′⊥ ∩ U is (r − 5)-dimensional. To fix the ideas, suppose ∆1317

has type E8,8. Since x′⊥ ∩ ξ(x, y) is a 6′-space and 〈x, U〉 is a 6-space, we have that x′⊥ ∩ 〈x, U〉1318

contains a line K. In Res∆(K), we have a point z′ (corresponding to x′) close to each symp1319

through a given 4-space W (corresponding to 〈x, U〉). If z′⊥ ∩W = ∅, then there exist non-1320

collinear points a and b in different symps through W , both collinear to z′. The symp ξ(a, b)1321
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contains z′ and a plane α of W ; hence z is collinear to a line of W after all, a contradiction. So1322

z′⊥ ∩W 6= ∅ and, by parity, it is a line. The claim follows. It is now easy to see that,1323

(i) in case of E8,8, L and M arise from opposite lines in the residue of a plane (which is a1324

parapolar space of type D5,5);1325

(ii) in case of E7,1, L and M arise from opposite lines in a given para of type D5,5 in a given1326

point residual;1327

(iii) in case of E6,2, L and M are opposite lines in a given para of type D5,5.1328

The last claim might be the least straightforward, as in this case L⊥ ∩M⊥ = ∅. So let us1329

prove this case as an example (the other cases are then easier because the parapolar spaces in1330

the respective residues are simpler; they have types D5,5 and D6,6, respectively). Translated to1331

type E6,1, we have to prove that, if each 5-space through a given plane α intersects each 5-space1332

through another given plane β in exactly a point, then either α meets β in a point at which they1333

are locally opposite, or α and β are contained in a symp in which they are (locally) opposite.1334

So suppose α and β do not intersect. Then one checks that, if U1, U2 are two distinct 5-spaces1335

through α and W1,W2 two distinct 5-spaces through β, the points pij = Ui ∩Wj , i, j ∈ {1, 2},1336

form a quadrangle. That quadrangle is contained in a unique symp ξ that contains both α and1337

β. If the latter are not ξ-opposite, then, arguing in the polar space D5,1(K), we find 4′-spaces1338

through them that intersect in a plane; hence this yields adjacent 5-spaces through them, a1339

contradiction.1340

This concludes the completely homogeneous case. We obtain all members of Class I.1341

Part II. Next we consider the case where each point of L∪M has a unique nearest point on the1342

other line. It is easy to deduce that the distances between such nearest points are always the1343

same. This distance can be equal, collinear, symplectic or special, in which case the other pairs1344

are collinear, symplectic, special or opposite, respectively (use Fact 2.16 for instance). Then it1345

is easy to see that the lines are equal, opposite in a symp, the projection of each other from1346

opposite symps, or opposite, respectively. Hence we obtain precisely all cases of Class II.1347

Part III. Having done the more homogeneous cases separately, we can proceed to consider the1348

smallest distance that can occur between points of L and M . In order to do so, we let p ∈ L1349

and q ∈M be points at minimal distance.1350

Case 1: p = q. Here the lines L and M meet in p = q, and we clearly have only the three1351

possibilities (0111), (0113
2) and (0112) of Class III. Existence is trivial in these cases.1352

Case 2: p ⊥ q. We set K equal to the line through p and q. We now consider the different1353

possible mutual positions of L and K, and of K and M . First suppose that K and M are1354

coplanar; say they span the plane α. Then α and L are contained in a common symp if and1355

only if one of the following two possibilities occurs:1356

(1) L ⊥M ; then we have case (1111),1357

(2) |L⊥ ∩M | = 1; then case (1113
2) occurs.1358

So we may assume that no point of L \ {p} is collinear to any point of α \ {p}. Let ξ be a symp1359

containing α. There are again two possibilities.1360

(1) L⊥ ∩ ξ is a line N . Then N is not contained in α, so that there is a unique point q′ ∈ M1361

collinear to all points of N . Then q′ ⊥⊥ p′, for all p′ ∈ L \ {p}, and q′′ on p′, for all1362

q′′ ∈M \ {q′} and all p′ ∈ L \ {p}. We get (113
22).1363

(2) L⊥ ∩ ξ is a maximal singular subspace U . Then U ∩ M = ∅, and each point of M is1364

symplectic to each point of L \ {p}. We obtain (113
2

3
2).1365

If L and K are coplanar, then we obtain the inverse distances (1111), (1113
2), (13

212) and1366

(13
213

2). Hence we may assume that K is not coplanar with either L or M . Pick p′ ∈ L \ {p}1367

and q′ ∈M \ {q}. If both pairs {p′, q} and {p, q′} are special, then we have (1223). So we may1368

assume {p, q′} is symplectic. Again, there are some possibilities.1369

(1) L⊥ ∩ ξ(p, q′) is a line N not ξ(p, q′)-opposite M . Then our assumptions imply that q ⊥ N ,1370

and so we obtain (13
2

3
22).1371
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(2) L⊥ ∩ ξ(p, q′) is a line N which is ξ(p, q′)-opposite M . Clearly, this gives rise to (13
222).1372

(3) L⊥ ∩ ξ(p, q′) is a maximal singular subspace U . Then we clearly have (13
2

3
2

3
2).1373

The case where L and K are contained in a common symp gives additionally rise to the inverse1374

(123
22) of (13

222). This takes care of all distances beginning with “collinear”.1375

Case 3: p ⊥⊥ q. Let ξ be the symp containing both p and q. Note that neither L nor M is1376

contained in ξ, as otherwise we are back in the previous case. There are a few possibilities.1377

(1) Both L⊥ ∩ ξ and M⊥ ∩ ξ are maximal singular subspaces, and they intersect in a subspace1378

of dimension at least 1. Then we are in the homogeneous case (3
2

3
2

3
2

3
2), which we already1379

discussed in detail in Part I.1380

(2) Both L⊥ ∩ ξ and M⊥ ∩ ξ are maximal singular subspaces, and they intersect in exactly a1381

point. By Part I, we are not in case (3
2

3
2

3
2

3
2); hence we have distance (3

2
3
2

3
22).1382

(3) Both L⊥ ∩ ξ and M⊥ ∩ ξ are maximal singular subspaces, and they are disjoint. Select1383

p′ ∈ L\{p} and q′ ∈M \{q}. We claim that p′ ⊥⊥ q′. Indeed, the only alternative is p′ on q′.1384

If so, let p′ ⊥ r ⊥ q′. Then, by considering symps through points of U := L⊥ ∩ ξ and q′, we1385

see that r ⊥ U ; likewise, r is collinear to each point of M⊥ ∩ ξ, a contradiction. Hence this1386

leads to (3
2

3
2

3
2

3
2), which we discussed in Part I.1387

(4) Suppose L⊥∩ ξ is a maximal singular subspace U of ξ and M⊥∩ ξ is a line K. If K ∩U is a1388

point x, then 〈x, L〉 and 〈x,M〉 are planes intersecting in x, and it follows from Lemma 2.211389

that each point of L is symplectic to either a unique point of M , or all points of M . This1390

now clearly leads to (3
2

3
2

3
22) again (and replacing p with the unique point on L symplectic1391

to all points of M , we are back to (2)). Hence we may assume that K ∩ U = ∅. If some1392

point p′ of L \ {p} were symplectic to some point of M \ {q}, then we could replace p by p′1393

and are back to situation (2). If no point of L \ {p} is symplectic to any point of M \ {q},1394

then we have distance (3
223

22).1395

(5) Similarly, L⊥ ∩ ξ a line and M⊥ ∩ ξ a maximal singular subspace lead to (3
2

3
2

3
22) or (3

2
3
222).1396

(6) Finally, suppose L⊥ ∩ ξ is a line K and M⊥ ∩ ξ is a line N . If K and N intersect, then we1397

are back to a previous case already handled, namely (3
2223

2). If K and N are ξ-special, then1398

we claim that we have distance (3
2222). Indeed, the alternative would be that some point1399

q′ ∈ M \ {q} is symplectic to some point p′ ∈ L \ {p}. This would imply that p′ is locally1400

close to the symp determined by q′ and N⊥ ∩K. But this implies that q is symplectic to1401

p′, which contradicts the fact that q is not collinear to all points of K. If K and N are1402

ξ-opposite, then, using similar arguments, we have distance (3
2223).1403

This takes care of the case p ⊥⊥ q.1404

Case 4: p on q. Since we may assume we are not in the “Completely homogeneous” case,1405

there are opposite pairs of points on L ∪M . Since we may also assume that we are not in the1406

“Projection homogeneous” case, we may assume that no point of L \ {p} is special to any point1407

of M \ {q}. But then every point of L is special to q and every point of M is special to p,1408

whereas each point of L \ {p} is opposite each point of M \ {q}. This is distance (2223).1409

One checks that the cases involving a singular subspace of dimension at least 3 (this includes1410

each case where some point is collinear to a maximal singular subspace of a symp) are precisely1411

the positions (1111), (3
2

3
2

3
2

3
2), (2222), (13

2
3
2

3
2), (3

2
3
2

3
22), (13

213
2), (113

2
3
2), (3

2
3
222) and (3

223
22).1412

The lemma is completely proved. �1413

For any ordered pair of lines (L,M), we call each point of L distinct from the projection point,1414

if it exists, a free point (for (L,M)); hence if there is no projection point, every point is free.1415

We define the following order 0 < 1 < 3
2 < 2 < 3. We have the following lemma.1416

Lemma 4.8. Let L,M ∈ L be two lines of an exceptional hexagonic Lie incidence geometry1417

∆ = (X,L ). Let x ∈ L be a free point for (L,M). Then there exists a line K through x, not1418

locally opposite L at x, such that, if δ(L,M) = (abcd), then whenever L′ 3 x is locally opposite1419

K at x, then δ(L′,M) = (cdef), for some e, f , if c ≤ d, otherwise δ(L′,M) = (dcef), where1420

30



(cdef) or (dcef) is determined according to Table 1. Applying this assertion to (L′,M) again1421

and again, we eventually arrive at an opposite pair. In Table 1, we list the consecutive distances1422

when we apply this algorithm. The penultimate column lists the local mutual position of L and1423

K (with respect to the first arrow in the row), and the last column mentions when K is not1424

unique.1425

{1} (0110) → (0112) → (1223) → (2332) equal
{2} (0111) → (113

22) → (3
2223) → (2332) eq or coll not unique

{3} (0113
2) → (13

222) → (2223) → (2332) equal
{4} (1113

2) → (13
222) → (2223) → (2332) collinear

{5} (13
2

3
21) → (13

222) → (2223) → (2332) symplectic
{6} (0112) → (1223) → (2332) equal
{7} (13

212) → (1223) → (2332) collinear
{8} (113

22) → (3
2223) → (2332) equal

{9} (13
2

3
22) → (3

2223) → (2332) collinear
{10} (123

22) → (3
2223) → (2332) symplectic

{11} (3
2223

2) → (3
2223) → (2332) collinear

{12} (1223) → (2332) equal
{13} (13

222) → (2223) → (2332) eq or coll not unique
{14} (3

2222) → (2223) → (2332) coll or sympl not unique
{15} (3

2223) → (2332) collinear
{16} (2223) → (2332) symplectic
{17} (2332) → (2332) special
{18} (1111) → (113

22) → (3
2223) → (2332) collinear not unique

{19} (3
2

3
2

3
2

3
2) → (3

2
3
222) → (2223) → (2332) collinear not unique

{20} (2222) → (2223) → (2332) symplectic not unique
{21} (13

213
2) → (13

222) → (2223) → (2332) collinear
{22} (113

2
3
2) → (3

2
3
222) → (2223) → (2332) equal

{23} (13
2

3
2

3
2) → (3

2
3
222) → (2223) → (2332) collinear not unique

{24} (3
2

3
222) → (2223) → (2332) collinear not unique

{25} (3
223

22) → (3
2223) → (2332) symplectic

{26} (3
2

3
2

3
22) → (3

2223) → (2332) collinear

Table 1. Combing distances between lines

Proof. We have to treat the 26 cases one by one. However, some cases are immediate or at1426

least easy, and we skip those. It concerns many of the cases where K = L, namely {1}, {3},1427

{6}, {12}. Other cases are easy once one knows K, and we only give that information below.1428

Basically, K can always be thought of as a kind of projection of M onto x. In cases {12}, {15},1429

{16} and {17}, the point x is opposite some point of M , and then K is really that projection,1430

and so these cases are straightforward and we skip them, too. More tricky cases are treated in1431

full detail. It concerns in particular the cases that cannot occur in type F4.1432

{2} (=,⊥,⊥,⊥)→ (⊥,⊥,⊥⊥,on).1433

The line K is any line through x in the plane spanned by L and M .1434

{4} (⊥,⊥,⊥,⊥⊥)→ (⊥,⊥⊥,on,on).1435

The line K is the line joining x with the unique point of M collinear to each point of L.1436

{5} (⊥,⊥⊥,⊥⊥,⊥)→ (⊥,⊥⊥,on,on).1437

Here, K is the line joining x with the unique point y ∈ M collinear to x. Then let1438

N be a line through x locally opposite K and pick z ∈ N \ {x}. Let ξ be the symp1439

containing L and M and set z⊥ ∩ ξ = M ′. Then M ′ and M are ξ-opposite, since if they1440

were not, either x would be collinear to M (which contradicts the fact that L and M1441

31



are ξ-opposite), or y would be collinear to all points of M ′ (which contradicts the fact1442

that z on y by the choice of N locally opposite K).1443

{7} (⊥,⊥⊥,⊥,on)→ (⊥,on,on,≡).1444

Let y ∈ M be collinear to each point of L. Then K = xy, and the rest follows from1445

Fact 2.16.1446

{8} (⊥,⊥,⊥⊥,on)→ (⊥⊥,on,on,≡).1447

Here K = L. Set p ∈ L the unique point collinear to each point of M and q ∈ M the1448

unique point of M symplectic to x. By Fact 2.16, every other point of M is opposite1449

each point of L′ \ {x}. It follows that the distance between L′ to M is (3
2223).1450

{9} (⊥,⊥⊥,⊥⊥,on)→ (⊥⊥,on,on,≡).1451

Let p ∈ L and q ∈ M be collinear. Let ξ be the symp through M and p and let z be1452

the unique point of ξ collinear to M and collinear to x. Set K = xz. Then, precisely1453

like in the previous case {8}, we conclude that the distance between L′ to M is (3
2223).1454

{10} (⊥,on,⊥⊥,on)→ (⊥⊥,on,on,≡).1455

Let ξ be the symp containing L and a unique point q ∈M . Then there is a unique point1456

z ∈ ξ collinear to M and x. Putting K = xz, the rest of the argument is the same as1457

for the previous cases {8} and {9}.1458

{11} (⊥⊥,on,on,⊥⊥)→ (⊥⊥,on,on,≡).1459

Lemma 2.24 yields a point z collinear to each point of L ∪M . Then K = xz, and the1460

same arguments as in the three previous cases imply that the distance between L′ to M1461

is (3
2223).1462

{13} (⊥,⊥⊥,on,on)→ (on,on,on,≡).1463

Let p ∈ L be the point of L contained in a common symp ξ with M . Then x 6= p is1464

collinear to a line N of ξ. This line N is ξ-opposite M . Then K is any line through x1465

in the plane spanned by x and N . Set K ∩ N = {p′} and p′⊥ ∩M = {q′}. Then the1466

position (2223) between L′ and M follows from the facts that L′ is locally opposite K1467

at x; K is locally opposite p′q′ at p′, and p′q′ locally symplectic to M at q′.1468

{14} (⊥⊥,on,on,on)→ (on,on,on,≡).1469

Let ξ be the symp through the unique points p ∈ L and q ∈ M . Set N := x⊥ ∩ ξ, and1470

let z be the point on N collinear to q. Lemma 2.21 yields a line N ′ 3 z consisting of1471

all points collinear to a point of M and x. Then K is any line through x in the plane1472

〈x,N ′〉. Similar arguments as in the previous case {13} show that the mutual position1473

of L′ and M is (2223).1474

{18} (⊥,⊥,⊥,⊥)→ (⊥,⊥,⊥⊥,on).1475

Let K be any line through x intersecting M . Then, by Lemma 2.21, there is a unique1476

point on M symplectic to the points of L′ \ {x}. This implies that the mutual position1477

between L′ and M is (113
22).1478

{19} (⊥⊥,⊥⊥,⊥⊥,⊥⊥)→ (⊥⊥,⊥⊥,on,on).1479

Pick two points y1, y2 on M . By Lemma 2.19, the point y2 is collinear to a maximal1480

singular subspace U of ξ(x, y1). Then x is collinear to a hyperplane W of U , and K is1481

any line joining x with a point z of W . Let u ∈ L′ \ {x} be arbitrary. Then u and z are1482

special.1483

Suppose u were symplectic to some point of M , and we may without loss of generality1484

assume that point is y1. Then u would have to be collinear to a line N of ξ(x, y1)1485

including x and y1. But x is not collinear to any point of M . It follows that u is special1486

to every point of M . With that, L′ contains exactly one point, which is x, symplectic1487

to all points of L2; and otherwise, all remaining points of L′ are special to all points of1488

L2, since u ∈M was arbitrary.1489

{20} (on,on,on,on)→ (on,on,on,≡).1490

Lemma 2.21 yields a line N consisting of all points collinear to x and some point of M .1491

Then K is any line through x in the plane 〈x,N〉. Note that K is locally symplectic to1492

L at x. Let u ∈ L′ \ {x}. Then there is a unique point on N symplectic to u; all other1493

points of N are special to u. Fact 2.16 implies that u is opposite all but exactly one1494
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point of M . Since x is special to all points of M , the mutual distance between L′ and1495

M is (2223).1496

{21} (⊥,⊥⊥,⊥,⊥⊥)→ (⊥,⊥⊥,on,on).1497

Let q be the unique point of M collinear to all points of L. Then K is the line qx.1498

Let q′ be any point of M \ {q}. Then M is contained in the symp ξ(q′, x). Let u be1499

an arbitrary point of L′ not equal to x. Then u and q are special, and consequently u1500

can only be collinear to a line of the symp ξ(q′, x) through x, which implies that u and1501

q′ are special. In summary, q is collinear to x and special to every other point of L′, and1502

every point in M \ {q} is symplectic to x and special to every point in L′ \ {x1}.1503

{22} (⊥,⊥,⊥⊥,⊥⊥)→ (⊥⊥,⊥⊥,on,on).1504

Let p be the point of L collinear to every point of M . Then x 6= p. Here, K = L. Let u1505

be some arbitrary point of L′ not equal to x. Then u and p are special. The point x is1506

symplectic to every point of M . Considering the symp ξ containing x and an arbitrary1507

point y ∈M , we see that u⊥ ∩ ξ is a line N through x (indeed, p ∈ ξ and u on p). Now,1508

y is only collinear to a unique point of L, since y is not collinear to x. It follows, with1509

Lemma 2.19, that u is special to y. We obtain (3
2

3
222).1510

{23} (⊥,⊥⊥,⊥⊥,⊥⊥)→ (⊥⊥,⊥⊥,on,on).1511

Let ξ be the symp through M and the unique point p of L collinear to some point q of1512

M . It is easy to see that x⊥ ∩ ξ is a maximal singular subspace U of ξ. Then K is any1513

line through x and a point of M⊥∩U . Considering the respective symps through x and1514

the points of M , we see that the points of M and L′ \ {x} are special. Hence we obtain1515 (
3
2

3
222
)
.1516

{24} (⊥⊥,⊥⊥,on,on)→ (on,on,on,≡).1517

Let p ∈ L be symplectic to all points of M . Lemma 2.22 yields a singular subspace1518

U = p⊥ ∩M⊥ contained in each symplecton containing p and a point of M , and such1519

that 〈p, U〉 is a maximal singular subspace of each such symp. Combining this with1520

Lemma 2.21, we find a line N ⊆ U consisting of all points collinear to x and some point1521

of M . Then K is an arbitrary line through x in the plane 〈x,N〉. Taking into account1522

that N and M are contained in a common symp ξ in which they are ξ-opposite, we1523

arrive at (2223) for the distance between L′ to M .1524

{25} (⊥⊥,on,⊥⊥,on)→ (⊥⊥,on,on,≡).1525

Here, there is a unique point q ∈ M symplectic to each point of L, in particular to x.1526

The line M is collinear to a unique line N of ξ(q, x), and x is collinear to a unique point1527

z of N . Then K is the line xz, and it is immediate that L′ and M are at mutual distance1528

(3
2223).1529

{26} (⊥⊥,⊥⊥,⊥⊥,on)→ (⊥⊥,on,on,≡).1530

Let p ∈ L be the point symplectic to all points of M , and let q ∈ M be the point1531

symplectic to all points of L. Then M is collinear to a unique line N of ξ(q, x), and x1532

is collinear to a unique point z of N . We define K = xz. Then Fact 2.16 implies that1533

each point of L′ \ {x} is opposite each point of M \ {q}. Since x ⊥⊥ q and x is special1534

to all points of M \ {q}, we conclude that the mutual distance of L′ and M is given by1535

(3
2223).1536

This completes the proof of the lemma. �1537

The length of the sequence in the previous lemma is called the level of the corresponding line1538

M (with respect to L), except that when M is opposite L, we say it has level 0.1539

4.2.3. Algorithms and end of the proof. Let ∆ = (X,L ) be a finite exceptional hexagonic Lie1540

incidence geometry whose lines carry exactly s + 1 points. We introduce two algorithms, that1541

we will call combing algorithms. They require that certain conditions are met, and we will also1542

introduce these. Naturally, we will only run them when all conditions are satisfied. They are1543

defined as follows.1544
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Definition 4.9 (The combing algorithms). Let L0, L1, . . . , Ls ∈ L be s+ 1 lines of ∆ and let1545

L be another arbitrary line. Suppose1546

(ALG1) There exists a point x ∈ L which is free for every pair (L,Li), i = 0, 1, . . . , s.1547

Condition (ALG1) just means that the set of projection points on L with respect to the lines1548

Li, i = 0, 1, . . . , s, does not cover L.1549

For each Li, i ∈ {0, 1, . . . , s}, and each point x on L that is free with respect to each line Lj ,1550

j ∈ {0, 1, . . . , s}, we define a line Mi as follows. If Li is opposite L, then Mi is the unique line1551

through x containing a point collinear to Li. The pair {L,Mi} has distance (0112), or is, in1552

other words, locally opposite at x. If Li is not opposite L, then we set Mi equal to the line K,1553

as (perhaps not uniquely) defined in Lemma 4.8. If the line K is not uniquely defined there,1554

then we arbitrarily choose one (and one may think of taking the closest to L, if this exists). We1555

set M = {Mi | i ∈ {0, 1, . . . , s}}.1556

(ALG2) There exists a line L′ through x locally opposite each member of M at x.1557

The line L′ is the outcome of the first combing algorithm. We then replace L with L′.1558

(ALG3) There exists a line M ∈M locally opposite L at x and there exists a line L′′ through1559

x locally opposite each member of M \ {M} (where we view M as a set and not as a1560

multiset) and not opposite M .1561

The line L′′ is the outcome of the second combing algorithm (combing back at M). We then1562

replace L with L′′.1563

We observe:1564

Lemma 4.10. Under the second combing algorithm, level 0 always goes to level at most 1.1565

We will always use Lemma 4.5 to be able to perform the first combing algorithm, whereas1566

Lemma 4.6 will allow us to perform the second combing algorithm. This is roughly the content1567

of the proof of the next result.1568

Proposition 4.11. Every set T = {L0, L1, . . . , Ls} of s+1 lines in a metasymplectic space, not1569

isomorphic to F4,4(
√
s, s), or in an exceptional long root subgroup geometry of type E6, E7 or E8,1570

where every line has exactly s+ 1 points, such that every other line is not opposite at least one1571

member of T , is a geometric line in the line-Grassmannian geometry, that is, has the property1572

that every other line is either not opposite a unique member of T , or opposite no member of T .1573

Proof. Obviously, a geometric line has the stated property. So assume now that T is not a1574

geometric line, but every other line is not opposite at least one member of T . The only way1575

in which we can violate the defining property of a geometric line is to assume the existence1576

of a line L not opposite at least 2 members of T and opposite at least one member of T . We1577

prove that this leads to a contradiction. The rough idea is to apply the combing algorithms to1578

L and T until we find a line opposite all members of T . Since our proof will be inductive in1579

some sense, it is important that after each application of the combing algorithm, the new line1580

L satisfies the same assumption, that is, the new line L is not opposite at least two members1581

of T and opposite at least one member of T , or the proof (locally) ends and L is opposite each1582

member of T . (We say in these cases that the new line L is legal.) This little condition implies1583

that we cannot blindly run the combing algorithms, but we have to choose the right one. The1584

way we do this goes as follows.1585

We start by noting that a line Mi ∈M is locally opposite L if and only if Li ≡ L. Hence, since1586

at least two lines of T are not opposite L, and at least one line of T is opposite L, Lemma 4.51587

implies that (ALG2) is satisfied. Also, since opposite lines do not define projection points, and1588

there is at least one line in T opposite L, (ALG1) is satisfied. Moreover, Lemma 4.6 allows us1589

to run the second combing algorithm since T contains at least one line opposite L.1590

Now we combine the two combing algorithms in one overarching algorithm that proves the1591

theorem. That algorithm goes as follows.1592
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• If T contains at least two members at level at least 2, then we apply the first combing1593

algorithm. Note that elements of T opposite L remain opposite L′, and elements of T at level1594

k ≥ 1 with respect to L are at level k − 1 with respect to L′. Hence L′ is legal, and the1595

maximum level decreases.1596

• If T contains exactly one member L0 at level at least 2 (and hence at least one member L1 of1597

level 1), then we apply the second combing algorithm combing back at an arbitrary M2 ∈M1598

locally opposite L. Then L0 comes at level at least 1, L1 at level 0, and L2 at level 1. Hence1599

L′′ is legal. Moreover, Lemma 4.10 guarantees that the maximum level again decreases.1600

• We apply the previous two steps as long as the maximal level is at least 2. If the maximal1601

level is or becomes 1, then we apply the first combing algorithm and obtain a line L′ opposite1602

each member of T , a contradiction that proves the assertion. �1603

4.2.4. The exceptional case F4,4(q, q
2). The above does not work for lines of metasymplectic1604

spaces ∆ isomorphic to F4,4(q, q
2), because we cannot apply Lemma 4.5 since in the polar space1605

B3,1(q, q
2), corresponding to the residue of a point p, there are sets of q2 + 1 planes admitting1606

no common opposite plane, and yet not isomorphic to a geometric line (pencil of planes). The1607

examples are sets of planes through a common point b forming a spread in a subquadrangle of1608

order (q, q) of the residue at b. We will call such an example an OBS (ovoidal blocking set). So1609

we have to provide a different proof.1610

Note that, viewed in ∆, the point b is a symp, and the elements of an OBS are lines through a1611

common point forming an ovoid in a subquadrangle of order (q, q) of the residue at that common1612

point. Also, such a set will be called an OBS.1613

Also, note that, viewed in F4,1(q, q
2), the point p is a symp, and the elements of an OBS are1614

planes through a common point b of the symp p forming a spread in a subquadrangle of order1615

(q, q) of the residue at b.1616

We first observe that it is really an example of a blocking set.1617

Lemma 4.12. Let T be a set of q2 + 1 lines of ∆ = F4,4(q, q
2) incident with a common point b1618

and forming an ovoid in a subquadrangle of the residue Resξ(b) at b of some symp ξ through b.1619

Then no line of ∆ is opposite each member of T .1620

Proof. This follows directly from Corollary 2.27. �1621

We now show a converse to Lemma 4.12, that is, any set T of q2 + 1 lines of ∆ = F4,4(q, q
2)1622

with the property that no line of ∆ is opposite each member of T is either a planar line pencil,1623

or an OBS.1624

Let T = {L0, . . . , Lt}, t = q2, be a set of lines of ∆ ∼= F4,4(q, q
2) admitting no common opposite1625

line.1626

Note that each point of a singular subspace S is opposite some point of a given symp ξ if, and1627

only if, S and ξ are far. Indeed, if there is a symp through S opposite ξ, then clearly, each1628

point of S is opposite some point of ξ. Now suppose each point of S is opposite some point of1629

ξ. Pick x ∈ S and let ζ be the unique symp through x intersecting ξ. Our assumption implies1630

that S and ζ intersect just in x. Hence we can find a symp ζ ′ through S locally opposite ζ in1631

x. Then ζ ′ is opposite ξ by Proposition 2.26.1632

Lemma 4.13. There exist a point b and a symp ξ in ∆, with b ∈ ξ, such that both b and ξ are1633

far from each member of T . For each such b and ξ we have that the projections of the members1634

of T onto b and ξ, respectively, form either both a planar line pencil, or both an OBS.1635

Proof. We can choose points bi contained in Li such that the bi do not form a geometric line1636

in ∆. Then Proposition 4.1, Proposition 4.2 and Theorem 4.4 yield a point b opposite all bi,1637

i ∈ {0, 1, . . . , s}. So, b is far from each member of T . Now set T ′ = {L′i = projbib (Li) | i ∈1638

{0, 1, . . . , s}}. If T ′ is not an OBS and not a planar line pencil, then we can find a line L1639

through b locally opposite each member of T ′, and so, by Proposition 2.26, L is opposite each1640
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member of T , a contradiction. We conclude that T ′ is contained in a symp ζ through b. Now1641

let ξ be a symp locally opposite ζ at b. Then, again by Proposition 2.26, the projection ξi of1642

ζ onto bi is opposite ξ. However, ξi contains Li as ζ contains L′i, i = 0, 1, . . . , s. Hence ξ is far1643

from each member of T .1644

Now let L′′i be the projection of Li onto ξ and let L′′′i be the unique line of ξ collinear to L′i. We1645

claim that L′′i intersects L′′′i , which then shows that the projection of T ′ onto ξ coincides with1646

the projection onto b of the projection of T onto ξ, and hence T ′ is isomorphic to the projection1647

of T onto ξ and the lemma follows.1648

Let M ′′′i be the unique line through b intersecting L′′i , say in the point x′′i . Since x′′i ∈ L′′i , there1649

is a unique point xi ∈ Li symplectic to x′′i . Then b is collinear to a unique line Ki of ξ(xi, x
′′
i )1650

through x′′i , and xi is collinear to a unique point x′i of Ki. Now xi ⊥ x′i ⊥ b defines a path of1651

length 2 from xi ∈ Li to b, hence bx′i = L′i and M ′′i = L′′′i and the claim follows. �1652

Lemma 4.14. Each pair of members of T is either contained in a symp, or has a point in1653

common.1654

Proof. It is convenient to consider the dual situation, that is, T corresponds to a set T ∗ of planes1655

{α0, . . . , αs}, s = q2, of F4,1(q, q
2). By Lemma 4.13 we can find a symp ξ far from each member1656

of T ∗. Hence we can project all planes αi onto ξ and obtain planes α′i. By Corollary 2.27 and1657

Proposition 2.29, the α′i form a full plane pencil or an OBS. In particular, all planes α′i contain1658

a common point q, and for each line L0 of α′0 through q, except for the possible intersection1659

line with α′1, there exist q2 lines L1 of α′1 through q not coplanar with L0. Let z0 and z1 be two1660

arbitrary points on L0 and L1, respectively. Select a point p in ξ not collinear to q, but collinear1661

to both z0 and z1. Let pi and xi be the unique points in αi symplectic to zi and q, respectively,1662

i = 0, 1. Since p is collinear to a unique line of ξ(pi, zi), there is a unique point yi in ξ(pi, zi)1663

collinear to pi, zi and p, i = 0, 1. The line L′′i = pyi is the projection of Li from xi onto p. By the1664

“dual” of Lemma 4.13, the points y0 and y1 are either collinear or symplectic. But since ξ(pi, zi)1665

is symplectic to ξ, and z0 is symplectic to z1, the symps ξ(p0, z0) and ξ(p1, z1) are opposite (use1666

Proposition 2.26 together with the observation that symplectic symps are locally opposite at1667

their intersection point). Hence y0 and y1 are symplectic. Let qi be the unique point of ξ(pi, zi)1668

collinear to q, pi and zi, i = 0, 1. Then, varying p over all points of ξ not collinear to q, but1669

collinear to both z0 and z1, we deduce that p⊥0 ∩ z⊥0 \ q⊥0 corresponds to p⊥1 ∩ z⊥1 \ q⊥1 under the1670

projection map from ξ(p0, z0) to ξ(p1, z1) given on the points by “being symplectic”. It easily1671

follows that p⊥0 ∩z⊥0 corresponds to p⊥1 ∩z⊥1 . Hence (p⊥0 ∩z⊥0 )⊥ corresponds to (p⊥1 ∩z⊥1 )⊥. Since1672

symps are isomorphic to quadrics Q−(7, q), which are embedded in non-degenerate (symplectic)1673

polarities, we have (p⊥i ∩ z⊥i )⊥ = {pi, zi}, i = 0, 1. Since z0 corresponds to z1, we conclude that1674

p0 and p1 are symplectic.1675

We have shown that p0 is symplectic to all points of α1, except possibly the points of a unique1676

line. It then easily follows that p0 is collinear or symplectic to any given point of α1. By the1677

arbitrariness of p0 in α0 \ {x0}, we deduce that any pair of points in α0 ∪ α1 is symplectic,1678

collinear or identical. Consider any symp ξ1 through α1. If p0 ∈ ξ1, then p0 is collinear to at1679

least a line of α1. If p0 /∈ ξ1, then it must be close to it and the line p⊥0 ∩ ξ1 must be contained1680

in α1. Hence in any case, there is a line of α1 collinear to p0, and so we can assume that ξ11681

contains p0. Suppose some point r0 ∈ α0 does not belong to ξ1. Then r⊥0 ∩ ξ1 ⊆ α1, as before,1682

showing p0 ∈ α1.1683

Hence we have shown that either α0 and α1 are contained in a symp, or they have a point in1684

common. This means that, if αi corresponds to Li, then L0 and L1 either intersect in a point,1685

or are contained in a common symp.1686

The assertion follows by the arbitrariness of L0 and L1 in T . �1687

We can now classify the blocking sets of lines of size q2 + 1 in F4,4(q, q
2).1688

Theorem 4.15. Let T be a set of q2 + 1 lines of ∆ = F4,4(q, q
2). Then all members of T1689

are incident with a common point b and form either a planar line pencil, or an ovoid in a1690
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subquadrangle of the residue Resξ(b) at b of some symp ξ through b if, and only if, no line of ∆1691

is opposite each member of T .1692

Proof. The “only if” part is Lemma 4.12. We now show the “if” part. We first claim that each1693

pair of members of T intersect nontrivially. Indeed, we may assume for a contradiction that1694

L0 and L1 do not intersect. Then by Lemma 4.14 they are contained in a common symp ζ.1695

Lemma 4.13 yields a symp ξ far from each member of T . Also, the same Lemma 4.13 implies1696

that the projection of L0, L1 from ζ onto ξ is a pair of intersecting lines. Since the projection1697

from ζ to ξ is an isomorphism of polar spaces, this implies that L0 and L1 also intersect. The1698

claim follows.1699

We next claim that all members of T are either contained in a plane, or contain a common1700

point. Suppose the latter does not hold. Then there are three lines L0, L1, L2 forming a triangle1701

in a plane. Clearly, all other members of T have to be contained in that plane. The claim is1702

proved.1703

Since we now have that T belongs to a point residual, or the residue of a plane, the theorem1704

follows from Corollary 2.27, Proposition 2.28 and Proposition 2.29. �1705

4.2.5. Geometric lines. We now classify geometric lines in the line-Grassmannian of hexagonic1706

Lie incidence geometries. This will follow from the classification of round-up triples of lines.1707

Lemma 4.16. Let {L1, L2, L3} be a round-up triple of lines in an exceptional hexagonic Lie1708

incidence geometry ∆ of rank at least 3, such that L1 and L2 intersect. Then exactly one of the1709

following holds.1710

(i) L1 = L2 = L3;1711

(ii) L1, L2, L3 are three lines in a common planar line pencil;1712

(iii) L1, L2, L3 are three lines in a common symp ξ containing a common point p and contained1713

in a common hyperbolic line of Resξ(p). This only happens if ∆ corresponds to a building1714

of type F4.1715

Proof. Clearly, if L1 = L2, then also L3 = L1 since otherwise there exists a line opposite1716

L3 and not opposite L1. So we may assume L1 ∩ L2 = {x}. By Lemma 2.33, also x ∈1717

L3. By Corollary 2.27, {L1, L2, L3} is a round-up triple in Res(x). The result now follows1718

from Proposition 2.28 for types E6 and E7, from Proposition 2.29 for type F4, and from [21,1719

Corollary 5.5] for type E8. �1720

Lemma 4.17. Let {L1, L2, L3} be a round-up triple of disjoint lines in an exceptional hexagonic1721

Lie incidence geometry of rank at least 3. Then no point of L2 is collinear to any point of L1.1722

Proof. Let, for a contradiction, M be a line joining a point x1 ∈ L1 to a point x2 ∈ L2. Note1723

that L1 6= M 6= L2. Lemma 2.34 shows that M intersects L3, say in the point x3. Assume first1724

that M and Li are locally opposite at xi, for every i ∈ {1, 2, 3}. Let π be any plane containing1725

M . Let Ki be the line in π through xi not locally opposite Li at xi, guaranteed to exist by1726

Lemma 2.21. Suppose first that z := K1 ∩K2 does not belong to K3. Let N be a line locally1727

opposite zx3 at z. Then any point u ∈ N \{z} is opposite some point of L3, but is not opposite1728

any point of L1 ∪L2. It follows that there exists a line through u opposite L3, but not opposite1729

either L1 or L2, a contradiction. Hence we may assume that there exists some line K ′3 ⊆ π1730

through x3 intersecting K2 in some point y2 /∈ K1, with y2 special to every point of L3 \ {x3}.1731

Then we pick a line N ′ through y2 locally opposite K ′3 at y2, but not locally opposite x1y2 at1732

y2. Then no point w on N ′ is opposite some point of L1 ∪L2 since the pair {w, x1} is collinear1733

or symplectic, and the pair {y2, y
′
2}, with y′2 ∈ L2 \ {x2}, is symplectic. As above, there exists1734

a line through w opposite L3, but not opposite either L1 or L2.1735

So, we may assume without loss of generality that M and L3 are contained in a symp ξ. Then1736

Corollary 2.35 implies x1 ∈ L2 ⊆ ξ, contrary to our assumptions. The lemma is proved. �1737
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Lemma 4.18. Let {L1, L2, L3} be a round-up triple of lines in an exceptional hexagonic Lie1738

incidence geometry ∆ of rank at least 3, such that no point of Li is collinear to any point of Lj,1739

for all i, j ∈ {1, 2, 3}, i 6= j. Then no point of L1 is symplectic to any point of L2.1740

Proof. Suppose for a contradiction that some point x1 ∈ L1 is symplectic to some point x2 ∈ L2.1741

Let ξ be the corresponding symp. By Lemma 2.34, L3 shares a point x3 with ξ.1742

We claim that L3 is collinear to a maximal singular subspace of ξ. Indeed, suppose not. Then1743

L⊥3 ∩ ξ is a line L∗3. There are two cases.1744

(1) Suppose every point of x⊥1 ∩x⊥2 is collinear to x3. Then x3 ∈ {x1, x2}⊥⊥ and ∆ corresponds1745

to type F4. Let ξ3 be an arbitrary symp not containing L3 and locally opposite ξ at x3.1746

Select z3 ∈ ξ3 \ x⊥3 . Since x1 ≡ z3 ≡ x2, we can define Mi := projxiz3(Li), i = 1, 2. If1747

M1 6= M2, we can take a line K through z3 locally opposite M1 at z3, but not locally1748

opposite M2 at z3, and then K is opposite L1, and not opposite either L2 or L3 (the latter1749

because z3 is symplectic to every point of L3), a contradiction. Hence, we may assume that1750

M1 = M2. Set ui := Mi ∩ xoni , i = 1, 2. If u1 6= u2, then we may replace z3 with any point1751

in (M⊥1 ∩ ξ3) \ {z3} and apply the previous argument. So, we may assume u1 = u2. Let1752

Ni be the line through ui intersecting Li, say in the point wi, i = 1, 2. Then, since by1753

Fact 2.16, x1 and w2 are not opposite, the same Fact 2.16 implies that N1 and N2 are not1754

locally opposite at u1. Hence w1 and w2 are symplectic (as we may assume that they are1755

not collinear by Lemma 4.17).1756

Hence, by Lemma 2.34, the line L3 intersects ξ(w1, w2) in a point w3, which we may1757

assume to belong to {w1, w2}⊥⊥ (as otherwise we are in case (2) below). Hence u1 ⊥ w31758

and so u1 = [w3, u1], which, however, is contained in ξ3 and coincides with L⊥3 ∩ ξ3 ∩ u⊥1 .1759

Hence u1 ⊥ x3. But then, similarly, w1 = [u1, x1] ∈ ξ, implying w1 = x1, clearly a1760

contradiction.1761

(2) Suppose some point y ∈ x⊥1 ∩ x⊥2 is not collinear to x3. Select y3 ∈ L3 \ {x3}. Then, y3 on y1762

and u = [y, y3] ∈ L∗3 \ {x3}. Let M be some line through y locally opposite yu at y. Let m1763

be some arbitrary point on M not equal to y. Let L′3 be the projection of L3 onto m. Note1764

that L′3 6= M as L3 6= uy3. Hence there exists a line K through m locally opposite L′3 but1765

not locally opposite M . Then K is opposite L3 but not opposite L1 and L2, because, by1766

Fact 2.16, no point of K is opposite x1 or x2.1767

Since both cases lead to contradictions, we conclude that L3 is collinear to a maximal singular1768

subspace U3 of ξ. Likewise, L1 and L2 are also collinear to respective maximal singular subspaces1769

U1 and U2 of ξ. Note that this implies that ξ is top-thin (or hyperbolic).1770

It follows that, since x1 is not collinear to x2 ∈ U2, the set x⊥3 ∩ U2 contains some point z21771

that is not collinear to x1. Let y3 be an arbitrary point of L3 \ {x3}. If y3 ⊥⊥ z2, let ξ3 be the1772

symp through y3 and z2. If y3 ⊥ z2, then let ξ3 be a symp containing L3 and z2. Let ξ2 be a1773

symp through z2 locally opposite ξ but not locally opposite ξ3. Let w2 ∈ ξ2 be symplectic to1774

z2. Then, since z2 is collinear to each point of L2, Fact 2.16 implies that w2 is not opposite1775

any point of L2. Also, since ξ2 is not locally opposite ξ3, the point w2 is not opposite any point1776

of L3. But w2 is opposite x1 and so there is a line K through w2 opposite L1, and K is not1777

opposite either L2 or L3, a contradiction.1778

This completes the proof of the lemma. �1779

Lemma 4.19. Let {L1, L2, L3} be a round-up triple of lines in an exceptional hexagonic Lie1780

incidence geometry of rank at least 3. Let x1 ∈ L1 and x2 ∈ L2 be collinear to a common point1781

y. Then y is collinear to a point of L3.1782

Proof. Suppose y is not collinear to any point of L3. Let Σ be an apartment containing L3 and1783

y. Since y is not collinear to any point of L3, it is not special to and not opposite at least two1784

points of the line L∗3 that is opposite L3 in Σ. But then y is equal, collinear or symplectic with1785

each point of L∗3, implying that no point of L∗3 is opposite either x1 or x2. Hence L∗3 is opposite1786

L3, but not opposite either L1 or L2, a contradiction. �1787
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Lemma 4.20. Let {L1, L2, L3} be a round-up triple of lines in an exceptional hexagonic Lie1788

incidence geometry ∆ of rank at least 3, such that each point of L1 is special to each point of1789

L2. Then some point of L3 is symplectic, collinear or equal to some point of L1 ∪ L2.1790

Proof. Using Lemma 2.21, we see that the set of points collinear to a point of L1 and to a point1791

of L2 is a hyperbolic quadric Q12 (of rank 2). Each line of Q12 is collinear to a unique point1792

of L1 ∪ L2. We claim that non-collinear points on Q12 are also non-collinear in ∆. Indeed, one1793

checks that in that case Q12 generates a 3-space U . Picking non-collinear respective points in1794

Q12 and L1, we see that they are symplectic and the corresponding symps contain L1 and at1795

least a plane of U . The intersection of two such symps (with different planes in U) contains a1796

3-space. Hence the symps coincide. Now the symp through L1 and U has a 3-space in common1797

with the symp through L2 and U and hence L1 and L2 are contained in a common symp, a1798

contradiction.1799

By Lemma 4.19, each point of Q12 is also collinear to a unique point of L3 (unique indeed since,1800

if not, then Lemma 2.21 would yield a point of L3 collinear or symplectic to some point of L1,1801

contradicting Lemma 4.17 and Lemma 4.18). It follows that, for any line L in Q12, collinearity1802

defines either a bijection between L and L3, or a constant transformation from L to L3. In the1803

latter case, the unique points of L3 and L1 ∪ L2 collinear with all points of L are symplectic,1804

contradicting Lemma 4.18. In the former case, pick p ∈ L and let L′ be the unique line of1805

Q12 through p distinct from L. Then again, collinearity defines a bijection between L′ and L3.1806

Hence there is a point of L3 collinear to two non-collinear points of Q12, and since these points1807

are also non-collinear in ∆, this contradicts Lemma 2.21.1808

The lemma is proved. �1809

Lemma 4.21. Let L1, L2, L3 be three lines of an exceptional hexagonic Lie incidence geometry1810

of rank at least 3, such that each point of L1 is special to or opposite each point of L2. Then1811

{L1, L2, L3} is not a round-up triple.1812

Proof. By Lemmas 4.16, 4.17 and 4.18, we may assume that no point of L3 is equal, collinear or1813

symplectic to any point of L1 ∪ L2. Moreover, by Lemma 4.20, we may also assume that some1814

point of L3 is opposite L1 and some point of L3 is opposite some point of L2. This implies that1815

the mutual positions of Li and Lj , i, j ∈ {1, 2, 3}, i 6= j, are given by either (2223) or (2332).1816

We may assume that {L1, L2, L3} is a round-up triple. By the nature of (2223) and (2332),1817

there exists at most one point of L3 that is not opposite all points of L1, and at most one point1818

of L3 that is not opposite all points of L2. Hence we find a point x3 ∈ L3 that is opposite at1819

least one point x1 of L1 and at least one point x2 of L2. We can then project Li, i = 1, 2, from1820

xi onto x3 and obtain lines L′i and points yi ∈ L′i collinear to a point of Li. Lemma 4.19 and1821

the uniqueness of the projections yield L′1 = L′2 =: M3 and y1 = y2 =: y.1822

Let Mi, i = 1, 2, be the lines through y intersecting Li. Our assumptions imply that these lines1823

are pairwise locally opposite at y. By Proposition 2.28, Proposition 2.29 and [21, Corollary 5.6],1824

{M1,M2,M3} is not a round-up triple in the point residual Res(y). Hence, up to renumbering,1825

we find a line M 3 y locally opposite M1, and not locally opposite either M2 or M3 at y. Pick1826

z ∈M \{y}. Then Fact 2.16 implies that z is opposite x1, but not opposite any point of L2∪L3.1827

It follows that each line K through z opposite L1 (which exists) is not opposite either L2 or L3,1828

a contradiction.1829

This proves the lemma completely. �1830

Proposition 4.22. Let T be a geometric line of the line-Grassmannian of an exceptional hexag-1831

onic Lie incidence geometry ∆ of rank at least 3. Then exactly one of the following holds.1832

(i) T is an ordinary line of the corresponding line-Grassmannian parapolar space, that is, a1833

planar line pencil of ∆;1834

(ii) ∆ is F4,4(K,K) and T is a cone over a hyperbolic line in a symplectic symp.1835
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Proof. If ∆ is not F4,4(K,K), then Proposition 2.32, together with Lemmas 4.16, 4.17, 4.18,1836

4.20 and 4.21 imply (i).1837

Suppose now ∆ ∼= F4,4(K,K). If some pair of elements of T is contained in an ordinary line1838

K of the line-Grassmannian of ∆, then, again by the previous lemmas and the fact that every1839

triple of members of T is a round-up triple, all elements are contained in that line, hence all1840

triples are and Proposition 2.32 implies that T = K.1841

Next suppose that two elements L,M of T are not coplanar. Then, again by Lemmas 4.16,1842

4.17, 4.18, 4.20 and 4.21, they are contained in a hyperbolic line H of the point residual of a1843

symp ξ. The same lemmas now imply that T ⊆ H and Proposition 2.29(ii) yields T = H and1844

ξ is a symplectic polar space. The proposition is proved. �1845

5. Generalised hexagons1846

5.1. Blocking sets. We start with a nonexistence result of a class of hexagons with certain1847

parameters.1848

Lemma 5.1. Let t be a natural number at least 2. Then there does not exist a generalised1849

hexagon of order (s, t), with s = t+ t2.1850

Proof. Since by [18] the number st is a perfect square, we have that t2 + t3 is a perfect square.1851

Hence t + 1 is a perfect square, say t = a2 − 1. Then s = a2(a2 − 1). Now, by [18], we know1852

that the rational number1853

st(1 + s+ t+ st)(1 +
√
st+ st)

2(s+ t+
√
st)

is an integer. The denominator of that expression is equal to 2(a − 1)(a + 1)(a2 + a + 1) =1854

2t(a2 + a + 1). Hence a2 + a + 1 divides the numerator divided by t. We now observe, taking1855

into account that a2 + a+ 1 is odd, the following facts.1856

• Clearly gcd(a2, a2 + a+ 1) = 1.1857

• Since a2 − 1 = (a2 + a+ 1)− (a+ 2) and a2 + a+ 1 = (a+ 2)2 − 3(a+ 2) + 3, we find1858

gcd(a2 − 1, a2 + a+ 1) ∈ {1, 3}.1859

• We have 1 + s+ t+ st = a2(a4 − a2 + 1). Since1860

a4 − a2 + 1 = a2(a2 + a+ 1)− a(a2 + a+ 1)− (a2 + a+ 1) + 2(a+ 1),

we find gcd(a4 − a2 + 1, a2 + a+ 1) = gcd(a+ 1, a2 + a+ 1) = 1.1861

• We have 1 +
√
st+ st = a6 − 2a4 + a3 + a2 − a+ 1. Since1862

a6 − 2a4 + a3 + a2 − a+ 1 = (a4 − a3 − 2a2 + 4a− 1)(a2 + a+ 1)− 4a+ 2,

we find1863

gcd(1 +
√
st+ st, a2 + a+ 1) = gcd(2a− 1, a2 + a+ 1),

which, in view of 4a2 + 4a+ 4 = (2a− 1)2 + 4(2a− 1) + 7, is either 1 or 7. In the latter1864

case, 2a− 1 is divisible by 7, implying in particular a ≥ 4.1865

We conclude that the greatest common divisor of s(1 + s+ t+ st)(1 +
√
st+ st) and a2 + a+ 11866

is one of 1, 3, 7, 21. It follows that a2 + a + 1 ∈ {3, 7, 21}, hence a ∈ {2, 4} (remember a > 1).1867

But then, by the last bullet point above, a = 4.1868

But in this case, one calculates that the number1869

st(1 + s+ t+ st)(1−
√
st+ st)

2(s+ t−
√
st)

is not an integer (the denominator is divisible by 13, whereas this is not the case for the1870

numerator), as is required by [18]. �1871
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Every point x of a generalised hexagon has a projection onto a given line L, which is x itself if1872

x ∈ L, which is the unique point of L collinear to x if x is close to L, and which is special to x1873

if x is far from L. We call this projection occasionally the nearest point to x on L. Also, recall1874

that, if the nearest point to x on L is collinear to but distinct from x, then we called x and L1875

close (as we also did above).1876

Proposition 5.2. If a set of s + 1 points S = {p0, p1, . . . , ps} of a generalised hexagon ∆ of1877

finite order (s, t), s, t > 1, admits no opposite point, then it is either1878

(i) a line, or1879

(ii) a hyperbolic line (and then s = t), or1880

(iii) a regular distance-3 trace (and then s ≥ t).1881

Proof. Suppose S = {p0, p1, . . . , ps} is a set of s + 1 points in ∆ such that no point of ∆ is1882

opposite every point of S. We proceed with proving some claims.1883

Claim 1. If p0 ⊥ x ⊥ p1, with p0 not collinear to p1, and x /∈ S, then every line through x1884

contains at least one member of S.1885

Indeed, suppose the line L through x is disjoint from S. Since p0 and p1 project onto the same1886

point x of L, there exists some point y ∈ L not collinear to any member of S. Consider a line1887

M 6= L through y. No point of S is contained in M or is close to M (since this would lead to a1888

4-gon or 5-gon containing y). Hence they are all far from M . Since p0 and p1 project onto the1889

same point y of M , there is a point z ∈M opposite each member of S, a contradiction.1890

Claim 1 is proved.1891

Claim 2. If p0 and p1 are collinear, then S is a line of ∆.1892

Indeed, suppose first that there exists a point x ∈ L := p0p1 that does not coincide with a1893

projection of some member of S onto L. Consider a line M 6= L containing x. Then the only1894

points of S close to M are on L. Since p0 and p1 project onto the same point x of M , there1895

exists some point y ∈ M which is not the projection of any member of S onto M . We deduce1896

that every line K 6= M through y is far from every member of S. Since p0 and p1 project onto1897

the same point y of such a line K, there exists a point opposite every member of S on each such1898

line K, a contradiction.1899

Hence every point qi on L is the projection of a unique point pi of S. Suppose S 6= L. Then1900

we may assume that p2 /∈ L and so p2 is either special to or opposite p0. If p2 is special to1901

p0, then by Claim 1 each line through q2 contains a point, say p3, of S, implying that q2 = q3,1902

contradicting the uniqueness of p2. So p2 is far from L. Select a line M ′ through q2 distinct1903

from L and far from p2 (M ′ exists since t ≥ 2). Then, since q2 6= qi, the point pi is either on1904

L or opposite q2, for each i ∈ {3, 4, . . . , s}. It follows that, with M ′ in the role of M in the1905

previous paragraph, we again reach the same contradiction.1906

Claim 2 is proved. From now on, we may assume that S does not contain two collinear points.1907

Claim 3. If p0 and p1 are opposite, and some line L close to both contains no point of S, then1908

L is close to each point of S and each point of L is collinear to a unique point of S.1909

1910

Let xi be the nearest point to pi on L, i ∈ {0, 1, . . . , s}, and note that xi 6= pi by assumption.1911

Suppose there exists a point x ∈ L \ {x0, x1, . . . , xs}. Let M 6= L be any line through x. Then1912

M is far from each point of S. Since x is special to at least two points p0, p1 of S, there is some1913

point of M opposite each point of S, a contradiction. Hence L = {x0, x1, . . . , xs}. Suppose1914

some point, say p2, of S is not collinear to its projection x2 onto L. Let M2 be a line through1915

x2 not close to x2 and distinct from L (which exists as t > 1).1916

Then M2 is far from each point of S, but p0, p1 and p2 have the same projection x2, yielding a1917

point y2 ∈M2 opposite each point of S, a contradiction. Hence pi ⊥ xi, for all i ∈ {0, 1, . . . , s}.1918

Claim 4. If S only contains pairwise opposite points, then s ≥ t and S is a regular distance-31919

trace. The assumptions of Step 3 are satisfied for each line close to both p0 and p1. Hence every1920
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point of S is collinear to some point of each line that is close to both p0 and p1. We conclude1921

that S is a regular distance-3 trace. We now show that s ≥ t.1922

Let z be any point special to both p0 and p1, and not on a line close to p0 and p1. Note that z is1923

not collinear to any point of S, as z ⊥ p2 would imply, by interchanging the roles of p1 and p2,1924

that the line through z close to p0 is also close to p1, which is not the case by the assumptions1925

on z. Then, similarly as before, every line through z is close to some point of S, but not to two1926

such points, as this would mean that z is already collinear to some point of S (by the definition1927

of distance-3 trace), contradicting our note above. We conclude t ≤ s.1928

Claim 5. If S only contains pairwise special points, then s = t and S is a hyperbolic line.1929

Indeed, set x = [p0, p1]. By Claim 1, every line through x contains a point of S. Hence t ≤ s. If1930

t = s, then let y be a point opposite x, but not opposite either p0 or p1. We claim that pi is not1931

opposite y, for every i ∈ 2, 3, . . . , s. Indeed, suppose p2 is opposite y and let Ly be the unique1932

line through y not opposite xp2. No point pi, i ∈ {0, 1, . . . , s}, is collinear to some point qi of1933

Ly, as this would induce a 5-gon containing x, pi, qi and the lines Ly and xpi. Hence all points1934

pi have a unique point on Ly to which they are not opposite. But p0 and p1 are not opposite1935

the same point, yielding a point on Ly opposite all members of S, a contradiction. The claim1936

is proved. This now implies that S is a hyperbolic line.1937

Suppose now that t < s. Claim 1 implies that S is a t-cloud, in the terminology of [5]. By [5,1938

Lemma 1] and the remark following Lemma 1 of [5], it follows that S ∪ S∗, where S∗ is the set1939

of points collinear to at least two points of S, is the point set of a subhexagon of order (1, t),1940

and as such S and S∗ are the point and line set, respectively, of a projective plane of order t.1941

Hence s = t2 + t. This contradicts Lemma 5.1.1942

There remains one case to take care of.1943

Claim 6. If S contains opposite pairs, then it does not contain special pairs. Indeed, let1944

p0 ≡ p1. Suppose, for a contradiction, that S contains a special pair, too. We first show that1945

every line L close to p0 and p1, respectively, contains a (unique) point of S. Indeed, suppose1946

not. Then Claim 3 implies that each point of L is collinear to a unique point of S, implying1947

that each pair of points of S is opposite, contradicting our assumption. Hence L contains some1948

point p2 of S, unique by Claim 2. It also follows from Step 1 that each line through [pj , p2],1949

j = 0, 1, contains a unique point of S.1950

Now let T be the set of points of ∆ with the property that each line through them contains a1951

point of S. Let L be the set of lines of ∆ through such points and note that each member of L1952

contains at least one point of T and exactly one point of S. Then we prove that Γ = (S ∪T,L )1953

is a subhexagon. Indeed, if L,L′ are two distinct lines containing points collinear to p0 and p1,1954

respectively, then p0, p1, L, L
′ are contained in an ordinary hexagon H, implying that the girth1955

of the incidence graph of Γ is equal to 12.1956

In order to show that the diameter of the said graph is 6, it suffices to prove that for every1957

point x ∈ S ∪ T and every line L ∈ L , the unique minimal path joining x and L in ∆ belongs1958

to Γ. If x ∈ L, then this is trivial. Suppose now x ∈ M 3 y ∈ L, with x /∈ L. If x ∈ S, then1959

y /∈ S and so L contains a point of S distinct from y. It follows that y ∈ T and consequently1960

M ∈ L . Suppose now x ∈ T . Then there exists some point x′ ∈ S ∩M . It again follows that1961

y ∈ T and M ∈ L . At last suppose x ∈M 3 y ∈ K 3 z ∈ L, with x 6= y 6= z and M 6= K 6= L.1962

If x ∈ T , then there exists x′ ∈M ∩ S. If x′ = y, then the previous case proves the assertion; if1963

x′ 6= y, then we replace x with x′ and hence we may assume x ∈ S. If z ∈ S, then y ∈ T and1964

the assertion follows easily. So suppose z /∈ S. Then some point q ∈ L different from z belongs1965

to S. By the first paragraph, the line K contains a point of S. It follows that y, z ∈ T and the1966

assertion follows. Since it is easy to see that every point of ∆ (and hence of Γ) is opposite at1967

least one point of H, we see that all lines through any point of S ∪ T belong to L . Hence, by1968

[32, Lemma 1.3.6] in combination with [32, Theorem 1.6.2], Γ is a subhexagon of order (s′, t),1969

1 ≤ s′ ≤ s. Since, with the above notation, the line L contains at least three points of S ∪ T ,1970

we have s′ > 1. Now, by the definition of L , every member of L contains a unique member of1971
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S. A standard count reveals that |S| = 1 + s′t + (s′t)2 points. It follows that s = s′t + (s′t)2.1972

Now, both st and s′t are perfect squares by [18]. It follows that s/t = s′(1 + s′t) is a perfect1973

square. Since s′ and 1 + s′t are relatively prime, both s′ and 1 + s′t are perfect squares, which1974

contradicts the fact that s′t is a perfect square. This completes the proof of Claim 5.1975

This also completes the proof of the proposition. �1976

The following result classifies very explicitly all sets of size s + 1 admitting no global opposite1977

point in finite Moufang hexagons of order (s, t).1978

Corollary 5.3. A set S of s+ 1 points of a Moufang generalised hexagon of finite order (s, t),1979

s, t > 1, admits no opposite point if, and only if, it is either1980

(i) a line, or1981

(ii) a hyperbolic line in the split Cayley hexagon G2,2(s, s), or1982

(iii) a distance-3 trace in the split Cayley hexagon G2,2(s, s) with s even, or in the twisted1983

triality hexagon G2,2(t, s), with t3 = s even.1984

Proof. In view of Proposition 5.2, (ii) follows from [32, Remark 6.3.5] and (iii) follows from [19,1985

Theorem 1]. �1986

Note that the previous corollary implies that not every regular distance-3 trace is a set of s+ 11987

points such that no point is opposite each point of that set. Indeed, the split Cayley hexagons1988

and the twisted triality hexagons in odd characteristic are counterexamples.1989

Remark 5.4. In Claim 4 of the proof of Proposition 5.2, hexagons of order (t2 + t, t) appear1990

as possible counterexamples, but, as we assume thickness, they are killed by Lemma 5.1. If1991

we drop the thickness assumption, it is curious to note that the arguments of that step give1992

rise to a rather exceptional example of a set F of s + 1 point-line flags in a projective plane1993

of order s such that no point-line flag is opposite all members of S. Indeed, putting t = 1,1994

we obtain a hexagon of order (2, 1), which arises from PG(2, 2), and S consists of three flags1995

{p0, p0p1}, {p1, p1p2}, {p2, p0p2} from a triangle {p0, p1, p2}. The points of these flags do not1996

form a line, and the lines of these flags do not form a line pencil. We conjecture that this is the1997

only example of size s+ 1 in any projective plane of order s with that property and such that1998

no flag of the plane is opposite all of its members.1999

5.2. Geometric lines. We now classify geometric lines in Moufang hexagons. We first consider2000

the general case and then specify further. As usual, we deal with round-up triples.2001

Lemma 5.5. Let Γ = (X,L ) be a generalised hexagon and {x1, x2, x3} a round-up triple of2002

points. Suppose x1 ⊥ x2. Then x1, x2, x3 are contained in a common line.2003

Proof. Let L be the line containing x1 and x2. If x3 /∈ L, then some point u of L is special to2004

x3. Let z be a point collinear to u but special to [x3, u]. Then z ≡ x3, whereas x1 6≡ z 6≡ x2, a2005

contradiction. �2006

Lemma 5.6. Let Γ = (X,L ) be a generalised hexagon and {x1, x2, x3} a round-up triple of2007

points. Suppose x1 on x2. Then x1, x2, x3 are contained in [x1, x2]⊥ ∩ yon, for every point2008

y ∈ [x1, x2]≡ ∩ xon1 ∩ x
on
2 .2009

Proof. By Lemma 5.5 we have x3 6= [x1, x2]. If x3 ⊥ [x1, x2], then the assertion follows directly2010

from the definition of a round-up triple. If x3 on [x1, x2], then any point z ∈ [x1, x2]⊥ \2011

〈[x1, x2], [[x1, x2], x3]〉 is opposite x3, but not opposite either x1 or x2, a contradiction. Finally,2012

if x3 ≡ [x1, x2], then [x1, x2] obviously violates the defining property of {x1, x2, x3} being a2013

round-up triple. �2014

Lemma 5.7. Let Γ = (X,L ) be a generalised hexagon and {x1, x2, x3} a round-up triple of2015

points. Suppose x1 ≡ x2. Then x1, x2, x3 are contained in every distance-3 trace containing at2016

least two of them.2017

43



Proof. Let L be an arbitrary line of Γ containing a point x′1 collinear to x1 and also a point2018

x′2 collinear to x2. By Lemma 5.6, x3 /∈ L. Assume x3 is special to some point y ∈ L with2019

[x3, y] /∈ L. Then any point of L \ {y} is opposite x3 and not opposite both x1, x2. So x3 is2020

collinear to some point of L, distinct from both x′1 and x′2 (use Lemma 5.6 again). Now it is2021

clear that the assertion follows. �2022

Proposition 5.8. Let Γ = (X,L ) be a generalised hexagon and let T be a geometric line of Γ.2023

Then T is either a line, a hyperbolic line, or a regular distance-3 trace.2024

Proof. Since every triple of points of a geometric line is a round-up triple, the previous three2025

lemmas imply that T is contained in either a line, or a hyperbolic line, or a distance-3 trace.2026

But if T were not equal to one of these objects, then, in each case, it is easy to find a point2027

opposite every member of T , a contradiction. �2028

We can now prove Main Result B for type G2.2029

Proposition 5.9. Let Γ = (X,L ) be a Moufang generalised hexagon and let T be a geometric2030

line. Then T is either2031

(1) an ordinary line, or2032

(2) a hyperbolic line in a split Cayley hexagon, or2033

(3) a distance-3 trace in a split Cayley hexagon over a perfect field in characteristic 2.2034

Proof. By Proposition 5.8 there are three possibilities for T . The first one is a line, which leads2035

to (1). The second one is a hyperbolic line. Let T be collinear to the unique point c. Since T is2036

a geometric line, every hyperbolic line in c⊥ intersects T in exactly one point. By transitivity2037

of the automorphism group on paths x1 ⊥ x2 ⊥ x3, with x1 on x3, which follows readily from2038

the Moufang condition, we see that every pair of hyperbolic lines in c⊥ intersects. Then [32,2039

Corollary 5.14] implies that Γ is a split Cayley hexagon.2040

The third possibility is that T is a regular distance-3 trace. Let x, y ∈ T . Then we obviously2041

can write T = {x, y} 6≡6≡. Let L ∈ L be arbitrary but such that it contains unique points x′2042

and y′ special to x and y, respectively, with x′ 6= y′. That at least one such line exists is easily2043

seen. Now every point of L is special to precisely one point of T , since T is a geometric line.2044

This means that, in the terminology of [32, Definitions 6.5.5], the set T is a long imaginary2045

line, and [32, Theorem 6.5.6] now implies that Γ is a split Cayley hexagon over a perfect field2046

in characteristic 2. �2047

Remark 5.10. For every natural number n ≥ 5, there exists an (obvious) analogue of Proposi-2048

tion 5.8 for the class of (thick) generalised n-gons. This requires defining a “regular” distance-i2049

trace, 2 ≤ i ≤ n
2 , similarly to a hyperbolic line (which would be a regular distance-2 trace) and a2050

regular distance 3-trace for a generalised hexagon. Proofs are straightforward generalisations of2051

the above proofs for hexagons. Restricting to Moufang octagons (the only class of exceptional2052

Moufang buildings not yet considered in this paper), one obtains that, using the results in [2]2053

(see also [32, Section 6.5]), the only geometric lines in Moufang octagons are the ordinary lines.2054

However, the classification of minimal blocking sets in finite Moufang octagons is still open;2055

however, see also Remark 5.11.2056

Remark 5.11. S. Petit and G. Van de Voorde [24, Theorem 6] prove that, if s ≤ t, then every2057

blocking set of s + 1 points in a finite generalised polygon of order (s, t) is either a line or a2058

regular distance-i trace. Together with Remark 5.10, this leads to a classification of blocking2059

sets of size s+1 in the Moufang octagons of order (s, s2): only lines occur. The case of Moufang2060

octagons of order (s,
√
s) is hence the only open case for finite Moufang polygons. Note that2061

Proposition 5.2 extends [24, Theorem 6] for generalised hexagons to arbitrary order.2062
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6. An application2063

Proposition 6.1. Let ∆ and ∆′ be two buildings of the same exceptional type F4,E6,E7 or E8.2064

Let, with Bourbaki labelling, Ti and T ′i be the set of vertices of type i of ∆ and ∆′, respectively,2065

where2066

• i ∈ {1, 2, 3, 4} is arbitrary if ∆ has type F4;2067

• i ∈ {1, 2, 3, 4, 5, 6} is arbitrary if ∆ has type E6;2068

• i ∈ {1, 2, 6, 7} if ∆ has type E7;2069

• i ∈ {7, 8} if ∆ has type E8.2070

Then any surjective map ϕ : Ti → T ′i preserving opposition and non-opposition is induced by an2071

isomorphism of buildings.2072

Proof. It suffices to show that ϕ is a bijective collineation between the corresponding i-Grassmannian2073

geometries. We first show that ϕ is bijective. Suppose, for a contradiction, that two vertices2074

v, u ∈ Ti are mapped onto the same vertex. Lemma 2.31 yields a vertex w ∈ Ti opposite v2075

but not opposite u. Then our assumptions imply ϕ(v) ≡ ϕ(w) 6≡ ϕ(u) = ϕ(v), a contradiction.2076

Hence ϕ is a bijection. Since opposition and non-opposition are preserved, one deduces that2077

geometric lines are mapped onto geometric lines. If the only geometric lines are the ordinary2078

lines, then this concludes the proof of the proposition.2079

By [21, Corollary 6.6] and Proposition 4.22, we may assume i = 3 and ∆ has type F4. It suffices2080

to recognise the planar line pencils of F4,4(K,K) among all geometric lines of F4,3(K,K). Let Γ2081

be the point-line geometry with point set the points of F4,3(K,K) and line set the set of ordinary2082

and geometric lines of F4,3(K,K). We claim that no geometric line different from an ordinary line2083

of F4,3(K,K) is contained in a maximal subspace of Γ isomorphic to a projective plane. Suppose,2084

for a contradiction, that the geometric line Z is contained in a maximal singular subspace α of2085

Γ isomorphic to a projective plane, and that Z is not an ordinary line of F4,3(K,K). We argue2086

in F4,4(K,K), where Z is a cone in a symp with vertex p over a hyperbolic line h. Suppose2087

first that α does not contain any ordinary line of F4,3(K,K). So, the point set of α corresponds2088

to a set Π of lines through p, and the cones over hyperbolic lines correspond to the lines of α.2089

Consequently, any two points on distinct lines of Π are symplectic, and the unique hyperbolic2090

line through them is contained in the union of all lines of Π. We select a point q opposite p.2091

Then every line L ∈ Π contains a unique point pL special to q.2092

We claim that the set β = {pL | L ∈ Π}, endowed with the hyperbolic lines contained in it,2093

is a projective plane. Indeed, in view of the fact that Π is the point set of a projective plane2094

whose lines are geometric lines of F4,3(K,K), it suffices to prove that β is closed under taking2095

hyperbolic lines through two arbitrary distinct points y1 and y2 of β. Since p ∈ ξ(y1, y2), q is2096

far from ξ(y1, y2). Since y1 and y2 are collinear to the unique point q′ of ξ(y1, y2) symplectic2097

to q, all points of the hyperbolic line h(y1, y2) defined by y1, y2 are collinear to q′, by the very2098

definition of hyperbolic line. The claim is proved.2099

Now [17, Lemma 5.21] implies that β is contained in an extended equator geometry Ê. Then2100

[17, Proposition 5.24] implies that p is collinear to a set γ of points of Ê that forms a 3-2101

dimensional projective space when endowed with the hyperbolic lines it contains. Hence the2102

line set {px | x ∈ γ} forms a projective 3-space in Γ. So, α is not maximal, a contradiction.2103

Consequently, we may suppose that α contains at least one ordinary line of F4,3(K,K). Then2104

we have a plane π of F4,4(K,K) through p intersecting h in some point x. Select y ∈ h \ {x}2105

and z ∈ π \ px. Let ξ be the symp containing h; we have p ∈ ξ. Suppose, for a contradiction,2106

that z is not contained in ξ. Since z ⊥ px and y /∈ px, we deduce z ⊥⊥ y. Hence y ⊥ px, a2107

contradiction. Consequently z ∈ ξ and so π ⊆ ξ. Now the set of lines of ξ through p forms a2108

3-dimensional projective space of Γ, contradicting the maximality of α.2109

Hence Z is not contained in a maximal singular subspace of Γ isomorphic to a projective plane.2110

Evidently, any line of F4,4(K,K) is contained in an ordinary projective plane of F4,4(K,K),2111
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which gives rise to a maximal singular subspace of Γ of dimension 2. Hence we can recognise2112

the ordinary lines of F4,3(K,K), and the proof of the proposition is complete. �2113

The following is an immediate consequence.2114

Corollary 6.2. Let ∆ be a finite building of exceptional type F4,E6,E7 or E8. Let, with Bourbaki2115

labelling, Ti be the set of vertices of type i of ∆, where2116

• i ∈ {1, 2, 3, 4} is arbitrary if ∆ has type F4;2117

• i ∈ {1, 2, 3, 4, 5, 6} is arbitrary if ∆ has type E6;2118

• i ∈ {1, 2, 6, 7} if ∆ has type E7;2119

• i ∈ {7, 8} if ∆ has type E8.2120

Then any map ϕ : Ti → T ′i preserving opposition and non-opposition is induced by an automor-2121

phism of ∆.2122

Proof. We only have to establish the surjectivity of ϕ in order to be able to apply Proposition 6.1.2123

Therefore, we note that the injectivity of ϕ is proved in a completely similar way as in the first2124

paragraph of the proof of Proposition 6.1. Now the assertion follows from the trivial fact that2125

an injective transformation of a finite set is always surjective. �2126
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