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Abstract8

A maximal full rank subgroup of a simple group G of Lie type is a maximal9

subgroup H of Lie type that arises from a root subsystem of the same rank as the10

underlying root system. We investigate how the spherical building related to H sits11

in that related to G, where we concentrate on G being of exceptional type over an12

arbitrary field. We consider the long root subgeometries and other parapolar spaces13

related to G. We provide a general treatment of the simply laced case and give a14

detailed geometric study in all exceptional cases.15
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6 Application to non-thick spherical buildings 3760

1 Introduction61

This paper grew out of a question asked by Sasha Ivanov to the second author whether the62

maximal subgroup (PSL3(2)× PSL3(2)) : 2 has a geometric interpretation in the ambient63

group F4(2). In other words, can one see the two projective planes of order 2 on which64

the said maximal subgroup acts in a natural way? This question puzzled us for a moment65

and, the answer not being clear at once, we started to investigate similar phenomena in66

the exceptional groups of Lie type, hoping they could teach us something about Sasha’s67

question. The “similarity” was defined as “subgroups also arising from a maximal root68

subsystem”. Eventually we obtained a rather general and complete answer, also yielding69

an answer to the original question. The present paper reports about this.70

Interpreting (simple) groups of Lie type geometrically lies at the heart of Tits’ theory of71

(spherical) buildings. The interaction between the group and the associated geometry has72

proved to be very fruitful both for geometric and group theoretic investigations. In this73

paper, we take this interaction one step further by interpreting certain subgroups of groups74

of Lie type geometrically inside the building of the ambient group. Some subgroups, like75

parabolic ones, have a standard and natural interpretation (namely, as the stabiliser of76

a residue). Some other famous examples also have a well known interpretation, think of77

classical groups inside each other, Dickson’s group of type G2 inside the classical group78

PSO8(K), and the split groups of type F4 as maximal subgroups of groups of type E6. In79

this paper, we consider maximal subgroups of groups of Lie type which are also groups of80

Lie type themselves and on top have the same rank as the ambient group. We call these81

maximal full rank subgroups. The Borel-de Siebenthal theory says that such subgroups can82

be constructed in a uniform way using the underlying root system—basically the Dynkin83

type of the subgroup is given by adding the longest root to a fundamental system of roots84

and deleting an arbitrary fundamental root. What does not seem to be known is how these85

subgroups act on the ambient building; in particular if and how the building belonging86

to the subgroup sits in the ambient building. This is exactly the subject of the present87

paper. Since for the classical groups, this answer can be deduced from Aschbacher’s list88

of classes of maximal subgroups of classical groups, see also the monograph of Kleidmann89

and Liebeck [11], we concentrate on the exceptional groups of Lie type.90

The way we tackle this, is natural: we consider the long root subgroup geometry Γ(G) of91

the exceptional group G of Lie type in question. Then Γ(H), with H a maximal full rank92

subgroup, is naturally (and fully) embedded in Γ(G). However, there is always, what we93

call, a companion geometry Γ∗(H), also embedded in Γ(G) as a kind of complement to94

Γ(H). In the simply laced case, we provide a uniform way to determine the type of the95

geometry Γ∗(H). It will turn out that it is always of Jordan type (basically meaning that96

it is a strong parapolar space).97

Main Result. The companion geometries of the maximal full rank subgroups of the98

Chevalley groups with associated simply laced Dynkin diagram are given in Table 2.99

In particular, with the (standard) notation of Section 2, this implies the following rather100

unexpected inclusions of irreducible Lie incidence geometries of the same rank.101
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Corollary to the Main Result.102

(i) The Grassmannian A7,2(K) is a subgeometry of the minuscule geometry E7,7(K);103

(ii) the Grasmannian A7,4(K) is a subgeometry of the long root geometry E7,1(K);104

(iii) the half spin geometry D8,8(K) is a subgeometry of the long root geometry E8,8(K);105

(iv) the Grasmannian A8,3(K) is a subgeometry of the long root geometry E8,8(K);106

(v) the long root geometry A2,{1,2}(K,A) is a subgeomery of F4,4(K,A);107

(vi) the half spin geometry B4,4(K,A) is a subgeometry of F4,4(K,A).108

Note that Γ(H) and Γ∗(H) are coupled geometries, that is, each point of one geometry is109

uniquely (geometrically) defined by a corresponding object in the other geometry. This110

gives rise to some beautiful geometry showcasing the exceptionality of the exceptional ge-111

ometries. We emphasize this by independent (from the Main Result above) constructions112

of the said subgeometries. Moreover, we also interpret the most interesting maximal full113

rank subgroups in the minuscule geometries of types E6 and E7 by constructing appropri-114

ate subgeometries of the latter. A key concept in both the long root subgroup geometries115

and the minuscule geometries is that of an equator geometry.116

Since there is only one type of non-simply laced spherical buildings of exceptional type117

and rank at least 3, namely type F4, and the complication of non-split buildings arises118

here, we did not feel the need to develop a general theory leading to a similar conclusion as119

in our Main Result above. Rather we directly construct the subgeometries corresponding120

to the maximal full rank subgroups in a combinatorial way. This, for instance, gives rise121

to a rather surprising inclusion of the long root subgroup geometry of the Cayley plane122

inside the short root metasymplectic space associated to the Cayley numbers (over an123

arbitrary field). We also treat type G2, the Moufang hexagons.124

All the constructions of the various coupled subgeometries in (exceptional) spherical build-125

ings of type Xn yield non-thick buildings of type Xn the thick frame of which has the126

Dynkin type of the given maximal full rank subgroup. This is explained in some more127

detail in Section 6.128

Outline of the paper—In Section 2 we introduce notation and the objects we will129

study. We assume the reader to be familiar with the basics of Tits buildings and (crys-130

tallographic) root systems. In Section 3 we prove our Main Result. Since we do this in a131

uniform way, this includes the classical types An and Dn. In Section 4 we provide geomet-132

ric constructions of the subgeometries related to the maximal full rank subgroups in the133

exceptional simply laced cases. For each Dynkin type, we include a short introduction134

into the corresponding parapolar spaces with explicit concrete definitions of the various135

equator geometries that play a role (a general and rather abstract definition can be found136

in [22]). The non-simply laced case is treated in Section 5. Here we only provide geomet-137

ric and combinatorial constructions. We discuss the application to non-thick buildings in138

Section 6.139
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2 Preliminaries140

2.1 Lie incidence geometries141

Definition 2.1. A point-line geometry Γ = (X,L ) is a bipartite graph with classes X142

and L . In this paper, no two members of L are adjacent to exactly the same set of143

vertices in X and so we can identify each member of L with its set of neighbours in144

X. The set X is the set of points and L is the set of lines. Two points x, y are called145

collinear, in symbols x ⊥ y, if they are contained in a common line. The set of points146

collinear to a given point x is denoted by x⊥. The (geometric) distance between two147

points is half of the graph distance in Γ.148

A partial linear space is a point-line geometry for which there is at most one line through149

two points. Let Γ = (X,L ) be a partial linear space. Then a subset M ⊆ X is called a150

subspace when every line of X that intersects M in at least two points, is contained in M .151

The subspace M is said to be convex when for any two points in M , any shortest path152

in Γ, as a graph, connecting these two points, is also contained in M . A hyperplane is a153

proper subspace that intersects each line nontrivially. A singular subspace is a subspace154

in which every pair of points is collinear.155

Definition 2.2. (PS) A polar space is a partial linear space for which x⊥ is a hyperplane156

for each point x.157

(PPS) A parapolar space is a connected partial linear space such that each pair of either158

collinar points, or noncollinear points x, y with |x⊥ ∩ y⊥| ≥ 2, is contained in a159

convex subspace isomorphic to a polar space.160

With this definition, each polar space is a parapolar space. Sometimes it is required that161

a parapolar space is not a polar space, but for us this makes no difference as we only use162

the language and will always work with specific parapolar spaces. We note that parapolar163

spaces are gamma spaces, that is, given a point p and a line L, either all, exactly one, or164

no points on L are collinear to p.165

Notation 2.3. Some notation that is used in the language of parapolar spaces is the166

following. Let x, y be two points. If |x⊥ ∩ y⊥| = 1, then we say that x and y are special,167

or that they are a special pair. We denote the unique member of x⊥ ∩ y⊥ by [x, y]. If168

|x⊥ ∩ y⊥| ≥ 2, then we say that x and y are symplectic, or that they are a symplectic pair169

(some authors call such a pair polar). Finally, if x and y represent opposite simplices in170

the corresponding building, then we call them opposite.171

If some maximal singular subspace of a polar space has finite dimension, then all maximal172

singular subspaces have the same dimension r − 1, and we say that the polar space has173

rank r ≥ 1.174

A convex subspace isomorphic to a polar space will be called a symplecton, or briefly, a175

symp. If the rank of all symplecta of a parapolar space are equal, say to r ≥ 2, then r is176

called the uniform symplectic rank of the parapolar space.177

Before we recall the standard procedure how spherical buildings give rise to point-line178

geometries, let us agree on some notation for some specific buildings. For an excellent179

introduction to buildings, we refer to [1].180
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Notation 2.4. (A) A Moufang building of type An, n ≥ 2, is uniquely determined by181

an alternative division ring D and denoted An(D) (with the understanding that, in182

the associative case, points are parametrized by triples up to a right scalar factor).183

(B) The norm of a quadratic alternative division algebra A over some field K is an184

anisotropic quadratic form Q. It can be used to define a quadric with equation185

X−nXn +X−n+1Xn−1 + · · ·+X−1X1 = Q(X0),

with (X−n, X−n+1, . . . , X−1, X0.X1, . . . , Xn) ∈ Kn × A × Kn. The corresponding186

building is denoted by Bn(K,A).187

(C) For an associative alternative division algebra A over some field K, A 6= K, with188

standard involution x 7→ x, the pseudo-quadratic form X−nXn+· · ·+X−1X1 ∈ K in189

2n variables defines a building which we denote by Cn(A,K). If A is non-associative,190

then C3(A,K) is the building corresponding to the nonembeddable polar space of191

rank 3 with non-Desarguesian planes. If A = K, we set Cn(K,K) equal to the192

building arising from the polar space corresponding to a non-degenerate alternating193

bilinear form in n variables over K.194

(D) A building of type Dn, n ≥ 4, is determined by a (commutative) field K and denoted195

by Dn(K). For n = 3 we denote D3(D) = A3(D), for any associative division ring D.196

(E) A buildings of type En, n ∈ {6, 7, 8} is uniquely determined by a (commutative197

field) K and denoted by En(K).198

(F) A building of type F4 is determined by a quadratic alternative division algebra A199

over some field K and denoted by F4(K,A), where we assume that the residues of200

type {1, 2} correspond to A2(K) and the ones of type {3, 4} to A2(A).201

(G) A Moufang hexagon is determined by a quadratic Jordan division algebra J over202

some field K and denoted G2(K, J). We assume that the panels of type 1 are coor-203

dinatized by K, and those of type 2 by J, see [20].204

The thin building (or Coxeter complex) of type Xn is always denoted by Xn(1).205

Definition 2.5. Let ∆ be a (simplicial) spherical building of type Xn with corresponding206

Coxeter system (W,S), |S| = n ≥ 2. Let J a nonempty subset of S. We define a point-207

line geometry Γ = (X,L ) as follows. The set X of points consists of all simplices of208

∆ of type J . A typical line consists of the set of simplices of type J whose union with209

a given simplex of cotype j, j ∈ J , is a chamber. If ∆ is denoted by Xn(∗), with (∗)210

representing one of the algebraic structures in Notation 2.4, then Γ is denoted by Xn,J(∗).211

If J = {j}, then we also write Xn,j(∗). In any case, we say that Γ is of type Xn,J and call212

it a J-Grassmannian geometry.213

We number the elements of S = {s1, s2, . . . , sn} using Bourbaki [4] labelling of the spher-214

ical Dynkin diagrams. For J as above, we usually only write the indices, that is, we view215

J as a set of natural numbers.216

Lemma 2.6 (Proposition 11.4.10 of [5]). Let Y be a simplex of type K of a spherical217

building ∆ ∼= Xn(∗) (as above). The points of Xn,J(∗) that are incident with Y form a218

convex subspace of Xn,J(∗) of type Ym,J\K, where Ym corresponds to the Dynkin diagram219

that is obtained by first deleting the nodes corresponding to K from the Dynkin diagram220

Xn, and then taking the connected components that contain at least one element of J .221
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We will call such a subspace Y as in the previous lemma a K-grammatical subspace,222

inspired by [13]. Note that, if Ym is disconnected, then the corresponding grammatical223

subspace is a direct product space (and not a disjoint union).224

2.2 Long root subgroup geometries225

Many things that follow are valid over an arbitrary Dynkin diagram. However, we will226

only apply things in the simply laced case. Hence we will not be concerned to much227

about the details in the general split case. We content ourselves with mentioning that228

in the simply laced case, all buildings are split, except for type An, in which case split229

corresponds to be defined over a commutative field. In the other cases, the buildings230

Bn(K,K), Cn(K,K) and F4(K,K) are split.231

Definition 2.7. Let ∆ be a (split) spherical building with corresponding Coxeter system232

(W,S) and Dynkin diagram Xn. Let J be the set of nodes of Xn that are adjacent to the233

node extending Xn to an affine diagram (equivalently, in terms of the corresponding root234

system, the types corresponding to the roots of a fundamental system not perpendicular235

to the highest root). We say that the corresponding point-line geometry of type Xn,J is236

the long root subgroup geometry of ∆. (We usually omit the word “subgroup”.)237

Example 2.8 ([5]). Let Σ be a thin spherical building with Coxeter system (W,S) and238

corresponding irreducible root system ψ, not of type Cn. By fixing a fundamental chamber239

C of Σ, we fix a fundamental system of ψ and hence a highest root α0: the unique long240

root that is contained in the closure of C . The stabilizer of α0 in W equals 〈S \ J〉 with241

J as in Definition 2.7. At the same time, the points of Xn,J(1) are the J-simplices of Σ,242

and hence the cosets of 〈S \ J〉 in W . We can hence find a bijection:243

Points of Xn,J(1)→ Long roots of ψ : x = w〈S \ J〉 7→ αx = wα0.

This bijection has the following nice property:

〈αx, αy〉 = 2 ⇐⇒ x and y are equal,

〈αx, αy〉 = 1 ⇐⇒ x and y are collinear,

〈αx, αy〉 = 0 ⇐⇒ x and y are symplectic,

〈αx, αy〉 = −1 ⇐⇒ x and y are special,

〈αx, αy〉 = −2 ⇐⇒ x and y are opposite.

Type Cn has some special features, which are not important for us in the present paper,244

so we exclude it.245

Lemma 2.9. In any long root geometry of (spherical) type Xn,J , two points p, q are either246

equal, collinear (notation: p ⊥ q), symplectic (notation p ⊥⊥ q), special (notation ponq)247

or opposite (notation: p ≡ q).248
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Definition 2.10. Let x be a point of a long root geometry Γ. Let Σ be any apartment249

containing x. Then x corresponds to a root αx of Σ with corresponding root group Zαx .250

Define Zx := Zαx . This definition is independent of the choice of Σ since, in the split251

case, every member of Zαx fixes each point collinear or symplectic to x, and so it fixes252

every chamber having a panel in the inside of any half apartment centred at x (see also253

Timmesfeld’s theory [19]).254

Define G := 〈Zx |x ∈ X〉. Then Zg
x = Zxg for all g ∈ G.255

Note that, in the above definition, the restriction to the split case is essential in the sense256

that we otherwise have to consider the center of the group Zαx for Zx.257

The next lemma follows from Timmesfeld’s theory [19].258

Lemma 2.11. For any two points x, y of Γ, we have (for some commutative field K),

[Zx, Zy] = 1 ⇐⇒ x and y are equal, collinear or symplectic,

[Zx, Zy] = Z[x,y] ⇐⇒ x and y are special,

〈Zx, Zy〉 ∼= PSL2(K) ⇐⇒ x and y are opposite.

Geometrically, this means that

yZx = {y} ⇐⇒ x and y are equal, collinear or symplectic,

yZx ∪ {[x, y]} is a line ⇐⇒ x and y are special,

yZx ∪ {x} = xZy ∪ {y} ⇐⇒ x and y are opposite.

In the last case, the set yZx ∪ {x} = xZy ∪ {y} is sometimes called the imaginary line259

joining x and y, see [9]. A geometric definition is given at the end of Section 4.1.2.260

2.3 Root subsystems261

In this section, let ψ be an irreducible crystallographic root system with corresponding262

reflection group W . Moreover, let {α1, · · ·αn} be a fundamental system of ψ, and let α0263

be the highest root of ψ with respect to {α1, · · ·αn}.264

Definition 2.12. A subset φ of ψ is called a root subsystem of ψ when for every α ∈ φ,265

we have −α ∈ φ, and moreover for every α, β ∈ φ with α + β ∈ ψ, we have α + β ∈ φ266

The subsystem φ is called maximal when there exists no subsystem φ′ with φ ⊂ φ′ ⊂ ψ.267

Example 2.13. Let i ∈ {12, . . . , n} and let λi be the ith coefficient of α0. Consider the268

map269

pri : ψ → Z : α =
n∑
j=1

βjαj 7→ βi.

Since α0 is the highest root, we have pri(ψ) ⊆ [−λi, λi]. Define

φi := {α ∈ ψ | pri(α) = 0 mod λi}.
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This is a root subsystem of ψ with fundamental system {−α0, α1, · · · , α̂i, · · · , αn}. Denote
its reflection group with Wi. For 0 < j < λi, define

φji := {α ∈ ψ | pri(α) = j mod λi}.

The reflection group Wi stabilizes these subsets φji and even acts transitively on the roots270

contained in it (see for example [14], Lemma 4.3).271

In the simply laced case, the coefficients λi are all equal to 1 for type An; they are all272

equal to 2, except for the extremal nodes of the diagram, for type Dn, n ≥ 4, and for273

types E6,E7,E8, we display them on the diagram, with obvious notation:274

•
1
•
2
•
3
•
2
•
1

• 2

•
2 3 4 3 2 1

2

• • • • •
•

• • • • • • •
•

2 4 6 5 4 3 2

3

275

The following lemma is contained in the so-called Borel–de Siebenthal theory [3].276

Lemma 2.14 (Borel-de Siebenthal). The root subsystem φi of ψ of Example 2.13 is a277

maximal root subsystem if and only if λi is prime. All maximal root subsystems of ψ of278

rank n can, up to W -equivalence, be constructed like this.279

Let G be a group of Lie type with root system ψ. A maximal root subsystem as above280

gives rise to a subgroup H of Lie type of the same rank as G. A subgeometry of any281

Grassmannian corresponding to G on which H naturally acts as group of Lie type will be282

called a full rank Lie subgeometry.283

3 Full rank Lie subgeometries of long root geometries284

3.1 Finding the long root subgeometries285

Convention 3.1. Let ∆ be a building of type An (for n ≥ 2), Dn (for n ≥ 4) or En (for286

n = 6, 7, 8), and denote with Ω the long root geometry associated to ∆. The points of Ω287

are hence given by all simplices of ∆ of type J , for some well defined J . Fix an apartment288

Σ of ∆, and denote with ψ the simplices of ∆ of type J contained in Σ. Identifying ψ289

with a root system, as in Example 2.8, we can fix a fundamental system Π = {α1, . . . , αn}290

of ψ. Denote with α0 the highest root of ψ with respect to Π. We continue with the291

notation introduced in Example 2.13.292

Definition 3.2. For a subset φ of ψ, we define 〈φ〉 to be the smallest subspace of Ω293

which contains φ. We define 〈〈φ〉〉 to be the smallest subspace of Ω which contains φ294

while being invariant under Gφ := 〈Zα |α ∈ φ〉. Geometrically, 〈〈φ〉〉 is the smallest295

subspace containing φ which is closed under taking shortest paths between special points296

and imaginary lines through opposite points.297

9



The following lemma is an immediate consequence of Timmesfeld’s theory [19]. It estab-298

lishes the “obvious” containments of long root geometries.299

Lemma 3.3. Let i ∈ {1, . . . , n}. Denote the irreducible components of the root system φi300

with φi,1, . . . , φi,r.301

The subspace 〈〈φi〉〉 is the disjoint union of the subspaces 〈〈φi,1〉〉, . . . , 〈〈φi,r〉〉, we will call302

these the irreducible components of 〈〈φi〉〉. Moreover, for l 6= m ∈ {1, . . . , r}, the following303

hold:304

(i) The subspace 〈〈φi,l〉〉 is a long root geometry of the same type as type of the root305

system φi,l.306

(ii) The group Gφi acts transitively on the points of 〈〈φi,l〉〉.307

(iii) Two points are collinear (symplectic, special or opposite) in 〈〈φi,l〉〉 if they are308

collinear (symplectic, special or opposite, respectively) in Ω.309

(iv) Every symp in 〈〈φi,l〉〉 is the intersection of a symp of Ω with the subspace 〈〈φi,l〉〉.310

(v) Every point xl of 〈〈φi,l〉〉 is symplectic in Ω to every point xm of 〈〈φi,m〉〉. The311

symplecton of Ω determined by xl and xm contains no other points of 〈〈φi〉〉 then xl312

and xm.313

Now in the rest of this section, we will determine the companion geometries. These will314

be the subspaces generated by the φji .315

3.2 Finding the companion geometries316

3.2.1 Nailing down the types317

Definition 3.4. For i ∈ {1, . . . , n}, denote Ωi := 〈〈φi〉〉. Moreover, for 0 < j < λi, denote318

Ωj
i := 〈φji 〉.319

Lemma 3.5. Let i ∈ {1, . . . , n}. The group Gφi stabilizes the subspaces Ωj
i for 0 < j < λi.320

Proof. As Gφi is generated by the groups Zα with α ∈ φi, it suffices to prove that the321

latter stabilize Ωj
i . To that end, take α ∈ φi and z ∈ Zα.322

We first prove that (φji )
z ⊆ Ωj

i . Let β ∈ φji and z ∈ Zα. The only point of φ opposite α323

is −α, which is contained in φi, so we know that α and β are not opposite. If α and β324

are collinear or symplectic, then z fixes β, by Lemma 2.11, in which case we can conclude325

that βz ∈ Ωj
i . If α and β are special, then α + β ∈ φ, this hence also corresponds to326

a point of the geometry, which is the unique point of Ω collinear to both α and β. As327

proji(α + β) = proji(α) + proji(β), we obtain that α + β ∈ φji ⊆ Ωj
i . Using Lemma 2.11,328

we find that βz is a point on the line through β and α + β. As both β and α + β are329

contained in the subspace Ωj
i , we know that βz is, too. We conclude that (φji )

z ⊆ Ωj
i .330

Now note that (Ωj
i )
z = 〈φji 〉z is the smallest subspace that contains (φji )

z. As Ωj
i is a331

subspace, this proves that (Ωj
i )
z ⊆ Ωj

i . By repeating these arguments with z−1 instead of332

z, we conclude that (Ωj
i )
z = Ωj

i .333

Lemma 3.6. Let i ∈ {1, . . . , n}. No point of Ωi is opposite a point of Ωj
i , for 0 < j < λi.334
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Proof. Take α ∈ φi. The points of Ω that are not opposite α form a subspace of Ω. As335

this subspace contains φi,j, it also contains Ωj
i , implying that α is not opposite any point336

of Ωj
i .337

Let y be any point of Ωi. By Lemma 3.3, there is an element g ∈ Gφi for which yg ∈ φi. It338

follows from the previous paragraph that yg is not opposite any point of Ωj
i . We hence find339

that y is not opposite any point of (Ωj
i )
g−1

, which by Lemma 3.5 coincides with Ωj
i .340

In order to determine the type of Ωj
i , we try to interpret a generic point of it in Ωi by341

looking at what it is collinear with in Ωi. This is carried out in the next lemma. For the342

definition of a Jordan node, we refer to Section 4.1.1.343

Lemma 3.7. Let i ∈ {1, . . . , n}, suppose that λi is prime and let 0 < j < λi. Let α ∈ φji344

and let Ω′i be an irreducible component of Ωi, say of rank m. The set Sα of points of Ω′i345

that are collinear to α forms a nonempty {k}-grammatical subspace of Ω′i, for some k, as346

in Table 1. The possibilities for k correspond exactly to the Jordan nodes of the diagram.347

Type of Ω′i possibilities for k

Am,{1,m} (for m ≥ 1) k ∈ {1, . . . ,m}
Dm,2 (for m ≥ 4) k ∈ {1,m− 1,m}

E6,2 k ∈ {1, 6}
E7,1 k = 7

Table 1: Sα is a {k}-grammatical subspace of Ω′i

Proof. Suppose for a contradiction that Sα is empty. Let φ′i be the set of roots of φi348

contained in Ω′i. We claim that α is symplectic to all roots β of φ′i. It follows from349

Lemma 3.6 that α is not opposite β, and, by assumption, α is not collinear to β. If α350

were special to β, then −β ∈ φ′i would be collinear to α, contradicting our assumption351

that Sα is empty. We conclude that α is symplectic to β. The set of roots352

φ′i ∪ {γ ∈ ψ | 〈γ, φ′i〉 = 0}

is a root subsystem of ψ, which contains α (because we just showed that it is perpendicular353

to φ′i) and φi (because the roots in Ωi not contained in φ′i are all perpendicular to φ′i as354

they belong to different components). It however follows from Lemma 2.14 that φi is355

a maximal root subsystem of ψ, implying that ψ = φ′i ∪ φ′i ∪ {γ ∈ ψ | 〈γ, φ′i〉 = 0}, a356

contradiction to the irreducibility of ψ. We conclude that Sα is not empty.357

Let x and y be two points of Sα. As α is collinear to both x and y, we find that x and358

y are not opposite. Suppose for a contradiction that x and y would be special, then α is359

the unique point collinear to both x and y. As x, y ∈ Ωi, it follows from the definition of360

Ωi that yZx ⊆ Ωi. By Lemma 2.11, the set yZx consists of the points on the line through361

y and α different from α. As Ωi is moreover a subspace, this implies that α ∈ Ωi, a362
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contradiction. From this, we may conclude that any two points of Sα are either collinear363

or symplectic.364

Next, we argue that Sα is a convex subspace of Ω′i. As Ω is a parapolar space, it is365

clear that Sα is a subspace of Ω′i. Let x and y be two noncollinear points of Sα. By the366

previous argument, we find that x and y are symplectic. Denote with ξ′i the symplecton367

of Ω′i determined by x and y, and by ξ the symplecton of Ω determined by x and y. We368

aim to prove that ξ′i ⊆ Sα. Suppose for a contradiction that there is some element z ∈ ξ′i369

not contained in Sα. As Ω′i is a long root geometry, there is a point w ∈ Ω′i which is370

symplectic to z but opposite to some point of ξ′i. Using the fact that ξ′i = Ω′i ∩ ξ and371

that Ω is a long root geometry, we find that w is opposite every point of ξ which is not372

collinear to z, in particular to α. But this implies that α ∈ φji is opposite to w ∈ Ωi, a373

contradiction to Lemma 3.6.374

It follows from [13] that every convex subspace of Ω′i that contains no pair of special375

points, is automatically grammatical.376

Recall from the first paragraph of this proof that Sα ∩ φ′i is not empty. We claim that for377

every root β ∈ Sα ∩ φ′i, and every root γ ∈ φ′i collinear to β, either γ ∈ Sα or β − γ ∈ Sα.378

As 〈α, β〉 = 1, we find that 〈α, β − γ〉 = 1− 〈α, γ〉. Taking into account that α is neither379

equal to, nor opposite either γ or β − γ, we find that either 〈α, γ〉 = 1 or 〈α, β − γ〉 = 1,380

which indeed proves that α is either collinear to γ or to β − γ.381

Now we observe that no K-grammatical subspace with |K| > 1 satisfies the property382

of the previous paragraph (which intuitively expresses that Sα is rather large). Hence383

K = {k}, 1 ≤ k ≤ m.384

If k is not as in Table 1, then we are in the cases Dm, E6,E7 or E8 and it is easily checked385

that in a suitable residue the vertex corresponding to k defines the long root subgroup386

geometry of that residue, hence the geometry Sα contains special pairs, a contradiction.387

388

The previous lemma already provides enough information about the companion geometry389

in some cases. For instance, the companion geometry of A1,1(K) ∪ E7,1(K) in E8,8(K)390

arising for i = 8 is A1,1(K)×E7,7(K), since there is only one type of grammatical subspace391

in both A1(K) and E7,1(K). But in most cases, we do not know yet enough since there392

are too many choices for k in Table 1. So we have to further pin it down and limit the393

possibilities for k. That is exactly what we do in Lemma 3.9 below, using the global root394

system. First we note that heuristics and numbers already suffice to make right guesses.395

Remark 3.8. Since we know the number of points of an apartment of a long root geometry396

(which is the number of roots), and we know the number of points of an apartment in397

each of the Jordan geometries (the latter are defined in Section 4.1.1), and each point398

belongs to either the long root subgeometry or a companion geometry, simple arithmetics399

can already lead to the right guesses, especially in the irreducible case. Let us give an400

example. Let i = 2 in case of E8. There are 240 roots, 72 of which are taken by the long401

root geometry of A8(K). There remain 168 roots. Apartments of type A8,1,A8,2,A8,3 and402

A8,4 have 9,
(

9
2

)
= 72,

(
9
3

)
= 84 and

(
9
4

)
= 126 points, respectively. The only way 168 can403

be written as a sum of these is as 84+84, leading to a coupled A8,3 and A8,5, using the404

heuristic that no duality class of A8(K) plays a favourite role. Similar, but not completely405
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identical, story for i = 1, in which case long root D8 already accounts for 112 points/roots.406

The remaining 128 either give rise to eight copies of D8,1(K) or one copy of D8,8(K). The407

heuristic that large subgroups produce few orbits leads to D8,8(K).408

Lemma 3.9. Let i ∈ {1, . . . , n}, suppose that λi is prime and denote with φi,1, . . . , φi,r409

the connected components of φi. Let 0 < j < λi and let α ∈ φji . The set Tα of points of φi410

collinear to α is the union of kl-grammatical subspaces of Ωi,l for kl as in Table 2, after411

possibly renumbering the components φi,1, . . . , φi,r, and/or renumbering the nodes of the412

diagram of an individual component φi,l by applying a diagram automorphism.413

Type of ψ i Type of φi = φi,1, . . . , φi,r (k1, . . . , kr)

D4 2 A1 ∪ A1 ∪ A1 ∪ A1 (1, 1, 1, 1)

Dm (m ≥ 5) 2 or m− 2 A1 ∪ A1 ∪ Dm−2 (1, 1, 1)

2 < i < m− 2 Di ∪ Dm−i (1, 1)

E6 2, 3 or 5 A1 ∪ A5 (1, 3)

4 A2 ∪ A2 ∪ A2 (1, 1, 1)

E7 1 or 6 A1 ∪ D6 (1, 6)

2 A7 (4)

3 or 5 A2 ∪ A5 (1, 2)

E8 8 A1 ∪ E7 (1, 7)

7 A2 ∪ E6 (1, 1)

5 A4 ∪ A4 (1, 2)

1 D8 (8)

2 A8 (3)

Table 2: α is collinear to the union of kl-components of Ωi,l (l = 1, . . . , r)

Proof. We start by making two observations regarding ψ, φi and Ωi.414

1. Let β1, β2 be two symplectic roots of φi, both contained in Tα. Then, by calculating415

their dot product, we see that the roots α−β1 and α−β2 are also symplectic. Denote416

with ξi the symplecton in Ωi determined by β1 and β2, and with ζ the symplecton417

in Ω determined by α − β1 and α − β2. Then a straight forward calculation using418

the dot product yields419

{α} ∪ {α− β | β ∈ ξi ∩ φi} ∪ {γ | γ ∈ φi ∩ Tα with 〈β1, γ〉 = 〈β2, γ〉 = 0} ⊆ ζ.

2. Let M1,M2 ⊆ Tα∩φi be two sets of mutually collinear roots for which 〈M1,M2〉 = 0,420

that is, each root in M1 is symplectic to each root in M2. Then, again an easy421

calculation with dot products, implies that422

{α} ∪M1 ∪ {α− β | β ∈M2}

forms a set of mutually collinear roots.423
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In all cases, these two observations suffice to prove the lemma. We work out three explicit424

examples when ψ has type E8, all other cases are completely similar.425

• Let i = 5. Note that φi = φ5,1 ∪ φ5,2 has type A4 ∪ A4. By Lemma 3.7, we know426

that Tα is the union of a {k1}-grammatical subspace of φ5,1 and a {k2}-grammatical427

subspace of φ5,2. After possibly applying diagram morphisms on the diagrams of428

φi,1 and φi,2, we find that k1, k2 ∈ {1, 2}. Let l = 1, 2. Denote with Sα,l the points429

of Ω5,l collinear to α. If kl = 1 (or 2), then Sα,l is a point-line geometry of type A3,1430

(or A1,1 × A2,1, respectively). First suppose that k1 = k2 = 1. Then both Sα,1 and431

Sα,2 consist of 4 mutually collinear roots. By applying Argument 2 above to these432

two sets, we find 9 mutually collinear roots in ψ, a contradiction. Without loss of433

generality, we can hence assume that k2 = 2. We find roots β1 and β2 of φ5,2 that434

are symplectic. By Argument 1 above, we find that α−β1 and α−β2 are roots of ψ435

that are symplectic, and that all roots of φ5,1 must be contained in the symplecton436

of Ω determined by these two points. This implies that all points of φ5,1 must be437

contained in one common symplecton, from which we obtain that k1 = 1.438

• Let i = 1. Then φ1 has type D8. It follows from Lemma 3.7 that Tα is a {k}-439

grammatical subspace of Ω1 for k ∈ {1, 8} (after possibly renumbering the diagram440

by applying a diagram morphism). Suppose that k = 1. Then Tα is a point-line441

geometry of type D7,1. Choose two symplectic roots of Tα ∩ φ1. It follows from442

Argument 2 above that there is a symplecton of Ω that contains both α and Tα,443

implying that Ω contains a symplecton of rank at least 8, a contradiction. We hence444

conclude that k = 8.445

• Let i = 2. Then φ2 has type A8. Again by Lemma 3.7, we find that Tα is a446

{k}-grammatical subspace of Ω2, for some k ∈ {1, 2, 3, 4}. If k = 1, then Tα is a447

point-line geometry of type A7,1, implying that Tα∩φ2 contains 8 mutually collinear448

roots, a contradiction (as ψ does not contain 9 mutually collinear roots). If k = 2,449

then by applying Observation 2 above to Tα ∩ φ2, we obtain that the collinearity450

graph of ψ should admit two 8-cliques with just 6 points in common, while two451

distinct 8-cliques of ψ have at most 5 points in common. Suppose that k = 4, then452

Tα is a point line geometry of type A3,1 × A5,1. Let β1 and β2 be two symplectic453

roots of Tα. By Observation 1 above, the set454

{γ ∈ Tα ∩ φ2 | 〈β1, γ〉 = 〈β2, γ〉 = 0}

would have to be contained in a symplecton of φ′. One, however, again easily verifies455

that this is not the case. We conclude that k = 3.456

Remark 3.10. The sets Tα we obtain in Lemma 3.9 are maximal in the following sense.457

Take g ∈ Gφi , then either T gα = Tα or there exists some point in T gα which is opposite458

some point of Tα.459

Lemma 3.9 determines the types of the various companion geometries. It remains to prove460

that the companion geometries are well defined and really embedded geometries, that is,461

the line set determined by the given type coincides with the line set as a subspace of Ω.462
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3.2.2 Well-definedness of the companion geometries463

Lemma 3.11. Let i ∈ {1, . . . , n} and suppose that λi is prime. Let 0 < j < λi and let464

α ∈ φji . There is a root β ∈ φji such that the points of Ωi collinear to both α and β are465

not contained in a common symplecton of Ωi.466

Proof. Denote with Tα the points of Ωi collinear to α.467

Let γ ∈ Tα ∩ φi. As proji(α − γ) = proji(α) − proji(γ), we find α − γ ∈ φji . This root468

β := α − γ is collinear to all roots of φi that are collinear to α and symplectic to γ.469

By Lemma 3.9, we know what Tα ∩ φi looks like, and in all cases, we can pick a root470

γ ∈ Tα ∩ φi such that the roots of Tα ∩ φi that are symplectic to γ are not contained in a471

common symplecton of Ωi.472

Lemma 3.12. Let i ∈ {1, . . . , n} and 0 < j < λi. The group Gφi acts transitively on the473

points of Ωj
i . Moreover, no two points of Ωj

i are collinear to the same subset of Ωi.474

Proof. Denote G := Gφi , and let α a root in φji . We first prove that G acts transitively on475

Ωj
i , that is, αG = Ωj

i . Note that it follows from Lemma 3.5 that αG ⊆ Ωj
i . We prove the476

other inclusion. The group Wi from Example 2.13 acts transitively on φji . For β, γ ∈ φji477

and γ ∈ φji , one finds elements u in 〈Zβ, Z−β〉 ≤ G such that γsβ = γu. From this, we can478

already conclude that φji ⊆ αG. In order to prove that Ωj
i is contained in αG, it hence479

suffices to prove that αG is a subspace.480

Let x and y be any two collinear points in αG. We aim to prove that the line L through481

x and y is fully contained in αG. Without loss of generality, we may assume that x = α.482

Let g be an element of G which maps α to y, and let Tα be the set of points in Ωi collinear483

to α. We distinguish two different cases.484

1. T gα 6= Tα. In this case, it follows from Remark 3.10 that there exist points p ∈ Tα485

and q ∈ T gα such that p and q are opposite. The point p is then special to y, with486

α = [p, y]. The group Zp ≤ G acts transitively on the points of L \ y, implying that487

L is contained in αG.488

2. T gα = Tα. We try to obtain a contradiction. Let β ∈ φji be a root as in Lemma 3.11489

(it is collinear to α, collinear to at least two points of Tα and there is no symplecton490

of Ωi that contains all roots collinear to both α and β.) As both y and β are collinear491

to all roots collinear to α and β, we find that y and β are collinear or symplectic. If492

they were symplectic, the symplecton of Ω determined by y and β would contain all493

points of Ωi collinear to both y and β, which are precisely the points of Ωi collinear494

to α and β. We have however chosen β in such a way that no such symplecton495

exists. We conclude that y and β are collinear. Now consider the root α− β, which496

exists because α and β are collinear. It is contained in φi (by just considering proji),497

is collinear to α (and hence also to y) and special to β. But then both α and y are498

collinear to β and α− β, a contradiction to the fact that β and α− β are special.499

We conclude that G acts transitively on Ωj
i . The argument above then automatically also500

implies that no two points of Ωj
i are collinear to the same set of points of Ωj

i .501

15



Now we still have to verify that the sets of points of Ωj
i that correspond to the lines of502

the K-Grassmannian as given by Lemma 3.9, and with K corresponding to the array503

(k1, . . . , kr) as in Table 2, are precisely the lines of Ω completely contained in it.504

A pencil of `-grammatical subspaces is a set of grammatical subspaces defining a line in505

the corresponding `-Grassmannian geometry.506

Proposition 3.13. The lines of Ωj
i correspond to pencils of grammatical subspaces of Ωi.507

Proof. Let x and y in Ωj
i and let Tx and Ty be the grammatical subspaces of Ωi collinear508

to x and y, respectively. By Remark 3.10, there is a point p ∈ Tx opposite to some509

point q ∈ Ty. First suppose x ⊥ y. The group Zp fixes all points of Ty collinear or510

symplectic to p and acts transitively on points of xy \ {x}, Now using the fact that Ω is511

a gamma space, we find that points of Ty collinear or symplectic to p are collinear to xy,512

and hence contained in Tx. This shows that every symplecton contained in Ty contains at513

least one point of Tx. This is enough to conclude that the intersection is large enough so514

that the grammatical subspaces Tx and Ty belong to the same pencil, as can be verified515

case-by-case.516

Now assume x and y are not collinear, but Tx ∩ Ty is large, in particular contains at least517

a point, so that p and y are special. Then similarly as above, the action of Zp, which518

stabilizes the pencil P of grammatical subspaces defined by Tx and Ty, shows that each519

member of P is defined by a unique point of the line containing y and [p, y]. Hence x520

belongs to that line, and since x ⊥ p, we see that x = [p, y], implying that x is collinear521

to y.522

Taking Lemma 3.9 and Proposition 3.13 together, we obtain the Main Result mentioned523

in the introduction.524

4 Some geometric constructions525

In the previous sections, we saw which types of full rank Lie geometries embed in the526

long root geometries of exceptional type in the simply laced case. This also provided a527

recipe of how to construct them. In this section, we will phrase these constructions purely528

geometrically, mostly in terms of so-called equator geometries. These are subgeometries529

of Lie incidence geometries arising from two opposite flags by considering the points “in530

the middle”, or “on the equator”, where the two flags play the role of the poles.531

Moreover, we will also construct most of the full rank Lie subgeometries inside more pop-532

ular Lie incidence geometries than the long root ones, in casu, the minuscule geometries533

E6,1(K) and E7,7(K) of types E6 and E7, whose natural representation lives in projective534

space of dimension 26 and 55, which we call the Schläfli and the Gosset varieties, respec-535

tively, since they can be constructed using the corresponding graphs. For type E8, the536

smallest dimension corresponds to the long root geometry (adjoint representation).537

In the next section, we will then treat the non-simply laced cases. Also there, more538

popular geometries exist. For type G2, the dual hexagon is more popular since in the539

spit case is it simply the split Cayley hexagon, which lives on a parabolic quadric in540
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6-dimensional projective space; for type F4, the dual of the long root geometry in the541

split case arises from intersecting the Schläfli variety with a hyperplane; it lives in 25-542

dimensional projective space.543

4.1 Inside the long root subgroup geometries544

4.1.1 Some conventions545

We first introduce some terminology for nodes of the exceptional Dynkin diagrams. The546

node corresponding to the fundamental root not perpendicular to the longest root will be547

called the polar node. The unique node adjacent to it is the subpolar node. Every node in548

the orbit of the node corresponding to the longest root in the extended Dynkin diagram549

under the symmetry group of the extended diagram is called a Jordan node. The latter550

can be defined in the same way for classical Dynkin diagrams, too. For Coxeter diagrams,551

the Jordan nodes are those that are Jordan nodes in some Dynkin diagram underlying552

the Coxeter diagram. Here is a table with the Jordan nodes thus defined:553

Coxeter type Jordan nodes

An 1, 2, . . . , n

Bn/Cn 1, n

Dn 1, n− 1, n

E6 1, 6

E7 7

E8/F4/G2 none

554

Not coincidently, the diagrams having no Jordan nodes are precisely those that do not ex-555

tend to another spherical diagram. Jordan nodes can also be defined as those correspond-556

ing to the fundamental roots where the coefficient of the highest root in its expression as a557

linear combination of fundamental roots, is equal to 1. Also, by [13], the Jordan nodes of558

Xn are precisely those nodes i for which the Lie incidence geometry of type Xn,i is strong,559

that is, has no special pairs and this is equivalent to all convex subspaces to correspond560

to residues of the underlying building, and, in the simply laced case, to apartments to561

generate the geometry. The Lie incidence geometry corresponding to a Jordan node will562

be called a Jordan (Lie incidence) geometry. It follows from the previous sections (cf.563

Lemma 3.9 combined with Proposition 3.13) that the maximal full rank Lie subgeometries564

embed in the ambient long root geometry as a coupled union of a long root geometry with565

one or more Jordan Lie incidence geometries. Also, the Lie incidence geometries of type566

E6 and E7 that we called “more popular” in the introduction to the current section are567

the Jordan ones for these types (and they are also known as the minuscule geometries).568

A maximal full rank Lie subgeometry is of Dynkin cotype i if its Coxeter type is the569

residue of vertex i (in Bourbaki labellng) in the extended Dynkin diagram.570

If the Coxeter type of a maximal full rank Lie incidence subgeometry is reducible, then the571

irreducible components might appear either as factors of a Cartesian product geometry,572
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or as a perpendicular union of independent geometries. This perpendicularity is given573

by the perpendicularity of the corresponding roots. Hence, if the underlying long root574

geometry is a parapolar space, subgeometries are perpendicular precisely when all points575

of one subgeometry are symplectic to all points of the other(s). In case of type G2, a576

generalized hexagon, a point x and a line L are perpendicular precisely when they are not577

incident and not at maximal distance, and we also write x ⊥⊥ L. A similar thing happens578

for type F4, where the short roots can be thought of as corresponding to the symps. Then579

a point x and a symp ξ are perpendicular, denoted as x ⊥⊥ ξ, precisely when x is close to580

ξ (cf. Fact 5.1). Note that not all points of ξ are symplectic to x, hence there is danger581

of confusion with the usual meaning of the notation ⊥⊥; we shall therefore only use that582

symbol for a perpendicular point-symp pair when it is absolutely clear from the context583

that it concerns a relation between points and symps, and not between mutual point sets.584

4.1.2 Some basic properties of long root subgroup geometries585

We state as facts some basic properties shared by all long root subgroup geometries.586

Fact 4.1. If a ⊥ b ⊥ c ⊥ d is a path in ∆, then aonc and bond if and only if a is opposite587

d.588

Fact 4.2. For each point p and each symp ξ, there is at least one point q ∈ ξ symplectic589

to p; that point q is unique if and only if ξ contains some point opposite p. In this case,590

all points of q⊥ ∩ ξ \ {q} are special to p and all points of ξ \ q⊥ are opposite p.591

For two opposite points p, q, we denote with R(p, q) the set of lines containing collinear592

points to p and to q. Likewise, for two opposite lines L,M , we let R(L,M) be the set of593

points having collinear points in both L and M .594

Fact 4.3. Let ∆ be a long root geometry of exceptional type E over the field K, or a595

Lie incidence geometry isomorphic to F4,1(K,A), for some quadratic alternative division596

algebra A over K, or a Moufang hexagon defined over the field K. Then, for each pair of597

opposite points p, q, the set of points R(L,M), with L,M ∈ R(p, q) opposite, is indepen-598

dent of the choice of L,M ∈ R(p, q). The stabilizer of R(L,M) inside the little projective599

group of ∆ contains PSL2(K).600

Also, R(L,M) = {p, q}⊥⊥⊥⊥, the set of points symplectic to all points that are symplectic601

to both p and q.602

The set R(L,M) is called an imaginary line and denoted I(p, q). It is uniquely determined603

by each pair of its points.604

4.1.3 The Dynkin cotype corresponds to the polar node605

This type of maximal full rank Lie subgeometries has a canonical geometric description,606

valid for all long root geometries of exceptional type E over the field K, or a Lie incidence607

geometry isomorphic to F4,1(K,A), for some quadratic alternative division algebra A over608

K, or a Moufang hexagon defined over the field K. Let ∆ be such a geometry. Let p, q609
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be two opposite points of ∆. The set p⊥⊥ ∩ q⊥⊥ is called an equator set. It is empty610

for Moufang hexagons, and it does not contain lines for type F4,1. In the other cases611

we endow it with the induces lines and call this the equator geometry (with poles p, q),612

denoted by E(p, q). For type F4,1, we endow it with the intersections with symplecta that613

share at least two points with it, and also call it the equator geometry (with poles p, q),614

denoted by E(p, q). In the nonempty case, E(p, q) is the long root subgroup geometry615

Ω corresponding to the residue of a vertex of type the polar node. Any pair of points of616

I(p, q) can serve as poles. Hence the corresponding maximal full rank Lie subgeometry617

is A1,1(K)× Ω. Its companion geometry is defined as follows. For each point x ∈ I(p, q),618

let R(x) be the set of points collinear to x and at distance 2 (in the collinearity graph;619

otherwise said, special to) from every member of I(p, q) \ {x}. Note that R(x), endowed620

with all lines completely contained in it, is a Lie incidence geometry Ω′ corresponding621

to the point residual building at x and related to the subpolar node. The union of all622

R(x) for x ranging over I(p, q) is a product geometry L× Ω′, where L is any member of623

R(p, q); in fact the point set L × Ω′ is also the union of all members of R(p, q). We call624

this product geometry the subequator geometry.625

4.1.4 The Dynkin cotype corresponds to the subpolar node626

The long root subgeometries—In this case, the maximal full rank Lie subgeometry is627

the direct product of Ω1 := A2,{1,2}(K) with another (long root) Lie incidence geometry,628

say Ω2. The component Ω1 is obtained by taking the special closure of two opposite629

lines, that is, the smallest subspace containing the two opposite lines and closed under630

taking the centre of a pair of special points contained in the subspace. Let p, q be two631

opposite points in this geometry Ω1, and let L,M be the lines in this geometry belonging632

to (p, q), and let p ⊥ x ∈ L, q ⊥ y ∈ M . Then Ω2 is the intersection E(p, q) ∩ E(x, y).633

Inside E(p, q), it can easily be checked that this coincides with the equator geometry,634

appropriately defined (see below for each of the separate cases), of a pair of opposite635

objects of E(p, q) corresponding to the lines through p. Let us briefly work this out for636

the E-cases.637

In E6,2(K), points have type 2 and lines have type 4. Here, E(p, q) is A5,{1,5}(K), and638

type 4 elements of the building correspond to Segre subgeometries of type (2, 2), that is,639

product spaces of two planes. Considering a pair Γ,Γ′ of these, the equator geometry640

E(Γ,Γ′) is the geometry induced by the set of points collinear to a plane of Γ and to one641

of Γ′. In the underlying projective space PG(5,K) we obtain the set of point-hyperplane642

pairs having their point inside a fixed plane π and having their hyperplane through a643

disjoint plane π′, or vice versa. This is the union of two long root geometries isomorphic644

to A2,{1,2}(K).645

In E7,1(K), points have type 1 and lines type 3. Here, E(p, q) is D6,2(K) and type 3 elements646

correspond to convex subgeometries of type A5,2. Considering a pair Γ,Γ′ of these, the647

equator geometry E(Γ,Γ′) is the geometry induced by the set of points collinear to a(n648

automatically non-maximal) singular subspace of dimension 3 of Γ and to one of Γ′. In649

the underling polar space, it is the set of lines intersecting each of two opposite maximal650

singular subspaces in a point.651
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In E8,8(K) finally, points have type 8 and lines type 7. Here, E(p, q) is E7,1(K) and type652

7 elements of E8,8(K) have type 7 in E7,1(K) and correspond to convex subgeometries of653

type E6,1. Considering a pair Γ,Γ′ of these, the equator geometry E(Γ,Γ′) is the geometry654

induced by the set of points collinear to a(n automatically maximal) singular subspace of655

dimension 5 of Γ and to one of Γ′.656

The companion geometries—We now describe the general construction of the com-657

panion geometries from the long root subgeometry Ω1×Ω2 (see the previous paragraph).658

The following also holds in a sort of degenerate form for type F4, and it is worked out in659

detail in §5.2.4. For type E, proofs are similar (and simpler, in fact) and so we just give660

the construction.661

Consider two opposite points p, q of Ω1 and let p ⊥ p1 ⊥ q1 ⊥ q ⊥ q2 ⊥ p2 ⊥ p be the662

unique hexagon in Ω1 thus defined. For each plane π1 through p, p1, there exist unique663

planes π2 and π3 containing q, q1 and p2, q2, respectively, such that π1, π2, π3 intersect a664

common plane π in three respective points. Explicitly, the intersection point a1 := π1 ∩ π665

is given by the unique point of π1 not opposite both q and q2. The point π2 ∩ π is defined666

as the unique point a2 collinear to both a1 and q, and, likewise, π3∩π is the unique point667

a3 collinear to both a2 and p2, or a1 and q2. Note that a3 ∈ E(p, q). The points a2 and a3668

thus defined also determine π2 and π3, respectively. By varying π1, the plane π describes669

the maximal planes of the geometry π×Ω3, where Ω3 is the residual geometry of the line670

pp1. We call π×Ω3 the half subequator intersection geometry for further reference in our671

tables.672

One can do the same with the line pp2 to obtain the second companion geometry, iso-673

morphic to π × Ω3. One checks that a direct way to obtain this final companion is to674

collect the centres of all special pairs contained in π × Ω3. However, this is not a very675

geometrically transparent construction. For the sake of easy reference, we call this the676

centre geometry, but we do not insist on it further.677

Now we take a look at the individual exceptional simply laced cases and relate the general678

constructions so far to some specific constructions.679

4.2 Case of type E6680

4.2.1 Table of maximal full rank Lie subgeometries681

682

Type Isomorphism class Comments

2 A1 × A5 A1,1(K)⊥⊥A5,{1,5}(K)∪ Imaginary line & its equator in E6,2

A1,1(K)×A5,3(K) Subequator in E6,2

A1,1(K)×A5,1(K)∪ (1, 5)-Segre geometry in E6,1

A5,2(K) Equator of previous in E6,1

4 A2×A2×A2 A2,{1,2}(K)⊥⊥A2,{1,2}(K)⊥⊥A2,{1.2}(K)∪ Equator intersection in E6,2

A2,1(K)×A2,1(K)×A2,1(K)∪ Half subequator intersection in E6,2

A2,2(K)×A2,2(K)×A2,2(K) Centre geometry of previous

(A2,1(K)× A2,1(K)) ∪ (A2,1(K)× A2,1(K))∪ Coupled Segre geometries in E6,1

A2,1(K)× A2,1(K) Equator of previous in E6,1

683
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4.2.2 Trivia about the minuscule geometry E6,1(K)684

The minuscule geometry of type E6 over the field K is the Lie incidence geometry E6,1(K).685

It is a parapolar space of constant symplectic rank 5 with the characterizing property that686

each point residual is isomorphic to the half spin geometry D5,5(K). The maximal singular687

subspaces have projective dimensions 4 and 5; the non-maximal singular subspaces of688

dimension 4 are usually called 4′-spaces. The singular 5-spaces correspond to vertices of689

type 2 of the corresponding building and two such 5-spaces are opposite (as vertices of690

the spherical building) if and only if the collinearity relation defines a bijection, and hence691

an isomorphism, between the two 5-spaces.692

For a point x and a 5-space U , we say that x and U are close if x⊥∩U is a 3-space. There693

are only two other possibilities, namely, x ∈ U and |x⊥ ∩ U | = 1.694

4.2.3 Case A1 × A5695

Proposition 4.4 of [8] implies the following construction of the full rank subgeometry of696

Dynkin cotype 2.697

Construction 4.4 (Dynkin cotype 2 for E6). Let W,W ′ be opposite 5-spaces of E6,1(K).698

Let L1 be the set of lines intersecting W ∪ W ′ in precisely two points (hence each of699

W and W ′ in exactly one point). Then for each point x on each member of L1 there700

exists a unique 5-space Wx intersecting all members of L1, and the collection of all such701

intersection points is precisely Wx; if x /∈ W ∪W ′, then Wx is opposite both W and W ′.702

Hence the union of all members of L1 induces in E6,1(K) a Segre geometry S (W,W ′) of703

type (5, 1), the product geometry A1,1(K)× A5,1(K) of a projective line with a projective704

5-space.705

The set of points x such that both x⊥∩W and x⊥∩W ′ are 3-spaces, together with all lines706

entirely contained in it, forms a Lie incidence geometry E(W,W ′) isomorphic to A5,2(K),707

called the equator geometry (with poles W,W ′). Each point of E(W,W ′) is collinear to a708

3-space of each 5-space of S (W,W ′) and hence every pair of 5-spaces of S (W,W ′) can709

serve as pair of poles of E(W,W ′).710

We note that, performing the above construction to a skeleton of W (inducing a skeleton711

in W ′, we obtain all the points of an apartment. By [2, 6], this generates E6,1(K). Hence712

S (W,W ′)∪E(W,W ′) generates E6,1(K). In the universal embedding of E6,1(K), the Segre713

geometry S (W,W ′) spans an 11-dimensional space, whereas E(W,W ′) is (universally)714

embedded in a complementary subspace of dimension 14.715

4.2.4 Case A2 × A2 × A2716

Also this case is realized by a construction already in the literature. Indeed, the following717

can be extracted from §1.5.6 of [8], in particular Remark 5.27 therein. Set ∆ := E6,1(K).718

Construction 4.5 (Dynkin cotype 4 for E6). Let π and π′ be two opposite planes in719

∆. This means that the collinearity relation between them is empty. Let U1 and U2 be720
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two distinct singular 5-spaces of ∆ containing π. Then there exist unique 5-spaces U ′1721

and U ′2 containing π′ such that some planes πi ⊆ Ui and π′i ⊆ U ′i span a singular 5-space722

U ′′i , i = 1, 2. Then the set E(π, π′) of points of ∆ collinear to some line in each of the723

planes π, π′, πi, π
′
i, i = 1, 2, is the point set of a fully embedded geometry isomorphic to724

A2,1(K) × A2,1(K) (the line set is just the induced one). Moreover, the set Π(π, π′) of 5-725

spaces close to each point of E(π, π′), is the point set of a non-thick generalized hexagon,726

which in E6,2(K) corresponds to a standard (and uniquely) embedded A2,{1,2}(K).727

Again, the set E(π, π′), together with the union of all 5-spaces belonging to Π(π, π′),728

generates ∆. In the universal embedding of ∆ in PG(26,K), the set E(π, π′) spans an 8-729

space and the union of all 5-spaces in Π(π, π′) spans a 17-dimensional subspace. Now, the730

set of planes in Π(π, π′) contained in at least two 5-space of Π(π, π′) form a bipartite graph731

under the collinearity relation. The planes of each class form again a Segre geometry;732

hence we obtain two coupled Segre geometries isomorphic to A2,1(K)× A2,1(K).733

The set Π(π, π′) also corresponds to the set Σ of symps of F4,4(K,K) obtained in Con-734

struction 5.9, viewing F4,4(K,K) as a full subgeometry of ∆ (and then indeed the 5-spaces735

of ∆ fully contained in F4,4(K,K) correspond to the symplecta of the latter, see e.g. [7]).736

This provides yet another way to define Π(π, π′) and consequently E(π, π′), using the737

tight connection between E6,1(K) and F4,4(K,K).738

4.3 Case of type E7739

4.3.1 Table of maximal full rank Lie subgeometries740

741

Type Isomorphism class Comments

1 A1×D6 A1,1(K)⊥⊥D6,2(K)∪ Imaginary line & its equator in E7,1

A1,1(K)×D6,6(K) Subequator in E7,1

A1,1(K)×D6,1∪ Product space line times symp in E7,7(K)
D6,6(K) Equator of previous in E7,7

2 A7 A7,2(K)∪A7,6(K) Merged poles & equators from A6 in E7,7

A7,4(K)∪ Symps of previous are points in E7,1

A7,{1,7}(K) Centre geometry of previous; A7,{1,7} ≤ E7,1

3 A2×A5 A2,{1.2}(K)⊥⊥A5,{1,5}(K)∪ Equator intersection in E7,1

A2,2(K)×A5,2(K)∪ Half subequator intersection in E7,1

A2,1(K)×A5,4(K) Centre geometry of previous

A2,1(K)×A5,1(K)∪ Product space in E7,7

A2,2(K)×A5,5(K)∪ Coupled to previous in E7,7

A5,3(K) Equator intersection in E7,7

4 A1×A3×A3 ≤ A1×D6 (not maximal)

742

4.3.2 Trivia about the minuscule geometry of type E7743

The minuscule geometry of type E7 over the field K is the Lie incidence geometry E7,7(K).744

It is a parapolar space of constant symplectic rank 6 with the characterizing property that745
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each point residual is isomorphic to the minuscule geometry E6,1(K). The maximal sin-746

gular subspaces have projective dimensions 5 and 6; the non-maximal singular subspaces747

of dimension 5 are usually called 5′-spaces. The singular 6-spaces correspond to vertices748

of type 2 of the corresponding building. The vertices of type 1 correspond to the symps.749

Two such symps are opposite if and only if the collinearity relation defines a bijection,750

and hence an isomorphism, between the two symplecta. Symps are called adjacent if they751

intersect in a 5-space.752

For a point x and a symp ξ, we say that x and ξ are close if x⊥ ∩ U is a 5-space. There753

are only two other possibilities, namely, x ∈ ξ and |x⊥ ∩ ξ| = 1.754

Fact 4.6. Two 6-spaces are opposite if and only if being symplectic induces a duality755

between them.756

Fact 4.7. For a point p and a 6-space W , the only possibilities for p⊥ ∩W are ∅, a line,757

a 4-space and W itself (the latter if and only if p ∈ W ).758

Fact 4.8. A 4-space is contained in a unique 6-space and a unique maximal 5-space.759

Fact 4.9. For opposite points p, q, the map p⊥ ∩ q⊥⊥ → p⊥⊥ ∩ q⊥ : x 7→ x⊥ ∩ q⊥ induces a760

duality between geometries isomorphic to E6,1(K).761

4.3.3 Case A1 × D6762

Construction inside the minuscule geometry—This case is very similar to the case763

of Dynkin cotype 2 for E6. Sections 3.3 and 4.3 of [8] yield the following construction.764

Construction 4.10 (Dynkin cotype 1 for E7). Consider two opposite symps ξ, ξ′ in765

E7,7(K). Let L1 be the set of lines intersecting ξ ∪ ξ′ in precisely two points (hence each766

of ξ and ξ′ in exactly one point), and for a point x ∈ ξ, let β(x) be the unique collinear767

point in ξ′. Then for each point x on each member of L1 there exists a unique symp768

ξx intersecting all members of L1, and the collection of all such intersection points is769

precisely ξx; if x /∈ ξ ∪ ξ′, then ξx is opposite both ξ and ξ′. Hence the union of all770

members of L1 induces in E7,7(K) a product geometry L× ξ, with L ∈ L1, of a projective771

line with a polar space, isomorphic to A1,1(K)× D6,1(K) .772

The set of points x of E7,7(K) such that both x⊥∩ξ and x⊥∩ξ′ are 5′-spaces, together with773

all lines entirely contained in it, forms a Lie incidence geometry E(ξ, ξ′) isomorphic to774

D6,6(K), called the equator geometry (with poles ξ, ξ′). Each point of E(ξ, ξ′) is collinear775

to a 5′-space of each symp of L × ξ of rank 6, and hence every pair of rank 6 symps of776

L× ξ can serve as pair of poles of E(ξ, ξ′).777

We again note that, performing the above construction to a skeleton of ξ (inducing a778

skeleton in ξ′), we obtain the point set of an apartment of the corresponding building. By779

[2, 6], this generates E7,7(K). Hence L × ξ ∪ E(ξ, ξ′) generates E7,7(K). In the universal780

embedding of E7,7(K) in PG(55,K), the product geometry L× ξ spans an 23-dimensional781

space, whereas E(ξ, ξ′) is (universally) embedded in a complementary subspace of dimen-782

sion 31.783
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It is shown in [8] that the only way in which D6,6(K) is fully embedded in E7,7(K) is as784

an equator geometry like above. In the point residual of E(ξ, ξ′), one sees the residue of785

D6,6(K), which is A5,2(K), and a bunch of mutually opposite 5-spaces (coming from the786

5′-spaces in L× ξ to which the point is collinear) forming a Segre geometry of type (5, 1).787

This is exactly Construction 4.4.788

Derived constructions in the long root geometry—We can now also go to E7,1(K)789

as follows. The points of E7,1(K) are the symps of E7,7(K). Taking the symps of rank 6 of790

L× ξ, we obtain an imaginary line of E7,1(K). The corresponding equator geometry can791

be obtained in two different ways:792

(i) It corresponds to the collection of symps of E7,7(K) generated by the symps of793

E(ξ, ξ′);794

(ii) it also corresponds to the collection of symps generated by the lines K and β(K),795

with K running through the set of lines of ξ.796

The corresponding subequator geometry is constructed as the set of symps generated by797

a point of E(ξ, ξ′) and any non-collinear point of L× ξ.798

4.3.4 Case A2 × A5799

Construction inside the minuscule geometry—It is shown in Proposition 5.31 of800

[8] that the geometry A5,3(K) has a unique full embedding Γ in E7,7(K), and it arises801

from six symps ξ1, . . . , ξ6, with ξi ∩ ξi+1 = Wi,i+1 a 5-space (subscripts modulo 6), and ξi802

opposite ξi+3 (again subscripts modulo 6), as the intersection of the equator geometries803

E(ξi, ξi+3), i = 1, 2, 3. Now, the fact that opposite symps define a product space isomor-804

phic to A1,1(K)×D6,1(K), implies that the 5-spaces Wi,i+1 and Wi+2,i+3 are contained in a805

unique Segre geometry (fully embedded geometry isomorphic to A1,1(K)×A5,1(K)), call it806

S (Wi,i+1,Wi+2,i+3). Let x ∈ W1,2 be arbitrary. Let x′ ∈ W3,4 and x′′ ∈ W5,6 be collinear807

with x. If x′ were not collinear to x′′, then the symp defined by x and the unique point x0808

of W3,4 collinear to x′′ would contain x, x′, x′′ and hence at least a line M of W6,1, implying809

that x′ ∈ ξ4 would be collinear to at least two points of ξ1, namely x and a point of M ,810

contradicting the fact that ξ1 and ξ4 are opposite.811

Hence each point x ∈ W12 is contained in a unique plane πx intersecting S (W1,2,W3,4)812

in a line, and the same for S (W3,4,W5,6) and S (W1,2,W5,6). A routine argument shows813

that every singular 5-space W ′
3,4 of S (W1,2,W3,4) is contained in a symp ξ′3 together with814

W2,3. There is also a unique symp ξ′4 in the product space defined by ξ1 and ξ4 containing815

W ′
3,4. Then ξ′4 contains a unique 5-space W ′

4,5 that also belongs to S (W4,5,W6,1) and is816

contained in a symp ξ′5 together with W5,6. Now suppose W ′
3,4 6= W1,2. Then clearly the817

symps ξ1, ξ2, ξ
′
3, ξ
′
4, ξ
′
5, ξ6 define the same intersection Γ of equator geometries, that is,818

E(ξ1, ξ2) ∩ E(ξ3, ξ4) ∩ E(ξ5, ξ6) = E(ξ1, ξ2) ∩ E(ξ′3, ξ
′
4) ∩ E(ξ′5, ξ6).

Consequently, the Segre geometry S (W ′
3,4,W5,6) is contained in the union Φ of planes819

πx, with x ranging over W1,2. Varying W ′
3,4, we find that Φ is a product space πx ×W1,2,820

for arbitrary x ∈ W1,2. Similarly, we find a product space Φ′ using W2,3,W4,5 and W6,1.821

Then Γ is defined by each “hexagon” of symps generated by respective 5-spaces of Φ and822
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Φ′. In fact, the incidence graph on these symps and 5-spaces is the incidence graph of a823

non-thick generalized hexagon, which in E7,1(K) defines a fully embedded A2,{1,2}(K).824

Now, a point of Φ is collinear to a subgeometry of Φ′ isomorphic to A1,1(K) × A4,1(K).825

Hence points of Φ correspond to lines of the maximal planes of Φ′, and to hyperplanes of826

the maximal 5-spaces Φ′. This explains why Φ′ is written as A2,2(K)× A5,5(K).827

Derived constructions in the long root geometry—We already derived the standard828

A2,{1,2}(K). The symps of Γ define a set of symps of E7,1(K), which gives rise to an829

embedded A5,{1,5}(K). Finally, let x ∈ W1,2 again. Select a line L ⊆ W1,2 containing x,830

and a line L′ ⊆ πx containing x. We see that L and L′ define a unique symp ξ(L,L′),831

which in fact depends on a line of a 5-space and a line of a plane. The set of all such832

symps, using Φ, will form a geometry A2,2(K)×A5,2(K). In Φ′ symps relate to the dual of833

the components, as explained above, whence the geometry A2,1(K) × A5,4(K) as coupled834

geometry in E7,1(K).835

4.3.5 Case A7836

This is an interesting, because irreducible, case.837

Construction inside the minuscule geometry—We start off with a pair of opposite838

6-spaces, say W,W ′. Let E(W,W ′) be the set of points x of E7,7(K) such that x⊥ ∩W is839

a line and x⊥ ∩W ′ is a subspace of dimension 4. Similarly, E(W ′,W ) is the set of points840

y of E7,7(K) such that y⊥ ∩W is a subspace of dimension 4 and y⊥ ∩ E ′ is a line. Our841

goal is to show that W and E(W,W ′) (and symmetrically W ′ and E(W ′,W )) generate a842

subgeometry of E7,7(K) isomorphic to A7,2(K).843

Lemma 4.11. The set E(W,W ′), endowed with all the lines of E7,7(K) entirely contained844

in it, is a Lie incidence geometry isomorphic to A6,2(K).845

Proof. Consider an arbitrary 4-space V ′ in W ′ and let U ′ be the unique maximal 5-space846

containing V ′. We claim that there is a unique point u ∈ U ′ with u⊥ ∩W 6= ∅, and that847

for such u holds that u⊥ ∩W is a line. First assume for a contradiction that there are848

two points u1, u2 ∈ U with u⊥i ∩W 6= ∅, i = 1, 2. If u⊥1 ∩ u⊥2 ∩W 6= ∅, then a point in849

W collinear to u1 and u2 is also collinear to 〈u1, u2〉 ∩ V ′ ⊆ W ′, contradicting the fact850

that W and W ′ are opposite. Hence every y ∈ u⊥1 ∩W is symplectic to u2 and ξ(u2, y)851

contains u1, u2 and (u⊥1 ∪ u⊥2 ) ∩W . Since the latter is at least a line, by assumption, the852

point 〈u1, u2〉 ∩V ′ is collinear to at least one point of W , a contradiction again. Hence at853

most one point u in U ′ has the property that u⊥ ∩W is nonempty.854

Since being symplectic induces a duality between W and W ′, there is a unique line L ⊆ W855

all points of which are symplectic to all points of V ′. Select x ∈ L arbitrary. Select x′ ∈ W ′
856

opposite x. By Fact 4.9, there is a point ux ⊥ x collinear to V ′. Uniqueness of U ′ yields857

ux ∈ U ′. By the previous paragraph, ux = uy =: u for distinct x, y ∈ L. Since every point858

of U ′ is symplectic with every point of u⊥ ∩W , it follows that u⊥ ∩W = L. The claim is859

proved.860

Now from our proof follows that for each line L in W , there is a point u with u⊥∩W = L861

and u⊥ ∩W ′ a 4-space; just take for the latter L⊥⊥ ∩W ′ and apply the proof. Uniquess862

also follows from that proof.863

25



Hence E(W,W ′) is in natural bijective correspondence to the set of lines of W , hence864

to A6,2(K). It is now routine to check that this bijection is an isomorphism, i.e., maps865

lines to lines. Indeed, let first K be a line entirely contained in E(W,W ′). Pick distinct866

x, y ∈ K. Considering any point in (x⊥ ∩W ) \ y⊥, we obtain a symp ξ containing K867

and the span S of Lx := x⊥ ∩W and Ly := y⊥ ∩W . If S has dimension 3, then x is868

collinear to a plane of S ⊆ W , a contradiction. Hence Lx and Ly intersect in some point869

pK , and pK ⊥ K. Now in ξ we see that K corresponds to a full line pencil in 〈Lx, Ly〉.870

Conversely, let L1, L2 be two intersecting lines in W . If the points u1, u2 ∈ E(W,W ′)871

with u⊥i ∩W = Li, i = 1, 2, are not collinear, then they are symplectic and the symp872

they determine contains a plane of W and a plane of W ′ contradicting the fact that W873

does not contains any point collinear to any point of W ′. Hence u1 ⊥ u2 and the first874

part shows that the planar line pencil determined by L1 and L2 corresponds to the line875

〈u1, u2〉.876

We call E(W,W ′) a directed equator geometry for further reference.877

Proposition 4.12. The 6-space W and E(W,W ′) (and symmetrically W ′ and E(W ′,W ))878

generate a subgeometry of E7,7(K) isomorphic to A7,2(K).879

Proof. We use the technique of Section 5.1 of [22]. In the Lie incidence geometry A7,2(K)880

absolutely embedded in PG(27,K) we select a singular subspace W of dimension 6 and an881

opposite geometry Γ isomorphic to A6,2(K) (these correspond to a point and a hyperplane882

not containing that point, respectively, of the underlying geometry A7,1(K) ∼= PG(7,K)).883

It is easy to see that every point of A7,2(K) not in W and not in Γ lies on a unique line of884

A7,2(K) joining a point of W with one of Γ. Hence the union of the planes intersecting Γ in885

a point x and W in a line L, is A7,2(K). The map x 7→ L induces an isomorphism from the886

geometry Γ to the line Grassmannian of W , preserving cross-ratio, i.e., the isomorphism887

is linear. It is now clear, by composing with a linear collineation of W , which is possible888

since W and 〈Γ〉 are complementary subspaces in PG(27,K)—of dimensions 6 and 20,889

respectively—that every such linear isomorphism comes from an ambient A7,2(K).890

Hence, in order to derive the assertion from Lemma 4.11, we only still have to check891

whether, in the absolutely universal embedding of E7,7(K) in PG(55,K), the subspaces892

generated by W and E(W,W ′) are disjoint. To that aim, we choose a basis in W , take893

the corresponding basis of W ′ (and note that every base point of W is opposite a unique894

base point of W ′; moreover, these bases generate opposite flags of type {1, 2, 3, 4, 5}. The895

points of E(W,W ′) collinear with lines generated by base points define an apartment in896

E(W,W ′), and likewise in E(W ′,W ). It follows that we can extend the opposite flags897

to opposite chambers and that we obtain the points of an apartment of the underlying898

building of type E7. Now, by [2, 6], this apartment generates E7,7(K). Hence W,W ′,899

E(W,W ′) and E(W ′,W ) generate E7,7(K), and so they generate PG(55,K). But the900

universal embeddings of W,W ′, E(W,W ′) and E(W ′,W ) happen in projective subspaces901

of dimensions 6, 6, 21 and 21, respectively. Hence these subspaces are disjoint, as otherwise902

they do not generate a space of dimension 55.903

Hence the subspaces ∆ and ∆′ generated by W and E(W,W ′), and by W ′ and E(W ′,W ),904

respectively, define subgeometries isomorphic to A7,2(K). Clearly, a point of one is collinear905

26



to a symp of the other (indeed, we may now take for W any 6-space in ∆ and perform the906

construction. Then we consider a point of W and see that it is collinear to a subgeometry907

of E(W ′,W ) isomorphic to A5,2(K), and to nothing in W ′). Hence we may view one as908

A7,2(K) and the other as A7,6(K).909

Considering the point residual at some point of W , we also see that, in the residue, we get910

inside ∆ a residue isomorphic to A1,1(K)×A5,1(K), and from ∆ we get A5,2(K), as noticed911

in the previous paragraph. Hence in the point residual we again recover Construction 4.4.912

Derived constructions in the long root geometry—If we consider ∆ and ∆′ as913

the 2- and 6-Grassmannian, respectively, of the same 7-dimensional projective space,914

then one checks that collinearity between ∆ and ∆′ induces a duality of that projective915

space. Hence symps correspond to symps under that duality, because they are objects of916

symmetric type 4 in both A7,2(K) and A7,6(K). Each such corresponding pair of symps917

spans a symp of E7,7(K), and the set of these symps forms the points set in E7,1(K) of918

an embedded geometry Ω isomorphic to A7,4(K). To get to the long root geometry, one919

notices that a pair (x, y) of points of Ω at distance 3 in Ω corresponds to a pair of 3-920

space of PG(7,K) intersecting in a point u and generating a hyperplane H, with u ∈ H.921

However, one also checks that in E7,1(K), the pair {x, y} is special, and so defines a unique922

point px,y of E7,1(K). It now so happens—but we shall not prove this—that the point px,y923

only depends on u and H. Hence we obtain a set of points bijective with the point set924

of A7,{1,7}(K), and actually, one can show that, endowed with the lines contained in it, it925

actually is isomorphic to A7,{1,7}(K). This way, we constructed the full rank subgeometries926

of Dynkin cotype 2 in the long root geometry of type E7 only using the minuscule geometry927

E7,7(K), which is much more accessible.928

4.4 Case of type E8929

4.4.1 Table of maximal full rank Lie subgeometries930

931
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Type Isomorphism class Comments

1 D8 D8,8(K)∪ Merged trace geometries in E8,8

D8,2(K) Centre geometry of previous; D8,2 ≤ E8,8

2 A8 A8,3(K)∪A8,6(K)∪ Merged trace geometries in E8,8

A8,{1,8}(K) Centre geometry of previous; A8,{1,8} ≤ E8,8

3 A1×A7 ≤ A1 × E7 (not maximal)

4 A1×A2×A5 ≤ A1 × E7 (not maximal)

5 A4×A4 A4,{1,4}(K)⊥⊥A4,{1,4}(K)∪ Orthogonal A4,{1,4} pair
A4,1(K)×A4,2(K) ∪ A4,4(K)×A4,3(K)∪ Directed half equators
A4,2(K)×A4,4(K) ∪ A4,3(K)×A4,1(K) Directed half equators

6 A3×D5 ≤ D8 (not maximal)

7 A2×E6 A2,{1.2}(K)⊥⊥E6,2(K)∪ Equator intersection in E8,8

A2,1(K)×E6,1(K)∪ Half subequator intersection in E8,8

A2,2(K)×E6,6(K) Centre geometry of previous

8 A1×E7 A1,1(K)⊥⊥E7,1(K)∪ Imaginary line & its equator in E8,8

A1,1(K)×E7,7(K) Subequator in E8,8

932

There is no minuscule or Jordan geometry in this case. We content ourselves with men-933

tioning some geometric connection between the mutual companion geometries, sometimes934

describing them from scratch using the diagrams in [22, §7]. Note that the cases A1 × E7935

and A2 × E6 are explained above as equator geometry and subequator geometry, and936

intersection of two equator geometries and intersection of half subequator geometries,937

respectively.938

4.4.2 Case A8939

The following discussion is suggested by the second last diagram in §7.3 of [22]. Detailed940

proofs would be rather technical, though also straightforward.941

Embeddings of the Jordan geometries—Consider two opposite singular subspaces942

of dimension 7, say U,U ′ in ∆ := E8,8(K). Each point of U is special to all points of a943

hyperplane of U ′ and opposite the others. Hence the centre geometry Ω1,7 (with point set944

all centres of the special pairs from U ∪ U ′ and line set induced from ∆) is isomorphic945

to A7,{1,7}(K). Now note that a point outside U is collinear either to the empty subset,946

a point, a plane, or a 5-space of U . Also, a singular 5-space is contained in a unique947

maximal 7-space and in a unique maximal 6-space. For each 5-space W ⊆ U , the unique948

maximal 6-space V containing W contains a unique point pW that is symplectic to at949

least one point of U ′, and then it is symplectic to all points of a line L′ ∈ U ′ (and L′ is the950

unique line in U ′ all points of which are special to all points of W ); moreover p⊥W ∩L′
⊥ is a951

5-space ZW . The collection of points pW when W ranges over all 5-spaces of U describes952

a so-called trace geometry Ω6 isomorphic to A7,6(K) when endowed with the lines of ∆ it953

contains; the union of all ZW for W ranging over all 5-spaces of U defines a trace geometry954

Ω5 isomorphic to A7,5(K). Now, just like in the first part of the proof of Proposition 4.12,955

the union Ω5 ∪ Ω6 together with all lines joining a point of Ω5 with a point of Ω6 defines956
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a geometry Ω5,6 isomorphic to A8,6(K). Reversing the roles of U and U ′, we also find957

trace geometries Ω2 and Ω3 isomorphic to A7,2(K) and A7,3(K), respectively, which merge958

into a geometry Ω2,3 isomorphic to A8,3(K). One then checks (and the notation for the959

subscripts was chosen as such) that a point of Ω5,6, which corresponds to a 5-space Y of960

PG(8,K), is collinear to all points of Ω2,3 that correspond to a plane of PG(8,K) contained961

in Y . This describes the coupling between Ω2,3 and Ω5,6.962

Embeddings of the long root geometry—Now, the singular subspaces U,U ′ together963

with the centre geometry Ω1,7 do not generate a geometry isomorphic to the long root964

A8,{1,8}(K); the dimension is one to short. However, there is another geometric way in965

which we can recover that long root geometry: A point p of Ω2,3 corresponds to a plane966

π of PG(8,K); a point q of Ω5,6 corresponds to a 5-space Π of PG(8,K). If π and Π967

intersect in a unique point of PG(8,K), then p and q are special; moreover the centre c968

only depends on the point-hyperplane pair (π∩Π, 〈π,Π〉). The set of all centres endowed969

with all induced lines is exactly the long root A8,{1,8}(K). In fact, the set of points of Ω2,3970

corresponding to planes of PG(8,K) that contain π∩Π and are contained in 〈π,Π〉, is the971

point set of a directed equator geometry of E7,7(K), realized precisely in the point residual972

at c.973

4.4.3 Case D8974

This paragraph is suggested by the third last diagram in §7.3 of [22]. As in the previous975

subsection, we omit the proofs, but the interested reader can fill them in.976

Embedding of the Jordan geometry—Let ∆ again be the geometry E8,8(K). Consider977

two opposite symplecta ξ and ξ′. Each point x of one of these is symplectic to exactly978

one point β(x) of the other (and so β(β(x)) = x). Curiously, the image under β of a979

6-subspace that is a maximal subspace in ∆ is a 6-space that is not a maximal subspace980

in ∆, and vice versa. Let U be a 6-space of ξ that is contained in a unique 7-space WU981

of ∆. Then WU contains a unique point xU that is collinear to a 6-space W ′
U contained982

in a symp ξU intersecting ξ′ in a 6-space, which turns out to be β(U). The collection of983

all xU , for U ranging over all 6-spaces of ξ that are not maximal in ∆, endowed with the984

lines induced from ∆, is a geometry Ω7 isomorphic to D7,7(K). The union of all W ′
U , for985

U again ranging over all 6-spaces of ξ that are not maximal in ∆, endowed with the lines986

induced from ∆, is a geometry Ω6 isomorphic to D7,6(K). The 6 in the index emphasizes987

the fact that collinearity between Ω7 and Ω6 defines an isomorphism that maps points988

of Ω7 to singular 6-spaces of Ω6, and so, in the common underlying polar space D7,1(K),989

maximal 6-spaces of one system correspond to maximal subspaces of the other. Hence990

it now follows from Proposition 5.3 of [22] that Ω6 ∪ Ω7, together with all joining lines,991

constitutes a geometry Ω67 isomorphic to D8,8(K).992

Embedding of the long root geometry—Now any pair of points of Ω67 that corre-993

sponds to a pair of maximal singular subspaces of the underlying quadric D8,1(K) inter-994

secting in a line L, is special. The collection of such centres pL (and indeed one can show995

that pL only depends on L) is exactly the point set of the long root geometry D8,2(K).996

In fact, fixing the line L of the underlying quadric D8,1(K), the set of points of Ω67 that997

correspond to maximal singular subspaces of D8,1(K) that contain L, is clearly the point998
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set of a para Ω′67 of Ω67 isomorphic to D6,6(K). Such a geometry embeds in ∆ as the999

intersection of a(n equator) subgeometry E7,1(K) with the point residual at pL.1000

4.4.4 Case A4 × A41001

We do not know a direct way to construct the Jordan component here, but instead, we1002

describe how to get from the long root component to its Jordan companion.1003

So let Ω1∪Ω2
∼= A4,{1,4}(K)∪A4,{1,4}(K) be a long root subgroup subgeometry of A8,8(K),1004

with Ω1 ⊥⊥ Ω2. We define four subsets of points that we will call directed half equators.1005

First we must fix a common underlying projective space PG(4,K) for Ω1 and Ω2. We do1006

this as follows.1007

Choose an arbitrary underlying PG(4,K) for Ω1. Select an arbitrary pair p, q of opposite1008

points of Ω1. Let Σ and Σ′ be the two singular 3-spaces of Ω1 through p, and without loss1009

of generality we may assume that Σ corresponds to hyperplane of PG(4,K), that is, the1010

points of Σ correspond to the point-hyperplane pairs of PG(4,K) with fixed hyperplane.1011

Then Ω2 is contained in E(p, q) = p⊥⊥∩q⊥⊥ as follows. The subspaces Σ and Σ′ correspond1012

in E(p, q) to opposite maximal singular 4-spaces U and U ′. Then Ω2 consists of the centres1013

of all special pairs {x, x′}, with x ∈ U and x′ ∈ U ′. The maximal singular 3-spaces of Ω21014

are given by the centres of the pairs {x, x′} for fixed x and varying x′, and for fixed x′ and1015

varying x. Now, we arrange the connection with PG(4,K) so that the maximal singular1016

3-spaces corresponding to fixed x′ ∈ U ′ correspond to hyperplanes of PG(4,K).1017

Now that we fixed the underlying projective space for both Ω1 and Ω2, we can speak about1018

subspaces of type ` of them, meaning, the set of points corresponding to a residue of a1019

vertex of type ` in the building naturally associated to PG(4,K) (and points have type 1,1020

lines type 2, planes type 3 and 3-spaces type 4). Let {i, j} = {1, 2}, let k ∈ {1, 4} and ` ∈1021

{2, 3}. Then define E`
k(Ωi,Ωj) as the set of points of ∆ collinear to a subspace of type k of1022

Ωi and at the same time collinear to a subspace of type ` of Ωj, with induced line set. This1023

way we obtain eight geometries, but, with the aid of the representations of the apartments1024

displayed in Section 7 of [22], one can check that these geometries are empty for (i, j, k, `) ∈1025

{(1, 2, 1, 3), (1, 2, 4, 2), (2, 1, 1, 2), (2, 1, 4, 3)}. The other geometries are all isomorphic to1026

the Cartesian product of PG(4,K) with its line Grassmannian. Taking into account the1027

types inherited from our fixed underlying PG(4,K), we set E`
k(Ω1,Ω2) = A4,k(K)×A4,`(K),1028

and likewise E`
k(Ω2,Ω1) = A4,`(K)× A4,k(K). This provides the geometries mentioned in1029

the above table. Remark that the indices now reflect the fact that the quotient of the full1030

automorphism group of Ω1 ∪Ω2 by the type-preserving one is cyclic of order 4. Indeed, if1031

we interchange Ω1 with Ω2, then in order to get the indices of the companion geometries1032

right, we have to apply a duality to exactly one of Ω1 or Ω2. Applying the same map1033

twice, we obtain dualities in both Ω1 and Ω2.1034

5 Buildings of exceptional types F4 and G21035

In this section we construct, in a geometric and individual way, the maximal full rank1036

Lie subgeometries of exceptional type corresponding to an irreducible non-simply laced1037

Dynkin diagram; these correspond to the types F4 and G2.1038
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5.1 Case of type G21039

In this low rank case, there are exactly two maximal root subsystems: one of type A2 and1040

one of type A1 × A1.1041

5.1.1 Table of maximal full rank Lie subgeometries1042

Here is a table of maximal full rank Lie subgeometries of G2,1(K, J) and G2,2(K, J), with1043

J a quadratic Jordan division algebra over K.1044

Type Isomorphism Description
class

1 A1×A1 A1,1(K) ⊥⊥ Imaginary line in G2,1

A1,1(J) Imaginary line in G2,2

2 A2 A2,1(K) ∪ A2,2(K) Ideal non-thick subhexagon in G2,2

A2,{1,2}(K) A2,{1,2} ≤ G2,1

1045

5.1.2 Trivia about the Moufang hexagons G2,1(K, J) and G2,2(K, J)1046

The Moufang hexagons G2,1(K, J) and G2,2(K, J) are dual to each other. Both hexagons1047

Γ are distance-3 regular, that is, denoting the set of elements of Γ at distance i (in the1048

incidence graph) from a certain element x, be it point or line, by Γi(x), for each pair {x, y}1049

of opposite points, and each pair {L,M} of opposite lines with L,M ∈ Γ3(x) ∩ Γ3(y),1050

each point of Γ3(L) ∩ Γ3(M) is at distance 3 from each line of Γ3(L) ∩ Γ3(M). It follows1051

that (Γ3(L) ∩ Γ3(M)) ∪ (
⋃

(Γ3(x) ∩ Γ3(y)) is the point set of a non-thick subhexagon1052

with set of ideal/thick points precisely Γ3(L)∩Γ3(M), and set of full/thick lines precisely1053

Γ3(x) ∩ Γ3(y).1054

Also, according to [17], the hexagons G2,2(K, J) have ideal lines, that is, with the termi-1055

nology of [21], they are distance-2 regular. This is equivalent to the following condition:1056

for each point x of the hexagon Γ, and each pair of points y, z opposite x, the sets1057

Γ2(x)∩Γ4(y) and Γ2(x)∩Γ4(z) are either equal or intersect in al most one point, see [21].1058

It follows that every pair of opposite points is contained in a unique ideal subhexagon with1059

two points per line (an ideal non-thick subhexagon). Interpreting the lines as edges of a1060

graph, this subhexagon is the incidence graph of a projective plane Π. The corresponding1061

ideal subhexagon is denoted 2Π and the dual by (2Π)∗.1062

5.1.3 Case A21063

Here the maximal full rank Lie subgeometry of G2,2(K, J) is an ideal non-thick subhexagon,1064

isomorphic to 2PG(2,K). In G2,1(K, J), it is just the dual, hence a non-thick full sub-1065

hexagon isomorphic to (2PG(2,K))∗.1066
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5.1.4 Case A1 × A11067

Here, the maximal full rank Lie subgeometry in both G2,1(K, J) and G2,2(K, J) is the1068

non-thick subhexagon related to the distance-3 property described above. The set of1069

thick points admits PSL2(K) or PSL2(A) and the set of thick lines admits independently1070

PSL2(A) or PSL2(K), respectively, since central elations in G2,1(K, J) with centre one of1071

the thick points of the subhexagon stabilizes each thick line of it.1072

5.2 Case of type F41073

Type F4 is again special in that there exist non-split buildings of relative type F4, whereas1074

this is not the case for types E6,E7,E8.1075

5.2.1 Table of maximal full rank Lie subgeometries1076

Here is a table of maximal full rank Lie subgeometries of F4,1(K,A) and F4,4(K,A), with1077

A a quadratic alternative divison algebra over K.1078

Type Isomorphism class Comments

1 A1×C3 A1,1(K)⊥⊥C3,1(A,K)∪ Imaginary line & its equator in F4,1

A1,1(K)×C3,3(A,K) Subequator in F4,1

A1,1(K)×C3,1(A,K)∪ Symp times a line in F4,4

C3,2(A,K) Symp equator in F4,4

2 A2×A2 A2,{1.2}(K) ⊥⊥ Non-thick hexagon in F4,1

A2,{1,2}(A) Non-thick hexagon in F4,4

3 A1×A3 ≤ B4 (not maximal)

4 B4 B4,1(K,A)∪ Extended equator in F4,4

B4,4(K,A) Tropics geometry in F4,4

B4,2(K,A) B4,2(K,A) ≤ F4,1(K,A)

1079

5.2.2 Trivia about the metasymplectic spaces F4,1(K,A) and F4,4(K,A)1080

Set briefly Γi := F4,i(K,A), for i ∈ {1, 4}. Note that Γ1 is the long root subgroup geometry,1081

and Γ4 is often called te short root subgroup geometry.1082

Fact 5.1. Let x be a point and ξ a symplecton of Γi. Then precisely one of the following1083

situations occurs.1084

(0) x ∈ ξ;1085

(1) the set of points of ξ collinear with x is a line L. Every point y of ξ \ L which is1086

collinear with each point of L is symplectic to x and ξ(x, y) contains L. Every other1087

point z of ξ (i.e., every point z of ξ collinear with a unique point z′ of L) is special1088

to x and c(x, z) = z′ ∈ L. We say that x and ξ are close;1089
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(2) there is a unique point u of ξ symplectic to x and ξ ∩ ξ(x, u) = {u}. All points v of1090

ξ collinear with u are special to x and c(x, v) /∈ ξ. All points of ξ not collinear with1091

u are opposite x. We say that x and ξ are far.1092

Fact 5.2. The intersection of two symplecta ξ and ζ is either empty, or a point, or a1093

plane and each of these occurs.1094

(1) If ξ ∩ ζ is a point x, then every point in ξ \ x⊥ is far from ζ.1095

(2) If ξ ∩ ζ is a plane π, then points x ∈ ξ and y ∈ ζ are special to each other if and1096

only if x⊥ ∩ π 6= yperp ∩ π.1097

Fact 5.3. Let x be a point and L a line. Then exactly one of the following occurs.1098

(1) x ∈ L;1099

(2) x ⊥ L;1100

(3) x ⊥ p ∈ L for exactly one point p, and x ⊥⊥ q for all q ∈ L \ {p};1101

(4) xonp ∈ L for exactly one point p, and x is opposite q for all q ∈ L \ {q};1102

(5) x ⊥ p ∈ L for exactly one point p, and xonq for all q ∈ L \ {p}, with evidently1103

c(x, q) = p;1104

(6) x ⊥⊥ p ∈ L for exactly one point p, and xonq for all q ∈ L\{p}, with c(x, q) = a ⊥ L,1105

for a unique point a (independent of q);1106

(7) xonp, for every p ∈ L. In this case there exists a unique line M such that p 7→ c(x, p)1107

is a bijection from L to M .1108

5.2.3 Case B41109

We now define the equator and extended equator geometries, see also [10], Proposition1110

6.26, and [7], Section 4.2.1111

Definition 5.4 (Equator Geometry). Let p, q be two opposite points of Γi. Let Sp denote1112

the family of symplecta containing p. Then, by Fact 5.1, each member of Sp contains1113

a unique point which is symplectic to q. The set of all such points is called the equator1114

geometry of the pair {p, q}. It is usually denoted by E(p, q). Using Fact 5.1(2), it is easy1115

to see that E(p, q) = p⊥⊥ ∩ q⊥⊥ and hence this definition is symmetric in p, q.1116

The following was proved in Proposition 6.26 of [10] for Γ4 = F4,4(K,K), but the proof1117

remains valid for Γ4 = F4,4(K,A), with A any quadratic alternative division algebra. The1118

reason is the following. In a polar space C3,1(A,K) (and we now use the symbol ⊥ for1119

collinearity in this polar space), taking two opposite lines L,M yields a set L⊥ ∩ M⊥
1120

which coincides with {x, y}⊥⊥, for each pair {x, y} in L⊥ ∩M⊥. We call such a set a1121

hyperbolic line and denote it by h(x, y).1122

Proposition 5.5. Let p, q be two opposite points of Γ4. Then, for any symplectic pair1123

{u, v} of points of E(p, q), the hyperbolic line h(u, v) is contained in E(p, q). The geometry1124

of points and hyperbolic lines of E(p, q) is the point-line geometry of a polar space, which1125

we also denote by E(p, q), isomorphic to any point residual of Γ. A natural isomorphism1126

from E(p, q) to ResΓ4(p) is induced by the map ϕp,q that sends a point x ∈ E(p, q) to the1127

symplecton ξ(x, p).1128
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Note that, by Lemma 4.2.4 of [7], if p, q are opposite points of Γi, and x, y ∈ E(p, q), then1129

either x = y, or {x, y} is a symplectic pair, or x is opposite y.1130

We now define the extended equator geometry for opposite points p, q in Γ4. It provides1131

a construction of a full rank subgeometry of Dynkin cotype 4.1132

Construction 5.6 (Dynkin cotype 4 for F4). Let p, q be two opposite points of Γ4. Then1133

define the point set1134

Ê(p, q) =
⋃
{E(x, y) : x, y ∈ E(p, q), x opposite y}.

The set Ê(p, q), endowed with all the hyperbolic lines in it, is called the extended equator1135

geometry for p, q. Note that p, q and E(p, q) are contained in Ê(p, q).1136

The following proposition, proved in [15], establishes a maximal full rank Lie subgeometry1137

of Dynkin cotype 4 and of type B4,1 inside F4,4(K,A).1138

Proposition 5.7. The extended equator geometry Ẽ(p, q), endowed with the hyperbolic1139

lines contained in it, is a polar space isomorphic to B4,1(K,A).1140

The proof of the following proposition is more or less similar to the one for F4,4(K,K) in1141

[7]. A complete proof is contained in [12].1142

Proposition 5.8. (1) If a point is collinear to at least two points of Ẽ, then it is1143

collinear to precisely all points of a hyperbolic solid.1144

(2) For every hyperbolic solid Σ in Ẽ, there exists a unique point β(Σ) collinear to all1145

points of Σ.1146

(3) For every hyperbolic plane π in Ẽ, the set {β(Σ) | π ⊆ Σ is a hyperbolic solid in Ẽ}1147

is a line of Γ4.1148

(4) Two hyperbolic solids Σ1 and Σ2 of Ẽ share a unique point x if and only if β(Σ1)1149

and β(Σ2) form a special pair of points of Γ4, and in this case c(β(Σ1), β(Σ2)) = x.1150

(5) Two hyperbolic solids Σ1 and Σ2 of Ẽ are disjoint if and only if β(Σ1) and β(Σ2)1151

are opposite points of Γ4.1152

(6) The set T̂ (p, q) of points β(Σ), with Σ ranging through all hyperbolic solids of Ê,1153

with all induced lines, is isomorphic to the dual polar space B4,4(K,A) corresponding1154

to the polar space B4,1(K,A).1155

The geometry induced on T̂ (p, q) is called the tropics geometry. Hence, for Dynkin type1156

4, we have a pair of coupled Lie incidence geometries B4,1(K,A) and B4,4(K,A) fully1157

embedded in F4,4(K,A).1158

5.2.4 Case A2 × A21159

The long root geometry F4,1(K,K) is fully embedded in the geometry F4,1(K,A). Hence1160

the latter contains a fully embedded A2,{1,2}(K). Call it Γ. In this subsection we construct1161

a full subgeometry Γ′ of F4,4(K,A) isomorphic to A2,{1,2}(A), pointwise fixed under the1162

little projective group of Γ.1163
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Construction 5.9 (Dynkin cotype 2 for F4). The hexagon Γ has a natural partition1164

L1 ∪ L2 of its line set such that two distinct lines belong to the same partition class1165

if and only if they contain collinear points. Each of L1 and L2 is the point set of a1166

projective plane PG(2,K) the incidence graph is given by the graph with vertices the lines1167

of L1 ∪L2, adjacent when intersecting in a unique point.1168

We construct Γ′ in F4,1(K,A) as a geometry with point set a set of planes and line set a1169

set of symplecta. To that aim, we let p0 ⊥ p1 ⊥ · · · ⊥ p5 ⊥ p0 be an ordinary hexagon in1170

Γ. Also, let π01 be an arbitrary plane containing the line 〈p0, p1〉. We may also assume,1171

with loss of generality, that 〈p0, p1〉 ∈ L1 and that L1 is the point set of PG(2,K).1172

Since no point collinear to p1 is symplectic to p4, which is opposite p1, there is a unique1173

line L0 3 p0 in π01 all points of which are special to p4. Likewise, there is a unique line1174

L1 3 p1 in π01 all points of which are special to p3. Set q01 = L0 ∩ L1. Since p5 is special1175

to p1, the centre q45 of the special pair {p4, q01} differs from p5. By Fact 5.3, the points1176

p4, p5 and q45 span a plane π45. Since p4 ⊥ q45 ⊥ q01 ⊥ p1, we have p1onq45, and so every1177

point of the line L5 := 〈p5, q45〉 is special to p1.1178

Let q23 be the centre of the special pair {q01, p3}. If q23 were equal to q23, then p0 ⊥ q01 ⊥1179

q23 = q45 ⊥ p4, with p0onq23 and q01onp4, implies by Fact 4.1 that p0 would be opposite p4,1180

a contradiction. Hence Fact 5.3 yields a plane α containing q01, q23 and q45. Also, Since1181

{p3, q01} is a special pair with centre q23 6= p2, and {p3, p1} is special with centre p2, the1182

points p2, p3 and q23 span a plane π23.1183

Since the centres of the special pairs {p3, x}, with x ∈ L1, all on the line L2 := 〈p2, q23〉,1184

and the lines L1 and L2 are obviously opposite in the symp ξ(p1, q23), it follows that π231185

is the unique plane through 〈p2, p3〉 containing a point collinear to some point of π01.1186

Likewise, π45 is the unique plane through 〈p4, p5〉 containing a point collinear to some1187

point of π01. We now also see that π23 is the unique plane through 〈p2, p3〉 containing a1188

point collinear to some point of π45 and vice versa.1189

Now let p′0 ∈ 〈p0, p5〉\{p0, p5} be arbitrary. There is a unique path p′0 ⊥ p′1 ⊥ p′2 ∈ 〈p2, p3〉.1190

Considering the hexagon p′0 ⊥ p′1 ⊥ p′2 ⊥ p3 ⊥ p4 ⊥ p5 ⊥ p′0, the foregoing paragraph1191

implies that there exists a unique plane π′01 through 〈p′0, p′1〉 containing a point q′01 collinear1192

to both q45 and q23. Considering the hexagon p′0 ⊥ p0 ⊥ p1 ⊥ p2 ⊥ p′2 ⊥ p′1 ⊥ p′0, we1193

likewise conclude that there exists a unique plane π′′01 through 〈p′0, p′1〉 containing a point1194

q′′01 collinear to both q01 and q23. By the foregoing and the fact that q23 appears twice1195

in our conclusions, we see that q′01 = q′′01 and π′01 = π′′01. Moreover, since the maximal1196

singular subspaces of F4,1(K,A) are planes, we deduce q′01 ∈ α.1197

Obviously, the point q′01 is the unique point of α collinear to p′0 (if p′0 were collinear to a1198

line of α, then that line would intersect 〈q01, q23〉 in a point y distinct from q01—because1199

q01 is not collinear to p5—and then p′0 would be at distance 2 from the unique point1200

of 〈p1, p2〉 \ {p1} collinear to y, a contradiction to the fact that p1 is the unique point1201

of 〈p1, p2〉 at distance ≤ 2 from p′0). Hence q′01 ∈ 〈q01, q45〉 (this happens inside the1202

symplecton ξ(q01, p5), which also contains p0 and q45).1203

Similarly, every line L of Γ intersecting 〈p′1, p′2〉 is contained in a unique plane π containing1204

a point q of α, and that point is contained in 〈q23, q
′
01〉. Since this exhausts all lines L ∈ L1,1205

it follows that the mapping L 7→ q is an isomorphism from PG(2,K) to α. Varying π01, we1206
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obtain a set Π1 of planes α containing, for each L ∈ L1, a point collinear to L. Similarly,1207

there exists a set Π2 of planes containing, for each L ∈ L2, a point collinear to L, and1208

for each plane π through any member of L2, there exists β ∈ Π2 intersecting π. For any1209

plane π though a member of Li, we denote by Λi(π) the unique member of Πi intersecting1210

π in a point.1211

Now let π01 be as above, and let π12 be a plane containing 〈p1, p2〉. Let q12 be the unique1212

point of π12 special to both p4 and p5. Then q12 ∈ Λ(π12). Suppose that π01 and π12 are1213

not locally opposite. Then there is some plane α1 through p1 intersecting both π01 and1214

π12 in respective lines M1 and L′1. We claim that q01 ∈ L′1 = L1 and q12 ∈ M1. Indeed,1215

set z = L0 ∩ L′1. Then z is collinear to some point on 〈p2, q12〉, and hence z is close to1216

ξ(q12, p3). It follows from Fact 4.1 that z is not opposite p3, but the only point of L0 not1217

opposite p3 is q01. Hence z = q01 and L1 = L′1. Similarly, q12 ∈ M1. The claim is proved.1218

Hence q01 ⊥ q12.1219

Next we claim, still assuming that π01 and π12 are not locally opposite, that π12 and π231220

are not locally opposite. Indeed, we observe that q12onq45 implies that q12 is opposite p41221

(since p4onq01 and p4 ⊥ q45 ⊥ q01 ⊥ q12 and use Fact 4.1), a contradiction as p4 is collinear1222

to some point of Λ2(π12). Similarly q12 is not special to q23. Now Fact 5.3 implies that1223

q12 ⊥ u ∈ 〈q23, q45〉. If u 6= q23, then we may assume without loss of generality that1224

q01 ⊥ Q45, leading to p2 ⊥ q23 ⊥ q45 ⊥ q12 ⊥ p2, contradicting p2onq45. Hence q12 ⊥ q231225

and the claim is proved. Going on like this, it is clear that no plane π1 through some1226

member K1 of L1 with Λ(π1) = Λ(π01) is locally opposite the plane π2 through some1227

member K2 of L2 with Λ(π2) = Λ(π12) and |K1 ∩K2| = 1. It then also follows from our1228

arguments that every point of Λ(π01) is collinear to a unique line of Λ(π12), implying that1229

these two planes are contained in a unique symp ξ(π01, π12), in which they are opposite,1230

since they are clearly disjoint.1231

We now claim that the map π12 7→ ξ(π01, π12) is a bijection from the set of planes through1232

〈p1, p2〉 not locally opposite π01 to the set of symps containing α := Λ(π01). This mapping1233

is clearly injective, as otherwise the symp which is the image of at least two planes would1234

contain every member of L2, a contradiction. We now show that it is surjective. So let1235

ξ be any symp through α. Then ξ ∩ ξ(p2, q01) is a plane β, by Fact 5.2 as q01 and q231236

already belong to that intersection. Set q′12 = p1 ⊥ ∩p⊥2 ∩ β. Then π′12 = 〈p1, p2, q
′
12〉 is a1237

plane which is not locally opposite π01, as π′12 3 q′12 ⊥ q01 ∈ π01. Hence α′ := Λ(π′12) is1238

contained in a symp ζ together with α. It is easy to see that q′12 ∈ Λ(π12), using the fact1239

that it is collinear to both q01 and q23. So ζ = ξ(q′12, q45) must coincide with Λ(π′12) and1240

the claim is proved.1241

Finally we claim that the graph with vertices the planes that contain either 〈p0, p1〉 or1242

〈p1, p2〉, adjacent when locally not opposite, is the incidence graph of a projective plane1243

isomorphic to PG(2,A). Indeed, that projective plane can be thought of as having point1244

set the set of planes of F4,1(K,A) containing 〈p0, p1〉, and lines are given by sets of such1245

planes contained in a common symp through 〈p0, p1〉. It is now easy to see that the planes1246

through 〈p0, p1〉 of a symp ξ are all locally not opposite the unique plane γ containing p21247

and intersecting ξ in a line (existing by Fact 5.1). In the residue of p1, one also sees that1248

no plane through 〈p0, p1〉 outside ξ is locally not opposite γ. This proves out last claim.1249

Now the set Σ of symps containing a member of Π1 and a member of Π2 clearly corresponds1250

to a full embedding Γ′ of the double 2PG(2,A) in F4,4(K,A) where points of 2PG(2,A) at1251
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mutual distance 2 are special in F4,4(K,A) (since the plane of Π1 in a symp belonging to1252

Σ is disjoint from the plane of Π2 in that symp).1253

Clearly, the central elation of F4,1(K,A) with centre p0 stabilizes all members of Π1 ∪Π2.1254

Also, clearly the little projective group of Γ′ acts on Γ′ in the standard way, while fixing1255

Γ pointwise.1256

6 Application to non-thick spherical buildings1257

It is well-known that every weak spherical building, say of type Xn gives rise to a unique1258

thick spherical building of a different type Ym. Scharlau [18] shows that the types Ym1259

given Xn are determined by the types of the Coxeter groups generated by reflections in1260

the Coxeter group of type Xn. In particular all types of maximal full rank Lie incidence1261

subgeometries qualify. Our constructions in the previous section provide very concrete1262

examples of weak buildings of exceptional type, given as geometries rather than simplicial1263

complexes or chamber systems, and also more concrete than in Rees’ paper [16]. The1264

recipe to do this is very simple: one considers the components of the geometries and1265

replaces each line between components by the thin line consisting of the two points that1266

were joined by the line. If types allow, one can take any geometry of the given type,1267

and not only the one inside the thick building (for instance for type A2 one can take any1268

projective plane).1269

The examples related to G2 are just multiples of generalized polygons, as in [21, §1.6]. We1270

now explicitly consider the four irreducible types for the other exceptional cases. These1271

will be given by a diagram showing their decomposition. The rules to read such a diagram1272

are essentially the same as [22, §7], but updated to the thick case. There is an arbitrary1273

underlying building ∆ of type Xn. Each balloon represents a Lie incidence geometry1274

related to ∆, and for balloons joined by an edge, a point of one balloon forms a thin1275

line with a point of the other balloon if the corresponding objects of ∆ are incident, or,1276

equivalently, their union forms a simplex or flag.1277

For type E7, we have the irreducible type A7. It can be given as E7,7 geometry, or as E7,11278

geometry.1279

As E7,7 geometry:1280

A7,2 A7,6

1281

And as E7,1 geometry:1282

A7,4 A7,{1,7}

1283

For type E8, we have the irreducible types D8 and A8. First type D8:1284
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D8,2 D8,8

1285

And now type A8:1286

A8,3 A8,6

A8,{1,8}

1287

For type F4, we have the irreducible type B4, and we can consider any polar space of rank1288

4. We represent its point set by B∗4,1 and the corresponding dual polar space by B4,4. We1289

have the following diagram:1290

B4,4 B∗4,1

1291

All other, reducible, cases can be derived from the previous tables. One particular case1292

might be more involved, and that is the case of A2 × A2 in F4, because in this case the1293

subgeometry lies simultaneously in F4,1 and F4,4. We now describe in an explicit way1294

a weak building of type F4 with underling thick building the cartesian product of two1295

arbitrary projective planes π and π′, and we give it in terms of a non-thick long root1296

geometry ∆ = (X,L ) of type F4,1.1297

Let Ω = (Z,M ) be the thick-lined generalized hexagon of which the point set Z is the set1298

of point-line pairs of π, and M can be identified with the union of the point set P(π) of1299

π and its line set L (π). For each point x of π′, let πx be a copy of π with isomorphism1300

βx : π → πx, and likewise, for each line L of π′, let πL be a copy of the dual π∗ of π1301

with corresponding isomorphism βL : π∗ → πL. Then the point set X of ∆ is the disjoint1302

union of Z and all πx and πL, for x and L ranging through the point and line set of π′,1303

respectively.1304

The lines are all members of M , all lines of each plane πx and πL, x and L as above, and1305

all the lines {x, y} of size 2, where1306

(i) x ∈ Z and y = βz(M), for arbitrary point z of π′, with x ∈ M ∈ P(π), or an1307

arbitrary line z of π′, with x ∈M ∈ L ((π); or1308

(ii) x ∈ πz for some point z of π′ and y ∈ βL(β−1(x)), for some line L of π′ containing1309

z.1310

Interchanging the roles of π and π′ in the above construction results in going to the1311

corresponding geometry of type F4,4.1312
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