
SUBGEOMETRIES ISOMORPHIC TO RESIDUES IN EXCEPTIONAL LIE1

INCIDENCE GEOMETRIES2

BRUCE N. COOPERSTEIN AND HENDRIK VAN MALDEGHEM3

ABSTRACT. We show that a geometry isomorphic to a point residual in a Lie incidence geometry
of exceptional type, either a strong parapolar space or the long root subgroup geometry, is a
trace, that is, coincides with the set of points collinear to a given point p and not opposite to a
given object opposite p. We also show uniqueness of the line residue in the long root subgroup
geometry of type E8.

1. INTRODUCTION4

Subgeometries of a given geometric structure play a similar role in incidence geometry as sub-5

groups of groups in group theory. A good knowledge of all subgeometries of a geometry ∆6

helps to understand ∆. It can also be used to characterise certain automorphisms of ∆ by its7

fixed point structure. In this case the ideal situation is that a given subgeometry is unique up8

to a projectivity. The investigation and classification of all automorphisms of the exceptional9

spherical buildings that do not map any chamber to an opposite, prompted the authors of [8] to10

show that the long root subgroup geometries of types E7,1 and E6,2 admit projectively unique11

embeddings into the long root subgroup geometry of type E8,8. In the present paper we di-12

rect our attention to residual geometries, that is, the geometries isomorphic to a point (or line)13

residue in the exceptional Lie incidence geometries of type E. Our main aim is to investigate14

how the minuscule geometries E6,1 and E7,7 are sitting in the long root subgroup geometry15

E8,8(K), and we show that this happens in a projectively unique way. We complete the job for16

the exceptional Lie incidence geometries of type E by showing uniqueness of full embeddings17

of geometries of types D5,5, A5,3, D6,6 and E6,1 into Lie incidence geometries of types E6,1,18

E6,2, E7,1 and E7,7, respectively. The analogous results for type F4 uses different techniques and19

shall be done elsewhere. This is due to the fact that all buildings of type E are split, whereas20

there exists a variety of buildings of type F4, ranging from split, over mixed, to non-split and21

even non-embeddable.22

In order to state our main results, we need to explain what a trace geometry is. Given a Lie23

incidence geometry ∆ and a point p thereof, there are objects which are opposite p in the24

building-theoretic sense. Select one such object τ (in practice, and in this paper, τ is either a25

point or a symplecton). Then the trace geometry with respect to (p,τ) is the subgeometry of26

∆ induced on the point set p⊥∩ τ 6≡, where p⊥ denotes the set of points collinear to p and τ 6≡27

the set of points not opposite τ . The trace geometry with respect to lines is induced on the set28

of points collinear to (all points of) a given line L and not opposite any point of a given line M29
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opposite L (here we assume that pairs of points can be opposite). Assuming familiarity with30

standard terminology about embedded geometries and Lie incidence geometries (see Section 2),31

we can now summarise all our results as follows.32

Main Result. Let K be a field and let D5,5(K), A5,3(K), E6,1(K), D6,6(K) and E7,7(K) be fully33

embedded in E6,1(K), E6,2(K), E7,7(K), E7,1(K) and E8.8(K), respectively. Then the former is34

a trace geometry in the latter. If E6,1(K) is fully embedded in E8,8(K), then it is a para—that35

is, a proper convex subspace properly containing a symplecton—of an equator geometry, or,36

equivalently, a trace geometry with respect to two opposite lines.37

One would hope that the techniques developed in [8] to prove uniqueness of embedded long root38

subgroup geometries in the exceptional type case is applicable in the situation of the present39

paper. However, there is an essential difference. In [8], one must find two points p and q40

in the ambient geometry ∆ such that the embedded geometry Ω coincides with the equator41

geometry E(p,q) (see Section 2.3.2). The points p and q are not too far away from Ω and can42

be recognised with the point residuals. In the present situation, however, we must find a point p43

collinear to all points of Ω, which can also be done with the point-residuals, but, in the generic44

situation, we must also find a point which is special to all points of Ω. This can no longer be45

accomplished by considering residues. The technique that works here is to prove that there is46

a companion embedded geometry Ω∗, which is isomorphic either to an equator geometry—and47

then we apply the results of [8]—or to Ω—in which case we find a point collinear to all points48

of Ω∗ and that is precisely the wanted second point.49

Note that along the way we also have to deal with similar embedding questions for some clas-50

sical geometries.51

The paper is organised as follows. In Section 2 we recall some definitions and list some prop-52

erties of the exceptional Lie incidence geometries of type E. In Section 3, we show our Main53

Result for D5,5(K) embedded in E6,1(K). The strategy of the proof is to study the ways in54

which the skeleton graph of an apartment D5,5(1) can be embedded in E6,1(K). This avoids to55

have to first prove uniqueness of the full embedding of A4,2(K) in D5,5(K), which would be56

another valuable strategy, call it the point residual strategy. In Sections 4 to 7, we prove the rest57

of the first part of our Main Result using the point residual strategy. In Section 8 we prove an58

interesting consequence and in the final section we prove the second part of the Main Result.59

2. PRELIMINARIES, DEFINITIONS AND NOTATION60

2.1. Point-line geometries. For the purposes of this paper, a point-line geometry, which we61

shall usually denote by ∆ = (X(∆),L (∆)), is a pair consisting of a point set X(∆) and a62

set L (∆) of lines, which are subsets of X(∆). Two points x,y in such a structure are called63

collinear, in symbols x ⊥ y, if they are contained in some line. We will exclusively be dealing64

with partial linear spaces, which are point-line geometries with the property that each pair of65

collinear points is contained in exactly one line. The set of points collinear to a given point x is66

denoted by x⊥. A subspace Y is a set of points Y ⊆ X with the property that, if a line has two67

points in common with Y , then it is completely contained in Y . A geometric hyperplane of ∆ is68

a subspace which intersects each line. It is proper if it does not coincide with X(∆).69

The collinearity graph or point graph of Γ has as set of vertices the points of Γ, adjacent70

when collinear. The distance between two points is the distance in the collinearity graph. The71

diameter of ∆ is the diameter of the collinearity graph. We say that ∆ is connected if the72

collinearity graph is.73
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A full subgeometry Γ′=(X ′,L ′) of Γ is a geometry with X ′⊆X and L ′⊆L . This implies that74

all points of Γ on a line of Γ′ are points of Γ′ and explains the adjective ‘full’. Full subgeometries75

need not be subspaces.76

Now a polar space is a thick point-line geometry in which the perp of every point is a proper77

geometric hyperplane; this definition is justified by [2]. This forces all singular subspaces to be78

projective spaces. In our case the polar spaces will have finite rank, that is, there is a natural79

number r ≥ 2 such that all singular subspaces (which are projective spaces) have dimension80

≤ r− 1, and there exist singular subspaces of dimension r− 1. A prominent notion in polar81

geometry is opposition. Two singular subspaces U,W are opposite if no point of U ∪W is82

collinear to all points of U ∪W . Opposite subspaces automatically have the same dimension.83

Opposite points are just non-collinear ones. The singular subspaces of dimension r− 1 are84

called generators. It is easy to see that polar spaces satisfy the so-called one-or-all axiom: each85

point is collinear to either exactly one point or to all points of a given line.86

A convex subspace of a point-line geometry is a subspace with the property that every shortest87

path in the collinearity graph between two points of the subspace is contained in the subspace.88

A convex subspace isomorphic to a polar space is a symplecton, or symp for short.89

Now a parapolar space is a connected point-line geometry which is not a polar space, such that90

two points at distance 2 either have a unique common neighbour in the collinearity graph—and91

then we call these two points special—or are contained in a symplecton—the two points are92

called symplectic—and every line is contained in a symp. A parapolar space without special93

pairs is called strong. A symplecton through two noncollinear points x,y is unique and denoted94

by ξ (x,y). The set of symps of a parapolar space ∆ is denoted by Ξ(∆). Parapolar spaces found95

their birth in Section 3 of [4].96

The parapolar spaces we will encounter all have the rather peculiar property that all symps have97

the same rank, which is then called the (uniform) symplectic rank of the parapolar space. In98

contrast, the maximal singular subspaces (which will be projective spaces) will not all have99

the same dimension. The singular ranks of a parapolar space with only projective spaces as100

singular subspaces (which is automatic if the symplectic rank is at least 3) are the dimensions101

of the maximal singular subspaces. In general, a singular subspace which is a projective space102

of (projective) dimension d will be called a (singular) d-space for short.103

Now let ∆ = (X(∆),L (∆)) be a parapolar space all of whose symps have rank at least 3. Let104

x ∈ X . Then we define the geometry ∆x = (X(∆x),L (∆x)) as the geometry with point set the105

set of lines through x, and the lines are the planar line pencils with vertex x, that is, the set of106

lines through x in a plane through x, and call it the residue at x, or the point residual at x.107

In the present paper we will exclusively deal with Lie incidence geometries, which are projec-108

tive, polar and parapolar spaces arising from spherical buildings. Assuming the basics of Tits’109

theory of spherical buildings, we introduce these now briefly.110

2.2. Lie incidence geometries. Let ∆ be an irreducible thick spherical building. Let n be its111

rank, let I be its type set and let i ∈ I. Then we define a point-line geometry ∆ as follows.112

The point set X(∆) is just the set of vertices of ∆ of type i; a typical line of ∆ is the set of113

vertices of type i completing a given panel of cotype i to a chamber. The geometry ∆ is called114

a Lie incidence geometry. For instance, if ∆ has type An, n ≥ 2, and i = 1 (we use Bourbaki115

labelling of the vertices of the Coxeter or Dynkin diagrams), then ∆ is the point-line geometry116

of a projective space of dimension n, and if n≥ 3, it is defined over some skew field K, in which117

case we denote it by PG(n,K). If Xn is the Coxeter type of ∆ and ∆ is defined using i ∈ I as118
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above, then we say that ∆ has type Xn,i. Another example: Geometries of type Bn,1 and Dn,1 are119

polar spaces. Geometries of type Dn,n are more specifically called half spin geometries120

Buildings of type A,D,E are uniquely defined by their underlying field K (or skew field in the121

case of A), provided the rank is at least 3. We denote the corresponding building of type Xn by122

Xn(K), and the corresponding Lie incidence geometries of type Xn,i by Xn,i(K).123

In he present paper we are most interested in parapolar spaces of exceptional type. More exactly,124

the Lie incidence geometries E6,1(K) and E7,7(K), which are sometimes called the minuscule125

geometries of types E6 and E7, respectively, and the Lie incidence geometries E6,2(K), E7,1(K)126

and E8,8(K), which are also called the long root subgroup geometries ot type E. We gather127

the most important properties of these in Section 2.3. Prominent subgeometries that we will128

also need are A4,2(K), A5,2(K), A5,3(K), D5,5(K) and D6,6(K). The first three are well known129

Grassmannians of projective spaces. The latter two are so-called half spin geometries arising130

from (nondegenerate) hyperbolic quadrics in PG(9,K) and PG(11,K), respectively, by taking131

one system of generators as points, and a typical line is then the set of generators of that system132

though a given singular subspace of dimension 2 and 3, respectively. The properties of these133

Lie incidence geometries that we will need are easily deduced from the hyperbolic quadric. We134

explicitly note that Dn,n(K), n ≥ 5, has singular ranks 3 and n−1. Nonmaximal 3-spaces will135

be called 3′-spaces.136

Objects in a Lie incidence geometry ∆ will be called opposite if they are opposite in the building-137

theoretic sense. They will be called locally opposite (with respect to a point p) if they are138

opposite in ∆x (of course this requires that the two objects correspond to flags containing or139

incident with x). Opposite objects a and b are denoted x ≡ b; the symbol a≡ means the set of140

objects opposite a and a 6≡ is the set of objects of the type of opposite objects, not opposite a.141

Lie incidence geometries admit natural full embeddings in projective spaces. The natural em-142

beddings of D5,5(K), A5,3(K), E6,1(K), D6,6(K), E7,7(K), E6,2(K), E7,1(K) and E8.8(K) oc-143

cur in PG(15,K), PG(19,K), PG(26,K), PG(31,K), PG(55,K), PG(77,K), PG(127,K) and144

PG(247,K), respectively. Moreover the natural embeddings of D5,5(K), A5,3(K), E6,1(K),145

D6,6(K) and E7,7(K) are known to be absolutely universal, that is, every other full embedding146

is isomorphic to a projection of the natural one from some subspace onto some complementary147

subspace.148

Finally, we need some terminology concerning embedding. Let Ω and ∆ be two polar or parap-149

olar spaces. We say that Ω is (fully) embedded in ∆ if Ω is isomorphic to a (full) subgeometry of150

∆. Usually we identify Ω with the isomorphic subgeometry of ∆, talking about points of ∆ that151

are also points of Ω. If both are polar spaces or strong parapolar spaces, and Ω is embedded in152

∆, then we call the embedding isometric if the distance between two points of Ω either measured153

in Ω, or measured in ∆, is the same. If Ω is a polar space or a strong parapolar space of diameter154

at most 3 and ∆ is a nonstrong parapolar space of diameter at most 3, then the embedding is155

called isometric if symplectic points of Ω are also symplectic in ∆, and points at distance 3 in156

Ω are special in ∆. A graph that is isomorphic to a (non-full) subgeometry of ∆ is called laxly157

embedded (to distinguish it from the full embeddings). A isometric lax embedding of a graph of158

diameter 2 into a (para)polar space is defined in the obvious way. The graphs we will encounter159

are the skeletons of apartments, that is, the vertices are the vertices of certain type, say i, of an160

apartment of a spherical building of type Xn, adjacent when contained in adjacent chambers.161

Hinting at the heuristic that apartments are buildings over the field of order 1, we denote such162

apartment by Xn,i(1). We will only use this for D5,5(1).163
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2.3. Some parapolar spaces of exceptional type. The below properties are taken from [8],164

where it is noted that they follow either in a standard way from the the Coxeter diagram, or165

from a representation of an apartment of the corresponding building as can be found in [11].166

Most properties can also be found in Chapters 14 to 18 of [10]. For the long root subgroup167

geometries we also refer to [3].168

2.3.1. Minuscule geometries of types E6 and E7. The Lie incidence geometry ∆∼= E6,1(K), for169

any field K, has the following properties.170

(1) The point residuals are isomorphic to D5,5(K).171

(2) The symps of ∆ are isomorphic to D5,1(K), that is, to the polar spaces arising from172

hyperbolic quadrics in PG(9,K).173

(3) The singular ranks of ∆ are 4 and 5. Nonmaximal singular subspaces of dimension 4174

are called 4′-spaces.175

(4) The diameter of ∆ is equal to 2 and ∆ is strong.176

(5) A point p not contained in a given symp ξ is collinear either to no points of ξ , or to all177

points of a 4′-space contained in ξ . In the first case p is called far from ξ , in the latter178

case close. Here, “far” is a synonym for “opposite”.179

(6) Two symps meet either in a unique point or in a 4-space; in the latter case the symps are180

called adjacent. It follows that a 4′-space is contained in a unique symp.181

(7) The geometry with point set the set of symps of ∆, where a typical line is the set of182

symps containing a given 4-space, is isomorphic to ∆, and is for clarity denoted by183

E6,6(K).184

(8) A 3-space is contained in a unique 4-space and a unique 5-space (which intersect exactly185

in the given 3-space).186

(9) The set of points not opposite a given symp ξ , that is ξ 6≡, is a geometric hyperplane of187

∆. For a given point p and opposite symp ξ , the set p⊥∩ξ 6≡ is a subspace isomorphic188

to D5,5(K), called a trace geometry.189

The Lie incidence geometry ∆∼= E7,7(K), for any field K, has the following properties.190

(10) The point residuals are isomorphic to E6,1(K).191

(11) The symps of ∆ are isomorphic to D6,1(K), that is, to the polar spaces arising from192

hyperbolic quadrics in PG(11,K).193

(12) The singular ranks of ∆ are 5 and 6. Nonmaximal singular subspaces of dimension 5194

are called 5′-spaces.195

(13) The diameter of ∆ is equal to 3 and ∆ is strong.196

(14) A point p not contained in a given symp ξ is collinear either to exactly one point q of197

ξ , or to all points of a 5′-space U contained in ξ . In the former case p is opposite each198

point of ξ which is at distance 2 from q. IN the latter case, if p′ /∈ ξ is collinear to all199

points of a 5′ space U ′, then p≡ p′ if and only if U ∩U ′ = /0.200

(15) Two symps which share a point meet in a line or in a 5-space.201

(16) The geometry with point set the set of symps of ∆, where a typical line is the set of202

symps containing a given 5-space, is isomorphic to E7,1(K).203

(17) A 4-space is contained in a unique 5-space and a unique 6-space (which intersect exactly204

in the given 4-space).205

(18) The set of points not opposite a given point q, that is q 6≡, is a geometric hyperplane of206

∆. For another given point p opposite q, the set p⊥ ∩ q6≡ is a subspace isomorphic to207

E6,1(K), called a trace geometry.208
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2.3.2. Long root subgroup geometries of exceptional type E. The long root subgroup geome-209

tries of type E have a number of common properties. We begin with stating these.210

Let ∆ be a Lie incidence geometry isomorphic to either E6,2(K), E7,1(K), or E8,8(K), for some211

field K.212

(1) The diameter ∆ is 3. Points at distance 3 are opposite.213

(2) For a sequence p ⊥ a ⊥ b ⊥ q we have p ≡ q if and only if {p,b} and {q,a} are both214

special pairs.215

(3) A point collinear to at least one point of a given symplecton not containing that point216

s, is collinear to either a line or a d′-space of the symp, where d + 1 is the rank of the217

symplecton.218

(4) If the points p,q are collinear to exactly a line L,M, respectively, of a symp ξ , then p≡ q219

if and only if L and M are opposite in the polar space ξ . Consequently, if p⊥∩ξ = L ∈220

L (∆), and r ∈ ξ , then {p,r} is a special pair if and only if r⊥∩L is a unique point.221

(5) The set of points not opposite a given point q, that is q 6≡, is a geometric hyperplane of222

∆. For another given point p opposite q, the set p⊥∩q6≡ is a subspace isomorphic to the223

point residual at p and called a trace geometry.224

(6) If p and q are opposite points, then each symp through p contains a unique point sym-225

plectic to q.226

The equator geometry E(p,q) (with poles p,q ∈ X(∆) is a full subgeometry consisting of the227

points symplectic to both p and q, and with induces line set. It is shown in [8] that it is a228

subspace and a geometry isomorphic to the long root subgroup geometry related to the point229

residual at p. For instance, if ∆∼= E8,8(K), the equator geometry is isomorphic to E7,1(K). By230

Section 2F of [8], there is a set of points C such that every pair of points are poles of E(p,q)231

(and no other point appears in a pair of poles for E(p,q)). The set C is called an imaginary line232

(and the notation C comes from the fact that it constitutes a conic in the standard embedding).233

A trace geometry with respect to lines is defined in the introduction.234

The Lie incidence geometry E7,1(K) contains convex full subgeometries which are also sub-235

spaces, isomorphic to E6,1(K). These are called paras.236

2.4. Three lemmas. We recall the following result from [6].237

Lemma 2.1 (Lemma 3.20 of [6]). If a polar space is fully embedded in a parapolar space, then238

either it is contained in a singular subspace, or it is isometrically embedded in a symp.239

We will also need the following lemma.240

Lemma 2.2. A subspace of PG(2n−1,K) meeting every generator of a hyperbolic quadric Q241

isomorphic to Dn,1(K) has at least dimension n.242

Proof. Clearly, the result is true for n = 2. So assume n≥ 3.243

Let T be a subspace of PG(2n− 1,K) of dimension n− 1 and suppose for a contradiction244

that T intersects every generator of Q. Clearly T is not contained in the span of every point245

perp as these have trivial global intersection. Let p ∈ Q be a point with T not contained in246

〈p⊥〉. Then T ∩〈p⊥〉 defines a subspace of dimension n−2 in the quotient space 〈p⊥〉/{p} ∼=247

PG(2n− 3,K), intersecting every generator of the hyperbolic quadric p⊥/{p} isomorphic to248

Dn−1,1(K) in at least a point. Repeating this argument over and over again, we eventually are249
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reduced to the case n = 2 of the lemma, which we already discussed, and which yields the250

desired contradiction. �251

We also recall Lemma 2.3 of [8].252

Lemma 2.3. Let Ψ and Ψ′ be connected point-line geometries with Ψ fully embedded in Ψ′,253

such that for each point p∈ X(Ψ), each member of L (Ψ′) containing p also belongs to L (Ψ).254

Then Ψ and Ψ′ coincide.255

3. THE UNIQUENESS OF D5,5(K) IN E6,1(K)256

In this section, we set Ω :=D5,5(K) and ∆ := E6,1(K). Also, we denote by Γ a graph isomorphic257

to the skeleton of D5,5(1).258

Lemma 3.1. Let Γ be isometrically laxly embedded in ∆, and let ∆ be naturally embedded in259

PG(26,K). Then Γ is either contained in a symp, or collinear to a given point. If Γ spans a 15-260

dimensional projective space in PG(26,K), then it is naturally contained in a trace geometry261

(as the skeleton of an apartment of that trace geometry).262

Proof. We can describe Γ ∼= D5,5(1) as the graph with point set {{i, j} | i, j ∈ {1,2,3,4,5}}∪263

{∞}, where ∞ is adjacent to all pairs {i, j}, i 6= j, i, j ∈ {1,2,3,4,5}, the set {i, j}, whuch can be264

a singleton (case i = j) or a pair (case i 6= j) is adjacent to {k} if k /∈ {i, j}, i, j,k ∈ {1,2,3,4,5},265

and the pairs {i, j} and {i,k} are adjacent if |{i, j,k}|= 3, i, j,k ∈ {1,2,3,4,5}.266

The points {1},{2},{3},{4},{1,5},{2,5},{3,5},{4,5} are all contained in the symp ξ :=267

ξ ({1},{1,5}) (and each set of vertices of Γ like this is called a (4,4)-cross-polytope). More-268

over, the singular subspace U generated by {1},{2},{3} and {4} has dimension 3 since {i,5}269

is not collinear to {i}, but collinear to all of {{ j} | j ∈ {1,2,3,4}\{i}}. Similarly the singular270

subspace W generated by {1,5},{2,5},{3,5} and {4,5} has dimension 3.271

Suppose for a contradiction that U and W are not opposite in ξ . Then there is a point u ∈272

U collinear to W . Hence it is contained in each plane 〈{i},{ j},{k}〉, |{i, j,k}| = 3, i, j,k ∈273

{1,2,3,4}. But that intersection is clearly empty, as {{1},{2},{3},{4}} is a basis for U .274

Hence U and W are opposite in ξ .275

Next, suppose that {5} ∈ ξ . Since {5} ⊥ {1,2} ⊥ {1,5}, the point {1,2} is contained in ξ .276

Similarly the points {1,3},{1,4},{2,3},{2,4} and {3,4} belong to ξ , and also ∞, since the277

latter is collinear to the noncollinear points {1,2} and {3,4}. Hence Γ is entirely contained278

in ξ . In this case it cannot span a 15-dimensional subspace of PG(26,K) as ξ only spans a279

9-dimension subspace.280

So we may from now on assume that {5} /∈ ξ . Similarly, ∞ /∈ ξ .281

Hence {5} is contained in the unique 5-space U∗ containing U , cf. Section 2.3.1(8), but not in282

ξ . It follows that {1},{2},{3},{4} and {5} generate a 4′-space, and in similar way, the same283

thing holds for every 5-clique of Γ. Let z be the intersection of the 4′-spaces of ξ containing284

U and W , respectively. Then z ∈U∗∩W ∗, where W ∗ is the unique 5-space containing W , and285

which contains also ∞. Hence {5} ⊥ z⊥ ∞.286

Assume for a contradiction that z is not collinear to {1,2}. Then the points {1,5}, {2,5}, {3},287

{4}, {5} and ∞ are contained in ξ (z,{1,2}). Since the latter thus contains the noncollinear288

points ∞ and {3}, it also contains the point {4,5}, collinear with both. But then it contains the289

noncollinear points {4,5} and {4}, which belong to ξ . Consequently ξ = ξ (z,{1,2}), which290
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contains ∞. But we just argued above that we may assume ∞ /∈ ξ , a contradiction. Hence291

{1,2} ⊥ z, and similarly every other point of Γ is collinear to z.292

In order to complete the proof of the proposition, we may assume that Γ spans a 15-dimensional293

subspace V in PG(26,K). We claim that z /∈V .294

Suppose for a contradiction z ∈ V . From the construction above follows that the subspace295

spanned by {1}, {2}, {3}, {4}, {1,5}, {2,5}, {3,5} and {4,5} is a hyperbolic quadric Q1 not296

containing z. Likewise, {5}, ∞, {i, j}, i, j ∈ {1,2,3,4}, i 6= j span a quadric Q2 not containing297

z. Hence the subspaces 〈z,Q1〉 and 〈z,Q2〉 share exactly a line L, contradicting Section 7 of [9].298

The claim is proved.299

Hence we can consider the cone with vertex z over V (Γ); this defines, by Theorem A of [5], an300

apartment in the residue of z.301

Now, using Section 2.3.1(6), we can consider the set Ξ of symps defined by the 4′-spaces gen-302

erated by the 5-cliques of Γ. They form an isometrically embedded graph Γ′ ∼= D5,4(1), which303

is also isomorphic to D5,5(1), in the dual ∆∗ ∼= E6,6(K) of ∆. Hence, by the foregoing, each304

member of Ξ is adjacent to some fixed symp ζ .305

Assume for a contradiction that z is incident with ζ . Then Corollary 1.3 of [1] implies that306

we can find a (4,4)-cross-polytope P in Γ defining a symp of ∆ through z locally opposite ζ .307

Consider any 5-clique C of Γ containing a 4-clique of P. Every symp containing C and a 4-308

space of ζ obviously contains z, which is a contradiction since that symp would then contain a309

5-space.310

Assume, again for a contradiction, that z is close to ζ . Then, again by Corollary 1.3 of [1], we311

find a vertex v of Γ such that the line zv is locally opposite the 5-space through z intersecting ζ312

in a 4′-space. Then v is far from ζ and can hence never be contained in a symp intersecting ζ313

in a 4-space.314

Hence ζ and z are opposite and the assertion now follows. �315

Proposition 3.2. Let Ω∼= D5,5(K) be fully embedded in ∆∼= E6,1(K). Then Ω coincides with a316

trace geometry.317

Proof. Consider a symp ξ of Ω. If ξ is not isometrically embedded, then by Lemma 2.1,318

it is embedded in a singular subspace W of ∆. But ξ contains disjoint solids, contradicting319

dimW ≤ 5. Since each pair of points of Ω is contained in a symp of Ω, we conclude that Ω is320

isometrically embedded in ∆.321

Select an apartment with skeleton graph Γ in Ω and note that, by Proposition 2.1 of [7], the322

latter spans a subspace of dimension 15 of PG(26,K). Hence also the former does, by Theorem323

A of [5]. Also, the previous paragraph implies that Γ is isometrically embedded in ∆. By324

Lemma 3.1 the graph Γ is naturally embedded in a trace geometry. Since Γ generates Ω, and a325

trace geometry is a subspace, it follows that Ω is contained in a trace geometry, say Ω⊆ z⊥∩ζ 6≡,326

for a point z and an opposite symp ζ .327

We now claim that X(Ω) = z⊥∩ζ 6≡, which will conclude the proof of the proposition.328

Indeed, with the notation of the proof of Lemma 3.1, the quadrics Q1 and Q2 together span329

a 15-dimensional subspace U of 〈z⊥〉 (generation in PG(26,K)). Both are also symps of the330

trace geometry z⊥ ∩ ζ 6≡ (and note that this trace geometry is isomorphic to D5,5(K) by Sec-331

tion 2.3.1(9)). Now the construction of D5,5(K) out of two opposite symps explained in Section332

5.1 of [11] shows the wanted equality. �333
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4. THE UNIQUENESS OF E6,1(K) IN E7,7(K)334

In this section, we set Ω ∼= E6,1(K) and ∆ ∼= E7,7(K). We assume that Ω is fully embedded in335

∆. Here is the main result of this section.336

Proposition 4.1. If Ω is fully embedded in ∆, then it is isometrically embedded and it coincides337

with a trace geometry.338

Proof. We break up the proof in a few parts.339

Part 1: The embedding is isometric. Let ξ be a symp of Ω. Then ξ ∼= D5,1(K) is not embedded340

in a singular subspace of ∆, as the maximum dimension of such a subspace is 6 (and ξ contains341

disjoint singular 4-spaces). Hence, by Lemma 2.1, ξ is isometrically embedded in a symp of ∆.342

Since every pair of points of Ω is contained in a symp, the distance between those points in Ω is343

2 if and only if the distance between those points in ∆ is 2. Hence the embedding is isometric.344

Note that this implies that Ω is a subspace of ∆.345

Part 2: Ω is contained in p⊥, for some point p ∈ X(∆). Select x ∈ X(Ω). Then the geometry346

Ωx ∼= D5,5(K) is fully and isometrically embedded in ∆x (using Part 1) and hence, by Proposi-347

tion 3.2, there exists a line L ∈L (∆) through x, not belonging to Ωx, collinear to Ωx.348

Now let y ∈ X(Ω) be collinear to x. Then, similarly, there exists a line M ∈L (∆) through y349

collinear to Ωy. Now note first that the intersection Ωx∩Ωy is not contained in a symp (since it350

is a geometry isomorphic to a cone with vertex the line xy and base a subspace S isomorphic to351

A4,2(K), which contains a point and a line violating the one-or-all axiom). Hence it immediately352

follows that the lines L and M are collinear. Suppose for a contradiction that they generate a353

solid Σ. Then select noncollinear points u,v ∈ S. Since singular subspaces of ∆ inside a symp354

have dimension at most 5, the subspace Σ intersects each plane of P := u⊥∩v⊥ (the perp is taken355

inside S) in at least a point. By Lemma 2.2, the whole of Σ is generated by these intersections,356

and since the embedding is isometric, Σ is a subspace of P, which is ridiculous since P does not357

contain 3-spaces. Hence L and M generate a plane and therefore intersect in a point p.358

Now let z ∈ X(Ω) be collinear to x, but not to y. Letting z play the role of y, the previous359

paragraph yields a point q ∈ L\{x} such that Ωz ⊆ q⊥. Assume for a contradiction that p 6= q.360

Let A be the intersection of z⊥ and y⊥, where both perps are taken in Ω. Then A contains points361

not collinear to x, whereas A is collinear to both p and q, and hence to L, including x, the sought362

contradiction.363

Now it is easy to see that for every pair of points of D5,5(K), there exists a point at distance 2364

from both. This implies by the previous paragraphs and the arbitrariness of z that Ωt ⊆ p⊥, for365

every t ∈ X(Ω) with t ⊥ x. This, however, covers all points of Ω and Part 2 is proved.366

Part 3: Every line of ∆ through p contains a unique point of Ω. Clearly, if some line L of ∆367

through p contained at least two points of Ω, then, since Ω is a subspace, also p would belong368

to Ω, contradicting Part 1 (as no point in Ω is collinear to all other points of Ω).369

Again by Part 1, the lines through p containing some point of Ω constitute the point set of a370

fully and isometrically embedded subgeometry Ω′ in ∆p isomorphic to E6,1(K). Let x ∈ X(Ω′)371

be arbitrary. Select an arbitrary trace geometry Γ in x⊥ (the perp is in Ω′). Then Γ ∼= D5,5(K)372

and so, by Proposition 3.2, it coincided with a trace geometry in ∆p. Hence every line of ∆p373

through x is also a line of Ω′. It now follows from Lemma 2.3 that ∆p and Ω′ coincide, which374

concludes the proof of Part 3.375
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Define, for each symp ξ of Ω, the point pξ as the unique point of the symp ξ ∗ of ∆ containing376

ξ collinear to all points of ξ and distinct from p.377

Part 4: The set X := {pξ ∈ X(∆) | ξ ∈ Ξ(Ω)} is the point set of an isometrically fully embedded378

geometry Ω∗ isomorphic to E6,1(K). By Section 2.3.1(7), X carries in a natural way the structure379

of E6,6(K), since every point of X corresponds to a unique symp of Ω, and no two symps of380

Ω define the same point (which is obvious). Hence, due to Part 1, it suffices to show that each381

line in this natural structure coincides with a line of ∆. Now, a line in X consists of the points382

corresponding to the symps of ∆ containing a given 5-space U through p. The corresponding383

points in X are, by definition, collinear to the same hyperplane H 63 p of U . Let p∗ be such a384

point and consider an arbitrary symp ξ ∗ containing U , but not p∗. Then, using Section 2.3.1(14),385

p∗, being collinear to H, is collinear to a 5′-space U∗ of ξ ∗, and obviously U∗ contains a member386

q∗ of X . So p∗ ⊥ q∗. One now deduces that all points of X corresponding to U are contained in387

the 6-space generated by U∗ and p∗. Let p∗1, p∗2 and p∗3 be three such points and assume for a388

contradiction that they are not contained in a common line. Then, inside the 6-space 〈U∗, p∗〉,389

the line p∗1 p∗2 intersects the 5′-space 〈H, p∗3〉 in some point r3 /∈H distinct from p∗3. Note that r3390

is not collinear to p.391

Set ξi = p⊥∩ p∗i
⊥ ∈ Ξ(Ω). Since r3 /∈ {p, p∗3}, there exists a point s3 in ξ3 not collinear to r3.392

Since s3 is collinear to at least a 3-space of ξ2, it is, by (5) and (8) of Section 2.3.1, contained393

in a 5-space of Ω intersecting both ξ1 and ξ2 in 4-spaces. It follows that any line L through394

s3, contained in that 5-space and disjoint from the solid s⊥3 ∩H intersects ξ1 and ξ2 in distinct395

points s1 and s2, respectively. The symp of ∆ through s1 and p∗2 contains L, hence s3, and396

p∗1 p∗2, hence r3. Hence r3 is collinear to some point t3 of L, which belongs to ξ (p,r3). Hence397

t3 ∈ L∩ξ (p,r3) = {s3}, contradicting the choice of s3 not being collinear to r3.398

Hence X is a full embedding of E6,6(K) and, applying Part 1 to that embedding, Part 4 is proved.399

Part 5: There exists a unique point q opposite p and not opposite each point of Ω, that is, Ω400

coincides with the trace geometry p⊥∩q 6≡. By Part 2, there is a unique point q collinear to all401

points of X . Then X(Ω) ⊆ q 6≡. It is obvious that p 6= q. Also, if q ⊥ p, then it lies in each402

symp through p, a contradiction. If q is at distance 2 from p, then, by Section 2.3.1(14), the403

unique point of Ω on any line through p locally opposite ξ (p,q) is opposite q, a contradiction.404

This proves existence. Let ξp be any symp through p. Then, since q is opposite p, it follows405

from Section 2.3.1(14) that q is collinear to a unique point of ξp, which automatically belongs406

to X . Let q′ now be any point opposite p distinct from q. Then by the uniqueness of q as point407

collinear to all points of X , there exists a symp ξ ∗ containing a symp ξ of Ω such that the unique408

point r of ξ ∗ collinear to q′ (where we again use Section 2.3.1(14)) is not equal to pξ . Then r is409

collinear to some point s on a line px, with x ∈ X(Ω) and s 6= x. Consequently q′ is not opposite410

s, and since it is opposite p, it is also opposite x. Hence q′ is opposite some point of Ω and we411

conclude that q is unique. �412

5. THE UNIQUENESS OF E7,7(K) IN E8,8(K)413

In this section, we set Ω ∼= E7,7(K) and ∆ ∼= E8,8(K). We assume that Ω is fully embedded in414

∆. Here is the main result of this section.415

Proposition 5.1. If Ω is fully embedded in ∆, then it is isometrically embedded and it coincides416

with a trace geometry.417
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Proof. We again break up the proof in several steps. Although one will discover great similarity418

with the structure of the proof of Proposition 4.1, some of the arguments are a little different419

and less direct because of the growing complexity that comes with the rank and the fact that420

we move from strong parapolar spaces of diameter 2, over strong ones with diameter 3, to non-421

strong ones with diameter 3. Nevertheless, arguments very similar or the same as in the proof422

of Proposition 4.1 will not be repeated.423

Part 1: The embedding is isometric. As in the proof of Proposition 4.1, one deduces that424

symplectic points of Ω are also symplectic points of ∆. Now let {x,y} be an opposite pair of425

points of Ω. Then, by Section 2.3.2(2), it is not an opposite pair in ∆ since x is collinear to a426

symplectic point to y. Let ξ be any symp of Ω containing x. Then Section 2.3.1(14) asserts that427

there is a unique point z collinear to y and contained in ξ . Considering ∆z, we see that, by the428

fact that Ωz is isometrically embedded in ∆z and Section 2.3.2(4), exactly a line of the symp of429

∆ containing ξ is collinear to y. This means, by Section 2.3.2(4) again, that y is special to x (as430

z is symplectic to x). Hence the embedding is isometric.431

Part 2: Ω is contained in p⊥, for some point p ∈ X(∆). This is entirely similar to Part 2 of the432

proof of Proposition 4.1, except that we have to push it one step further and repeat the main433

argument for points collinear to y (with the notation of the proof of Proposition 4.1).434

Part 3: Every line of ∆ through p contains a unique point of Ω. Also this step is completely435

similar to the corresponding part in the proof of Proposition 4.1.436

We again define, for each symp ξ of Ω, the point pξ as the unique point of the symp ξ ∗ of ∆437

containing ξ , collinear to all points of ξ and distinct from p.438

Part 4: The set X := {pξ ∈ X(∆) | ξ ∈ Ξ(Ω)} is an equator geometry with p one of its poles.439

Completely similar to the proof of Part 4 in the proof of Proposition 4.1 one shows that X440

is the point set of an isometrically fully embedded geometry Ω∗ isomorphic to E7,1(K). By441

Proposition 4.9 of [8], the assertion follows. Note that the set of poles of X is an imaginary line442

C .443

Part 4: There exists a unique imaginary line C containing p each point q of which distinct from444

and hence opposite p is not opposite each point of Ω, that is, Ω is a trace geometry. Part 4445

yields already existence of C . Uniqueness follows with the same arguments as in Part 5 of the446

proof of Proposition 4.1. �447

6. THE UNIQUENESS OF A5,3(K) IN E6,2(K)448

Proposition 6.1. If a Lie incidence geometry Ω ∼= A5,3(K) is fully embedded in another Lie449

incidence geometry ∆∼= E6,2(K), then it is isometrically embedded and it coincides with a trace450

geometry.451

The proof of this proposition is completely the same as the proof of Proposition 5.1, as soon as452

we prove the analogue of Proposition 3.2 for the Lie incidence geometries A2,1(K)×A2,1(K)453

not only fully, but also assumed to be isometrically embedded in A5,3(K). However, this is just454

an extended exercise in projective geometry, which we shall not carry out in detail. We just hint455

at the fact that an efficient proof uses the fact that a pair of planes of A5,3(K) with the property456

that each point of each plane is collinear to a unique point of the other plane always arises,457

up to duality in PG(5,K), from the set of planes of PG(5,K) through fixed points x1 and x2,458

and contained in given 3-spaces Σ1 and Σ2, respectively, where xi ∈ Σ j if and only if i = j, and459

Σ1∩Σ2 is a plane.460
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7. THE UNIQUENESS OF D6,6(K) IN E7,1(K)461

Proposition 7.1. If a Lie incidence geometry Ω ∼= D6,6(K) is fully embedded in another Lie462

incidence geometry ∆∼= E7,1(K), then it is isometrically embedded and it coincides with a trace463

geometry.464

Proof. As in the previous section, the proof of this proposition is completely the same as the465

proof of Proposition 5.1, as soon as we prove the analogue of Proposition 4.1 for the Lie inci-466

dence geometries A5,2(K) and D6,6(K), assuming we have an isometric embedding. That one,467

on its turn, is completely similar to Proposition 4.1 once we show the analogue of Proposi-468

tion 3.2 for the Lie incidence geometries A1,1(K)×A3,1(K) and A5,2(K), assuming we have an469

isometric embedding. That is what we will now do.470

Let Ω ∼= A1,1(K)×A3,1(K), which is just the Cartesian product of a projective line over K471

with a projective space of dimension 3 over K, be isometrically and fully embedded in ∆ ∼=472

A5,2(K). We argue in the corresponding projective space PG(5,K). Pick a maximal singular473

subspace Σ1 of Ω of dimension 3. This corresponds to the set of lines of PG(5,K) through474

some point x1 inside some hyperplane H1. A point of ∆ is collinear to exactly one point of Σ475

if and only if it corresponds to a line L of PG(5,K) not through x1 and not in H1. Hence a476

second maximal singular subspace Σ2 of Ω corresponds to a point x2 /∈ H1 and a hyperplane477

H2 63 x1. It follows that the points of Ω correspond to the lines of PG(5,K) intersecting both478

H1 ∩H2 and x1x2, that is, it coincides with the trace geometry p⊥ ∩ ξ 6≡, where p is the point479

corresponding to the line x1x2 and ξ is the symp corresponding to the solid H1 ∩H2 (through480

the Klein correspondence). �481

8. A GENERAL CONSEQUENCE482

Before we go to the more tricky case of E6,1(K) in E8,8(K), we mention a global consequence483

of all previous results. Note that the standard embedding of a long root subgroup geometry in484

projective space is the one arising from the adjoint module.485

Corollary 8.1. Let ∆ be one of the Lie incidence geometries E6,1(K), E6,2(K), E7,7(K), E7,1(K)486

and E8.8(K) with standard embedding in PG(d,K) (and d = 26, 77, 55, 132 and 247, respec-487

tively). Let p be any point of ∆ en let H be a hyperplane in the subspace of PG(d,K) spanned488

by all points of ∆ collinear to p, not containing p. Then H ∩X(∆) is a trace geometry. In489

particular, there exists a point q ∈ X(∆) not opposite each point of H ∩X(∆), unique if ∆ is not490

a long root subgroup geometry, otherwise the imaginary line containing p and q is unique.491

Proof. The set H∩X(∆) is an embedded geometry isomorphic to a point residual. The assertion492

now follows from Propositions 3.2, 6.1, 4.1, 7.1 and 5.1. �493

9. THE UNIQUENESS OF E6,1(K) IN E8,8(K)494

In this section let Ω be isomorphic to E6,1(K) and ∆ to E8,8(K). We first aim to show that Ω is495

a trace geometry with respect to two opposite lines.496

But before that, we need to study the full embeddings of Ω′ ∼= D5,5(K) in ∆′ ∼= E7,7(K). We497

head off with a partial analogue to Lemma 3.1.498

Denote again by Γ a graph isomorphic to the skeleton of D5,5(1).499
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Lemma 9.1. Let Γ be isometrically laxly embedded in ∆′, and let ∆′ be naturally embedded in500

PG(55,K). Then Γ is either contained in a symp, or collinear to a given line.501

Proof. We will follow the strategy of the proof of Lemma 3.1. Since now symps have larger502

Witt index, some arguments need to be revised.503

We take the same notation for the vertices of Γ as in the proof of Lemma 3.1. The arguments of504

the first few paragraphs of that proof can then be copied, so that we have the following situation:505

The points {1},{2},{3},{4},{1,5},{2,5},{3,5},{4,5} are all contained in a common symp506

ξ . Moreover, the singular subspaces U generated by {1},{2},{3} and {4}, and W generated507

by {1,5},{2,5},{3,5} and {4,5}, are opposite and 3-dimensional. If {5} ∈ ξ then all vertices508

of Γ are contained in ξ . So we may assume that both {5} and ∞ are not contained in ξ .509

We now go on with the proof, slightly diverging from the proof of Lemma 3.1. By the above,510

{5} is contained in a unique 6-space U∗ containing U and intersecting ξ in a 5′-space U ′.511

Likewise, ∞ is contained in a unique 6-space W ∗ containing W and intersecting ξ in a 5′-space512

W ′. Suppose that U ′∩W ′ = /0. Then, by Section 2.3.1(14), the points {5} and ∞ are opposite in513

∆′, a contradiction. Hence U ′ and W ′ share exactly a line Z.514

Now the arguments in the proof of Lemma 3.1 can be repeated to prove that all vertices of Γ are515

collinear to Z. �516

We can now show:517

Proposition 9.2. Let Ω′ ∼= D5,5(K) be fully embedded in ∆′ ∼= E7,7(K). Then Ω′ coincides with518

a trace geometry with respect to lines.519

Proof. Since the symps of Ω′ do not admit any full embedding in PG(6,K), the embedding is520

isometric. Since Ω′ is generated by Γ (see [5]), it is, by Lemma 9.1, contained in Z⊥, for some521

line Z. We select two (distinct) points p,z on Z. In ∆′p, the cone with vertex p and base Ω′522

induces a full embedding, which, by Proposition 3.2, is a trace geometry of ∆′p. Hence there is523

a symplecton ζ of ∆′ through p such that each point of Ω′ is collinear to a 5′-space of ζ through524

p. We select arbitrarily a point p′ in ζ not collinear to p, and we set ζ ′ := p⊥∩ p′⊥. Note that525

p′ is not opposite (in ∆′) any point of Ω′.526

Now we consider the (universal) embedding of ∆′ in PG(55,K). By construction, the subspace527

of PG(55,K) generated by p,z,X(Ω′) and ζ ′ coincides with 〈p⊥〉 (generation in PG(55,K))528

and is hence 27-dimensional. On the other hand, the subspace U generated by z,X(Ω′) and ζ ′529

has dimension at most (((0+15)+1)+9)+1 = 26. It follows that it has dimension precisely530

26 and that is does not contain p. Hence U ∩ p⊥ (perp in ∆) is an embedded geometry Ω∗531

isomorphic to E6,1(K). Then we know from Proposition 4.1 that there is a point z′ ∈ X(∆′)532

not opposite each point of {z}∪X(Ω′)∪ζ ′. The proof of Proposition 4.1 also directly implies533

that z′ is collinear to p′. Since no point of Ω′ is now opposite either p′ or z′, no point of Ω′534

is opposite any point of the line p′z′. Also, since pz is locally opposite ζ by construction, the535

points p′ and z are opposite in ∆. Hence pz is opposite p′z′ and X(Ω′)⊆ (pz)⊥∩(p′z′)6≡. (Here,536

the notation (p′z′)6≡ means the set of points not opposite any point of the line p′z′.)537

We now claim X(Ω′) = (pz)⊥∩(p′z′)6≡. If suffices to prove that every point u∈ (pz)⊥∩(p′z′)6≡538

is contained in X(Ω′). Let u be such a point. Since u is not opposite z′, it is contained in539

U ∩ (pz)⊥, which coincides with z⊥∩Ω∗. Hence u is collinear to z (and obviously distinct from540
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it). Let x be the unique point of uz contained in X(Ω′). Since p′ is opposite z (see above) and541

not opposite x, it is opposite each member of (uz)∗ \{x}. Hence u = x and the claim is proved.542

This completes the proof of the proposition. �543

Proposition 9.3. Let Ω∼= E6,1(K) be fully embedded in ∆∼= E8,8(K). Then Ω coincides with a544

trace geometry with respect to lines.545

Proof. We begin with following the strategy of the proof of Proposition 4.1. Part 1 is completely546

similar and so the embedding is isometric.547

For Part 2, the dimensions are different in the current case. For x∈ X(Ω), using Proposition 9.2,548

there now exists a plane α through x, not belonging to Ωx (in fact only intersecting it in x),549

collinear to Ωx. For y ∈ X(Ω) collinear to x, we find another plane β through y collinear to Ωy.550

As in the proof of Proposition 4.1, these planes are contained in a common singular subspace551

Σ. If dimΣ ∈ {4,5}, then, with the notation of the proof of Proposition 4.1, Σ intersects every552

singular plane of P, and by Lemma 2.2, these intersections generate at least a 3-space, leading553

to the same contradiction as in the proof of Proposition 4.1. Hence Σ is a solid and α ∩β is a554

line L.555

The rest of the arguments of the proof of Part 2 in the proof of Proposition 4.1 are also valid556

here and we conclude that Ω is contained in L⊥.557

Select p ∈ L arbitrarily. We apply Proposition 4.1 to ∆p. Then we find a line pz′ and a cone558

with vertex p and base a geometry Ω′′ isomorphic to E6,6(K) such that pz′ is locally opposite559

L, collinear to X(Ω′′) and not locally opposite each line through p and a point of X(Ω).560

Consider the natural embedding of ∆ in PG(247,K). We claim that L is disjoint from the561

subspace of PG(247,K) generated by X(Ω). Indeed, suppose not, and assume some point x ∈ L562

is contained in 〈X(Ω)〉. We may assume with loss that x = p. Then ∆x is contained in the563

subspace of PG(247,K) generated by X(Ω),X(Ω′′), pz′ and a point on L distinct from p. This564

is at most a 55-dimensional space, which is a contradiction. The claim is proved.565

Hence we can select a point p ∈ L and a hyperplane H in 〈p⊥〉 not containing p, but containing566

X(Ω). Corollary 8.1 implies that there exists a point q opposite p such that H ∩X(∆) is con-567

tained in q 6≡. We may assume z′ ∈ H; then {z′,q} is a special pair. Let w be the unique point568

of ∆ collinear to both q and z′. Since z′ is symplectic to each point of Ω, the point w is not569

opposite any point of Ω. Hence, as before, Ω is contained in L⊥∩ (qx)6≡. Similarly as in the last570

paragraph of the proof of Proposition 9.2 one shows now that X(Ω) = L⊥∩ (qx)6≡. �571

Since the automorphism group of ∆ acts transitively on opposite pairs of lines (by the so-called572

BN-property, or strongly transitivity), the embedding of E6,1(K) in E8,8(K) is unique. Since,573

by Section 2.3.2, a geometry isomorphic to E6,1(K) is also contained as a full subgeometry in574

an arbitrary equator geometry, every such embedding also arises in this way. We now make this575

more concrete.576

Connection with equator geometries. Let us go back to the last paragraph of the proof of577

Proposition 9.3. We proved that z′ is symplectic to all points of Ω. Let z be the point in L∩H.578

Then {z,q} is special. Let u be the unique point collinear to both z and q. Since z is collinear579

to each point of Ω, the point u is at distance a most 2 from each point of Ω. It is not collinear580

to any point of Ω as such point is also collinear to p and, by Section 2.3.2(2), u is special to581

p with z the unique point collinear to both u and p. If u were special to a point t of Ω, then582
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again Section 2.3.2(2) would imply that q is opposite t, a contradiction. Hence each point of Ω583

is symplectic to u and we conclude X(Ω)⊆ E(u,z′).584

In general, Let p and q be two opposite points in ∆. A para in E7,1(K) corresponds to a vertex585

of type 7 in the Coxeter diagram, hence to a point of E7,7(K). It follows that a para of E(p,q)586

corresponds to a line L through p. More exactly, each symp through L contains a point of E(p,q)587

(see Section 2.3.2(6)) and the set of these points forms a para Π∼= E6,1(K). The same reference588

implies that each point of Π is collinear to the unique point u ∈ L special to q. Similarly, there589

exists a point w special to p and collinear to u such that X(Π) ⊆ w⊥, and so X(Π) ⊆ (uw)⊥.590

Now let M be a line through p locally opposite L and let R be the line through the point x of M591

special to q, and containing a point y collinear to q. Since x is collinear to p and p is symplectic592

to each point of Π, we deduce from Section 2.3.2(2) that no point of Π is opposite x. Likewise,593

no point of Π is opposite y. Hence no point of R is opposite any point of Π. Then the proof594

of Proposition 9.3 implies that X(Π) = (uw)⊥ ∩R 6≡. This explains the freedom we have in595

choosing the line R. Note that we do not obtain additional lines like R by replacing q by another596

point of the imaginary line through p and q.597
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