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The Kakeya Problem over Finite Field
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The Classical Kakeya Problem

DEFINITION

A Kakeya set (or Besicovitch set) in the real plane R2 is a point
set in which a unit line segment can continuously rotate around
completely.

PROBLEM (Kakeya Needle Problem, 1917)

What is in the real plane the smallest area of a Kakeya set?

The circle of diameter 1 and area π
4

, the semicircle of radius 1 and area π
2

,

the equilateral triangle of height 1 and area 1√
3

, the deltoid inscribed in a circle of diameter 3
2

and area π
8

.

THEOREM (Besicovitch, 1928)

There exist Kakeya sets in R2 of arbitrarily small area.
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The Classical Kakeya Problem

DEFINITION

A Kakeya set (or Besicovitch set) in the real plane R2 is a point
set in which a unit line segment can continuously rotate around
completely.

REMARK

If continuity is not requested in the above definition, then there
exist Kakeya sets in R2 with zero Lebesgue measure. If this is the
case, the sets are still necessary two-dimensional, in the sense of
Hausdorff dimension (M.Davies, 1971).
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The Classical Kakeya Conjecture

DEFINITION

A Kakeya set in Rn is a compact point set containing a unit line
segment in every direction.

CONJECTURE

A Kakeya set in Rn has Hausdorff dimension equal to n.

REMARK

The conjecture is still open for n > 2, although many partial
results are known (N.Katz, T.Tao, T.Wolff).
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Kakeya Sets
From the Reals to the Finite Fields

It was T.Wolff who proposed the definition of Kakeya set over
finite fields.

DEFINITION

A point set E in the n−dimensional affine space AG (n, q) is said
to be a Kakeya set if it contains lines in every directions.

REFERENCE

T.Wolff, Recent work connected with the Kakeya problem.
Prospects in mathematics (Princeton, NJ, 1996), pages 129-162,
1999.
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Kakeya Sets over Galois Fields

Standard Model for Minimal Kakeya Sets

Let π be the set of all directions of AG (n, q). For every α ∈ π let
`α be a line with slope α. Then a standard model of minimal
Kakeya set is given by

E =
⋃
α∈π

`α.

FIGURE: The set E in the case n = 2

REMARK

The case n = 1 is trivial: the unique Kakeya set is AG (1, q).
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The Finite Field Kakeya Problem

PROBLEM

Find the minimum size of a Kakeya set in AG (n, q).

REMARK

The problem was firstly raised by T.Wolff in the cited paper.
In the same paper, according to the classical Kakeya conjecture, he
also made the celebrated finite field Kakeya conjecture.

REFERENCE

T.Wolff, Recent work connected with the Kakeya problem.
Prospects in mathematics (Princeton, NJ, 1996), pages 129-162,
1999.
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The Finite Field Kakeya Conjecture

CONJECTURE

Let E be a Kakeya set in AG (n, q). Then |E | ≥ cn qn, where
cn > 0 depends only on n.

REMARK

The conjecture has had a significant influence in the subject of
finite field Kakeya set theory and remained open for more than ten
years.
It was completely solved in 2008 by Z.Dvir using the polynomial
method with a beautifully simple argument.

REFERENCE

Z.Dvir, On the size of Kakeya sets in finite fields, J. Amer. Math.
Soc., 22, 1093-1097, 2009.
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The Kakeya Problem over Finite Field

THE DVIR’S THEOREM
AND

THE SOLUTION OF THE
FFK CONJECTURE

F.Mazzocca Seconda Università di Napoli



The Dvir’s Theorem
Step 1

DEFINITION

The polynomials in Fq[x1, x2, ..., xn] of degree at most q− 1 in each
variable and the zero polynomial are called reduced polynomials.

PROPOSITION

Let f ∈ Fq[x1, x2, ..., xn] be a reduced polynomial. If f (a) = 0 for
all a ∈ F n

q , then f is the zero polynomial.
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The Dvir’s Theorem
Step 2

PROPOSITION

Let E be a point set in AG (n, q) with |E | <
(n+d

n

)
, for some

positive integer d . Then there exists a non zero polynomial
f ∈ Fq[x1, x2, ..., xn] of degree ≤ d and vanishing on E .
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PROPOSITION

Let E be a point set in AG (n, q) with |E | <
(n+d

n

)
, for some

positive integer d . Then there exists a non zero polynomial
f ∈ Fq[x1, x2, ..., xn] of degree ≤ d and vanishing on E .

COROLLARY

Let E be a point set in AG (n, q) and assume that there is no
reduced polynomial of degree ≤ d vanishing on E . Then

|E | ≥
(

n + d

n

)
.
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The Dvir’s Theorem
Final Step

PROPOSITION

Let E be a Kakeya set in AG (n, q). Then there are no reduced
polynomials f ∈ Fq[x1, x2, ..., xn] of degree < q vanishing on E .

THEOREM

Let E be a Kakeya set in AG (n, q). Then

|E | ≥
(

q + n − 1

n

)
=

1

n!
q(q + 1) · · · (q + n − 1)≥ 1

n!
qn

and Wolff’s conjecture is true with cn = 1
n! .
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The Kakeya Problem over Finite Field

IMPROVEMENTS OF
DVIR’S THEOREM
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Improvements of the Dvir’s Constant

In 2008, S. Saraf and M. Sudan derived an improvement to the
Dvir’s constant cn = 1

n! .
This was done by considering polynomials that vanish with high
multiplicity on a Kakeya set E in AG (n, q). More precisely they
proved that

|E | ≥ 1

4n
qn

REMARK

Dvir noted that the constant 4 can be improved to 2.6.

REFERENCE

S. Saraf and M. Sudan, Improved lower bound on the size of
Kakeya sets over finite fields. Analysis and PDE, 1(3):375-379,
2008.

F.Mazzocca Seconda Università di Napoli
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Improvements of the Dvir’s Constant

The Saraf-Sudan result is a corollary of the following theorem.

THEOREM

Let E be a point set in AG (n, q) such that

|E | < qn/

(
m + n − 1

n

)
for some positive integer m. Then there exists a non zero reduced

polynomial f ∈ Fq[x1, x2, ..., xn] vanishing on E with multiplicity
≥ m on every point of E .

REFERENCE

S. Saraf and M. Sudan, Improved lower bound on the size of
Kakeya sets over finite fields. Analysis and PDE, 1(3):375-379,
2008.
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Improvements of the Saraf-Sudan Constant

In 2009, Z. Dvir, S. Kopparty, S. Saraf, and M. Sudan derived an
improvement to the previous Saraf-Sudan constant cn = 1

4n .
This was done by considering more deep arguments about
polynomials that vanish with high multiplicity on a Kakeya set E in
AG (n, q). They were able to prove that

|E | ≥ 1

2n
qn

REFERENCE

Z. Dvir, S. Kopparty, S. Saraf, and M. Sudan, Extensions to the
method of multiplicities, with applications to Kakeya sets and
mergers, Proceedings of the 50th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 181-190,
Washington, DC, USA, 2009. IEEE Computer Society.
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About the Sharpness

The problem of finding the exact value of the minimum size of a
Kakeya set seems to be very hard and gets more difficult as the
dimension n increases.

At this moment, it is completely solved only in dimension two and
we will give a brief account of this.
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The Finite Field Kakeya Problem:
some preliminaries for the case n = 2

REFERENCE

X.W.C.Faber, On the Finite Field Kakeya Problem in Two
Dimensions, J. Number Theory, 117, 471-481, (2006).

REMARK

Some of central results by Faber were already known in their dual
form (Bichara-Korchmáros (1982) and Blokhuis-Bruen (1989)).

REFERENCE

A. Bichara and G. Korchmáros, Note on (q+2)-Sets in a Galois
Plane of Order q, Ann. Discrete Math., 14 (1982), 117121.

REFERENCE

A. Blokhuis and A. A. Bruen, The Minimal Number of Lines
Intersected by a Set of q +2 Points, Blocking Sets, and
Intersecting Circles, J. Combin. Theory Ser. A, 50 (1989), 308315.
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The Finite Field Kakeya Problem:
some preliminaries for the case n = 2

In the following I will make use of the following plane
configurations:

ovals and hyperovals,

(q + t, t)−arcs of type (0, 2, t),

dual blocking sets.

Ovals and hyperovals are well known to the audience, so I will
recall later the definitions and some properties only for
(q + t, t)-arcs of type (0, 2, t) and dual blocking sets
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The Finite Field Kakeya Problem:
the case n = 2, q even

EXAMPLE (Kakeya Sets of Hyperoval type)

Assume q is even and consider in PG (2, q) = AG (2, q)∪ `∞ a dual
hyperoval H containing `∞. For every point P ∈ `∞, let `P the
line of H on P other than `∞. Then the Kakeya set in AG (2, q)

E = (
⋃

P∈`∞

`P) \ `∞

is of size q(q+1)
2 .

PROPOSITION

In AG (2, q) with q even, |E | ≥ q(q+1)
2 for every Kakeya set E . The

equality holds iff E is of the hyperoval type.
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The Finite Field Kakeya Problem:
the case n = 2, q odd

EXAMPLE (Kakeya Sets of Oval type)

Assume q is odd and consider in PG (2, q) = AG (2, q) ∪ `∞ a dual
oval O. Every point P on `∞, but one, belongs to a second line
`P ∈ O other than `∞. If A is this remaining point on `∞, let `A
be a line through it different from `∞. Then the Kakeya set in
AG (2, q)

E = (
⋃

P∈`∞

`P) \ `∞

is of size
q(q + 1)

2
+

q − 1

2
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The Finite Field Kakeya Problem:
the case n = 2, q odd

The existence of Kakeya sets of oval type suggested to Faber to
make the following congecture.

CONJECTURE (X.Faber Conjecture, 2006)

If q is odd and E is a Kakeya set in AG (2, q), then

|E | ≥ q(q + 1)

2
+

q − 1

2

The equality holds if and only if E is of oval type.
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The Finite Field Kakeya Problem:
the case n = 2, q odd

PROPOSITION (A.Blokhuis - F.M., 2008)

The Faber’s conjecture is true: if q is odd and E is a Kakeya set in
AG (2, q), then

|E | ≥ q(q + 1)

2
+

q − 1

2

The equality holds if and only if E is of oval type.

REFERENCE

A.Blokhuis and F.M., The Finite Field Kakeya Problem, Bridges
Between Mathematics and Computer Science, Bolyay Society
Mathematical Studies, Vol.19, Grötschel M., Katona G. ((Eds.),
Springer, 2008.

REFERENCE

S.Ball, On sets of points in a finite affine plane containing a line in
every direction, preprint, 2008.
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The Finite Field Kakeya Problem in the case n = 2, q even:
the second smallest size

EXAMPLE (Kakeya Sets of quasi-hyperoval type)

Assume q is even and consider in PG (2, q) = AG (2, q) ∪ `∞ a
Kakeya set E (H) associated to a dual hyperoval H containing `∞ :

E (H) = (
⋃

P∈`∞

`P) \ `∞.

Fix a point A ∈ `∞ and a line `′ through A different from `A and
`∞. Then the Kakeya set in AG (2, q)

E = (E (H) \ `A) ∪ (`′ \ `∞)

is of size
q(q + 2)

2
.
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The Finite Field Kakeya Problem in the case n = 2, q even:
the second smallest size

PROPOSITION (A. Blokhuis, A.A. Bruen, 1989)

There are no Kakeya sets E in AG (2, q), q even, with

1

2
q(q + 1) < |E | < 1

2
q(q + 2).

Furthermore, all Kakeya sets of size 1
2 q(q + 2) are of

quasi-hyperoval type.

REFERENCE

A. Blokhuis and A.A. Bruen, The minimal number of lines
intersected by a set of q + 2 points, blocking sets, and intersecting
circles, J. Combin. Theory Ser. A, 50, 308-315, 1989.
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(q + t, t)-arcs of type (0, 2, t) in PG (2, q)

DEFINITION

A (q + t, t)−arc of type (0, 2, t) in PG (2, q), q even (and t|q), is a
set of q + t points intersecting any line in 0, 2 or t points.

REFERENCE

G. Korchmáros and F.M.: On (q + t, t)−arc of type (0, 2, t) in a
desarguesian plane of order q, Math. Proc. Camb. Phil. Soc.,
108(3), 445-459, (1990).

PROPOSITION

The t−secant lines to a (q + t, t)−arc of type (0, 2, t) of PG (2, q)
are concurrent in a point (called the t−nucleus).

REFERENCE

A. Gács and Zs. Weiner: On (q + t, t)−arc of type (0, 2, t), Des.
Codes Cryptogr., 29(1- 3), 131-139, (2003).
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PROPOSITION

The t−secant lines to a (q + t, t)−arc of type (0, 2, t) of PG (2, q)
are concurrent in a point (called the t−nucleus).

REFERENCE

A. Gács and Zs. Weiner: On (q + t, t)−arc of type (0, 2, t), Des.
Codes Cryptogr., 29(1- 3), 131-139, (2003).
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(q + 4, 4)-arcs of type (0, 2, 4) in PG (2, q)

For t = 4, it remains an open problem for which values of q a
(q + 4, 4)−arc of type (0, 2, 4) exist.

There are know examples only for q = 8, 16, 32.

The conjecture is that these arcs do not exist for q > 32.

REFERENCE

G. Korchmáros and F.M.: On (q + t, t)−arc of type (0, 2, t) in a
desarguesian plane of order q, Math. Proc. Camb. Phil. Soc.,
108(3), 445-459, (1990).

REFERENCE

J.D. Key, T.P. McDonough, V.C. Mavron: An upper bound for the
minimum weight of the dual codes of desarguesian planes,
European J. Combin., 30(1), 220-229, (2009).
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The Finite Field Kakeya Problem in the case n = 2, q even:
the third smallest size

Now we describe a Kakeya set, which we will see to be the third
smallest example, provided that it exists.

EXAMPLE (Kakeya Sets of (0, 2, 4)−arc type)

Let A be a dual (q + 4)-arc of type (0, 2, 4) in PG (2, q), and let
`0, `1, `2, `∞ be four concurrent lines of A. Consider the affine
plane AG (2, q) = PG (2, q) \ `∞. Let A′ be the line set
A \ {`1, `2}. Consider the set

E (A, `1, `2) =
⋃
L∈A′

(L \ `∞) .

This is a Kakeya set since there is precisely one line of E (A, L1, L2)
through every point of L∞. It has size 1

2 q(q + 2) + 1
4 q.
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The Finite Field Kakeya Problem in the case n = 2, q even:
the third smallest size

PROPOSITION (A. Blokhuis, M. De Boeck, F.M. and L. Storme, 2011)

There are no Kakeya sets E in AG (2, q), q even, with

1

2
q(q + 2) < |E | < 1

2
q(q + 2) +

1

4
q.

Furthermore, all Kakeya sets of size 1
2 q(q + 2) + 1

4 q are of
(0, 2, 4)−arc type.

REFERENCE

A. Blokhuis, M. De Boeck, F.M. and L. Storme, The Kakeya
problem: a gap in the spectrum and classification of the smallest
examples, 2011.
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The Kakeya Problem over Finite Field

APPLICATIONS
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Dual Blocking Sets

DEFINITION

A dual blocking set (or anti-blocking set) S in πq = PG (2, q) is a
point set meeting every blocking set and containing no lines.

PROPOSITION

Let S be a minimal dual blocking set in πq. Then one of the two
following possibilities occur:

S = (
⋃

P∈` `P) \ ` is a Kakeya set;

S = πq \ (` ∪m) is the complement of the union of two
distinct lines ` and m.

REFERENCE

P.J.Cameron, F.M., R.Meshulam, Dual blocking sets in projective
and affine planes, Geometriae Dedicata, 27, 1988, n.2, 203-207.
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Dual Blocking Sets

PROPOSITION ( 1988)

Let S be a dual blocking set in πq. Then

|S | ≥ q(q + 1)

2
.

Equality holds if and only if either

S is the Kakeya set associated to a dual hyperoval and one of
its lines; or

q = 3 and S is the complement of the union of two distinct
lines.
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Dual Blocking Sets and Kakeya sets

The study of dual blocking sets in PG (2, q)
is equivalent to

the study of Kakeya sets in AG (2, q).
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Collinear triples in permutations of GF (q) and
Kakeya sets

CONJECTURE (Cooper-Solymosi, 2005)

In AG (2, q), q odd, the number of the collinear triples in the graph
of a permutation of GF (q) is at least (q − 1)/2.

The points of the graph of a permutation σ of GF (q), q odd, in
AG (2, q) together with the directions of the two frame axis form a
(q + 2)− set of points Σ in PG (2, q) with a nucleus.
The dual Σ∗ of Σ is a Kakeya set of size

q(q + 1)

2
+ ε

and it is possible to prove that ε is just the number of collinear
triples of the graph of σ.
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Collinear triples in permutations of GF (q) and
Kakeya sets

THEOREM

The Cooper-Solymosi conjecture is true: in AG (2, q), q odd, the
number of the collinear triples in the graph of a permutation of
GF (q) is at least (q − 1)/2.

REFERENCE

S.Ball, On sets of points in a finite affine plane containing a line in
every direction, preprint, 2008.

REFERENCE

L.Li, Collinear triples in permutations, Innovation in incidence
geometry, vol.8, 2008.
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The End

GRAZIE !
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