The 2-blocking number and the upper chromatic number of $\operatorname{PG}(2, q)$

Tamás Héger Joint work with Gábor Bacsó and Tamás Szőnyi

Eötvös Loránd University Budapest

September 18, 2012

The problem

Color the vertices of a hypergraph \mathcal{H}.
A hyperedge is rainbow, if its vertices have pairwise distinct colors.
The upper chromatic number of $\mathcal{H}, \bar{\chi}(\mathcal{H})$: the maximum number of colors that can be used without creating a rainbow hyperedge.

Determining $\bar{\chi}\left(\Pi_{q}\right)$ and $\bar{\chi}(\operatorname{PG}(2, q))$ has been of interest since the mid-1990s.

Example: $\bar{\chi}(\mathrm{PG}(2,2))=3$

Trivial coloring

$v:=q^{2}+q+1$, the number of points in Π_{q}.
$\tau_{2}:=$ the size of the smallest double blocking set in Π_{q}.
Then $\bar{\chi}\left(\Pi_{q}\right) \geq v-\tau_{2}+1$.
We call this a trivial coloring.
Remark: if a coloring contains a monochromatic 2BS, it is not

Theorem (Bacsó, Tuza, 2007)

As $q \rightarrow \infty$,

- $\bar{\chi}\left(\Pi_{q}\right) \leq v-(2 q+\sqrt{q} / 2)+o(\sqrt{q})$;
- for q square, $\bar{\chi}(\operatorname{PG}(2, q)) \geq v-(2 q+2 \sqrt{q}+1)=v-\tau_{2}+1$;
- $\bar{\chi}(\operatorname{PG}(2, q)) \leq v-(2 q+\sqrt{q})+o(\sqrt{q})$;
- for q non-square, $\bar{\chi}(\operatorname{PG}(2, q)) \leq v-\left(2 q+C q^{2 / 3}\right)+o(\sqrt{q})$.

Theorem

Let $q=p^{h}$, p prime. Let $\tau_{2}(\operatorname{PG}(2, q))=2(q+1)+c$. Suppose that one of the following two conditions holds:
(1) $206 \leq c \leq c_{0} q-13$, where $0<c_{0}<1 / 2$,

$$
q \geq q\left(c_{0}\right)=2\left(c_{0}+2\right) /\left(2 / 3-c_{0}\right)-1, \text { and }
$$

$$
p \geq p\left(c_{0}\right)=50 c_{0}+24
$$

(2) $q>256$ is a square.

Then $\bar{\chi}(\operatorname{PG}(2, q))=v-\tau_{2}+1$, and equality is reached only by trivial colorings.

Simpler form of the above theorem:

Theorem

Let $q=p^{h}$, p prime. Suppose that either $q>256$ is a square, or $h \geq 3$ odd and $p \geq 29$. Then $\bar{\chi}(\operatorname{PG}(2, q))=v-\tau_{2}+1$, and equality is reached only by trivial colorings.

Remark: if $\tau_{2}(\mathrm{PG}(2, q))<8 q / 3, q>q\left(\tau_{2}\right)$, then $\bar{\chi} \lesssim v-\tau_{2}+10$.
C_{1}, \ldots, C_{n} : color classes of size at least two (only these are useful)
C_{i} colors the line ℓ iff $\left|\ell \cap C_{i}\right| \geq 2$.
All lines have to be colorod, so
$\mathcal{B}=\bigcup_{i=1}^{n} C_{i}$ is a double blocking set.

We use $v-|\mathcal{B}|+n$ colors.

To reach the trivial coloring, we must have $v-|\mathcal{B}|+n \geq v-\tau_{2}+1$, thus we need

$$
n \geq|\mathcal{B}|-\tau_{2}+1
$$

colors in \mathcal{B}. Also $n \leq|B| / 2$, so $|B| \leq 2 \tau_{2} \leq 6 q$.
C_{1}, \ldots, C_{n} : color classes of size at least two (only these are useful)
C_{i} colors the line ℓ iff $\left|\ell \cap C_{i}\right| \geq 2$.
All lines have to be colored, so $\mathcal{B}=\bigcup_{i=1}^{n} C_{i}$ is a double blocking set.

We use $v-|\mathcal{B}|+n$ colors.

To reach the trivial coloring, we must have $v-|\mathcal{B}|+n \geq v-\tau_{2}+1$, thus we need

$$
n \geq|\mathcal{B}|-\tau_{2}+1
$$

colors in \mathcal{B}. Also $n \leq|B| / 2$, so $|B| \leq 2 \tau_{2} \leq 6 q$.

Eliminating color classes of size two

So there is at most one color class of size two.

$|\mathcal{B}| \gtrsim 3 q-\varepsilon$

Recall that $\tau_{2} \lesssim 2.5 q$.
$L\left(C_{i}\right):=$ the number of lines colored by C_{i}. Then $L\left(C_{i}\right) \leq\binom{\left|C_{i}\right|}{2}$.
By convexity, to satisfy

$$
q^{2}+q+1 \leq \sum L\left(C_{i}\right) \leq \sum\binom{\left|C_{i}\right|}{2}
$$

the best is to have one giant, and many dwarf color classes. But as

$$
|\mathcal{B}|-\tau_{2}+1 \leq n \leq 1+\frac{|\mathcal{B}|-\left|C_{\text {giant }}\right|}{3}
$$

$\mid C_{g}$ iant $\left|\leq 3 \tau_{2}-2\right| B \mid$, too small.

$|\mathcal{B}| \gtrsim 3 q-\varepsilon$

Recall that $\tau_{2} \lesssim 2.5 q$. Say, $\tau_{2} \approx 2.5 q$.
$L\left(C_{i}\right):=$ the number of lines colored by C_{i}. Then $L\left(C_{i}\right) \leq\binom{\left|C_{i}\right|}{2}$.
By convexity, to satisfy

$$
q^{2}+q+1 \leq \sum L\left(C_{i}\right) \leq \sum\binom{\left|C_{i}\right|}{2}
$$

the best is to have one giant, and many dwarf color classes. But as

$$
0.5 q \lesssim|\mathcal{B}|-\tau_{2}+1 \leq n \leq 1+\frac{|\mathcal{B}|-\left|C_{\text {giant }}\right|}{3}
$$

$\left|C_{\text {giant }}\right| \leq 3 \tau_{2}-2|B|$, too small: $\left|C_{\text {giant }}\right| \lesssim 1.5 q$.

$|\mathcal{B}| \gtrsim 3 q-\varepsilon$

Recall that $\tau_{2} \lesssim 2.5 q$. Say, $\tau_{2} \approx 2.5 q$.
$L\left(C_{i}\right):=$ the number of lines colored by C_{i}. Then $L\left(C_{i}\right) \leq\binom{\left|C_{i}\right|}{2}$.
By convexity, to satisfy

$$
q^{2}+q+1 \leq \sum L\left(C_{i}\right) \leq \sum\binom{\left|C_{i}\right|}{2}
$$

the best is to have one giant, and many dwarf color classes. But as

$$
0.5 q \lesssim|\mathcal{B}|-\tau_{2}+1 \leq n \leq 1+\frac{|\mathcal{B}|-\left|C_{\text {giant }}\right|}{3}
$$

$\left|C_{\text {g iant }}\right| \leq 3 \tau_{2}-2|B|$, too small: $\left|C_{\text {giant }}\right| \lesssim 1.5 q$.
However, if $\left|C_{\text {giant }}\right| \geq q+2$, we use $L\left(C_{i}\right) \leq \frac{(q+1)}{2}\left|C_{i}\right|$.

$\tau_{2}+\varepsilon^{\prime} \lesssim|\mathcal{B}| \lesssim 3 q-\varepsilon$

Lemma

Let \mathcal{B} be t-fold blocking set in $\mathrm{PG}(2, q),|\mathcal{B}|=t(q+1)+k$, and $P \in \mathcal{B}$ be an essential point of \mathcal{B}. Then there are at least $(q+1-k-t) t$-secants of \mathcal{B} through P.

Corollary

Let \mathcal{B} be a t-fold blocking set with $|\mathcal{B}| \leq(t+1) q$ points. Then there is exactly one minimal t-fold blocking set in \mathcal{B}, namely the set of essential points.

Remark

Harrach has a recent result on the unique reducibility of weighted t-fold ($n-k$)-blocking sets in the projective space $\mathrm{PG}(n, q)$.

$\tau_{2}+\varepsilon^{\prime} \lesssim|\mathcal{B}| \lesssim 3 q-\varepsilon$

Lemma

Let \mathcal{B} be t-fold blocking set in $\operatorname{PG}(2, q),|\mathcal{B}|=t(q+1)+k$, and $P \in \mathcal{B}$ be an essential point of \mathcal{B}. Then there are at least $(q+1-k-t) t$-secants of \mathcal{B} through P.

Corollary
Let \mathcal{B} be a t-fold blocking set with $|\mathcal{B}| \leq(t+1)$ q points. Then there is exactly one minimal t-fold blocking set in \mathcal{B}, namely the set of essential points.

Remark
Harrach has a recent result on the unique reducibility of weighted t-fold ($n-k$)-blocking sets in the projective space $\operatorname{PG}(n, q)$.

$\tau_{2}+\varepsilon^{\prime} \lesssim|\mathcal{B}| \lesssim 3 q-\varepsilon$

Lemma

Let \mathcal{B} be t-fold blocking set in $\operatorname{PG}(2, q),|\mathcal{B}|=t(q+1)+k$, and $P \in \mathcal{B}$ be an essential point of \mathcal{B}. Then there are at least $(q+1-k-t) t$-secants of \mathcal{B} through P.

Corollary

Let \mathcal{B} be a t-fold blocking set with $|\mathcal{B}| \leq(t+1) q$ points. Then there is exactly one minimal t-fold blocking set in \mathcal{B}, namely the set of essential points.

Lemma

Let \mathcal{B} be t-fold blocking set in $\operatorname{PG}(2, q),|\mathcal{B}|=t(q+1)+k$, and $P \in \mathcal{B}$ be an essential point of \mathcal{B}. Then there are at least $(q+1-k-t) t$-secants of \mathcal{B} through P.

Corollary

Let \mathcal{B} be a t-fold blocking set with $|\mathcal{B}| \leq(t+1) q$ points. Then there is exactly one minimal t-fold blocking set in \mathcal{B}, namely the set of essential points.

Remark

Harrach has a recent result on the unique reducibility of weighted t-fold ($n-k$)-blocking sets in the projective space $\operatorname{PG}(n, q)$.

Proof of the lemma

Let $P \in B$ essential, and suppose to the contrary that there are more than $k+t$ long secants through P. Let ℓ be t-secant, $P \notin \ell$.
$R(M, B)=\prod_{i=1}^{t-1}\left(M-m_{i}\right) \prod_{i=1}^{t q+k}\left(M x_{i}+B-y_{i}\right)=g(M) \prod_{i=1}^{t q+k}\left(M x_{i}+B-y_{i}\right)$.
As B is a t-fold blocking set,

$$
R(M, B)=\sum_{j=0}^{t}\left(M^{q}-M\right)^{j}\left(B^{q}\right.
$$

$\left(B^{q}-B\right)^{t} g(M) F_{0}^{*}(M, B)+\left(M^{q}-M\right) h(M, b)$,
where $\operatorname{deg}\left(F_{0}^{*}\right) \leq k$.
Then for any $m \notin\left\{m_{1}, \ldots, m_{t-1}\right\}$,
$|\{Y=m X+B\} \cap B|>t \Longleftrightarrow\left(B^{q}-B\right)^{t+1}|R(m, B) \Longleftrightarrow(B-b)| F_{0}^{*}(r$

Let $P=\left(x_{1}, y_{1}\right)$. More than $k+t$ long sec's on $P \Rightarrow$ more than k long sec's with $m \notin\left\{m_{1}, \ldots, m_{t-1}\right\}$.

So $M x_{1}+B-y_{1}=0$ and $F_{0}^{*}(M, B)=0$ have more than k common points. Thus $\left(M x_{1}+B-y_{1}\right)$ is a factor of $F_{0}^{*}(M, B)$, thus the lines through P and a point of $\ell \backslash B$ are long secants. This gives a contradiction if P is essential.

$\tau_{2}+\varepsilon^{\prime} \lesssim|\mathcal{B}| \lesssim 3 q-\varepsilon$

Clear: if ℓ is a 2 -secant to \mathcal{B}, then $\ell \cap \mathcal{B}$ is monochromatic. Let $|\mathcal{B}|=2(q+1)+k$. Then

Proposition

Every color class containing an essential point of \mathcal{B} has at least $(q-k) \approx 3 q-|\mathcal{B}|$ points.
$\mathcal{B}=\mathcal{B}^{*} \cup \mathcal{B}^{\prime}$, where \mathcal{B}^{*} is the set of essential points, $\left|\mathcal{B}^{*}\right| \geq \tau_{2}$.
We have

$$
|\mathcal{B}|-\tau_{2}+1 \leq n \leq \frac{|\mathcal{B}|-\left|\mathcal{B}^{*}\right|}{3}+\frac{\left|\mathcal{B}^{*}\right|}{q-k},
$$

so

$$
\frac{2}{3}\left(|\mathcal{B}|-\tau_{2}\right)(q-k) \leq \tau_{2}
$$

$|\mathcal{B}| \leq \tau_{2}+\varepsilon, q>256$ square $\left(\right.$ so $\left.\tau_{2}=2(q+\sqrt{q}+1)\right)$

Blokhuis, Storme, Szőnyi: \mathcal{B} contains two disjoint Baer subplanes, \mathcal{B}_{1} and \mathcal{B}_{2}. $\mathcal{B}^{*}=\mathcal{B}_{1} \cup \mathcal{B}_{2}$ can not be monochromatic.

$|\mathcal{B}| \leq \tau_{2}+\varepsilon, q>256$ square $\left(\right.$ so $\left.\tau_{2}=2(q+\sqrt{q}+1)\right)$

Blokhuis, Storme, Szőnyi: \mathcal{B} contains two disjoint Baer subplanes, \mathcal{B}_{1} and \mathcal{B}_{2}. $\mathcal{B}^{*}=\mathcal{B}_{1} \cup \mathcal{B}_{2}$ can not be monochromatic.

Let $P \in \mathcal{B}_{1}$ be purple.

$|\mathcal{B}| \leq \tau_{2}+\varepsilon, q>256$ square $\left(\right.$ so $\left.\tau_{2}=2(q+\sqrt{q}+1)\right)$

Blokhuis, Storme, Szőnyi: \mathcal{B} contains two disjoint Baer subplanes, \mathcal{B}_{1} and \mathcal{B}_{2}. $\mathcal{B}^{*}=\mathcal{B}_{1} \cup \mathcal{B}_{2}$ can not be monochromatic.

Let $P \in \mathcal{B}_{1}$ be purple. There are at least $(q-\sqrt{q}-\varepsilon-1)$ 2-secants on P, so there are a lot of purple points in \mathcal{B}_{2}.

$|\mathcal{B}| \leq \tau_{2}+\varepsilon, q>256$ square $\left(\right.$ so $\left.\tau_{2}=2(q+\sqrt{q}+1)\right)$

Blokhuis, Storme, Szőnyi: \mathcal{B} contains two disjoint Baer subplanes, \mathcal{B}_{1} and \mathcal{B}_{2}. $\mathcal{B}^{*}=\mathcal{B}_{1} \cup \mathcal{B}_{2}$ can not be monochromatic.

Let $P \in \mathcal{B}_{1}$ be purple. There are at least $(q-\sqrt{q}-\varepsilon-1)$ 2-secants on P, so there are a lot of purple points in \mathcal{B}_{2}.

The same from \mathcal{B}_{2} : we have at least $2(q-\sqrt{q}-\varepsilon-1)$ purple points.

$|\mathcal{B}| \leq \tau_{2}+\varepsilon, q>256$ square $\left(\right.$ so $\left.\tau_{2}=2(q+\sqrt{q}+1)\right)$

Blokhuis, Storme, Szőnyi: \mathcal{B} contains two disjoint Baer subplanes, \mathcal{B}_{1} and \mathcal{B}_{2}. $\mathcal{B}^{*}=\mathcal{B}_{1} \cup \mathcal{B}_{2}$ can not be monochromatic.

Let $P \in \mathcal{B}_{1}$ be purple. There are at least $(q-\sqrt{q}-\varepsilon-1)$ 2-secants on P, so there are a lot of purple points in \mathcal{B}_{2}.

The same from \mathcal{B}_{2} : we have at least $2(q-\sqrt{q}-\varepsilon-1)$ purple points.

If we have brown points as well:

$|\mathcal{B}| \leq \tau_{2}+\varepsilon, q>256$ square $\left(\right.$ so $\left.\tau_{2}=2(q+\sqrt{q}+1)\right)$

Blokhuis, Storme, Szőnyi: \mathcal{B} contains two disjoint Baer subplanes, \mathcal{B}_{1} and \mathcal{B}_{2}. $\mathcal{B}^{*}=\mathcal{B}_{1} \cup \mathcal{B}_{2}$ can not be monochromatic.

Let $P \in \mathcal{B}_{1}$ be purple. There are at least $(q-\sqrt{q}-\varepsilon-1)$ 2-secants on P, so there are a lot of purple points in \mathcal{B}_{2}.

The same from \mathcal{B}_{2} : we have at least $2(q-\sqrt{q}-\varepsilon-1)$ purple points.

If we have brown points as well: $|\mathcal{B}| \geq 4(q-\sqrt{q}-\varepsilon-1)$

$|\mathcal{B}| \leq \tau_{2}+\varepsilon$

By melting color classes, we may assume $n=2, \mathcal{B}^{*}=\mathcal{B}^{r} \cup \mathcal{B}^{g}$, and let $|\mathcal{B}|=\left|\mathcal{B}^{*}\right|=2(q+1)+k<2.5 q$.

Theorem (Blokhuis, Lovász, Storme, Szőnyi)

Let B be a minimal t-fold blocking set in $\operatorname{PG}(2, q), q=p^{h}, h \geq 1$, $|B|<t q+(q+3) / 2$. Then every line intersects B in $t(\bmod p)$ points.

For a line ℓ, let

$$
\begin{aligned}
n_{\ell}^{r} & =\left|\mathcal{B}^{r} \cap \ell\right|, \\
n_{\ell}^{g} & =\left|\mathcal{B}^{g} \cap \ell\right| \\
n_{\ell} & =n_{\ell}^{r}+n_{\ell}^{g}=|\mathcal{B} \cap \ell| .
\end{aligned}
$$

$|\mathcal{B}| \leq \tau_{2}+\varepsilon$

Define the set of red, green and balanced lines as

$$
\begin{aligned}
\mathcal{L}^{r} & =\left\{\ell \in \mathcal{L}: n_{\ell}^{r}>n_{\ell}^{g}\right\}, \\
\mathcal{L}^{g} & =\left\{\ell \in \mathcal{L}: n_{\ell}^{g}>n_{\ell}^{r}\right\}, \\
\mathcal{L}^{=} & =\left\{\ell \in \mathcal{L}: n_{\ell}^{r}=n_{\ell}^{g}\right\} .
\end{aligned}
$$

Using double counting, we get

$$
\begin{gathered}
\sum_{\ell \in \mathcal{L}} n_{\ell}=\left|\mathcal{B}^{*}\right|(q+1), \text { hence } \\
\sum_{\ell \in \mathcal{L}: n_{\ell}>2} n_{\ell} \geq \sum_{\ell \in \mathcal{L}}\left(n_{\ell}-2\right)=\left|\mathcal{B}^{*}\right|(q+1)-2\left(q^{2}+q+1\right) \gtrsim k q .
\end{gathered}
$$

$|\mathcal{B}| \leq \tau_{2}+\varepsilon$

On the other hand, $\sum_{\ell \in \mathcal{L}: n_{\ell}>2} n_{\ell}=$
$\sum_{\ell \in \mathcal{L}^{r}: n_{\ell}>2}\left(n_{\ell}^{r}+n_{\ell}^{g}\right)+\sum_{\ell \in \mathcal{L}^{g}: n_{\ell}>2}\left(n_{\ell}^{r}+n_{\ell}^{g}\right)+\sum_{\ell \in \mathcal{\mathcal { L } ^ { = } : n _ { \ell } > 2}}\left(n_{\ell}^{r}+n_{\ell}^{g}\right) \leq$
$\sum_{\ell \in \mathcal{L}^{r}: n_{\ell}>2} 2 n_{\ell}^{r}+\sum_{\ell \in \mathcal{L}^{g}: n_{\ell}>2} 2 n_{\ell}^{g}+\sum_{\ell \in \mathcal{L}^{=}: n_{\ell}>2} 2 n_{\ell}^{r} \leq 4 . \sum_{\ell \in \mathcal{L}^{r} \cup \mathcal{L}^{=}: n_{\ell}>2} n_{\ell}^{r}$.
Recall $\left|\mathcal{B}_{r}\right| \leq|\mathcal{B}|-\left|\mathcal{B}^{g}\right| \leq 2 q+k-(q-k)=q+2 k<2 q$.
Thus for the average number of long red secants through a red point,

$$
\frac{\sum_{\ell \in \mathcal{L}^{r} \cup \mathcal{L}^{=}=: n_{\ell}>2} n_{\ell}^{r}}{\mathcal{B}^{r}} \geq \frac{k q}{4\left|\mathcal{B}^{r}\right|} \geq \frac{k}{8}
$$

$|\mathcal{B}| \leq \tau_{2}+\varepsilon$

So we see:
$\frac{k p}{16}$ red points on the red long secants through P,
$q-k$ red points on the red two-secants through P,
and $q-k$ green points.

Thus $2 q+k \gtrsim|\mathcal{B}| \geq 2 q-2 k+\frac{k p}{16}$ 2

Two disjoint blocking sets

Let $q=p^{h}, h \geq 3$ odd, p not necessarily prime, p odd. Let $m=(q-1) /(p-1)=p^{h-1}+p^{h-2}+\ldots+1$. Note that m is odd.

Let $f(x)=a\left(x^{p}+x\right), a \in \operatorname{GF}(q)^{*}$. Then f is $\operatorname{GF}(p)$-linear, and determines the directions $\left\{\frac{f(x)-f(y)}{(x-y)}: x \neq y\right\}=\{f(x) / x: x \neq 0\}=$ $\{(1: f(x) / x: 0): x \neq 0\}=\{(x: f(x): 0): x \neq 0\}$. Thus

$$
B_{1}=\underbrace{\{(x: f(x): 1)\}}_{A_{1}} \cup \underbrace{\{(x: f(x): 0)\}_{x \neq 0}}_{I_{1}}
$$

is a blocking set of Rédei type. Similarly, for $g(x)=x^{p}$,

$$
B_{2}=\underbrace{\{(y: 1: g(y))\}}_{A_{2}} \cup \underbrace{\{(y: 0: g(y))\}_{y \neq 0}}_{I_{2}}
$$

is also a blocking set.

$$
\begin{gathered}
B_{1}=\underbrace{\{(x: f(x): 1)\}}_{A_{1}} \cup \underbrace{\{(x: f(x): 0)\}_{x \neq 0}}_{I_{1}} \\
B_{2}=\underbrace{\{(y: 1: g(y))\}}_{A_{2}} \cup \underbrace{\{(y: 0: g(y))\}_{y \neq 0}}_{I_{2}} \\
f(x)=0 \text { iff } x^{p}+x=x\left(x^{p-1}+1\right)=0 . \text { As } \\
-1=(-1)^{m} \neq x^{(p-1) m}=x^{q-1}=1,
\end{gathered}
$$

$f(x)=0$ iff $x=0$. Also $g(x)=0$ iff $x=0$.
$I_{2} \cap B_{1}$ is empty, as $(0: 0: 1) \notin I_{2}$.
If $(x: f(x): 0) \equiv(y: 1: g(y)) \in I_{1} \cap A_{2}$, then $g(y)=0$, hence $y=0$ and $x=0$, a contradiction. So $I_{1} \cap A_{2}=\emptyset$.

$$
\begin{aligned}
& B_{1}=\underbrace{\{(x: f(x): 1)\}}_{A_{1}} \cup \underbrace{\{(x: f(x): 0)\}_{x \neq 0}}_{I_{1}} \\
& B_{2}=\underbrace{\{(y: 1: g(y))\}}_{A_{2}} \cup \underbrace{\{(y: 0: g(y))\}_{y \neq 0}}_{I_{2}}
\end{aligned}
$$

Now we need $A_{1} \cap A_{2}=\emptyset$.
$(y: 1: g(y)) \equiv(x: f(x): 1)(x \neq 0)$ iff
$(y ; 1 ; g(y))=(x / f(x) ; 1 ; 1 / f(x))$, in which case
$1 / f(x)=g(x / f(x))=g(x) / g(f(x))$.
Thus we need that $g(x)=g(f(x)) / f(x)=f(x)^{p-1}$ that is, $x^{p}=\left(a\left(x^{p}+x\right)\right)^{p-1}=a^{p-1} x^{p-1}\left(x^{p-1}+1\right)^{p-1}$ has no solution in $\mathrm{GF}(q)^{*}$.

Two disjoint blocking sets

Equivalent form:

$$
\frac{1}{a^{p-1}}=\frac{\left(x^{p-1}+1\right)^{p-1}}{x}=\left(x^{p-1}+1\right)^{p-1} x^{q-2}=: h(x)
$$

should have no solutions $x \in \operatorname{GF}(q)^{*}$.
Let $D=\left\{x^{m}: x \in \operatorname{GF}(q)^{*}\right\}=\left\{x^{(p-1)}: x \in \operatorname{GF}(q)^{*}\right\}$. Then $1 / a^{p-1} \in D$.

Note that $h(x) \in D \Longleftrightarrow x \in D$.
So to find an element a such that $1 / a^{(p-1)}$ is not in the range of h, we need that $\left.h\right|_{D}: D \rightarrow D$ does not permute D.

Permutation polynomials

Theorem (Hermite-Dickson)

Let $f \in \operatorname{GF}(q)[X], q=p^{h}, p$ prime. Then f permutes $\mathrm{GF}(q)$ iff the following conditions hold:

- f has exactly one root in $\operatorname{GF}(q)$;
- for each integer $t, 1 \leq t \leq q-2$ and $p \nmid t, f(X)^{t}$ $\left(\bmod X^{q}-X\right)$ has degree at most $q-2$.

A variation for multiplicative subgroups of $\mathrm{GF}(q)^{*}$:

Theorem

Suppose $d \mid q-1$, and let $D=\left\{x^{d}: x \in \operatorname{GF}(q)^{*}\right\}$ be the set of nonzero $d^{\text {th }}$ powers, $m=|D|=(q-1) / d$. Assume that $g \in \mathrm{GF}(q)[X]$ maps D into D. Then $\left.g\right|_{D}$ is a permutation of D if and only if the constant term of $g(x)^{t}\left(\bmod x^{m}-1\right)$ is zero for all $1 \leq t \leq m-1, p \nmid t$.

Two disjoint blocking sets

Recall that $h(X)=\left(X^{p-1}+1\right)^{p-1} X^{q-2}$. Let $t=p-1$, that is, consider
$h^{p-1}(X)=\sum_{k=0}^{(p-1)^{2}}\binom{(p-1)^{2}}{k} X^{k(p-1)+(p-1)(q-2)} \quad\left(\bmod X^{m}-1\right)$.
Since $k(p-1)+(p-1)(q-2) \equiv(k-1)(p-1)(\bmod m)$, the exponents reduced to zero have $k=1+\ell \frac{m}{(m, p-1)}$. Let r be the characteristic of the field $\operatorname{GF}(q)$. As $\binom{(p-1)^{2}}{1} \equiv 1(\bmod r)$, it is enough to show that $\binom{(p-1)^{2}}{k} \equiv 0(\bmod r)$ for the other possible values of k.

Suppose $h \geq 5$. Then $m /(m, p-1)>m / p>p^{h-2}>p^{2}$, thus by $k \leq(p-1)^{2}, \ell \geq 1$ does not occur at all. The case $h=3$ can also be done.

Thank you for your attention!

