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The problem

Color the vertices of a hypergraph H.

A hyperedge is rainbow, if its vertices have pairwise distinct colors.

The upper chromatic number of H, χ̄(H): the maximum number
of colors that can be used without creating a rainbow hyperedge.

Determining χ̄(Πq) and χ̄(PG(2, q)) has been of interest since the
mid-1990s.
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Trivial coloring

v := q2 + q + 1, the number of points in Πq .

τ2 := the size of the smallest double blocking set in Πq .

Then χ̄(Πq) ≥ v − τ2 + 1.

We call this a trivial coloring.

Remark: if a coloring contains a monochromatic 2BS, it is not
better than the trivial one.Bacsó, Héger, Szőnyi τ2(PG(2, q)) and χ̄(PG(2, q))



Theorem (Bacsó, Tuza, 2007)

As q → ∞,

χ̄(Πq) ≤ v − (2q +
√

q/2) + o(
√

q);

for q square, χ̄(PG(2, q)) ≥ v − (2q + 2
√

q + 1) = v − τ2 + 1;

χ̄(PG(2, q)) ≤ v − (2q +
√

q) + o(
√

q);

for q non-square, χ̄(PG(2, q)) ≤ v − (2q + Cq2/3) + o(
√

q).
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Theorem

Let q = ph, p prime. Let τ2(PG(2, q)) = 2(q + 1) + c. Suppose

that one of the following two conditions holds:

1 206 ≤ c ≤ c0q − 13, where 0 < c0 < 1/2,
q ≥ q(c0) = 2(c0 + 2)/(2/3 − c0)− 1, and

p ≥ p(c0) = 50c0 + 24.

2 q > 256 is a square.

Then χ̄(PG(2, q)) = v − τ2 + 1, and equality is reached only by

trivial colorings.

Simpler form of the above theorem:

Theorem

Let q = ph, p prime. Suppose that either q > 256 is a square, or

h ≥ 3 odd and p ≥ 29. Then χ̄(PG(2, q)) = v − τ2 + 1, and

equality is reached only by trivial colorings.

Remark: if τ2(PG(2, q)) < 8q/3, q > q(τ2), then χ̄ . v − τ2 + 10.
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C1, . . . ,Cn: color classes of size at least two
(only these are useful)

Ci colors the line ℓ iff |ℓ ∩ Ci | ≥ 2.

All lines have to be colored, so

B =
n⋃

i=1

Ci is a double blocking set. B

We use v − |B|+ n colors.

C1

C2

Cn

To reach the trivial coloring, we must have v −|B|+ n ≥ v − τ2 + 1,
thus we need

n ≥ |B| − τ2 + 1

colors in B. Also n ≤ |B |/2, so |B | ≤ 2τ2 ≤ 6q.
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Eliminating color classes of size two

B
So there is at most one color class of size two.
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Eliminating color classes of size two
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|B| & 3q − ε

Recall that τ2 . 2.5q. Say, τ2 ≈ 2.5q.

L(Ci ) := the number of lines colored by Ci . Then L(Ci ) ≤
(|Ci |

2

)
.

By convexity, to satisfy

q2 + q + 1 ≤
∑

L(Ci) ≤
∑

(|Ci |
2

)

,

the best is to have one giant, and many dwarf color classes. But as

0.5q .|B| − τ2 + 1 ≤ n ≤ 1 +
|B| −

∣
∣
∣Cgiant

∣
∣
∣

3
,

|Cg iant| ≤ 3τ2 − 2|B |, too small. |Cgiant| . 1.5q

However, if
∣
∣
∣Cgiant

∣
∣
∣ ≥ q + 2, we use L(Ci) ≤ (q+1)

2
|Ci |.
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τ2 + ε
′ . |B| . 3q − ε

Lemma

Let B be t-fold blocking set in PG(2, q), |B| = t(q + 1) + k, and

P ∈ B be an essential point of B. Then there are at least

(q + 1 − k − t) t-secants of B through P.

Corollary

Let B be a t-fold blocking set with |B| ≤ (t + 1)q points. Then

there is exactly one minimal t-fold blocking set in B, namely the

set of essential points.

Remark

Harrach has a recent result on the unique reducibility of weighted

t-fold (n − k)-blocking sets in the projective space PG(n, q).
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Proof of the lemma

Let P ∈ B essential, and suppose to the contrary that there are
more than k + t long secants through P . Let ℓ be t-secant, P /∈ ℓ.

R(M,B) =

t−1∏

i=1

(M−mi)

tq+k
∏

i=1

(Mxi+B−yi) = g(M)

tq+k
∏

i=1

(Mxi+B−yi).

As B is a t-fold blocking set,

R(M,B) =
t∑

j=0

(Mq − M)j(Bq −

(Bq − B)tg(M)F ∗
0 (M,B) + (Mq − M)h(M, b),

where deg(F ∗
0 ) ≤ k .

Then for any m /∈ {m1, . . . ,mt−1},

|{Y = mX+B}∩B | > t ⇐⇒ (Bq−B)t+1 | R(m,B) ⇐⇒ (B−b) | F ∗
0 (m

Bacsó, Héger, Szőnyi τ2(PG(2, q)) and χ̄(PG(2, q))



Proof of the lemma

Let P = (x1, y1). More than k + t long sec’s on P ⇒ more than k

long sec’s with m /∈ {m1, . . . ,mt−1}.

So Mx1 + B − y1 = 0 and F ∗
0 (M,B) = 0 have more than k

common points. Thus (Mx1 + B − y1) is a factor of F ∗
0 (M,B),

thus the lines through P and a point of ℓ \B are long secants. This
gives a contradiction if P is essential.

Bacsó, Héger, Szőnyi τ2(PG(2, q)) and χ̄(PG(2, q))



τ2 + ε
′ . |B| . 3q − ε

Clear: if ℓ is a 2-secant to B, then ℓ ∩ B is monochromatic.

Let |B| = 2(q + 1) + k . Then

Proposition

Every color class containing an essential point of B has at least

(q − k) ≈ 3q − |B| points.

B = B∗ ∪ B′, where B∗ is the set of essential points, |B∗| ≥ τ2.
We have

|B|−τ2+1 ≤ n ≤ |B| − |B∗|
3

+
|B∗|
q − k

,

so B∗
2

3
(|B|−τ2)(q−k) ≤ τ2. B B′
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|B| ≤ τ2 + ε, q > 256 square (so τ2 = 2(q +
√

q + 1))

Blokhuis, Storme, Szőnyi: B contains two disjoint Baer subplanes,
B1 and B2. B∗ = B1 ∪ B2 can not be monochromatic.

Let P ∈ B1 be purple. There are at least (q −√
q − ε− 1)

2-secants on P , so there are a lot of purple points in B2.

The same from B2: we have at least 2(q −√
q − ε− 1) purple

points.

If we have brown points as well: |B| ≥ 4(q −√
q − ε− 1)  
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|B| ≤ τ2 + ε

By melting color classes, we may assume n = 2, B∗ = Br ∪ Bg , and
let |B| = |B∗| = 2(q + 1) + k < 2.5q.

Theorem (Blokhuis, Lovász, Storme, Szőnyi)

Let B be a minimal t-fold blocking set in PG(2, q), q = ph, h ≥ 1,
|B | < tq + (q + 3)/2. Then every line intersects B in t (mod p)
points.

For a line ℓ, let

nr
ℓ = |Br ∩ ℓ|,

n
g
ℓ = |Bg ∩ ℓ|,

nℓ = nr
ℓ + n

g
ℓ = |B ∩ ℓ|.
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|B| ≤ τ2 + ε

Define the set of red, green and balanced lines as

Lr = {ℓ ∈ L : nr
ℓ > n

g
ℓ },

Lg = {ℓ ∈ L : n
g
ℓ > nr

ℓ},
L= = {ℓ ∈ L : nr

ℓ = n
g
ℓ }.

Using double counting, we get

∑

ℓ∈L

nℓ = |B∗|(q + 1), hence

∑

ℓ∈L : nℓ>2

nℓ ≥
∑

ℓ∈L

(nℓ − 2) = |B∗|(q + 1)− 2(q2 + q + 1) & kq.
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|B| ≤ τ2 + ε

On the other hand,
∑

ℓ∈L : nℓ>2

nℓ =

∑

ℓ∈Lr : nℓ>2

(nr
ℓ + n

g
ℓ ) +

∑

ℓ∈Lg : nℓ>2

(nr
ℓ + n

g
ℓ ) +

∑

ℓ∈L= : nℓ>2

(nr
ℓ + n

g
ℓ ) ≤

∑

ℓ∈Lr : nℓ>2

2nr
ℓ+

∑

ℓ∈Lg : nℓ>2

2ng
ℓ +

∑

ℓ∈L= : nℓ>2

2nr
ℓ ≤ 4·

∑

ℓ∈Lr∪L= : nℓ>2

nr
ℓ .

Recall |Br | ≤ |B| − |Bg | ≤ 2q + k − (q − k) = q + 2k < 2q.

Thus for the average number of long red secants through a red
point, ∑

ℓ∈Lr∪L= : nℓ>2 nr
ℓ

Br
≥ kq

4|Br | ≥
k

8
.
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|B| ≤ τ2 + ε

So we see:

kp
16

red points on the red long secants through P ,
q − k red points on the red two-secants through P ,
and q − k green points.

Thus 2q + k & |B| ≥ 2q − 2k + kp
16
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Two disjoint blocking sets

Let q = ph, h ≥ 3 odd, p not necessarily prime, p odd. Let
m = (q− 1)/(p− 1) = ph−1 + ph−2 + . . .+ 1. Note that m is odd.

Let f (x) = a(xp + x), a ∈ GF(q)∗. Then f is GF(p)-linear, and

determines the directions
{

f (x)−f (y)
(x−y) : x 6= y

}

={f (x)/x : x 6= 0}=
{(1 : f (x)/x : 0) : x 6= 0}= {(x : f (x) : 0) : x 6= 0}. Thus

B1 = {(x : f (x) : 1)}
︸ ︷︷ ︸

A1

∪{(x : f (x) : 0)}x 6=0
︸ ︷︷ ︸

I1

is a blocking set of Rédei type. Similarly, for g(x) = xp ,

B2 = {(y : 1 : g(y))}
︸ ︷︷ ︸

A2

∪{(y : 0 : g(y))}y 6=0
︸ ︷︷ ︸

I2

is also a blocking set.
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Two disjoint blocking sets

B1 = {(x : f (x) : 1)}
︸ ︷︷ ︸

A1

∪{(x : f (x) : 0)}x 6=0
︸ ︷︷ ︸

I1

B2 = {(y : 1 : g(y))}
︸ ︷︷ ︸

A2

∪{(y : 0 : g(y))}y 6=0
︸ ︷︷ ︸

I2

f (x) = 0 iff xp + x = x(xp−1 + 1) = 0. As

−1 = (−1)m 6= x(p−1)m = xq−1 = 1,

f (x) = 0 iff x = 0. Also g(x) = 0 iff x = 0.

I2 ∩ B1 is empty, as (0 : 0 : 1) /∈ I2.

If (x : f (x) : 0) ≡ (y : 1 : g(y)) ∈ I1 ∩ A2, then g(y) = 0, hence
y = 0 and x = 0, a contradiction. So I1 ∩ A2 = ∅.
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Two disjoint blocking sets

B1 = {(x : f (x) : 1)}
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A2

∪{(y : 0 : g(y))}y 6=0
︸ ︷︷ ︸
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Now we need A1 ∩ A2 = ∅.

(y : 1 : g(y)) ≡ (x : f (x) : 1) (x 6= 0) iff

(y ; 1; g(y)) = (x/f (x); 1; 1/f (x)), in which case

1/f (x) = g(x/f (x)) = g(x)/g(f (x)).

Thus we need that g(x) = g(f (x))/f (x) = f (x)p−1 that is,
xp = (a(xp + x))p−1 = ap−1xp−1(xp−1 + 1)p−1 has no solution in
GF(q)∗.
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Two disjoint blocking sets

Equivalent form:

1

ap−1
=

(xp−1 + 1)p−1

x
= (xp−1 + 1)p−1xq−2 =: h(x)

should have no solutions x ∈ GF(q)∗.

Let D = {xm : x ∈ GF(q)∗} = {x(p−1) : x ∈ GF(q)∗}. Then
1/ap−1 ∈ D.

Note that h(x) ∈ D ⇐⇒ x ∈ D.

So to find an element a such that 1/a(p−1) is not in the range of h,
we need that h|D : D → D does not permute D.
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Permutation polynomials

Theorem (Hermite-Dickson)

Let f ∈ GF(q)[X ], q = ph, p prime. Then f permutes GF(q) iff

the following conditions hold:

f has exactly one root in GF(q);

for each integer t, 1 ≤ t ≤ q − 2 and p 6 | t, f (X )t

(mod X q − X ) has degree at most q − 2.

A variation for multiplicative subgroups of GF(q)∗:

Theorem

Suppose d | q − 1, and let D = {xd : x ∈ GF(q)∗} be the set of

nonzero d th powers, m = |D| = (q − 1)/d. Assume that

g ∈ GF(q)[X ] maps D into D. Then g |D is a permutation of D if

and only if the constant term of g(x)t (mod xm − 1) is zero for all

1 ≤ t ≤ m − 1, p 6 | t.
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Two disjoint blocking sets

Recall that h(X ) = (X p−1 + 1)p−1X q−2. Let t = p − 1, that is,
consider

hp−1(X ) =

(p−1)2
∑

k=0

(
(p − 1)2

k

)

X k(p−1)+(p−1)(q−2) (mod Xm − 1).

Since k(p − 1) + (p − 1)(q − 2) ≡ (k − 1)(p − 1) (mod m), the
exponents reduced to zero have k = 1 + ℓ m

(m,p−1) . Let r be the

characteristic of the field GF(q). As
((p−1)2

1

)
≡ 1 (mod r), it is

enough to show that
((p−1)2

k

)
≡ 0 (mod r) for the other possible

values of k .

Suppose h ≥ 5. Then m/(m, p − 1) > m/p > ph−2 > p2, thus by
k ≤ (p − 1)2, ℓ ≥ 1 does not occur at all. The case h = 3 can also
be done.
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Thank you for your attention!
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