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We consider the Hermitian variety in 5-dimensions, denoted by H(5, ¢?).
This is an example of a finite classical polar space of rank 3. The Hermitian
variety H(5,¢?) contains points, lines and planes of the ambient projective
space PG(5, ¢%). The planes contained in H(5, ¢?) are called generators.

A spread of H(5,4¢%) is a set S of generators such that every point of
H(5, ¢?) is contained in exactly one element of S. A spread contains exactly
¢®+1 elements. A partial spread of H(5, ¢?) is a set S of generators such that
every point of H(5, ¢?) is contained in at most one element of S. A partial
spread is called mazimal if no generator of H(5,¢*) \ S can be added to S.
Since spreads of H(5,¢*) does not exist by a result of J. A. Thas ([3]), the
natural question is how many elements the largest maximal partial spread
contains.

Using counting arguments and the particular geometrical structure, we
can improve the known upper bounds ([3] and [2]) and show that a maximal
partial spread contains at most ¢®> + 1 elements. Furthermore, from [1], we
know that any spread of the symplectic polar space W(5,¢) embedded in
H(5,¢?), constitutes a maximal partial spread of H(5,¢?), of size ¢ + 1.
Hence, the new upper bound is sharp.
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