
The smallest minimal blocking sets of Q(2n, q), for
small odd q

Jan De Beule
Ghent University

Joint work with: Leo Storme

In [2] we used results on the size of the smallest minimal blocking sets of
Q(4, q), q even (from [1]) and projection arguments the find the following char-
acterization of the smallest minimal blocking sets of Q(6, q), q even, q > 32:

Theorem 1 Let K be a minimal blocking set of Q(6, q), different from an ovoid
of Q(6, q), |K| 6 q3 + q. Then there is a point p ∈ Q(6, q) \K with the following
property: Tp(Q(6, q)) ∩ Q(6, q) = pQ(4, q)and K consists of all the points of
the lines L on p meeting Q(4, q) in an ovoid O, minus the point p itself, and
|K| = q3 + q.

The results of [1] for Q(4, q), q even, could be extended to q = 3, 5, 7. Then
using the same projection arguments we proved the above characterization for
q = 3, 5, 7.

Using inductive arguments we can find analogous results for Q(2n, q), q =
3, 5, 7. The situation is now dependent on q, since Q(6, 3) has an ovoid, but
Q(6, q), q = 5, 7, not. For q = 5, 7, we proved the following characterization.

Theorem 2 Let K be a minimal blocking set of Q(2n + 2, q), n > 2, |K| 6
qn+1 + qn−1. Then there is an (n − 2)-dimensional space π, π ⊂ Q(2n + 2, q),
π∩K = ∅, with the following property: Tπ(Q(2n+2, q))∩Q(2n+2, q) = πQ(4, q)
and K is a cone with vertex π and base O, where O is an ovoid of Q(4, q), minus
the points of the vertex π, and |K| = qn+1 + qn−1.

For q = 3 we proved a characterization using ovoids of Q(6, 3).

Theorem 3 Let K be a minimal blocking set of Q(2n + 2, 3), n > 3, |K| 6
qn+1 + qn−2. Then there is an (n − 3)-dimensional space π, π ⊂ Q(2n + 2, 3),
π∩K = ∅, with the following property: Tπ(Q(2n+2, 3))∩Q(2n+2, 3) = πQ(6, 3)
and K is a cone with vertex π and base O, where O is an ovoid of Q(6, 3), minus
the points of the vertex π, and |K| = qn+1 + qn−2.

We will discuss several aspects of the theorems and the difficulties which arise
for other values of q.
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