The smallest minimal blocking sets of $\mathrm{Q}(2 n, q)$, for small odd q

Jan De Beule
Ghent University
Joint work with: Leo Storme

In [2] we used results on the size of the smallest minimal blocking sets of $\mathrm{Q}(4, q), q$ even (from [1]) and projection arguments the find the following characterization of the smallest minimal blocking sets of $\mathrm{Q}(6, q), q$ even, $q \geqslant 32$:

Theorem 1 Let \mathcal{K} be a minimal blocking set of $\mathrm{Q}(6, q)$, different from an ovoid of $\mathrm{Q}(6, q),|\mathcal{K}| \leqslant q^{3}+q$. Then there is a point $p \in \mathrm{Q}(6, q) \backslash \mathcal{K}$ with the following property: $T_{p}(\mathrm{Q}(6, q)) \cap \mathrm{Q}(6, q)=p \mathrm{Q}(4, q)$ and \mathcal{K} consists of all the points of the lines L on p meeting $\mathrm{Q}(4, q)$ in an ovoid \mathcal{O}, minus the point p itself, and $|\mathcal{K}|=q^{3}+q$.

The results of [1] for $\mathrm{Q}(4, q), q$ even, could be extended to $q=3,5,7$. Then using the same projection arguments we proved the above characterization for $q=3,5,7$.

Using inductive arguments we can find analogous results for $\mathrm{Q}(2 n, q), q=$ $3,5,7$. The situation is now dependent on q, since $\mathrm{Q}(6,3)$ has an ovoid, but $\mathrm{Q}(6, q), q=5,7$, not. For $q=5,7$, we proved the following characterization.

Theorem 2 Let \mathcal{K} be a minimal blocking set of $\mathrm{Q}(2 n+2, q), n \geqslant 2,|\mathcal{K}| \leqslant$ $q^{n+1}+q^{n-1}$. Then there is an $(n-2)$-dimensional space $\pi, \pi \subset \mathrm{Q}(2 n+2, q)$, $\pi \cap \mathcal{K}=\emptyset$, with the following property: $T_{\pi}(\mathrm{Q}(2 n+2, q)) \cap \mathrm{Q}(2 n+2, q)=\pi \mathrm{Q}(4, q)$ and \mathcal{K} is a cone with vertex π and base \mathcal{O}, where \mathcal{O} is an ovoid of $\mathrm{Q}(4, q)$, minus the points of the vertex π, and $|\mathcal{K}|=q^{n+1}+q^{n-1}$.

For $q=3$ we proved a characterization using ovoids of $\mathrm{Q}(6,3)$.
Theorem 3 Let \mathcal{K} be a minimal blocking set of $\mathrm{Q}(2 n+2,3), n \geqslant 3,|\mathcal{K}| \leqslant$ $q^{n+1}+q^{n-2}$. Then there is an $(n-3)$-dimensional space $\pi, \pi \subset \mathrm{Q}(2 n+2,3)$, $\pi \cap \mathcal{K}=\emptyset$, with the following property: $T_{\pi}(\mathrm{Q}(2 n+2,3)) \cap \mathrm{Q}(2 n+2,3)=\pi \mathrm{Q}(6,3)$ and \mathcal{K} is a cone with vertex π and base \mathcal{O}, where \mathcal{O} is an ovoid of $\mathrm{Q}(6,3)$, minus the points of the vertex π, and $|\mathcal{K}|=q^{n+1}+q^{n-2}$.

We will discuss several aspects of the theorems and the difficulties which arise for other values of q.

References

1. J. Eisfeld, L. Storme, T. Szőnyi, and P. Sziklai, Covers and blocking sets of classical generalized quadrangles, Discrete Math., 238(1-3):35-51, 2001.
2. J. De Beule and L. Storme, The smallest minimal blocking sets of $\mathrm{Q}(6, q)$, q even, J. Combin. Des., to appear.
