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Abstract

Minihypers were introduced for their relation with linear codes meeting the
Griesmer bound. Results on minihypers have therefore important applications in
coding theory. On the other hand, minihypers are nice geometrical structures since
they are a generalization of blocking sets, which have been studied a lot. Therefore
also minihypers deserve to be studied from a purely geometrical point of view.
At last, results on minihypers have also important applications in finite projective
geometry.

1 Introduction

A linear [N, k, d; q]-code is a k-dimensional subspace of the N -dimensional vectorspace
V (N, q) over the galois field GF(q) having minimum Hamming distance d. It is interesting
to use linear codes having a minimal length for given k, d and q. Every linear code satisfies
N ≥

∑k−1
i=0 d

d
qi e, where dxe denotes the smallest integer greater than or equal to x. This

inequality is known as the Griesmer bound.
Suppose that d ≥ 1 and k ≥ 2. Then d can be written in an unique way as d = θqk−1−∑k−2

i=0 ζiq
i, with θ ≥ 1 and 0 ≤ ζi ≤ q − 1, i = 0, 1, . . . , k − 2. Using this expression for d,

the Griesmer bound for an [N, k, d; q]-code can be expressed as N ≥ θvk −
∑k−2

i=0 ζivi+1,

defining vi := qi−1
q−1

and v0 := 0.

We continue with the definition of a minihyper as found in [8].

Definition 1.1 An {f, m; N, q}-minihyper is a pair (F, w), where F is a subset of the
point set of PG(N, q) and where w is a weight function w: PG(N, q) → N: x 7→ w(x),
satisfying

1. w(x) > 0 ⇐⇒ x ∈ F ,

2.
∑

x∈F w(x) = f , and

3. min{
∑

x∈H w(x)‖H ∈ H} = m, where H is the set of hyperplanes of PG(N, q).
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Let C be an [N, k, d; q]-code meeting the Griesmer bound and let G = (gT
1 · · · gT

n ) be
a (k ×N)-generator matrix of C. Then, for each i ∈ {1, 2, . . . , N}, gi is a nonzero vector
in V (k, q); hence it defines a point p(gi) ∈ PG(k − 1, q). Now define a weight function
w′ : PG(k − 1, q) → N:

w′(p) = |{i ∈ {1, 2, . . . , N} : p = p(gi)}

If d = θqk−1−
∑k−2

i=0 ζiq
i, with θ and ζi, i = 1, 2, . . . , k−2, as above, then max {w′(p) : p ∈

PG(k−1, q)} = θ. Let w : PG(k−1, q) → N : P 7→ w(p) = θ−w′(p) be a weight function
and let F = {p ∈ PG(k − 1, q) : w(p) > 0}. Then (F, w) is a {

∑k−2
i=0 ζivi+1,

∑k−2
i=0 ζivi; k −

1, q}-minihyper. This relation is clearly expressed in the following theorem.

Theorem 1.2 (Hamada [?]) Let q be a prime power and let k, θ and ζi, i = 0, 1, . . . , k−
2, be integers satisfying k ≥ 3, θ ≥ 1, 0 ≤ ζi ≤ q − 1 and (ζ0, ζ1, . . . , ζk−2) 6= (0, 0, . . . , 0).
Let d = θqk−1 −

∑k−2
i=0 ζiq

i. Then there is a one-to-one correspondence between the set of
all nonequivalent [N, k, d; q]-codes meeting the Griesmer bound and the set of all{

k−2∑
i=0

ζivi+1,
k−2∑
i=0

ζivi; k − 1, q

}
−minihypers (F, w)

satisfying w(p) ≤ θ for each point p ∈ PG(k − 1, q).

Both the example and the theorem show clearly that there is an interesting link be-
tween minihypers and linear codes meeting the Griesmer bound. From now on, we will
consider minihypers as purely geometrical objects.

Minihypers can easily be constructed in PG(k − 1, q) as a sum of certain geometrical
objects. Consider for example an arbitrary set L of lines of PG(k − 1, q) The sum of
lines of L is defined as the set of all points contained in a line of L, and the weight of
a point P ∈ PG(k − 1, q) is the number of lines of L on P . If all lines are two by two
skew, then all weights of the points in the induced set F are one. Hence the weigth
function itself is not necessary to determine the minihyper. We call a minihyper (F, w) a
non-weighted minihyper if w(p) = 1 for all points p ∈ F . If this condition on the weight
function is not satisfied, then (F, w) is called a weighted minihyper and the minihyper is
not completely determined by the set F . We can construct minihypers using different
subspaces of PG(k − 1, q), e.g. planes, 3-dimensional susbpaces . . . , even subgeometries
of PG(k − 1, q) (if they exist) can be used.

2 An application of a known classification result

In this section we describe a known classification result of a certain class of minihypers.
We also mention an interesting application of this result in finite geometry. We need the
following definition.

Definition 2.1 A blocking set of PG(2, q) is a set B of points such that every line of
PG(2, q) meets B in at least one point. A non-trivial blocking set B in PG(2, q) is a
blocking set containing no line of PG(2, q).

On minihypers with a non-trivial weight function, the following result is known:
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Theorem 2.2 (Govaerts and Storme [6]) Let (F, w) be a weighted {δvµ+1, δvµ; k −
1, q}-minihyper, where δ ≤ ε with q + ε + 1 the size of the smallest non-trivial blocking
sets in PG(2, q), then (F, w) is a sum of δ µ-dimensional subspaces of PG(k − 1, q).

A lot of other results on weighted and non-weighted minihypers are known. We refer
to [5, 6, 2, 3, 4]

Consider now the quadric Q(4, q), q odd. This quadric contains points and lines but
no planes of PG(4, q). A spread of Q(4, q) is a set S of lines of Q(4, q) partitioning the
pointset. A partial spread is a set P of two by two skew lines of Q(4, q). A partial spread
is maximal if and only if it cannot be extended to a larger partial spread. Using the result
of theorem 2.2, the following result on partial spreads of Q(4, q) is proved:

Theorem 2.3 Let P be a partial spread of size q2 + 1 − δ. If δ < ε, with q + ε the size
of the smallest non-trivial blocking sets in PG(2, q), q > 2. Then P can be extended to a
spread.

To prove this theorem, we prove that there is a link between the set of points of Q(4, q)
that do not lie on a line of the partial spread S and a {δvµ+1, δvµ; k − 1, q}-minihyper.
Then the characterisation of such a minihyper from Theorem 2.2 is used to find lines
extending the partial spraed P . This result shows clearly that characterisation results on
minihypers can have nice applications in projective geometry. For more applications of
these results we refer to [1, 7]

The following result concerns non-weighted minihypers.

Theorem 2.4

The aim of this research is to find an analogues characterisation for weighted minihy-
pers

3 New results

In this section we describe a characterisation of{
k−2∑
i=0

εivi+1,
k−2∑
i=0

εivi; k − 1, q

}
−minihypers (F, w),

where k ≥ 3 and
∑k−2

i=0 εi ≤
√

q.
We will use several inductive arguments. Therefore, we start with the case k = 3. We

prove the following theorem.

Theorem 3.1 Let (F, w) be a {ε1(q + 1) + ε0, ε1; k − 1, q}-minihyper with ε0+ε1 ≤
√

q+1.
Then (F, w) is the sum of ε0 points and ε1 lines of PG(k − 1, q).

We start with a minihyper in PG(2, q), i.e. k = 3. Such a minihyper (F, w) is a
weighted ε1-fold blocking set of PG(2, q), i.e., every line contains at least ε1 points of (F, w),
were a point is counted according to its weight. Since we supposed that ε1 + ε0 ≤

√
q, a

reuslt of S. Ball [?] implies that F contains a complete line L of PG(2, q), i.e. w(p) > 0
for all points p ∈ L. Any line M 6= L of PG(2, q) intersects L in exactly one point. Define
w′(p) = w(p) for all points of PG(2, q) \ L and w′(p) := w(p) − 1 for all points p ∈ L.
The weight function w′ induces a new set of points F ′. It is clear that every line M 6= L
contains at least ε1−1 points of F ′, but it is unsure if L meets F ′ in at least ε1−1 points.

Using so-called lacunary polynomials, we prove the following lemma:
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Lemma 3.2 The set (F ′, w′) is a {(ε1 − 1)(q + 1) + ε0, ε1 − 1; k − 1, q}-minihyper with
ε0 + ε1 − 1 ≤ √

q

This lemma implies that “removing” the line L from the minihyper (F, w), i.e. sub-
stracting 1 from the weight of every point of L, yields a minihyper (F ′, w′) containing q+1
points less and satisfying the same conditions of the minihyper (F, w). It is clear that the
process of removing a line can be repeated, we may conclude the following theorem:

Theorem 3.3 Let (F, w) be a {ε1(q + 1) + ε0, ε1; 2, q}-minihyper with ε0 + ε1 ≤
√

q + 1.
Then (F, w) is the sum of ε0 points and ε1 lines of PG(2, q).

We consider now a {ε1(q + 1) + ε0, ε1; 3, q}-minihyper (F, w). If we project this mini-
hyper from an arbitrary point p 6∈ F , then a {ε1(q + 1) + ε0, ε1; 2, q}-minihyper (F ′, w′) is
obtained. We know that (F ′, w′) is a sum of ε1 lines and ε0 points of PG(2, q). Suppose
that L′ is a line of (F ′, w′). The plane 〈p, L′〉 intersects (F, w) in a {µ1(q + 1) + µ0, ε1; 2, q}-
minihyper (F ′′, w′′), with µ1 +µ0 ≤

√
q. This minihyper is again a sum of µ1 lines and µ0

points. The µ1 lines are projected on the line L′, hence, L′ has weight µ1 in (F ′, w′). We
can consider any line in (F ′, w′), and we get a total weight of ε1. Hence (F, w) contains
ε1 lines, and, necessary, (F, w) is the sum of ε1 lines and ε0 points of PG(3, q).

We can now repeat this argument for any {ε1(q + 1) + ε0, ε1; k − 1, q}-minihyper with
ε0 + ε1 ≤

√
q + 1, using an induction on k, and we conclude Theorem 3.1.

In the next step, we consider a {ε2(q
2 + q + 1) + ε1(q + 1) + ε0, ε1; k − 1, q}-minihyper

(F, w), k ≥ 4, ε2 + ε1 + ε0 ≤
√

q.
We start with a lemma that reveals partially some structure of (F, w).

Lemma 3.4 The minihyper (F, w) contains a sum of ε2 planes.

To prove this rather technical lemma, we use the following lemma ([5, Lemma 1.1]).

Lemma 3.5 Consider the minihyper (F, w) and suppose that H is a hyperplane of PG(k−
1, q) containing ε2(q+1)+ε1 points of (F, w). Then (F, w) induces a {ε2(q+1)+ε1, ε1; k−
2, q}-minihyper (F ′, w′) contained in H.

By Theorem 3.3 we know that (F ′, w′) is the sum of ε2 lines and ε1 points. This enables us,
using Theorem 3.3 inductively, and, using another thechnical lemma from [5], to prove the
lemma in several steps. We end this part with a new lemma, which finally characterizes
the minihyper (F, w).

Lemma 3.6 If (F, w) is a {ε2(q
2 + q + 1) + ε1(q + 1) + ε0, ε1; k − 1, q}-minihyper, k ≥ 4,

where ε2 + ε1 + ε0 ≤
√

q, containing a sum of ε2 planes, then (F, w) is a sum of ε2 planes,
ε1 lines and ε0 points.

At this point, we have a theorem for arbitrary k ≥ 3, but with the restriction that
εj = 0, for all j > 2. As induction hypothesis we assume now that any{

t−1∑
i=0

εivi+1,

t−1∑
i=0

εivi; k − 1, q

}
−minihyper ,

where t−1 < k−2,
∑t−1

i=0 εi ≤
√

q is a sum of εt−1 t−1-dimensional subspaces, εt−2 (t−2)-
dimensional subspaces, . . . , ε1 (1)-dimensional subspaces (lines) and ε0 (0)-dimensional
subspaces (points). We suppose that (F, w) is a{

t∑
i=0

εivi+1,

t∑
i=0

εivi; k − 1, q

}
−minihyper ,
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where t ≤ k − 2,
∑t

i=0 εi ≤
√

q. The induction hypothesis is crucial to prove the next
lemma, but quite some technical steps are also needed.

Lemma 3.7 The minihyper (F, w) contains a sum of εt t-dimensional subspaces of PG(k−
1, q).

Having this lemma, which is very similar to Lemma 3.4, we can now prove the final
theorem

Theorem 3.8 If (F, w) is a{
t∑

i=0

εivi+1,

t∑
i=0

εivi; k − 1, q

}
−minihyper ,

where k ≥ 3, t ≤ k − 2 and
∑t

i=0 εi ≤
√

q, then (F, w) is a sum of εt (t)-dimensional
subspaces, εt−1 (t − 1)-dimensional subspaces, . . . , ε1 (1)-dimensional subspaces (lines)
and ε0 (0)-dimensional subspaces (points) of PG(k − 1, q).
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