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Preface

The characterisation of substructures of incidence geometries, satisfying cer-
tain conditions, is a classical problem. In this thesis, we consider particular
substructures of certain finite generalised quadrangles and finite classical po-
lar spaces. Our aim is to contribute to the knowledge of these substructures.

In Chapter 1 the field of research is situated, and basic concepts are
introduced. We give an overview of projective spaces, polar spaces and gen-
eralised quadrangles. For each of these geometries, we give definitions of
important substructures, including those that will be considered in this the-
sis. Sometimes details are left for the introductory sections of each chapter.
Furthermore, some historical references are given.

Chapter 2 can be seen as a stand alone part of the thesis, but the link
with Chapter 3 will be made clear. In this chapter we consider an important
class of finite generalised quadrangles: the so-called translation generalised
quadrangles. A classical example of a translation generalised quadrangle is
the non-singular parabolic quadric Q(4, q) in the 4-dimensional projective
space PG(4, q).

Considering any point-line geometry, one can try to find a set of lines such
that every point is covered exactly once. Such a set of lines is called a spread.
Also partial spreads are interesting in many situations. Partial spreads are
sets of lines covering all points at most once. Finding for instance upper
bounds on the size of partial spreads, or revealing the geometrical structure
of the uncovered points, is a classical problem for any partial spread of any
point-line geometry.

In Chapter 2, we obtain theorems on partial spreads of translation gener-
alised quadrangles, using characterisation theorems of quite different struc-
tures, namely minihypers in projective geometries. Minihypers have impor-
tant applications in coding theory, and recent characterisation theorems are
related to blocking sets of projective planes. Hence, results on partial spreads
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iv Preface

of translation generalised quadrangles become related to blocking sets of pro-
jective planes. This kind of characterisation theorems is found in e.g. certain
characterisation theorems of partial spreads of projective spaces and is thus
not surprising.

Trying to improve the results for the parabolic quadric Q(4, q), we make
use of the description of this quadric as translation generalised quadrangle.

In Chapter 3, we consider a different problem. The non-singular parabolic
quadric Q(6, q) in the six dimensional projective space PG(6, q) is an example
of a finite classical polar space. A classical problem for all these spaces is the
study of blocking sets, i.e. sets of points such that every generator contains
at least one point of the set. The minimal examples are called ovoids. In
the case of non-existence of ovoids, we can try to find and characterise the
smallest minimal blocking sets. This is done in Chapter 3, for the finite clas-
sical polar space Q(6, q), q > 16, q even. We can obtain the characterisation
using projection arguments and using technical results which are compara-
ble to certain technical results of T2(O), the description of the non-singular
parabolic quadric in four dimensions as translation generalised quadrangle
when O is a conic. This fact is a clear link between Chapter 2 and Chapter 3.

Using the same techniques and recent results, we obtain a characterisation
of the smallest minimal blocking sets of the finite classical polar space Q(6, q),
q odd prime. These results are described in Chapter 4.

In Chapter 5, we lift the results of Chapter 4 to parabolic quadrics in
higher dimensions. We again use projection arguments. In the last section
of this chapter, we describe briefly the remaining problems.

In Chapter 6, we characterise the smallest minimal blocking sets of the
Hermitian variety in even dimensional projective spaces. A lot of techniques
from Chapter 4 and 5 can be used again. Furthermore, the different be-
haviour of the Hermitian variety becomes clear.

This thesis has been typeset with LATEX, the music has been typeset with MusiXTEX and the figures have been created
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Chapter 1
Introduction

T
his chapter introduces the basic structures and objects for this thesis.
After preliminaries on finite fields, we introduce projective spaces in an

axiomatic way. Although we mention the axiomatic description to empha-
size the geometric way of thinking, we start as soon as possible with the
introduction in an analytical way of the finite projective space. Then special
objects inside projective spaces are described, such as blocking sets, spreads,
quadrics, Hermitian varieties, ovals and ovoids, etc. The next two sections
introduce polar spaces and generalised quadrangles, again in an axiomatic
way. Basic properties are given and, in the last section, ovoids and spreads
of generalised quadrangles and polar spaces are introduced.

It is beyond the scope to give the complete history of all these concepts,
but, when possible, we try to describe how concepts were developed and we
try to give the reference in which it was introduced.

1.1 Finite fields

Suppose that q = ph, p a prime number and h > 1. The finite field of order
q is always denoted by GF(q), it is well known that the finite field of order q
is unique up to isomorphism.

If GF(q1) is a subfield of GF(q2), then q1 = ph1 and q2 = ph2 , p prime,
with h1|h2.

We will sometimes use the trace function Trq→q0 which is defined as fol-
lows. Suppose that GF(q0) is a subfield of GF(q), then q = qd0 , and

Trq→q0 : GF(q)→ GF(q0) : x 7→ x+ xq0 + xq
2
0 + . . .+ xq

d−1
0 .

1



 1. Introduction

1.2 Projective spaces

Projective spaces will be introduced using axioms, but only to illustrate that
these structures do not need a complicated description. Quite fast we will
introduce the models we work with and derive properties in the model itself,
rather than doing a lot of work starting from axioms.

Starting from the axioms, one can derive a lot of geometric information
on both projective spaces and planes. For projective spaces this is for in-
stance done in [12]. Older works are for instance [101]. To read about the
foundations of geometry in general and projective geometry in particular, we
refer to [58]. For projective planes we refer to for instance [62] and also [66].

1.2.1 Basic definitions

A point-line incidence structure or point-line geometry is a triple (P ,B, I),
where P ∩ B = ∅ and where I is a symmetric incidence relation, I⊆ (P ×
B)∪ (B×P). The elements of P are called points and the elements of B are
called lines.

A non-degenerate projective space is an incidence structure S = (P ,B, I)
where I satisfies the following axioms.

(i) For any two distinct points p and q, there is exactly one line that is
incident with p and q.1

(ii) Let a, b, c and d be four distinct points such that the line ab intersects
the line cd. Then the line ac also intersects the line bd.

(iii) Any line is incident with at least three points.

(iv) There are at least two lines.

A non-degenerate projective plane is a non-degenerate projective space in
which axiom (ii) is replaced by the following stronger axiom.

(ii’) Any two lines have at least one point in common.

The above axioms are covering projective spaces as well as projective
planes. An equivalent axiom system for projective planes is the following.

(i) For any two distinct points p and q, there is exactly one line that is
incident with p and q.

1Since two distinct points p and q determine exactly one line, this line will often be
denoted with pq.
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(ii’) For any two distinct lines L and M , there is exactly one point that is
incident with L and M .

(iii’) There exist four points of which no three are incident with the same
line.

From now on we will leave the notion non-degenerate. We will simply
talk about projective spaces and projective planes.

The structure of a projective space

Suppose S = (P ,B, I) is a projective space. Since two points determine
exactly one line, we may identify a line with the set of points it contains.
Suppose now that A ⊂ P is a subset of the point set of S. The set A is called
linear if every line meeting A in at least two points is completely contained
in A. Define B′ as the set of lines contained in the linear set A, |A| > 2, then
it is clear that the incidence structure S(A) = (A,B′, I′) is a non-degenerate
projective space or a line, with I′ the incidence relation I restricted to the
set A. We call S(A) a linear subspace of S. Identifying lines with their point
set, we can also identify linear subspaces with their corresponding point set.
All elements of B are examples of linear subspaces; even the empty set, any
singleton and the whole point set; hence every subset of the point set is
contained in at least one linear set, and one defines the span of an arbitrary
subset A ⊂ P as 〈A〉 =

⋂
{S|A ⊆ S, S is a linear set}.

A set A of points is called linearly independent if for any subset A′ ⊂ A
and any point p ∈ A \ A′ we have p 6∈ 〈A′〉. A linearly independent set of
points that spans the whole space S is called a basis of S.

Having the concept of a basis, one can now simply define dimension as
the number of points in a basis minus one, first having proved that every
basis has the same number of points. We define the rank of a projective
space as its dimension. The following formula is an important application.
From now on, we mean “linear subspace” when we write “subspace”.

Theorem 1.2.1. (dimension formula) If U and V are two subspaces of the
projective space S, then dim(〈U, V 〉) = dim(U) + dim(V )− dim(U ∩ V ).

Lots of concepts can be developed now, but we will restrict to mentioning
two important theorems, and discuss afterwards shortly their importance in
classifying and characterising projective spaces.

Consider a projective space S = (P ,B, I) of dimension at least 2. Choose
different points p1, p2, p3 and r1, r2, r3 such that pi and ri are collinear with
a point s, s 6= pi and s 6= ri; and such that no three of the points s, pi,
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Figure 1.1: A Desargues configuration

i = 1, 2, 3 and s, ri, i = 1, 2, 3 are collinear. The theorem of Desargues (or
also S is Desarguesian) holds if the points tij := pipj ∩ rirj, i, j = 1, 2, 3,
i 6= j, lie on a common line.

The following theorem classifies all projective spaces of dimension at least
3. For a proof, we refer for instance to [12].

Theorem 1.2.2. An n-dimensional projective space, n > 3, is Desarguesian.

Consider again a projective space S of dimension at least 2. Consider two
different intersecting lines L and M . Choose on both lines L and M three
different points li and respectively mi, i = 1, 2, 3; all six points different from
L ∩M . The theorem of Pappus holds in S (or, S is Pappian) if the points
tij := limj ∩ ljmi, i, j = 1, 2, 3, i 6= j, lie on a common line.

The link between the theorems of Desargues and Pappus is expressed in
the theorem of Hessenberg. This theorem was already proved in [58].

Theorem 1.2.3. If the theorem of Pappus holds in a projective space S, then
also the theorem of Desargues holds in this projective space.

We will now introduce models of projective spaces; afterwards, the im-
portance of the theorems of Desargues and Pappus will become clear.

The projective space PG(n,K)

Using vector spaces over an arbitrary field (even more general: left vector
spaces over skewfields), one can construct examples of projective spaces. Let
K denote a field and V (n + 1, K) an (n + 1)-dimensional vector space over
K.

Denote by P (V ) the set of all i-dimensional subspaces, 0 6 i 6 n, of
V (n+ 1, K). Define the point set P as the set of 1-dimensional subspaces of
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Figure 1.2: A Pappus configuration

V and the line set B as the set of 2-dimensional subspaces of V . If we define
I as the symmetrised set theoretic containment, it is easy to check that the
point-line geometry S = (P ,B, I) satisfies the axioms of a projective space.
We denote this geometry by PG(n,K).

For practical reasons, we will give an equivalent definition of PG(n,K).
We call two vectors X, Y of V (n + 1, K) \ {0} equivalent if and only if
X = tY for some t ∈ K \ {0}. The set of all equivalence classes is now
the projective space PG(n,K), the elements of PG(n,K) are the points and
the equivalence class of a vector X will be denoted by P (X); X will also
be called a coordinate vector. The points P (X1), . . . , P (Xr) are linearly in-
dependent if the set of corresponding vectors is linearly independent. For
any m ∈ {−1, 0, 1, 2, . . . , n}, a subspace of geometric dimension m or an
m-dimensional subspace of PG(n,K) is just a set of points all of whose
corresponding vectors form (together with the zero vector) an (m + 1)-
dimensional subspace of V (n + 1, K). A subspace of geometric dimension
−1 is of course again the empty set. Points are 0-dimensional subspaces,
lines have geometric dimension 1, planes geometric dimension 2 and hyper-
planes geometric dimension n − 1. A hyperplane is nothing else than a set
of points P (X) whose vectors satisfy a linear equation

∑n
i=0 uixi = 0, with

(u0, . . . , un) ∈ V (n + 1, K) \ {0}. From now on we will leave the notion
geometric when talking about the dimension of a subspace of PG(n,K).

The model P (V ) admits to introduce immediately important concepts
like linear subspaces via the elementary properties of the underlying vector
space (or, more generally, the left vector space). The connection of this
model with axiomatic projective spaces lies in the theorems of Desargues
and Pappus.

Theorem 1.2.4. Consider a projective space S = (P ,B, I).

(i) S = PG(n,K) for some skewfield K if and only if S is Desarguesian.
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(ii) S = PG(n,K) for some field K if and only if S is Pappian.

Together with Theorem 1.2.2, we obtain the following corollary.

Corollary 1.2.5. Any projective space S = (P ,B, I) of dimension at least 3
is a PG(n, L) for some skewfield L.

This result is already present in [58]. A proof can also be found for
instance in [12].

In the 2-dimensional case, many classes of non-Desarguesian projective
planes are known. A good reference for projective planes, containing many
examples, is for instance [62].

Affine spaces

Consider an n-dimensional projective space S = (P ,B, I). Choose a hyper-
plane H∞ of S. Define P ′ as the set of points in P not in H∞ and B′ as
the set of lines in B not in H∞. The incidence I′ is the restriction of I to
(P ′×B′)∪ (B′×P ′). We call A = (P ′,B′, I′) an affine space of dimension n.

Affine spaces can be introduced using axioms. We will not give axioms for
affine spaces, but we mention that the above definition of an affine space is
equivalent and shows that affine spaces are very closely related to projective
spaces. Also the reverse construction is possible, i.e. one can consider an
affine space and construct a projective space by adding the space at infinity
of an affine space.

Rather than describing the possible axiomatic constructions, we just
mention that models of affine spaces can also be constructed using vector
spaces. Suppose V (n,K) is the n-dimensional vector space over the field
K. Suppose that v0 ∈ V (n,K) and that W is an i-dimensional subspace of
V (n,K), 0 6 i 6 n − 1. We define the coset of W through v0 as the set
{v0 + w‖w ∈ W}.

Denote by A(V ) the set of all cosets of subspaces of V (n,K). Define
the point set P as the set of the cosets of the 0-dimensional subspaces of
V (the unique 0-dimensional subspace is just the zero vector) and the line
set B as the cosets of the 1-dimensional vector spaces of V . Incidence is
the symmetrised set theoretic containment. Then A = (P ,B, I) is an n-
dimensional affine space, denoted by AG(n,K). As for the projective spaces,
this construction can also be done using left vectorspaces over a skewfield L.

Duality

Duality is an important concept in projective geometry. Considering a pro-
jective plane, it is easy to see that by interchanging the role of points and
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lines, again a projective plane is obtained. This fact does not, however, im-
ply that a projective plane is self-dual. Duality simply expresses that the
dual of a projective plane is a (possibly different) projective plane. On the
other hand, self-dual planes exist, for instance PG(2, K), with K an arbitrary
field. Using the duality of vector spaces over a field, it is easy to see that
PG(2, K) is self-dual. This is also true for PG(2, L), with L a skewfield, but
a little more machinery is involved. The geometric reason for the selfduality
of PG(n, L) is the Theorem of Desargues, which implies its own dual.

Since any projective space S of dimension at least 3 is a PG(n, L) for some
skewfield L, S is self-dual. This duality is not expressed by interchanging
points and lines, but by interchanging i-dimensional spaces with (n− i− 1)-
dimensional spaces.

We will denote the dual of a projective space S by SD.

Collineations and polarities

Although collineations can be defined for arbitrary point-line geometries, we
will restrict to PG(n,K), K a field, for the definitions here.

If S and S ′ are two projective spaces PG(n,K) and PG(m,K), K a
field and n,m > 2, a collineation is a bijection from the set of subspaces of
S onto the set of subspaces of S ′ preserving incidence. In other words, if
ϕ : S → S ′ is a collineation and α and β are two subspaces of PG(n,K),
then α ⊂ β ⇐⇒ αϕ ⊂ βϕ. This is a general definition for projective spaces
PG(n,K). A classical lemma is that this definition implies n = m. Hence we
are only left with the problem of defining collineations of projective lines, for,
omitting the restriction n > 2 implies that arbitrary bijections between the
point sets of lines are collineations. A collineation from a projective space to
itself is called an automorphism.

When n = 1, consider the lines S = PG(1, K) and S ′ = PG(1, K ′)
embedded in planes PG(2, K) and PG(2, K ′); then a collineation ϕ : S → S ′
is a map induced by a collineation of the planes. Hence if S and S ′ are two
lines embedded in two planes S0 and S ′0 respectively, and ϕ0 is a collineation
from S0 to S ′0, mapping S to S ′, the map ϕ|S : S → S ′ is a collineation of
the lines.

Consider two projective spaces S = PG(n,K) and S ′ = PG(n,K ′) with
underlying vectorspaces V (n + 1, K) and V ′(n + 1, K ′). It is clear that ev-
ery semi-linear map φ : V (n + 1, K) → V ′(n + 1, K ′) induces a collineation
ϕ : S → S ′. Also the converse is true and this theorem is called the Funda-
mental theorem of projective geometry. Hence we can describe collineations
by bijective semi-linear maps from V to V ′ and make use of the coordinate
description. Defining collineations algebraically also solves the problem of
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defining collineations between two projective lines.
Consider a collineation ϕ : S → S ′, then every point p(X) is mapped

onto a point p(X′), and the relation between the two coordinate vectors of
these points can be expressed by a non-singular (n + 1)× (n + 1) matrix A
and a field isomorphism θ : K → K ′: tX′ = XθA, where Xθ = (xθ0, . . . , x

θ
n)

and t ∈ K \ {0}. When θ is the identity, ϕ is also called a projectivity.
A coordinate frame of PG(n,K) is a set of n + 2 points such that no

n + 1 of them lie in a hyperplane. A classical result is that a projectivity is
determined completely by the image of a coordinate frame. Furthermore, the
group of collineations fixing a given coordinate frame pointwise is isomorphic
to the automorphism group of the field K.

Consider S = PG(n,K). A correlation of S is a collineation ϕ : S → SD.
When ϕ is a projectivity from S to SD, then it is called a reciprocity of
S. Actually, with this definition, a correlation is a containment reversing
bijection of the projective space, i.e. for any two subspaces α ⊂ β ⇐⇒
βϕ ⊂ αϕ. An involutory correlation is called a polarity.

Suppose that ϕ is a polarity of PG(n,K). A point p is mapped onto the
hyperplane pϕ, also called the polar of the point p. Conversely, a hyperplane
π is mapped onto the point πϕ, also called the pole of the hyperplane π.
Suppose that r, s are two points such that r ∈ sϕ (and hence conversely
s ∈ rϕ), then the points r and s are called conjugate, and the same definition
can be applied for two hyperplanes, and, spaces of arbitrary dimension. A
point p is called self-conjugate or absolute if and only if p ∈ pϕ.

Since a polarity is defined as a collineation, with the same arguments
as for collineations, a polarity of PG(n,K) is determined by a non-singular
(n+ 1)× (n+ 1) matrix T and a field automorphism θ ∈ Aut(K). The field
automorphism is necessarily involutory. From the above definitions, it can
be derived that a point p(X) is self-conjugate if and only if XA(Xθ)T = 0.
A self-conjugate subspace is sometimes called isotropic. The dimension of a
maximal isotropic subspace of a polarity will be called the projective index
of the polarity.

The different types of polarities of PG(n,K), K = GF(q), are given in
Table 1.1. For the projective index of quadrics and Hermitian varieties we
refer to Section 1.2.2. The projective index of a symplectic polarity is always
n−1

2
.

Finite projective spaces

From now on, we will only consider finite projective spaces. A projective
space S = (P ,B, I) is finite if and only if the set P is finite (and hence also
B is finite). The Theorem of Wedderburn, stating that every finite skewfield
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n, q type A, θ absolute points
q = ph, p
odd prime

orthogonal polarity AT = A, θ = 1 XAXT = 0 (a
quadric)

q = 2h, pseudo polarity AT = A, not all
aii = 0, θ = 1

∑√
aiixi = 0

n odd symplectic polarity AT = −A, θ = 1
aii = 0

PG(n, q)

q square Hermitian polarity (AT )θ = A, θ :
x 7→ x

√
q

XA(Xθ)T = 0
(a Hermitian va-
riety)

Table 1.1: Polarities of PG(n, q)

is a field, is geometricly expressed in the following theorem.

Theorem 1.2.6. A finite Desarguesian projective space is also Pappian.

With Theorem 1.2.2, we obtain

Corollary 1.2.7. A finite projective space of dimension at least 3 is always
isomorphic with PG(n,K), K a finite field GF(q).

We will denote PG(n,GF(q)) by PG(n, q) and AG(n,GF(q)) by AG(n, q).
We will define some concepts and we will describe their notations. We

wish to mention that a lot of these concepts can also be defined for arbitrary
fields and even in the axiomatic case. Important works on finite projective
geometry are certainly the series [60], [59], [61]. An older, but still interesting
survey on the subject, is [39].

Combinatorics

Besides geometric information, we can now also obtain combinatorial infor-
mation since the number of points, lines, etc. is finite. Since many counting
arguments will be used in proofs, we will use the following information.

Consider PG(n, q). We will denote the set of i-dimensional subspaces by
PG(i)(n, q). Using the definition of PG(n, q) it is clear that |PG(0)(n, q)| =
qn+1−1
q−1

, denoted by θn. By φ(n; r, q), we denote the cardinality of the set

PG(r)(n, q) and the number of r-dimensional subspaces through a fixed s-
dimensional subspace of PG(n, q) is denoted by χ(s, r;n, q).



 1. Introduction

Theorem 1.2.8. ([60])

(i) φ(r;n, q) =
∏n+1
i=n−r+1(qi−1)∏r+1
i=1 (qi−1)

.

(ii) χ(s, r;n, q) =
∏n−s
i=r−s+1(qi−1)∏n−r
i=1 (qi−1)

.

A finite projective space has order n if n+ 1 is the number of points on a
line. A finite affine space has order n if n is the number of points on a line.

1.2.2 Quadrics and Hermitian varieties

A quadric in PG(n, q), n > 1, is the set of points whose coordinates satisfy
an equation of the form

∑n
i,j=0
i6j

aijXiXj = 0 with not all aij equal to 0.

A Hermitian variety in PG(n, q2), n > 1, is the set of points whose
coordinates satisfy an equation of the form

∑n
i,j=0 aijXiX

q
j = 0, not all aij =

0 and aqij = aji for all i, j = 0, . . . , n. A quadric or Hermitian variety is called
singular if there exists a change of the coordinate system which reduces the
equation to an equation with less than n+ 1 variables.

If n = 2, a non-singular quadric is also called a conic. If n = 2, a non-
singular Hermitian variety is also called a Hermitian curve.

Some definitions can be given for quadrics and Hermitian varieties in
exactly the same way; we will then talk about varieties.

If a variety is singular, then it is known that the points of the variety are
the points of a cone, i.e. all the points of the lines spanned by a point of
an (n− r)-dimensional subspace π of PG(n, q) and a point of a non-singular
variety F in an (r − 1)-dimensional subspace π′ skew to π. We will denote
this cone with πF . The singular points of the variety are the points of π.

Consider a variety F . The tangent space in a point p ∈ F is the set of
points of the lines through p intersecting F only in p or completely contained
in F . When p is a non-singular point of F , the tangent space is a hyperplane
and is also called the tangent hyperplane. When p is singular, then the
tangent space is actually the whole projective space PG(n, q). We will denote
the tangent space at the point p ∈ F by Tp(F).

Concerning the classification of non-singular varieties, we mention the
following results. In PG(2n, q), there is, up to collineations, only one non-
singular quadric, called the parabolic quadric, denoted by Q(2n, q). There
are, up to collineations, exactly two non-singular quadrics in PG(2n + 1, q),
the hyperbolic quadric, denoted by Q+(2n + 1, q), and the elliptic quadric,
denoted by Q−(2n + 1, q). In PG(n, q2), there is, up to collineation, exactly
one non-singular Hermitian variety, denoted by H(n, q2).
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variety standard equation projective index
Q(2n, q) x2

0 + x1x2 + . . .+ x2n−1x2n n− 1
Q+(2n+ 1, q) x0x1 + x2x3 + . . .+ x2nx2n+1 n
Q−(2n+ 1, q) f(x0, x1) + x2x3 + . . .+ x2nx2n+1 n− 1

f is an irreducible quadratic polynomial over GF(q)
H(n, q2) xq+1

0 + xq+1
1 + . . .+ xq+1

n bn−1
2
c

Table 1.2: Standard forms and projective index of non-singular quadrics and
Hermitian varieties

When q is even, every non-singular parabolic quadric Q(2n, q) has a
nucleus, i.e. a point on which every hyperplane is tangent in some point
p ∈ Q(2n, q), or, equivalently, every line on the nucleus has exactly one point
in common with Q(2n, q).

Consider a non-singular variety F in the projective space PG(n, q) and
consider the tangent hyperplane in a point p ∈ F . It is known that Tp(F) ∩
F = pF ′, i.e. a cone with vertex p and base a non-singular variety of the
same type in a projective space PG(n− 2, q) not containing the vertex p.

A variety contains subspaces of the projective space. A subspace con-
tained in the variety F is called maximal if it is not contained in an other
subspace of the variety. A maximal subspace is called a generator. All gen-
erators have the same dimension, this is called the projective index and is
denoted by g(F). Table 1.2 bundles information about quadrics and Hermi-
tian varieties.

It may seem that quadrics and Hermitian varieties are objects studied
in a very analytical way. However, we mention an axiomatic description for
quadrics. We will never use these axioms, but they illustrate in a simple way
basic geometric properties of quadrics.

Let S = (P ,B, I) be a projective space. For a set A of points, we define
a tangent line as a line of S intersecting A in exactly one point, or a line
contained in A. A line intersecting A in exactly one point p is called tangent
in the point p. For each point p ∈ A, we define the set Ap = {x ∈ P \
{p}|〈x, p〉 is a tangent line of A}∪ {p}, and Ap is called the tangent space of
A at the point p.

A quadratic set in S is a set A of points A ⊂ P such that:

(i) Any line L ∈ B containing at least 3 points of A is contained in A.

(ii) For any point p ∈ A, the tangent space Ap is the set of points of a
hyperplane or the set P of all points.
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It is astonishing that these two axioms are sufficient to prove a lot of
standard theorems on quadrics in projective spaces. A good overview can for
instance be found in [12] and [61].

Looking back to Table 1.1, the absolute points of certain polarities are
the points of a quadric or Hermitian variety. If F is a non-singular Hermitian
variety with equation

∑n
i,j=0 aijXiX

q
j = 0, then A = (aij) is the matrix of a

Hermitian polarity with field automorphism θ : x 7→ xq, and absolute points
the given Hermitian variety F . Hence there is a one-to-one correspondence
between non-singular Hermitian varieties and Hermitian polarities. Suppose
that F is a non-singular quadric with equation

∑n
i,j=0
i6j

aijXiXj = 0. For q

odd, define A = (a′ij), with a′ij = aij/2, i < j, a′ii = aii and a′ij = aji, j > i.
For q even and n odd, define a′ij = a′ji = aij, i < j, and aii = 0. When
q is odd, A is the matrix of an orthogonal polarity with absolute points
the given quadric F . For q even and n odd, the polarity with matrix A is
symplectic (and all points of PG(n, q) are absolute). When q and n are both
even, no polarity can be associated to F . The geometric reason is that every
non-singular parabolic quadric has a nucleus.

1.2.3 Ovals, ovoids and eggs

Ovals and ovoids

An oval of PG(2, q) is a set of q + 1 points no three collinear.
Suppose that B is a set of points of PG(n, q). A line not intersecting the

set B will be called an external line, a line intersecting B in exactly one point
will be called a tangent line and a line intersecting B in t points, t > 1, will
be called a t-secant line or shortly a secant line or t-secant.

In the classification of ovals, tangent lines play an important role. Using
arguments from analytic geometry and properties of finite fields, B. Segre
([83, 84]) obtained the following theorem.

Theorem 1.2.9. In PG(2, q), q odd, every oval is a conic Q(2, q).

This result is in sharp contrast with the q even case. When q is even,
there are infinite families of ovals besides the conics, and there is no complete
classification yet.

The following lemma illustrates again the importance of tangent lines.

Lemma 1.2.10. Let O be an oval of PG(2, q), q even. The q + 1 tangents
to O are concurrent. The unique common point is called the nucleus of O.
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A k-arc in PG(2, q) is a set of k points no three collinear. Hence an
oval is a (q + 1)-arc of PG(2, q). A k-arc is called complete if it cannot
be extended to a (k + 1)-arc. Let m(2, q) denote the maximum size of a
k-arc. Short arguments in [60] show that m(2, q) = q + 2 when q is even
and m(2, q) = q + 1 when q is odd. When q is even, conics are examples
of (q + 1)-arcs of PG(2, q), but Lemma 1.2.10 shows that every (q + 1)-arc
can be extended to a (q + 2)-arc by adding its nucleus. Hence a (q + 1)-
arc is never complete when q is even. A (q + 2)-arc of PG(2, q) is called a
hyperoval. A hyperoval consisting of a conic and its nucleus is called regular.
Since m(2, q) = q + 1 when q is odd, hyperovals do not exist when q is odd.

Suppose that q is even. To characterise ovals and hyperovals, often alge-
braic tools can be used. This is done by attaching a function f : GF(q) →
GF(q) to any hyperoval H. It is clear that any hyperoval H is projectively
equivalent to the set of points {(1, t, f(t))‖t ∈ GF(q)} ∪ {(0, 0, 1), (0, 1, 0)}
with f(0) = 0 and f(1) = 1. If we choose f(t) = t2, then H is the regular
hyperoval. It is possible to find conditions for a polynomial f so that it
describes a hyperoval. If f is a polynomial satisfying these conditions, we
sometimes use the notation D(f) for the corresponding hyperoval.

Hyperovals give possibilities to construct ovals of PG(2, q) which are not
conics, even if the hyperoval is regular. Consider a regular hyperoval H of
PG(2, q), i.e. H = O ∪ {n}, n the nucleus of the conic O. Define Oi =
H \ {ni}, i = 1, 2, ni, two different points of H. The ovals O1 and O2

are equivalent if and only if the stabiliser group of the hyperoval H maps
n1 on n2. For q = 2, 4, the stabiliser group acts regularly on the point
set of the hyperoval, while for q > 4, the nucleus is fixed by the stabiliser
group of the hyperoval. Hence, O1 and O2 are not equivalent when n1 = n
and n2 6= n. Then O1 is projectively equivalent to the conic with equation
x2

2 + x0x1 = 0, while O2 is projectively equivalent with the set {(1, t, t q2 )‖t ∈
GF(q)}∪ {(0, 0, 1)} which is clearly not a conic. This oval is called a pointed
conic.

The classification of all (hyper)ovals of PG(2, q), q even, remains open.
It is considered as a hard problem. An overview of the known (hyper)ovals
of PG(2, q), q even, is for instance [19]. We also mention “Bill Cherowitzo’s
hyperoval page” [33].

An ovoid of PG(3, q), is a set of q2 + 1 points no three collinear. As
for ovals, we can now define a tangent plane and a secant plane as a plane
intersecting the ovoid O in exactly 1 point, respectively, at least 2 points.

Theorem 1.2.11. Let O be an ovoid of PG(3, q), q > 2, then

(i) for any point p ∈ O, the union of all tangent lines in p is a plane,
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(ii) exactly q2 +1 planes of PG(3, q) meet O in a unique point and the other
q3 + q planes meet O in an oval.

In the classification of ovoids, the classification of ovals plays an important
role. This fact is expressed in the following theorem, valid for all q. An oval
contained in the ovoid O found by intersecting the ovoid O with a plane will
be called a secant plane section. If the oval is a conic Q(2, q), then it will be
called a conic section.

Theorem 1.2.12. (Barlotti [7]) Let O be an ovoid of PG(3, q), q > 2.
If every secant plane section of O is a conic Q(2, q), then O is an elliptic
quadric Q−(3, q).

Since the only ovals of PG(2, q), q odd, are conics Q(2, q), the only ovoids
of PG(3, q), q odd, are elliptic quadrics Q−(3, q).

The following theorem improves Theorem 1.2.12 considerably when q is
even.

Theorem 1.2.13. (Brown [20]) Let O be an ovoid of PG(3, q), q even.
When there is at least one conic section, the ovoid O is an elliptic quadric
Q−(3, q).

Besides elliptic quadrics, there is only one class of ovoids in PG(3, q),
q = 22e+1, e > 1, known; the Tits ovoids [100]. For small even q, ovoids of
PG(3, q) are classified.

Theorem 1.2.14. (i) When q = 4, 16, the only ovoids of PG(3, q) are the
elliptic quadrics.

(ii) When q = 8, 32, the only ovoids of PG(3, q) are the elliptic quadrics
and the Tits ovoids.

We end this section with the definition of Tits of an ovoid.
An ovoid is a set O of points such that |L∩O| 6 2 for any line L and for

any x ∈ O, the union of all lines L such that L ∩ O = {x} is a hyperplane.
This definition can be used in infinite projective spaces and in non-

Desarguesian projective planes.

Theorem 1.2.15. ([98], see [39]) If PG(n, q) contains an ovoid O, then
|O| = qn−1 + 1 and n 6 3.

And hence we may state that ovoids of Tits unify ovals of PG(2, q) and
ovoids of PG(3, q).
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Eggs

Eggs can be seen as generalisations of ovals and ovoids in one concept. The
most general definition can be found in [81], and we start with it.

Definition 1.2.16. Consider the projective space PG(2n+m−1, q), n,m >
1. An egg E is a set of qm + 1 pairwise disjoint (n− 1)-dimensional subspaces
PG(i)(n − 1, q), i = 0, . . . , qm, every three of which generate a (3n − 1)-
dimensional subspace, and such that each element PG(i)(n − 1, q) of E is
contained in a subspace PG(i)(n+m− 1, q) having no point in common with
any PG(j)(n − 1, q) for j 6= i. The space PG(i)(n + m − 1, q) is called the
tangent space of E at PG(i)(n− 1, q).

Eggs were not introduced as in the above definition. The first reference
in which objects are defined that would later be called “eggs”, is [89]. How
these objects became eggs can be read in for instance [67].

It is beyond the scope of this introduction to mention deep theorems
about eggs. We only mention some basic properties. From the definition,
it is possible to deduce that the elements of an egg determine the tangent
spaces uniquely. Consider an egg E , and consider an arbitrary element α ∈ E .
Project the elements of E \{α} onto π = PG(n+m−1) skew to α. Then qm

mutually skew (n− 1)-dimensional spaces are obtained and θm−1 points of π
do not lie in such a projected element. The tangent space at the element α
intersects π in an (m− 1)-dimensional space skew to all projected elements
and necessarily contains these latter θm−1 points. Hence the tangent space
is determined uniquely by the elements of E .

Finally we mention the following theorem from [81].

Theorem 1.2.17. Let E be an arbitrary egg of PG(2n+m− 1, q), n,m > 1.

(i) n = m or n(a+ 1) = ma with a odd.

(ii) If q is even, then n = m or m = 2n.

(iii) If n 6= m (respectively, 2n = m), then each point of PG(2n+m− 1, q)
which is not contained in an element of E belongs to 0 or 1 + qm−n

(respectively, 1 + qn) tangent spaces of E.

(iv) If n 6= m, then the qm + 1 tangent spaces of E form an egg E∗ in the
dual space of PG(2n+m− 1, q).

(v) If n 6= m (respectively, 2n = m), then each hyperplane of PG(2n+m−
1, q) which does not contain a tangent space of E contains 0 or 1+qm−n

(respectively, 1 + qn) elements of E.
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Unitals

A unital in PG(2, q2) is a set of q3 +1 points U , such that every line intersects
U in either 1 or q + 1 points. A classical example is the Hermitian curve
H(2, q2) in PG(2, q2).

1.2.4 Blocking sets and spreads

The following paragraph is copied from [16], where some historical references
can be found.

The name blocking set originates from game theory, where we
have a set of individuals, and certain subsets called coalitions,
with the property that a coalition can force a particular decision.
A blocking set then is a subset that is not a coalition, but contains
at least one member of each coalition, so that it can block any
decision without being able to force one.

Blocking sets

Consider the projective plane PG(2, q). A blocking set is a set of points B
such that every line has at least one point in common with B. A line is
an example of a blocking set, but a blocking set containing a line is called
a trivial blocking set, and a blocking set not containing a line a non-trivial
blocking set. A blocking set B is minimal if B \ {p} is not a blocking set for
every p ∈ B. The following lemma is very useful and can for instance be
found in [60]

Lemma 1.2.18. A blocking set B is minimal if and only if for every point
p ∈ B, there is a line L such that B ∩ L = {p}.

A blocking set containing k points is also called a blocking k-set.
Non-trivial blocking sets only exist if q > 2. We give some examples from

[60].
A projective triangle of side n in PG(2, q) is a set B of 3(n − 1) points

such that

(a) on each side of the triangle p0p1p2 there are n points of B,

(b) the vertices p0,p1,p2 are in B,

(c) if r0 ∈ p1p2 and r1 ∈ p2p0 are in B, then so is r2 = r0r1 ∩ p0p1.

A projective triad of side n is a set B of 3n− 2 points such that



1.2. Projective spaces 

(a) on each line of three concurrent lines L0, L1, L2 there are n points of B,

(b) the vertex p = L0 ∩ L1 ∩ L2 ∈ B,

(c) if ro ∈ L0 and r1 ∈ L1 are in B, then so is r = r0r1 ∩ L2.

Lemma 1.2.19. (i) In PG(2, q), q odd, there exists a projective triangle of
side 1

2
(q+3) which is a non-trivial minimal blocking set of size 3

2
(q+1).

(ii) In PG(2, q), q even, q > 2, there exists a projective triad of side 1
2
(q+2)

which is a non-trivial minimal blocking set of size 1
2
(3q + 2).

It is clear that for a non-trivial blocking set B of the plane PG(2, q), nec-
essarily q + 2 6 |B| 6 q2 + q + 1. The following theorem gives information
about lower and upper bounds for non-trivial minimal blocking sets. Con-
cerning the above examples, blocking k-sets in PG(2, q) with k 6 3(q+1)

2
are

called small blocking sets.
A blocking set of Rédei type is a blocking (q + m)-set with the property

that there exists an m-secant.
The following theorem gives an upper and a lower bound for the size of

a non-trivial minimal blocking set.

Theorem 1.2.20. Let B be a non-trivial minimal blocking set in PG(2, q).
Then

(i) (Bruen [25]) |B| > q+
√
q+1 with equality if and only if q is a square

and B is a Baer subplane.

(ii) (Bruen and Thas [29]) |B| 6 q
√
q + 1, with equality if and only if q

is a square and B is a unital.

Observing the above theorems, one can try to improve the bounds when
q is not a square and to characterise non-trivial minimal blocking sets not
containing a Baer subplane. Improvements of the bounds are for instance
given by the following theorems. Let cp = 2

−1
3 when p ∈ {2, 3} and cp = 1

when p > 5, p prime.

Theorem 1.2.21. Let B be a non-trivial minimal blocking set of PG(2, q),
q > 2.

(i) (Blokhuis [14]) If q is a prime, then, |B| > 3(q+1)
2

.

(ii) (Blokhuis [15], Blokhuis et al. [17]) If q = p2e+1, p prime, e > 1,

then |B| > max(q + 1 + pe+1, q + 1 + cqq
2
3 ).
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By Lemma 1.2.19, there exist blocking sets of size 3(q+1)
2

in PG(2, q), q
odd, hence, the above bound is sharp in the first case. Also in the second
case, examples attaining the bound exist.

It is beyond the scope of this introduction to give more details about
small blocking sets and Rédei type blocking sets. A good overview, on which
this little overview is based, can be found in [45]. Instead of giving more
details, we will introduce multiple blocking sets and blocking sets in higher
dimensional spaces. Again, our overview is based on the overview in [45].

An s-fold blocking set in PG(2, q) is a set of points that intersects every
line in at least s points. It is called minimal if no proper subset is an s-
fold blocking set. A 1-fold blocking set is simply called a blocking set. The
following theorem indicates that, to obtain an s-fold blocking set of small
cardinality with s > 1, it is no longer interesting to include a line in the set.

Theorem 1.2.22. Let B be an s-fold blocking set of PG(2, q), s > 1.

(i) (Bruen [27]) If B contains a line, then |B| > sq + q − s+ 2.

(ii) (Ball [2]) If B does not contain a line, then |B| > sq +
√
sq + 1.

If s is not too large, substantial improvements to this theorem have been
obtained for general q. Also, for q a square and s not too large, the smallest
minimal s-fold blocking sets are classified.

Theorem 1.2.23. (Blokhuis et al. [17]) Let B be an s-fold blocking set

in PG(2, q) of size s(q + 1) + c for some s > 1. For a prime p, let cp = 2
−1
3

for p ∈ {2, 3} and cp = 1 for p > 3.

(i) If q = p2d+1 and s < q
2
− cpq

2
3

2
, then c > cpq

2
3 .

(ii) If q is a square, s < q
1
4

2
and c < cpq

2
3 , then c > s

√
q and B contains

the union of s pairwise disjoint Baer subplanes.

(iii) If q = p2 and s < q
1
4

2
and c < pd1

4
+
√

p+1
2
e, then c > s

√
q and B

contains the union of s pairwise disjoint Baer subplanes.

In [2], a table with the sizes of the smallest s-fold blocking sets in PG(2, q),
s > 1, q small, can be found. Many examples of such blocking sets are
described in [2, 3, 5].

To end this section, we introduce blocking sets in higher dimensional
spaces. A blocking set with respect to t-spaces in PG(n, q) is a set B of points
such that every t-dimensional subspace of PG(n, q) meets B in at least one
point.
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Theorem 1.2.24. (Bose and Burton [18]) If B is a blocking set with
respect to t-spaces in PG(n, q), then |B| > |PG(n − t, q)|. Equality holds if
and only if B is an (n− t)-dimensional subspace.

Blocking sets with respect to t-spaces that contain an (n − t)-space are
called trivial. The smallest non-trivial blocking sets with respect to t-spaces
are characterised in the following theorem.

Theorem 1.2.25. (Beutelspacher [11], Heim [55]) In PG(n, q), the
smallest non-trivial blocking sets with respect to t-spaces are cones with vertex
an (n − t − 2)-space πn−t−2 and base a non-trivial blocking set of minimal
cardinality in a plane skew to πn−t−2.

In PG(n, q), a blocking set with respect to hyperplanes is simply called a
blocking set. For this case, Theorem 1.2.24 was already proved by A. A. Bruen
in [26].

It is interesting to see that to block t-dimensional subspaces of a projec-
tive space, cones with base a planar blocking set can be used. Hence the
important concept is still a blocking set of PG(2, q).

The following theorem is an improvement of Theorem 1.2.25.

Theorem 1.2.26. (Storme and Weiner [87]) Let B be a blocking set in
PG(n, q), n > 3, q = ph square, p > 3 prime, of cardinality smaller than
or equal to the cardinality of the second smallest non-trivial blocking sets in
PG(2, q). Then B contains a line or a planar blocking set of PG(2, q).

For more information about the subject, we again refer to [45].

Spreads

Consider the projective space P = PG(n, q). A t-spread of P is a set S of
t-dimensional subspaces of P which partitions the point set of P , i.e. every
point of P is contained in exactly one element of S. Since a t-spread induces
a partition of the point set, (t + 1)|(n + 1) is a necessary condition. It is
shown by J. André ([1]) that this condition is also sufficient.

Let S be a t-spread of PG(n, q). Suppose that L is the set of (2t + 1)-
dimensional subspaces of P spanned by pairs of elements of S. A t-spread
is geometric or normal if for each S ∈ S and each L ∈ L, either S ⊂ L or
S ∩ L = ∅.

Suppose that U1, U2, U3 are three pairwise disjoint t-dimensional sub-
spaces of the projective space PG(2t + 1, q). Consider a point p ∈ U1. The
subspace 〈p, U2〉 intersects U3 in a point. Hence there is a unique line through
P intersecting U2 and U3. A line is called a transversal to U1,U2 and U3 if
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it intersects U1, U2 and U3 in a point. Since p was arbitrary, there are θt
transversal lines through U1, U2, U3, and there are q + 1 mutually disjoint
t-spaces U1, . . . , Uq+1 being transversal to these lines. The set of these q + 1
spaces is called a t-regulus. If t = 1, then this set is one of the two systems
of generators of a hyperbolic quadric Q+(3, q). The other system is also a
regulus and is called the opposite regulus.

Suppose now that S is a geometric t-spread. If for any U1, U2, U3 ∈ S with
U3 ∈ 〈U1, U2〉, the t-regulus defined by U1, U2, U3 is completely contained in
S, then S is called regular. A spread containing no regulus is called aregular.

An important fact is the link between spreads and translation planes.
Therefore we mention the following construction. Let S be a t-spread in
P ′ = PG(n, q), n+ 1 = k(t+ 1). Embed P ′ = PG(n, q) in P = PG(n+ 1, q)
and define the following incidence structure A = (P ,B, I). The point set P
consists of the points of P \ P ′, the lines, which are the elements of B, are
the (t + 1)-dimensional subspaces of P intersecting P ′ in an element of S,
and incidence is inclusion.

When S is a geometric t-spread, A is an affine space of dimension k and
order qt+1. The affine space A can be extended to a projective space Π. For
q > 2, this projective space is Desarguesian if and only if S is regular ([24]).
It follows that any geometric t-spread in PG(n, q), n+1 = k(t+1), q > 2 and
k > 3, is regular. The most important case is the case n = 2t+ 1, since then
Π is a translation plane. R. H. Bruck and R. C. Bose ([23]) prove conversely
that every translation plane arises from a t-spread of a projective space. For
an alternative definition of translation planes, we refer for instance to [69].

We mention furthermore the following theorem about regular spreads,
afterwards, we give a construction.

Theorem 1.2.27. For any n, t, (t+ 1)|(n+ 1), there is, up to collineation,
a unique regular t-spread of PG(n, q).

Supposing the conditions of the theorem, consider the chain of fields
GF(q) ⊂ GF(qt+1) ⊂ GF(qn+1). The field GF(qn+1) represents the projective
space PG(n, q) as (n+1)-dimensional vector space over GF(q). Since the field
GF(qt+1) is a (t+1)-dimensional vector space over GF(q), it is a t-dimensional
subspace of PG(n, q), as well as all cosets a · GF(qt+1), a ∈ GF(qn+1) \ {0}.
Since these cosets partition the multiplicative group of GF(qn+1), they rep-
resent a t-spread of PG(n, q), which appears to be regular.

We now give an example of an aregular spread ([59, 17.3.3]). Let q = ph,
h > 2, and let xp+1 + bx − c have no roots in GF(q). Then the set S =
{〈(1, 0, 0, 0), (0, 1, 0, 0)〉} ∪ {〈(z, y, 1, 0), (cyp, zp + byp, 0, 1)〉‖(y, z) ∈ GF(q)×
GF(q)} is an aregular spread of PG(3, q).
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A partial t-spread S of PG(n, q) is a set of mutually disjoint t-dimensional
subspaces of PG(n, q). A partial t-spread is called maximal if it cannot be
extended by any t-dimensional subspace of PG(n, q).

A t-cover C of PG(n, q) is a set of t-dimensional subspaces of PG(n, q)
such that every point of PG(n, q) belongs to at least one element of C. A
t-cover is minimal when no proper subset of it is a t-cover.

t-Covers and partial t-spreads when (t+ 1) 6 | (n+ 1)

When (t + 1) 6 | (n + 1), t-spreads do not exist. The first results in this case
are combinatorial. For a partial t-spread, it is possible to compute an upper
bound; for a t-cover, a lower bound.

Theorem 1.2.28. Suppose that n = k(t+ 1) + r − 1, where 1 6 r 6 t.

(i) A partial t-spread of PG(n, q) contains at most qr q
k(t+1)−1
qt+1−1

elements.

(ii) A t-cover of PG(n, q) contains at least qr q
k(t+1)−1
qt+1−1

+ 1 elements.

Constructing examples valorises these bounds.

Theorem 1.2.29. (Beutelspacher [10])

(i) In PG(k(t+1)+r−1, q), there is a partial t-spread with qr q
k(t+1)−1
qt+1−1

−qr+1
elements.

(ii) In PG(k(t+1)+r−1, q), there is a t-cover with qr q
k(t+1)−1
qt+1−1

+1 elements.

A more advanced theorem is the following theorem about upper bounds
for partial t-spreads.

Theorem 1.2.30. Let S be a partial t-spread of PG(n, q), n = k(t+1)+r−1,

1 6 r 6 t. Let |S| = qr q
k(t+1)−1
qt+1−1

− s. Then

(i) (Beutelspacher [8, 9]) s > q − 1

(ii) (Drake and Freeman [40]) s > qr−1
2
− q2r−t−1

5

Furthermore, there exists an example with s = qr − 1.

For more information on this topic we refer to [41].
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t-Covers and partial t-spreads when (t+ 1) divides (n+ 1)

Suppose that PG(n, q) admits a t-spread, i.e. (t + 1)|(n + 1). Let S be a

partial t-spread with cardinality qn+1−1
qt+1−1

− δ. Then the parameter δ is called
the deficiency of S. If a point p does not belong to any t-space of the t-spread
S, it is called a hole with respect to the spread S.

Extendability of partial t-spreads is studied intensively. In this study,
there is a clear link between blocking sets and partial t-spreads. We will give
more about this in Section 2.1.4, but we mention the following theorem as
illustration of this important link.

Theorem 1.2.31. Let S be a maximal partial spread of PG(3, q), of defi-
ciency δ > 0. Then δ > ε with q+ ε the cardinality of the smallest non-trivial
blocking sets of PG(2, q).

1.3 Polar spaces

Polar spaces were systematically studied in a geometric way by F. D. Veld-
kamp [102]. The aim of Veldkamp was to start from certain geometric axioms,
to classify the structures and embed them in projective spaces. This is a quite
rough description of his work. More about its history can be found in [31],
but the work of F. D. Veldkamp is worth mentioning since the notion polar
space is introduced there as the name for a class of structures not yet unified
at that time.

J. Tits simplified and completed the theory of F. D. Veldkamp (see [99]).
To start, we will recall Tits’ definition of polar spaces. Afterwards, a further
simplification is given, besides certain concepts and theorems.

A polar space2 of rank n, n > 2, is a point set P together with a family
of subsets of P called subspaces, satisfying the following axioms.

(i) A subspace, together with the subspaces it contains, is a d-dimensional
projective space3 with −1 6 d 6 n−1 (d is called the dimension of the
subspace).

(ii) The intersection of two subspaces is a subspace.

(iii) Given a subspace V of dimension n − 1 and a point p ∈ P \ V , there
is a unique subspace W such that p ∈ W and V ∩W has dimension

2We found this definition in [81]. In [30], we did not find the restriction n > 2.
3In [30], it is mentioned clearly that this projective space is thick, i.e. a line contains

at least 3 points. Since we talk always about non-degenerate projective spaces, we do not
mention the thickness explicitely
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n− 2; W contains all points of V that are joined to p by a line (a line
is a subspace of dimension 1).

(iv) There exist two disjoint subspaces of dimension n− 1.

Contrary to the definition of projective spaces and generalised quadrangles
(cfr. infra), the definition of polar spaces does not use the concept of a point-
line geometry. On the other hand, it is clear that the point-line structure
must be hidden somewhere in the used ingredients, i.e. in the projective
spaces. The subspaces of maximal dimension will also be called generators.

The finite classical polar spaces are the following structures.

(i) The non-singular quadrics in odd dimension, Q+(2n+1, q) and Q−(2n+
1, q), together with the subspaces they contain, giving polar spaces of
rank n+ 1 and n.

(ii) The non-singular parabolic quadrics in even dimension, Q(2n, q), to-
gether with the subspaces they contain, giving a polar space of rank
n.

(iii) The points of PG(2n+ 1, q), together with the isotropic subspaces of a
non-singular symplectic polarity of PG(2n+ 1, q), giving a polar space
of rank n.

(iv) The non-singular Hermitian varieties in PG(2n, q2), together with the
subspaces they contain, n > 2 (respectively, PG(2n + 1, q2), n > 1),
giving a polar space of rank n (respectively, rank n+ 1).

By theorems of F. D. Veldkamp ([102]) and J. Tits ([99]), all polar spaces
with finite rank at least 3 are classified. In the finite case (i.e. the polar
space has a finite set of points), all polar spaces are listed here above. In
a certain sense, the polar spaces of rank two play a comparable role as the
projective spaces of rank 2 (i.e. the projective planes). For, finite projective
spaces of dimension (thus also rank) at least three are classified and are just
the projective spaces over the finite field GF(q), while all finite polar spaces
of rank at least 3 are the examples of above. For the rank two case, both non-
classical projective planes as non-classical polar spaces are known. Examples
of the latter ones will be given in Section 1.4.

We mention an important isomorphism between example (ii) and (iii).
Suppose q is even. Then the parabolic quadric Q(2n, q) has a nucleus n.
Projecting all points and subspaces of Q(2n, q) from n onto a hyperplane α
of PG(2n, q) not containing n, we find all points of α, together with a set of
subspaces of α. It is a well known result that the points of α together with
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the projected subspaces form an example (iii) polar space. Isomorphisms in
the rank 2 case will be described in Section 1.4.

It is possible to define polar spaces as point-line geometries. This was
done by F. Buekenhout and E. E. Shult ([32]). Since the most important
axiom of their approach is also very useful in practical situations, we will
recall this way of describing polar spaces here.

A Shult space4 is a point-line geometry S = (P ,B, I), with B a non-empty
set of subsets of P of cardinality at least 2, such that the incidence relation I
satisfies the following axiom. For each line L ∈ B and for each point p ∈ P\L,
the point p is collinear5 with either one or all points of the line L. A Shult
space is non-degenerate if no point is collinear with all other points, a Shult
space is linear if two distinct lines have at most one common point. This
property implies that at most one line is incident with two points. A subspace
X of a Shult space S is a non-empty set of pairwise collinear points such that
any line meeting X in at least two points is contained in X. If there exists
an integer n such that every chain of distinct subspaces X1 ⊂ X2 ⊂ . . . ⊂ Xl

has at most n members, then S has finite rank n. We recall the following
fundamental theorem of F. Buekenhout and E. E. Shult [32].

Theorem 1.3.1. (i) Every non-degenerate Shult space is linear.

(ii) If S is a non-degenerate Shult space of finite rank at least 3, and if all
lines contain at least three points, then the Shult space together with its
subspaces is a polar space6

1.4 Generalised quadrangles

Generalised quadrangles were introduced by J. Tits in his celebrated paper
on triality [97]. In that paper, the more general class of generalised polygons
was defined. At the same time, much research on the foundations of polar
spaces was also done, and from the axioms, it is clear that finite polar spaces
of rank 2 which not grids or dual grids, are just the generalised quadrangles of
order (s, t), with s > 1 and t > 1. So generalised quadrangles can be studied
as a certain class of polar spaces or they can be studied as a certain class
of generalised polygons. Both approaches are found in the literature. Our

4This is the definition found in [81].
5Two distinct points are collinear if and only if there is a line incident with the two

points.
6We found exactly this formulation in [81] and in [30], except that we added the re-

striction on the rank. We can now safely redefine polar spaces of rank 2.
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introduction is mostly based on the standard reference for finite generalised
quadrangles [81], by S. E. Payne and J. A. Thas.

A finite generalised quadrangle, also denoted a GQ, is an incidence struc-
ture S = (P ,B, I), for which the incidence relation satisfies the following
axioms.

(i) Each point is incident with 1 + t lines (t > 1) and two distinct points
are incident with at most one line7.

(ii) Each line is incident with 1 + s (s > 1) points and two distinct lines
are incident with at most one point.

(iii) If x is a point and L is a line not incident with x, then there is a unique
pair (y,M) ∈ P × B for which x I M I y I L.

The integers s and t are the parameters of the GQ S and S is said to
have order (s, t). If s = t, then S is said to have order s. A GQ of order
(s, 1) is also called a grid and a GQ of order (1, t) is also called a dual grid.
Actually grids and dual grids are defined more generally in [81], but we will
not go into detail here.

It is clear that a finite polar space of rank 2, as defined in Section 1.3
is a finite generalised quadrangle. We have to take care, because with the
given definitions, not all GQs are finite polar spaces of rank 2. Therefore, we
redefine a finite polar space of rank 2 as a finite generalised quadrangle.

There is a point-line duality for finite generalised quadrangles, since in-
terchanging the role of points and lines, the incidence relation still satisfies
the axioms. The dual of a GQ S (of order (s, t)) is often denoted by SD and
it is a GQ of order (t, s).

Suppose that S is a GQ. If there is a line incident with two distinct points
x and y, we write x ∼ y, and x and y are said to be collinear. A point is
assumed collinear with itself, so x ∼ x, and x 6∼ y means that x and y are
not collinear. Dually, for L and M two lines, we write L ∼ M or L 6∼ M
according as L and M are concurrent or non-concurrent, respectively.

Consider a GQ S = (P ,B, I) of order (s, t). For x ∈ P, define x⊥ =
{y ∈ P‖y ∼ x}. Due to the definition of collinearity, x ∈ x⊥. Consider
a pair of distinct points (x, y), then its trace is defined as x⊥ ∩ y⊥ and is
denoted by tr(x, y) or {x, y}⊥. It is clear that |{x, y}⊥| = s + 1 or t + 1
according as x ∼ y or x 6∼ y. For arbitrary point sets A ⊂ P, we define
A⊥ =

⋂
x∈A x

⊥. For x 6= y, the span of the pair (x, y) is defined as the set
sp(x, y) = {x, y}⊥⊥ = {u ∈ P‖u ∈ z⊥,∀z ∈ x⊥ ∩ y⊥} and when x 6∼ y, it

7Since two points determine at most one line, we will often identify a line with the set
of points it contains.
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is also called the hyperbolic line defined by x and y. For x 6= y, the closure
of the pair (x, y) is the set {z ∈ P‖z⊥ ∩ {x, y}⊥⊥ 6= ∅} and is denoted by
cl(x, y).

If x ∼ y, x 6= y, or if x 6∼ y and |{x, y}⊥ ⊥ | = t + 1, we say that the
pair (x, y) is regular. The point x is regular provided (x, y) is regular for
all y ∈ P, y 6= x. The notion regularity plays an important role in a lot
of characterisation and classification theorems, but it is beyond the scope of
this introduction to mention these theorems. We refer to [81].

Since generalised quadrangles are point-line geometries, collineations, au-
tomorphisms and polarities can be defined in the usual way.

Let S = (P ,B, I) be a GQ of order (s, t), and put v = |P| and b = |B|.
The following theorem describes important restrictions on the parameters of
a GQ. The proofs can be found in [81].

Theorem 1.4.1. (i) v = (s+ 1)(st+ 1) and b = (t+ 1)(st+ 1).

(ii) s+ t divides st(s+ 1)(t+ 1).

(iii) (The inequality of D.G. Higman [56, 57]) If s > 1 and t > 1,
then t 6 s2, and dually, s 6 t2.

(iv) If s 6= 1, t 6= 1, s 6= t2, and t 6= s2, then t 6 s2−s and dually s 6 t2− t.

In [81], starting from the basic axioms of a GQ, a whole synthetic theory of
finite generalised quadrangles is developed. Besides the development of this
theory, classical examples are given, and a lot of theorems are also applied to
these examples. To end this section, we will also give the classical examples
and two so called non-classical examples.

The finite classical generalised quadrangles are the finite classical polar
spaces of rank 2. They are: the quadrics Q+(3, q) of order (q, 1), Q(4, q) of
order q, Q−(5, q) of order (q, q2), W(3, q) of order q, H(3, q2) of order (q2, q)
and H(4, q2) of order (q2, q3). The dual quadrangles of this list are called
the dual classical generalised quadrangles. These two classes are not disjoint.
The following results can be found in for instance [81].

Theorem 1.4.2. (i) The GQ Q(4, q) is isomorphic to the dual of W(3, q).

(ii) The GQ Q−(5, q) is isomorphic to the dual of H(3, q2).

(iii) The GQ Q(4, q) (and hence W(3, q)) is self-dual if and only if q is even.

Hence with our definition, only the GQ H(4, q2)D is dual classical and not
classical, and Q+(3, q) is classical and not dual classical.
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In this section, we will give two more examples of generalised quadrangles.
The first example is due to J. Tits.

Consider an oval O in a projective plane π0 = PG(2, q). Embed π0 in a
PG(3, q). Define a point set P as follows. Points of type (i) are the points
of PG(3, q) \ π0. Points of type (ii) are the planes of PG(3, q) intersecting π0

in a tangent line to O, and the unique point of type (iii) is denoted by (∞).
The line set contains lines of two types. Lines of type (a) are the lines of
PG(3, q) not in π0 intersecting π0 in a point of O. Lines of type (b) are the
points of O. Incidence is inherited from PG(3, q) for points of type (i) and
lines of type (a), for points of type (ii) and lines of type (a) and for points of
type (ii) and lines of type (b). Points of type (i) are never incident with lines
of type (b) and (∞) is incident only with every line of type (b). It is easy to
check that S = (P ,B, I) is a GQ of order q. This GQ is denoted with T2(O),
and it is well known that T2(O) ∼= Q(4, q) if and only if O is a conic Q(2, q)
(see [81] and Section 2.1.1). When O is not a conic, T2(O) is an example of
a non-classical GQ.

Consider now a hyperoval H in π0 = PG(2, q), q even. Embed again
π0 in PG(3, q). Define a point set P as the points of PG(3, q) \ π0 and the
line set as the set of lines of PG(3, q) not in π0 meeting H in a necessarily
unique point. Incidence is inherited from PG(3, q). It is easy to check that
S = (P ,B, I) is a GQ of order (q − 1, q + 1). This structure is denoted by
T ∗2 (H), and it is also an example of a non-classical GQ for q 6= 3.

For more information about the subject, we refer again to [81].

1.5 Ovoids and spreads of polar spaces and

generalised quadrangles

In this last section, we present some results on spreads and ovoids of po-
lar spaces and GQs. From the point of view of the previous sections, it is
possible to do the work for generalised quadrangles and for polar spaces sep-
arately. Since results on ovoids of particular classical GQs have important
implications for ovoids of polar spaces of higher rank, we will treat the two
cases at once.

An ovoid O of a polar space S is a set of points such that every generator
meets O in exactly one point. A spread S is a set of generators partitioning
the point set of S.

Since GQs are considered as pure point-line geometries here, we define
an ovoid and a spread again. An ovoid O of a GQ is a set O of points such
that every line meets O in exactly one point. A spread S is a set of lines
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partitioning the point set of S.
A lot of general theorems about ovoids and spreads can be proved and

one finds a lot of information in [81]. We only mention three results which
are a good illustration of the kind of theorems that can be proved in general.

Theorem 1.5.1. If O (respectively, R) is an ovoid (respectively, spread) of
the GQ S of order (s, t), then |O| = 1 + st (respectively, |R| = 1 + st).

Theorem 1.5.2. If the GQ S = (P ,B, I) of order s admits a polarity, then
either s = 1 or 2s is a square. Moreover the set of all absolute points (re-
spectively, lines) of a polarity θ of S is an ovoid (respectively, spread) of
S.

Theorem 1.5.3. A GQ S = (P ,B, I) of order (s, t), with s > 1 and t >
s2 − s, has no ovoid.

A very recent overview on the existence or non-existence of ovoids and
spreads of finite classical polar spaces and finite classical GQs is [95]. We
will mention and use some of these results in the next chapters.



Chapter 2
Maximal partial spreads of
translation generalised
quadrangles

C
onsider a GQ S. A partial spread S is a set of pairwise disjoint lines of
S. A partial spread is called maximal if it is not contained in a larger

partial spread. A point p of S is called a hole with respect to S if there is no
line of S on p.

In this chapter, we investigate certain partial spreads of translation gen-
eralised quadrangles. To do this, we use the representation of translation
generalised quadrangles using eggs, together with results on minihypers. For
T2(O), we can also use combinatorial information to obtain better bounds.
Furthermore, for q even and O a conic Q(2, q), we obtain a sharp result,
i.e. the size of the largest example equals the theoretical upper bound. For
T3(O), the results are less strong, and for Tn,m(E), they actually illustrate a
nice application of minihypers.

This chapter is based on joint work with M. R. Brown and L. Storme [21].

2.1 Preliminaries

In this section, we define the basic concepts. We start with translation
generalised quadrangles, followed by more details about ovals of PG(2, q),
minihypers and more details about spreads of PG(3, q).

29
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2.1.1 Translation generalised quadrangles

We define translation generalised quadrangles following [81]. Consider a GQ
S = (P ,B, I) of order (s, t), s 6= 1 and t 6= 1. A collineation θ of S is a
whorl about the point p provided θ fixes each line incident with p. If θ is the
identity or θ fixes no point of P \ p⊥, then θ is called an elation about p. If θ
fixes each point of p⊥, then θ is a symmetry about p. The symmetries about
p form a group. For each x ∼ p, x 6= p, this group acts semiregularly on the
set {L ∈ B‖x I L, p  I L}, and therefore its order divides t. If the order equals
t, then the point p is called a center of symmetry. Symmetries about lines
are defined dually, and a line whose symmetry group has maximal order s is
called an axis of symmetry.

If there is a group G of elations about p acting regularly on P \ p⊥, then
the GQ S is called an elation generalised quadrangle or EGQ with elation
group G and base point p, and can be denoted by (S(p), G). If (S(p), G) is
an EGQ for which G contains a full group of s symmetries about each line
through p, then S is a translation generalised quadrangle or TGQ with base
point p and translation group G.

Consider an EGQ (S(p), G) of order (s, t) and let y be a fixed point of
P \ p⊥. Let L0, . . . , Lt be the lines incident with p, and define zi and Mi by
Li I zi I Mi I y, 0 6 i 6 t. Define Si = {θ ∈ G‖M θ

i = Mi}, S∗i = {θ ∈
G‖zθi = zi} and finally, J = {Si‖0 6 i 6 t}. Since (S(p), G) is an EGQ,
|G| = s2t, J is a collection of t + 1 subgroups of order s of G, and each S∗i
has order st and contains Si as a subgroup. Furthermore, the following two
conditions are satisfied.

(K1) SiSj ∩ Sk = {1} for distinct i, j, k.

(K2) S∗i ∩ Sj = {1} for distinct i, j.

The following construction is due to W. M. Kantor [64] and shows that
every EGQ can be constructed as a group coset geometry. Consider an ar-
bitrary group G of order s2t. Suppose J = {Si‖0 6 i 6 t} is a collection of
1 + t subgroups of order s of G and J∗ = {S∗i ‖0 6 i 6 t} is a collection of
1 + t subgroups of order st of G, where each Si ⊂ S∗i and where J and J∗

satisfy the conditions K1 and K2. Sometimes the couple (J, J∗) is called a
4-gonal family in G. A 4-gonal family in G gives rise to the following inci-
dence structure S(G, J), which is an EGQ with base point (∞) and elation
group G.

Points of S(G, J) are:

(i) the elements of G,
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(ii) the right cosets S∗i g, g ∈ G, 0 6 i 6 t,

(iii) the symbol (∞).

Lines of S(G, J) are:

(a) right cosets Sig, g ∈ G, 0 6 i 6 t,

(b) the symbols [Si], 0 6 i 6 t.

A point g of type (i) is incident with each line Sig, 0 6 i 6 t. A point S∗i g of
type (ii) is incident with [Si] and with each line Sih ⊂ S∗i g. The point (∞)
is incident with each line [Si] of type (b). There are no further incidences.
Starting from an arbitrary EGQ (S(p), G) and defining the groups Si and
S∗i and the set J as above, it is noticed in [81] that (S(p), G) ∼= S(G, J).
Furthermore, any S(G, J) is an EGQ with base point (∞) and elation group
G. It is worth mentioning that the construction of S(G, J) is used to obtain
item (i) of the following theorem. An other interesting fact is expressed in
item (ii).

Theorem 2.1.1. (i) ([81, 8.2.3]) If (S(p), G) is an EGQ with G abelian,
then it is a TGQ.

(ii) ([81, 8.3.2]) The translation group of a TGQ is uniquely defined and
is abelian.

Let (S(p), G) be a TGQ and define Si, S
∗
i and J as above. The kernel K

is the set of all endomorphisms α of G such that Sαi ⊂ Si, 0 6 i 6 t. Since G
is abelian, K is a ring. We mention that the neutral element for the addition
in K is the endomorphism mapping G onto the trivial group. For the next
theorem, 2 < s is supposed.

Theorem 2.1.2. ([81, 8.5.1]) The kernel K of a TGQ is a field, so that
(Si)

α = Si, (S∗i )
α = S∗i , 0 6 i 6 t, for all α ∈ K \ {0}.

The only cases left out by assuming 2 < s are the classical GQs W(2, 2)
and Q−(5, 2), since also 1 < t. Before formulating the most important theo-
rem of this section, we mention the following theorem.

Theorem 2.1.3. The multiplicative group of the kernel of a TGQ (S(p), G)
is isomorphic to the group of all whorls about p fixing a given y 6∈ p⊥.

We now will describe a model for TGQs using “ingredients from projective
geometry”. This model will enable us to use tools from classical Galois
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PG(3, q)

Figure 2.1: The TGQ T2(O)

geometry to prove theorems about “abstract TGQs”. The model for a TGQ
is constructed using eggs.

Consider an egg E in PG(2n+m− 1, q). Embed PG(2n+m− 1, q) as a
hyperplane in a PG(2n+m, q) and define the following point line geometry
(P ,B, I), denoted by T (n,m, q).

The point set P consists of three types of points:

(i) the points of PG(2n+m, q) \ PG(2n+m− 1, q),

(ii) the (n + m)-dimensional subspaces of PG(2n + m, q) which intersect
PG(2n+m−1, q) in one of the (n+m−1)-dimensional tangent spaces
of E ,

(iii) the symbol (∞).

The line set B consists of two types of lines:

(a) the n-dimensional subspaces of PG(2n+m, q) which intersect PG(2n+
m− 1, q) in an element of E ,

(b) the elements of E .

A point of type (i) is only incident with lines of type (a); the incidence is
inherited from PG(2n + m, q). A point of type (ii) is only incident with all
lines of type (a) contained in it and with the unique element of E contained
in it. The point (∞) is incident with no lines of type (a) and with all lines
of type (b).

The structure T (n,m, q) is a GQ of order (qn, qm). Furthermore, these
GQs are TGQs, but also the converse is true. We mention the following
theorem from [81, 8.7.1]
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Theorem 2.1.4. ([81, 8.7.1]) The point line geometry T (n,m, q) is a TGQ
of order (qn, qm), with base point (∞) and for which GF(q) is a subfield of
the kernel. The translations of T (n,m, q) induce translations of the affine
space AG(2n + m, q) = PG(2n + m, q) \ PG(2n + m − 1, q). Conversely,
every TGQ for which GF(q) is a subfield of the kernel is isomorphic to a
T (n,m, q), for some egg E in PG(2n + m − 1, q). It follows that the theory
of TGQs is equivalent to the theory of eggs.

We will denote the structure T (1, 1, q) by T2(O). The egg E is an oval
O of the plane PG(2, q). The structure T (1, 2, q) will be denoted by T3(O).
The egg E is an ovoid O of the projective space PG(3, q). In general, we will
denote the structure T (n,m, q) by Tn,m(E).

The following theorems can be found in [81].

Theorem 2.1.5. (i) The GQ T2(O) is isomorphic with the GQ Q(4, q) if
and only if O is a conic Q(2, q) of the plane PG(2, q).

(ii) The GQ T3(O) is isomorphic with the GQ Q−(5, q) if and only if O is
an elliptic quadric Q−(3, q) of PG(3, q).

2.1.2 Ovals of PG(2, q) revisited and spreads of T2(O)
and T3(O)

Consider a hyperoval H = D(f) of PG(2, q), q even. We call H a translation
hyperoval if H is fixed by a group of elations (x0, x1, x2) 7→ (x0, x1 + tx0, x2 +
f(t)x0), t ∈ GF(q). This group of elations fixes the points (0, 0, 1) and
(0, 1, 0), and hence the line 〈(0, 0, 1), (0, 1, 0)〉 and this line is called the axis
of the hyperoval. It is clear that this elation group induces a translation
group of the affine plane obtained by removing the axis from PG(2, q). We
mention the following theorem about translation hyperovals. A proof can
also be found in [60]. We will use the theorem to define translation ovals.

Theorem 2.1.6. (Payne [78]) In PG(2, 2h), the set D(f) is a translation
hyperoval if and only if f(t) = t2

i
, with gcd(i, h) = 1.

An oval O is a translation oval if and only if O is projectively equivalent
to the set {(1, t, t2i)‖t ∈ GF(q)} ∪ {(0, 0, 1)}, with gcd(i, h) = 1.

These (hyper)ovals were constructed by B. Segre in [85].
Consider T2(O). It is proved in [81, 12.5.2] that T2(O) is self-dual if and

only ifO is a translation oval. Hence for every ovoid of T2(O), O a translation
oval, we find a spread.

Suppose that π is the plane of PG(3, q) containing the ovalO and consider
a plane π0 intersecting π in a line external to O. Then the q2 points of π0 \π
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Figure 2.2: A spread of T3(O)

together with the point (∞) constitute an ovoid of T2(O). This construction
works for all ovals O, but when O is a translation oval, we find a spread due
to the self-duality of T2(O). We mention that an ovoid of T2(O) constructed
in this way is also called a planar ovoid.

This is not the only possibility to construct spreads of T2(O). We recall
the following theorem by S. E. Payne from [81].

Theorem 2.1.7. If the GQ S of order s 6= 1 admits a polarity, then 2s is a
square. Moreover the set of all absolute points (resp. lines) of a polarity θ of
S is an ovoid (resp. a spread) of S.

Again from [81, 12.5.2], we know that if q = 2h, h odd, and O is a
translation oval, then T2(O) is self-polar. Hence, the set of all absolute lines
of T2(O) with respect to a polarity θ is a spread of T2(O).

In [22], we find a good overview of this (and other) possibilities to con-
struct spreads of T2(O), and relations with other subjects. For our purpose,
the given constructions are sufficient.

When q is odd, the situation is less complex. Since every oval of PG(2, q),
q odd, is a conic, T2(O) ∼= Q(4, q) when q is odd. In for instance [81] it is
proved that Q(4, q), q odd, has no spread.

To end this section we recall from [81] the construction of a spread of
T3(O). This construction is valid for arbitrary q and for an arbitrary ovoid
O of PG(3, q). The construction uses an arbitrary spread of PG(3, q).

Consider T3(O). Let O ∈ π0 = PG(3, q) ⊂ PG(4, q). Let x ∈ O and let
Σ be a plane of π0 such that x 6∈ Σ. Let V be a 3-dimensional space distinct
from π0 and containing Σ. Define L = Σ ∩ Σx where Σx is the tangent
plane to O in x. Suppose that S is a spread of V containing L. Define
yi = 〈x, xi〉 ∩ V , i = 1, . . . , q2, for all xi ∈ O \ {x} and denote the element of
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S incident with yi by Li. If the lines of the plane Σi = 〈x, xi, Li〉, different
from 〈x, xi〉, that are incident with xi are labelled Mij, j = 1, . . . , q, then it
follows that S ′ = {x}∪{Mij‖i = 1, . . . , q2; j = 1, . . . , q} is a spread of T3(O).

2.1.3 Minihypers

Minihypers were introduced by N. Hamada and F. Tamari in [51] in the con-
text of linear codes meeting the Griesmer bound. In two papers by P. Gov-
aerts and L. Storme, and a paper by S. Ferret and L. Storme, new classifica-
tion and characterisation results are proved, see [47], [46] and [43]. We will
define minihypers in this section and recall results used in the next sections.

Definition 2.1.8. An {f,m;N, q}-minihyper is a pair (F,w), where F is a
subset of the point set of PG(N, q) and w is a weight function w: PG(N, q)→
N: x 7→ w(x), satisfying

1. w(x) > 0 ⇐⇒ x ∈ F ,

2.
∑

x∈F w(x) = f , and

3. min{
∑

x∈H w(x)‖H ∈ H} = m, where H is the set of hyperplanes of
PG(N, q).

A minihyper (F,w) is uniquely defined by its weight function. If w maps
to {0, 1}, we can still use the notation (F,w), but this can also be identified
with the point set F . We will also use the notation |(F,w)| = f . Let P
be an arbitrary subset of the point set of PG(N, q), then |P ∩ (F,w)| =∑

x∈F∩P w(x). If π is an arbitrary subspace of PG(N, q), then π ∩ (F,w)
denotes the minihyper obtained by restricting w to π ∩ F .

To characterise certain minihypers, the following definition is used.

Definition 2.1.9. Denote by A the set of all t-dimensional subspaces of
PG(N, q). A sum of t-dimensional subspaces is a weight function w: A →
N: πt 7→ w(πt). Such a sum induces a weight function on subspaces of
smaller dimension. Let πr be a subspace of dimension r < t, then w(πr) =∑

π∈A,π⊃πr w(π). In particular, the weight of a point is the sum of the weights
of the t-dimensional subspaces passing through that point. A sum of t-
dimensional subspaces is said to be a sum of n t-dimensional subspaces if the
sum of the weights of all t-dimensional subspaces of A is n.

With these concepts, we can immediately mention the following charac-
terisation result from [47]. We recall that θµ = qµ+1−1

q−1
.
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Theorem 2.1.10. Let q > 2 and δ < ε, where q + ε is the size of the
smallest non-trivial blocking sets in PG(2, q). If (F,w) is a {δθµ, δθµ−1;N, q}-
minihyper satisfying µ 6 N −1, then w is the weight function induced on the
points of PG(N, q) by a sum of δ µ-dimensional subspaces.

The bounds mentioned in the characterisation are directly related to
bounds concerning blocking sets of the plane. When q is a square, the char-
acterisation can be improved using Baer subgeometries. We mention the
following general result from [46].

Theorem 2.1.11. A {δθµ, δθµ−1;N, q}-minihyper F , q > 16 square, δ <
q

5
8√
2

+ 1, is a unique union of pairwise disjoint µ-dimensional subspaces and

subgeometries PG(2µ+ 1,
√
q).

This theorem is proved in [46] in several steps. Although we will not need
the above theorem immediately, some lemmas involving Baer subgeometries
used to prove it will be useful in our application. Therefore we will mention
now some more technical results.

The following lemma is a special case of a general theorem on minihypers.

Lemma 2.1.12. (Hamada and Helleseth [50]) If (F,w) is a {δ(q +

1), δ; 3, q}-minihyper, δ 6 (q+1)
2

, then any plane π intersects it in a {m1(q +
1) +m0,m1; 2, q}-minihyper for some integers m0 and m1 with m0 +m1 = δ.

Definition 2.1.13. Denote by m1(π) the integer m1 corresponding to the
plane π. If m1(π) = 0, then π is called poor ; if π is not poor, then it is called
rich.

Definition 2.1.14. Suppose that q is a square. A Baer cone with vertex
p in PG(3, q) is a set of points that is the union of lines on p that form a
Baer subplane in the quotient space on p. The planes of this cone are the
q +
√
q + 1 planes that contain

√
q + 1 lines of the cone.

Lemma 2.1.15. (Govaerts and Storme [46]) Suppose that (F,w) is a

{δ(q + 1), δ; 3, q}-minihyper, δ 6 (q+1)
2

, q square, and suppose that every
blocking set of PG(2, q) with at most q + δ points contains a line or a Baer
subplane. Suppose furthermore that (F,w) contains no line. If p is a point
of (F,w) with w(p) = 1, then the set of rich planes through p contains the
set of planes of a Baer cone with vertex p.
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2.1.4 Spreads of PG(3, q)

In this section we mention results about spreads of PG(3, q). We will mention
extendability results and examples of maximal partial spreads of PG(3, q).
Furthermore we will explain extendability results for spreads of PG(n, q),
since they illustrate the link between blocking sets and spreads, and even the
use of minihypers, which are defined in Section 2.1.3.

Spreads of PG(3, q)

Theorem 1.2.31 links lower bounds for non-trivial blocking sets of PG(2, q)
to upper bounds for maximal partial spreads of PG(3, q). Using this theo-
rem and Theorems 1.2.20 and 1.2.21, we immediately conclude the following
corollary.

Corollary 2.1.16. Let S be a maximal partial spread of PG(3, q) of defi-
ciency δ > 0. Then

(i) δ >
√
q + 1 when q is a square,

(ii) δ > max(1 + pe+1, 1 + cpq
2
3 ), p prime, q = p2e+1, e > 1,

(iii) δ > q+3
2

when q is an odd prime.

More results in this style can be found in the literature. We refer to [41]
for a good overview.

The following step in investigating the problem is trying to find exam-
ples of maximal partial spreads close to the upper bound. We mention the
following result.

Theorem 2.1.17. There exists a maximal partial spread of size q2 − q + 2
in PG(3, q).

We will give a sketch of the proof. Consider an aregular spread S of
PG(3, q). (For an example, see Section 1.2.4). Take an arbitrary line L 6∈ S.
Denote by L the set of lines of S intersecting L. Then S ′ = (S \ L) ∪ {L} is
a partial spread of size q2 − q + 1. This partial spread can only be extended
with lines intersecting all q+1 lines of L. If there would exist two lines L′ and
L′′ intersecting the lines in L, then L would be the complementary regulus of
the regulus defined by L,L′ and L′′. Hence in PG(3, q), there exist maximal
partial spreads of size q2 − q + 1 or size q2 − q + 2. Results of A. A. Bruen
and J. A. Thas [28], J. W. Freeman [44] and D. Jungnickel [63] show that it
is possible to construct maximal partial spreads of size q2 − q + 2.
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It was conjectured that if S is a maximal partial spread of PG(3, q) with
positive deficiency δ, that δ > q− 1. This conjecture was disproved for q = 7
by Heden [52].

Proving that the upper bound for the size of a maximal partial spread is
close to the size of the largest known maximal partial spread or vice versa
is the main problem. Also constructing other examples of maximal partial
spreads for several values of δ receives a lot of attention. The following results
give information about spectra of maximal partial spreads of PG(3, q).

Theorem 2.1.18. (Heden [53]) In PG(3, q), q odd, q > 7, there exists a

maximal partial spread of size q2 + 1 − δ, (q2−11)
2
> δ > q − 1. In addition

there also exist spreads of size q2 + 1− δ with:

• δ = (q2+1−2n)
2

, n = 1, 2, . . . , 5 if q + 1 ≡ 2 or 4 (mod 6),

• δ = (q2−7)
2

, if q + 1 ≡ 0 mod 6 and q > 17,

• δ = (q2+1−2n)
2

, n = 3, 5 if q = 11.

The q even case is still in research, but so far there are the following
results.

Theorem 2.1.19. (Heden et al. [54]) In PG(3, q), q even, q > q0, there

exists a maximal partial spread of size q2 + 1− δ, (3q2−q−8)
8

> δ > q − 1.

The exact value of q0 is not yet known. It is expected that q0 > 16.
An interesting link between partial spreads of projective spaces and mini-

hypers is found in [47] and [46]. Extendability of partial t-spreads of PG(n, q),
(t + 1)|(n + 1), is investigated. We will briefly mention some aspects. The
authors consider a partial t-spread of PG(n, q) with deficiency δ. The fol-
lowing lemma explains the structure of the set of holes with respect to the
partial t-spread.

Lemma 2.1.20. Let S be a partial t-spread in PG(n, q) of deficiency δ < q.
Let F be the set of holes with respect to S, then F is a set of cardinality δθt
intersecting every hyperplane in at least δθt−1 points.

The link with minihypers is clear looking back to Definition 2.1.8 of mini-
hypers. The following theorem is then derived in [47].

Theorem 2.1.21. (Govaerts and Storme [47]) Let S be a maximal partial
t-spread in PG(n, q), (t + 1)|(n + 1), of deficiency δ > 0. Then δ > ε, with
q + ε the cardinality of the smallest non-trivial blocking sets in PG(2, q).



2.2. Maximal partial spreads of T2(O) and T3(O) 

The results in [47], [46] and [48] (the latter paper links partial t-spreads of
polar spaces with minihypers) were inspiring for the results of this chapter.
The idea now is to consider partial spreads of translation generalised quad-
rangles and to link results on minihypers to these partial spreads. Because
translation generalised quadrangles can be built with ingredients in projec-
tive spaces, we can immediately try to fit the minihypers in the picture.

2.2 Maximal partial spreads of T2(O) and

T3(O)

Our aim is to obtain upper bounds on the size of maximal partial spreads of
translation generalised quadrangles. We will first consider T2(O) and T3(O).

We will look for structure in the set of holes of a partial spread S of T2(O)
and T3(O), denoted in this section sometimes by Tn(O). Attaching a mini-
hyper to this set reveals such a structure immediately if the minihyper has
suitable parameters. Then we try to improve the bounds by other techniques
and in more particular cases.

Using minihypers to attack the problem can be motivated by other re-
sults found in the literature since minihypers are a kind of generalisation
of blocking sets and links between blocking sets and spreads can be found
frequently.

Suppose that S = (P ,B, I) is a GQ of order (s, t). Then a spread S has
size 1 + st, and a partial spread P has size 1 + st − δ, δ > 0. We call P a
partial spread of S, with deficiency δ.

We first mention the following theorem.

Theorem 2.2.1. (Tallini [88]) Consider the GQ Q(4, q), then

(i) if q is odd, Q(4, q) has no spreads, and if S is a partial spread, then
|S| 6 q2 − q + 1.

(ii) if q is even, q > 4, and S is a maximal partial spread of positive
deficiency, then |S| < q2 − q/2.

Since Q(4, q) ∼= T2(O) when O is a conic Q(2, q), this result fits in our
aim. After the examples of maximal partial spreads of T2(O), it will become
clear why the case q even is the most interesting for T2(O).

Furthermore we mention that in [88], the results of Theorem 2.2.1 are
obtained by embedding Q(4, q) in Q+(5, q) and observing the fact that a
spread of Q(4, q) is related to a blocking set with respect to the planes of
PG(3, q).
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This is not astonishing if we again observe Q(4, q) ∼= T2(O) since T2(O)
lives in a PG(3, q). The interesting fact is that T2(O) and also T3(O) and the
general model Tn,m(E) provide the possibility to apply the same technique:
attaching the set of holes to a minihyper and hence linking spreads to blocking
sets.

Consider now T2(O) and T3(O). A few times we will consider the two
models at once and denote them by Tn(O).

We recall some important notions. A spread of Tn(O) contains qn + 1
lines. Let S denote a partial spread of Tn(O) with deficiency δ, hence |S| =
qn + 1− δ.

Definition 2.2.2. Let x be a point of O. If x ∈ S, then set αx = q and if
x 6∈ S let αx be the number of lines of S incident in PG(n+ 1, q) with x. We
define the local deficiency δx of x, with respect to S, by δx = q − αx.

Let π0 = PG(n, q) which contains O and is embedded in PG(n+1, q) as a
hyperplane. We will now define an {f,m;n+ 1, q}-minihyper in PG(n+ 1, q)
from the set of holes of the partial spread S of Tn(O). We remark that a
partial spread contains at most one line of type (b) of the GQ, because all
lines of type (b) intersect in (∞).

Definition 2.2.3. Let S be a partial spread of Tn(O). Define wS: PG(n +
1, q)→ N as follows:

(i) if x ∈ PG(n+1, q)\π0 and x is a hole with respect to S, then wS(x) = 1,
otherwise wS(x) = 0,

(ii) suppose x ∈ O, define wS(x) = δx,

(iii) wS(x) = 0, ∀x ∈ π0 \ O.

This weight function determines a set F of points of PG(n+ 1, q), i.e. x ∈ F
if and only if wS(x) > 0. We will denote the defined minihyper by (F,wS).

The point (∞) is not a hole

In this section, we suppose that the special point (∞) is covered by an element
of the spread. This hypothesis leads to the following lemma.

Lemma 2.2.4. Let S be a partial spread of Tn(O) which covers (∞) and has
deficiency δ < q. Then wS is the weight function of a {δ(q + 1), δ;n+ 1, q}-
minihyper (F,wS).
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Proof. Since (∞) is covered, S contains exactly one line of type (b), which
is a point of O, denoted by p. All other qn−δ lines of S each contain q points
of type (i), so δq points of type (i) are not covered. Since the deficiency is δ,∑
x∈O

δx = δ. From the definition of wS this yields

|(F,wS)| =
∑

x∈PG(n+1,q)

wS(x) = δ(q + 1).

Consider an arbitrary hyperplane H of PG(n + 1, q). If H = π0, then∑
x∈H∩F

wS(x) =
∑
x∈O

δx = δ. Suppose that H 6= π0 and that H ∩ π0 is the

tangent space in a point s of O. If s = p, no line of S of type (a) is on p and
hence qn−δ lines of S are intersecting H in distinct points of PG(n+1, q)\π0,
which are points of type (i) of Tn(O). So H contains qn − (qn − δ) = δ holes
of weight one of (F,wS). The same arguments prove, in the case n = 2, that
a hyperplane H 6= π0 of PG(3, q) skew to O contains δ points of (F,wS).
Suppose now that s 6= p. The qn − δ − (q − δs) lines of S not on s intersect
H in one point of PG(n+ 1, q) \ π0. There is at most one line of S on s in H
(since S is a partial spread). If no such line exists, H contains δ+q−δs points
of (F,wS) of type (i), otherwise H contains δ − δs points of (F,wS) of type

(i). Furthermore, the weight of s is by definition δs, so
∑

x∈H∩F

wS(x) = q + δ

or δ.
For the last case for H, we will make a distinction between n = 2 and

n = 3. So let n = 2 and let H∩π0 = L be a secant line toO. If L∩O = {r, p},
q2 − δ − (q − δr) lines of S intersect H in a point of type (i) of T2(O), so
adding the point r with weight δr, H contains at most q+δ points of (F,wS).
If there is a line on r in H, q extra points are covered. Since q + δ < 2q, no
two lines of S on r can lie in H. Thus |H ∩ (F,wS)| > δ. If L ∩ O = {r, s},
r 6= p, s 6= p, we have at most 2q+ δ− δr − δs holes which are points of type
(i) in H. Since S is a partial spread, no line of S on r and no line of S on s
can lie in H at the same time, and since q > δ, no more than two lines of S
on r or s lie in H, so |H ∩ (F,wS)| > δ.

Let n = 3 and let C = H ∩ O. Using similar arguments as in the case
n = 2, the number of points of (F,wS) in H is at most

δ +
∑
x∈C

(q − δx) +
∑
x∈C

δx = δ + (q + 1)q (if p 6∈ C), or

δ +
∑

x∈C\{p}

(q − δx) +
∑

x∈C\{p}

δx = δ + q2 (if p ∈ C).
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For every line of S in H, q extra points of type (i) are covered, but since
δ < q, H contains at least δ points of (F,wS).

So every hyperplane contains at least δ points of (F,wS), and there ex-
ist hyperplanes which contain exactly δ points. Hence, (F,wS) is a {δ(q +
1), δ;n+ 1, q}-minihyper. �

With this lemma, we can immediately prove the following theorem.

Theorem 2.2.5. Let S be a partial spread with deficiency δ of Tn(O) covering
(∞). If δ < ε, with q + ε the size of the smallest non-trivial blocking sets in
PG(2, q), q > 2, then S can be extended to a spread.

Proof. Denote again the unique line of type (b) in S by p, a point of O.
The conditions on δ imply δ < q (Section 1.2.4) and so (F,wS) is a {δ(q +
1), δ;n+ 1, q}-minihyper. If δ satisfies the given conditions, Theorem 2.1.10
assures us that (F,wS) is the sum of δ lines. Since the points of (F,wS) on
π0 are points of O \ {p}, it follows that these δ lines are lines of type (a) of
Tn(O). Those lines extend S to a spread. �

Improvements when q is a square

From the point of view of blocking sets, there is always quite some difference
when q is square or not, and this becomes clear in many theorems on bounds
for non-trivial minimal blocking sets. However, not only numbers matter,
also structures matter. When q is a square, Baer subgeometries arise. This
is also the fact in characterisation theorems on minihypers, as we mentioned
in Section 2.1.3. In this paragraph, we will use those theorems. Especially
here we see the Baer subgeometries are very important. Since Lemma 2.1.15
is restricted to minihypers in 3 dimensions, we restrict to T2(O).

Theorem 2.2.6. Suppose that q is a square and that S is a partial spread of
T2(O) which covers (∞) and with deficiency δ 6 q

4
such that every blocking

set of PG(2, q) of size at most q+δ contains a line or a Baer subplane. Then
S can be extended to a spread of T2(O).

Proof. Suppose that (F,wS) does not contain a line. Consider a hole r of
type (i). Since wS(r) = 1, by Lemma 2.1.15, there is a Baer cone B, with
vertex r and base a Baer subplane π′ in π0, of rich planes through r. All
planes of B through r are rich planes, so all lines of π′ are secant or tangent
lines to O. Each rich plane contains a point x of O such that δx > 1. Hence
if Π is a set of rich planes through r such that no point of O is contained in
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two elements of Π we have that δ > |Π|. Consequently, if E is a set of lines of
π′ such that no point of O is incident with two elements of E , then δ > |E|.

Let K be the k-arc π′ ∩O. Let E denote the set of lines of π′ external to
K, then by the previous paragraph δ > |E|. That is,

δ >
√
q + q + 1− k(

√
q + 1) +

k(k − 1)

2
, with 0 6 k 6

√
q + 2.

This latter lower bound on δ is obtained in the following way. We subtract
the number of lines of π′ through the k points of π′ ∩ O. Since however
every bisecant to π′ ∩ O is subtracted twice, we correct the lower bound
q +
√
q + 1− k(

√
q + 1) by adding k(k−1)

2
.

For this range of values of k we have that δ > (q−√q)
2

which implies that
δ > q

4
, a contradiction. Hence we conclude that (F,wS) must contain a line,

necessarily a line of type (a) of T2(O), and so S can be extended. �

Remark. A non-trivial blocking set of size q+ q
4

+ 1 in PG(2, q), q even and
square, which does not contain a Baer subplane is known to exist, namely
the set of points {(x,Tr(x), 1)||x ∈ GF(q)}∪{(x,Tr(x), 0)||x ∈ GF(q)\{0}},
with Tr the trace function from GF(q) to GF(4) (see [60, Chapter 13]). Thus
the bounds of Theorem 2.2.6 can never exceed q

4
.

The point (∞) is a hole

In the previous section, the results were basically obtained by using the
characterisation of certain minihypers. In this section, we will not use the
minihypers for T2(O). Our results for T2(O) will be obtained by only the
use of the special properties of the model T2(O). This approach shows the
strength of this model, particularly to make conclusions in the case T2(O) ∼=
Q(4, q).

Suppose that S is a partial spread of T2(O) with deficiency δ, δ < q, and
that the point (∞) is a hole with respect to S. The first three lemmas are
short observations.

Lemma 2.2.7. (i) There are (δ − 1)q holes of type (i).

(ii)
∑
x∈O

δx = q − 1 + δ.

Proof. (i) The q2 + 1− δ lines of S, all of type (a), each cover q points of
type (i), which gives (δ − 1)q holes of type (i).
(ii)

∑
x∈O δx =

∑
x∈O(q − αx) = q2 + q − (q2 + 1− δ) = q + δ − 1. �



 2. Maximal partial spreads of translation generalised quadrangles

Lemma 2.2.8. If S is a partial spread of T2(O) of deficiency δ < q (where S
may or may not cover (∞)), then for each point x ∈ O, the lines of PG(3, q)
of S on x form an arc in the quotient geometry of x.

Proof. It suffices to show that no plane π of PG(3, q) containing x and a
second point x′ of O contains more than two lines of S. Since δ < q, from the
proof of Lemma 2.2.7, the plane π contains at most δ + 2q − (δx + δx′) < 3q
points not on lines of type (a) through x or x′. So π contains at most two
lines of S on x. �

Lemma 2.2.9. Let S be a partial spread of T2(O) such that the point (∞) is
not covered and such that δp = q for some p ∈ O. Then S may be extended
by adding the point p, which is a line of type (b) of T2(O).

Proof. Since no point on the line p of T2(O) is covered by an element of
S, the result follows. �

With these lemmas, we can prove the following theorem.

Theorem 2.2.10. Let q be even and let S be a maximal partial spread of
T2(O) with deficiency δ 6 q − 1. Then S must cover the point (∞).

Proof. Suppose that S does not cover (∞). Since
∑

x∈O δx = q + δ − 1 6
2q − 2, there must be a point p ∈ O such that δp ∈ {0, 1}. The lines of S
incident with p form a (q− 1)- or q-arc in the quotient geometry of p, which
can be extended to a hyperoval Op ([60]). One of the points of the quotient
geometry of p extending this (q − 1)- or q-arc corresponds to the tangent
line in p to O in the plane π0. Hence, π0 is a bisecant to the hyperoval Op
in the quotient geometry of p. This shows that this hyperoval contains a
point corresponding to a line pp′ for some point p′ ∈ O \ {p}. Consequently,
each plane of PG(3, q) on the line pp′ may contain at most one line of S on
p. Since a plane on pp′ can not contain a line of S on p and a line of S on
p′, we have three possibilities: δp = 0, δp′ = q; δp = 1, δp′ = q; or δp = 1,
δp′ = q − 1. In the first two cases, by Lemma 2.2.9 we may extend S by
adding p′, a contradiction, so we are left with the latter case. Now in this
case

∑
x∈O\{p,p′} δx = δ − 1 6 q − 2, from which it follows that there exists a

point p′′ ∈ O \ {p, p′} such that δp′′ = 0. By applying the arguments above
to p′′, it follows that S must be extendable, a contradiction. �

Now the strength of the model T2(O) becomes clear. Supposing that O
is a conic Q(2, q), we are just working with the classical GQ T2(O) ∼= Q(4, q)
and any point of Q(4, q) can play the role of the point (∞). Since the group
of Q(4, q) acts transitively on the set of points of Q(4, q), we obtain the
following corollary.
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Corollary 2.2.11. Consider the GQ Q(4, q). If q is even, and S is a maximal
partial spread of positive deficiency, then |S| 6 q2 − q + 1.

We now will construct examples of maximal partial spreads of T2(O) and
T3(O).

First, we give a construction of a maximal partial spread of T2(O) starting
from an arbitrary spread.

Theorem 2.2.12. If T2(O), q even, has a spread, then T2(O) has a maximal
partial spread of size q2 − q + 1 which covers (∞).

Proof. Suppose that S is a spread of T2(O) containing the line p ∈ O of
type (b). Let x ∈ O \ {p}. Then Sx = (S \ x⊥) ∪ {x} is a partial spread
of T2(O). Since by Lemma 2.2.8, (S ∩ x⊥) \ {p} is a q-arc in the quotient
geometry of x, there can be no line L of T2(O) such that S ∩ L⊥ = S ∩ x⊥,
and so Sx is a maximal partial spread of size q2 − q + 1. �

In Section 2.1.2, we mentioned some examples of spreads of T2(O), so
the theorem is applicable. This theorem also shows that the bound of Corol-
lary 2.2.11 is sharp.

Suppose that S ′ is a spread of T3(O) constructed as in Section 2.1.2.
Denote the unique line of type (b) in S ′ by x, this is a point of O. We
will construct a partial spread P from S ′. Consider a point x1 ∈ O \ {x}
and M a line of type (a) of T3(O) on x1 not contained in S ′. If we remove
all lines of S ′ concurrent with M and add M , we obtain a partial spread
of size q3 − q + 1. There are q + 1 lines of S ′ concurrent with M . This is
one line M1 in 〈M,Σx1〉, intersecting M in the point 〈M,Σx1〉 of type (ii)
and q lines M2, . . . ,Mq+1 intersecting M in distinct points of type (i). We
denote the points of O on the lines M1, . . . ,Mq+1 by x1, . . . , xq+1. Define
P = (S ′ ∪ {M}) \ {M1, . . . ,Mq+1}.

Lemma 2.2.13. If {x1, . . . , xq+1} is not an oval, then P is maximal.

Proof. Suppose that some line N of T3(O) extends P . Necessarily, N must
be a line of type (a) on one of the points {x2, . . . , xq+1} (by considering the
covering of the points of type (ii)). Suppose that x2 ∈ N . If we can add
N , then N must intersect all lines {M1, . . . ,Mq+1} in exactly one point. So
{M1, . . . ,Mq+1} ⊂ 〈M,N〉 and {x1, . . . , xq+1} = Ω ∩ 〈M,N〉 is an oval. The
lemma follows by contraposition. �

Lemma 2.2.14. The GQ T3(O), q > 2, has maximal partial spreads of size
q3 − q + 1.
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Proof. Consider P and suppose that we can add a line N to P . We project
all lines of P = (S ′ ∪ {M,N}) \ {M1, . . . ,Mq+1} from x on V 1. Then

Mi 7→ Li ∈ S
M 7→ L′ 6∈ S
N 7→ L′′ 6∈ S

with L′ incident with y1 and L′′ incident with y2. Now L′ cannot belong to S;
otherwise L′ ⊆ 〈x, x1,M1〉. Also since N intersects the lines M1, . . . ,Mq+1,
it follows that L′′ meets each of the q + 1 lines of S meeting L′. So if L′ is a
line such that there is no second transversal to the q + 1 lines of S meeting
L′, then it is impossible to find a line N which satisfies all conditions. We
will construct a spread of PG(3, q) which satisfies the necessary conditions.

Suppose that S1 is a regular spread and R ⊆ S1 is a regulus with opposite
regulus R′. Replacing R by R′ gives a new spread, denoted by S2. Suppose
that L′ is a line of PG(3, q) not in S1 nor in S2, having exactly one point p
covered by a line of R (and hence also by a line of R′). Let MR and MR′

be the corresponding lines of R, R′ respectively, on p. Let M1, . . . ,Mq be
the lines of S1 and S2 meeting L′ in the q points different from p. Since
L meets M1, M2, M3, it is contained in the opposite regulus generated by
those three lines, and the lines of S1 meeting L′ form indeed this regulus
{M1, . . . ,Mq,MR}. Suppose that the lines M1, . . . ,Mq,MR′ on L′ have a
second transversal L′′ skew to L′. Since L′′ meets M1,M2,M3, it meets all
members of the regulus including MR. Then L′′ must contain the point
p = Mr ∩MR′ and so intersects L′, a contradiction. Hence there exists no
such second transversal. �

Lemma 2.2.15. If O = Q−(3, q), then either P is maximal or P can be
extended to a spread.

Proof. Suppose that O = Q−(3, q) and that P can be extended by the line
N . Then necessarily Ω = 〈M,N〉 ∩ O is a conic and M1, . . . ,Mq+1 are q + 1
lines of a T2(Ω) ∼= Q(4, q) constructed in 〈M,N〉. Because {M1, . . . ,Mq+1} =
{M,N}⊥ in T2(Ω), they form a regulus, and {M,N} is a subset of the op-
posite regulus. So if we can add one line N to P , we can add the q − 1
remaining lines in the opposite regulus of {M1, . . . ,Mq+1}. Hence P can be
extended to a spread, and the result follows. �

If O is not Q−(3, q), then P is either maximal or may be extended by the
addition of one further transversal of {M1, . . . ,Mq+1}. For if {M1, . . . ,Mq+1}

1See page 34 for the construction of a spread of T3(O) and the definition of V
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has three transversals, then it follows that it is a regulus, the oval Ω is a conic
and so O is Q−(3, q) by Theorem 1.2.13.

By the construction of S ′ from S, we see that the configuration of lines
{M,M1, . . . ,Mq+1} is the image of respectively 〈M,x〉∩V and {〈Mi, x〉∩V :
i = 1, . . . , q+ 1} ⊂ S under the projection of the spread V onto 〈M,M1,M2〉
from x, and conversely. Thus we may extend P if and only if we can find a
spread of PG(3, q) that contains q+1 lines with two transversals and meeting
some plane of PG(3, q) in the oval Ω.

Since, at present, only two classes of ovoids are known, we will restrict
ourselves to an oval Ω = {(1, t, tσ)‖t ∈ GF(q)} ∪ {(0, 0, 1)}, q = 22e+1 and
σ2 ≡ 2, e > 1, which is found in the Tits ovoid. We use the Lüneburg
spread, S = {〈(1, 0, 0, 0), (0, 0, 1, 0)〉}∪{〈(sσ, 1, s+tσ+1, 0), (s+tσ+1, 0, tσ, 1)〉‖
s, t ∈ GF(q)}. If we consider the q + 1 lines {〈(1, 0, 0, 0), (0, 0, 1, 0)〉} ∪
{〈(tσ+2, 1, 0, 0), (0, 0, tσ, 1)〉‖t ∈ GF(q)} of S, we see that they have transver-
sals 〈(0, 0, 1, 0), (0, 0, 0, 1)〉 and 〈(1, 0, 0, 0), (0, 1, 0, 0)〉. Furthermore, inter-
section with the plane x1 = x2 gives the set of q+1 points {(t2σ+2, tσ, tσ, 1)‖t ∈
GF(q)} ∪ {(1, 0, 0, 0)} = {(tσ+2, t, t, 1)‖t ∈ GF(q)} ∪ {(1, 0, 0, 0)} which is
equivalent to the oval Ω in the Tits ovoid. Hence

Lemma 2.2.16. If O is the Tits ovoid, then T3(O) has a maximal partial
spread of size q3 − q + 2 which covers (∞).

We already mentioned an example of a spread of T3(O) in Section 2.1.2. In
the construction, every spread of PG(3, q) gives rise to a spread of T3(O). The
following lemma generalises this construction to the construction of maximal
partial spreads of T3(O), now using maximal partial spreads of PG(3, q).

Lemma 2.2.17. Suppose that S is a maximal partial spread of PG(3, q)
with deficiency δ. Then there exists a maximal partial spread of T3(O) with
deficiency qδ.

Proof. Consider the maximal partial spread S in PG(3, q). We construct
a partial spread S ′ on T3(O) in the same way as a spread is constructed in
[81] (see also Section 2.1.2). It is straightforward to see that S ′ is a partial
spread. We will prove that S ′ is maximal due to the maximality of S. By the
construction of S ′, there are points of O \ {x} on which we have q lines of S ′

and there are points of O \ {x} on which there are no lines of S ′. If we can
extend S ′, then, since (∞) is already covered, we must add a line of type (a)
on a point of O \ {x} incident with no line of S ′. Suppose that p ∈ O \ {x}
is such a point and that we can extend S ′ by M on p. By construction, if L
is any line of S, then S ′ covers all points of 〈x, L〉 \ π0. Hence, M contains
no point of 〈x, L〉 and the projection of M from x onto V is skew to L. This
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implies that S may be extended, a contradiction. Hence, S ′ is maximal and
of size q3 + 1− qδ. �

For T3(O), we can bundle all information about examples of maximal par-
tial spreads constructed in this section. Part (i) was proved by Lemma 2.2.14,
part (ii) by Lemma 2.2.16, part (iii) by Lemma 2.2.17 and Theorem 2.1.18,
and part (iv) by Lemma 2.2.17 and Theorem 2.1.19.

Theorem 2.2.18. (i) T3(O) has a maximal partial spread of size q3−q+1
which covers (∞).

(ii) If O is the Tits ovoid, then T3(O) has a maximal partial spread of size
q3 − q + 2 which covers (∞).

(iii) Let q be odd, q > 7, then T3(O) has maximal partial spreads of size

q3 + 1 − δ, with δ = nq, q2−11
2
> n > q − 1. For certain values of q,

other values for δ are possible:

• δ = q3−(2n−1)q
2

, n = 1, 2, . . . , 5 if q + 1 ≡ 2 or 4 (mod 6),

• δ = q3−7q
2

, if q + 1 ≡ 0 mod 6 and q > 17,

• δ = q3−(2n−1)q
2

, n = 3, 5 if q = 11.

(iv) Let q be even, q > q0 (cf. Theorem 2.1.19), then T3(O) has maximal

partial spreads of size q3 + 1− δ, with δ = nq, 3q2−q−8
8
> n > q − 1.

2.3 Maximal partial spreads of Tn,m(E)

Consider now a GQ Tn,m(E) different from T2(O) and T3(O) as defined in
Section 2.1.1. The GQ S = Tn,m(E) has order (qn, qm) and hence if S is a
spread of S, then |S| = 1 + qn+m and the point (∞) is covered by a unique
line of type (b), i.e. an (n − 1)-dimensional space α ∈ E . As in Section 2.2
we denote by π0 the (2n+m− 1)-dimensional space containing E embedded
as a hyperplane in PG(2n+m, q).

Suppose that S is a partial spread of size qn+m + 1− δ covering the point
(∞). Denote by α the unique line of type (b) contained in S.

We start with an adapted version of Definition 2.2.2.

Definition 2.3.1. Let α be an element of E . If α ∈ S, then set Aα = qn

and if α 6∈ S, then let Aα denote the number of lines of type (a) incident in
PG(2n + m, q) with α. We define the local deficiency ∆α of α with respect
to S, by ∆α = qn − Aα.
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It is clear that for any partial spread S with deficiency δ and covering
(∞),

∑
α∈E ∆α = δ. We can now define the local deficiency δx of a point

x ∈ α, with α ∈ E , as δx = ∆α. We now have
∑

α∈E
x∈α

δx = δθn−1.

We now can generalise Definition 2.2.3. For any point x ∈ PG(2n+m−
1, q), we say that x ∈ E if and only if x ∈ α, with α an element of E .

Definition 2.3.2. Let S be a partial spread of Tn,m(E), n > 2. Define
wS : PG(2n+m, q)→ N as follows:

(i) if x ∈ PG(2n + m, q) \ π0 and x is a hole with respect to S, then
wS(x) = 1, otherwise wS(x) = 0.

(ii) if x ∈ E , define wS(x) = δx.

(iii) wS(x) = 0, ∀x ∈ π0 \ E .

This weight function determines a minihyper (F,wS) of PG(2n + m, q).
The following lemma generalises Lemma 2.2.4.

Lemma 2.3.3. Let S be a partial spread of Tn,m(E), n > 2, which cov-
ers (∞) and has deficiency δ < q. Then wS is the weight function of a
{δθn, δθn−1; 2n+m, q}-minihyper (F,wS).

Proof. Since (∞) is covered, S contains exactly one line of type (b), which
is an element of E , denoted by α. All other qn+m − δ lines of S each contain
qn points of type (i), so δqn points of type (i) are not covered. Since the
deficiency is δ,

∑
x∈E δx = δθn−1. From the definition of wS, this yields

|(F,wS)| =
∑

x∈PG(2n+m,q)

wS(x) = δ(qn + θn−1) = δθn.

Consider now an arbitrary hyperplane H of PG(2n+m, q). If H = π0, then∑
x∈H∩F

wS(x) =
∑
x∈E

δx = δθn−1.

Suppose that H 6= π0. Any element of E has an (n − 2)-dimensional
intersection with H or is completely contained in H. Let K be the set of
elements of E intersecting H in an (n−2)-dimensional subspace and let L be
the set of elements of E completely contained in H. Put k = |K| and l = |L|.
Clearly k + l = qm + 1.

For any β ∈ K, β 6= α, qn − ∆β lines of type (a) intersect H in an
(n − 1)-dimensional subspace, covering qn−1 points of type (i) of H (i.e.
points of H \ π0). Suppose that γ ∈ L, γ 6= α. Then every line of type
(a) on γ intersects H in an (n − 1)-dimensional subspace, necessarily γ, or
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is completely contained in H. We define mH
γ as the number of lines of S

of type (a) on γ covering qn further points of type (i) in H, so mH
γ 6 qn.

Furthermore there are no lines of type (a) of the partial spread S on α.
We have to distinguish two cases. Suppose that α ∈ K. Then

∑
β∈K(qn−

∆β)qn−1 points of H of type (i) are covered by the elements of S through the
elements of K, and there are at most q2n+m−1−(k−1)qnqn−1 +

∑
β∈K ∆βq

n−1

holes of type (i) in H.
Furthermore, |H ∩ (F,wS) ∩ π0| =

∑
β∈K ∆βθn−2 +

∑
γ∈L ∆γθn−1. Since∑

β∈K ∆β(θn−2+qn−1) =
∑

β∈K ∆βθn−1 and
∑

β∈K ∆βθn−1 +
∑

γ∈L ∆γθn−1 =
δθn−1, we have

|H ∩ (F,wS)| 6 q2n+m−1 − (k − 1)qnqn−1 +
∑

β∈K ∆βq
n−1

+
∑

β∈K ∆βθn−2 +
∑

γ∈L ∆γθn−1

= q2n+m−1 − (k − 1)q2n−1 + δθn−1.

(2.1)

Taking into account these values, we find the equation: |H ∩ (F,wS)| =
q2n+m−1 − (qm − l)q2n−1 − qn

∑
γ∈Lm

H
γ + δθn−1, or,

|H ∩ (F,wS)| = qn(lqn−1 −
∑
γ∈L

mH
γ ) + δθn−1. (2.2)

If A = lqn−1 −
∑

γ∈Lm
H
γ < 0, then still Aqn + δθn−1 > 0, a contradiction

since δ < q. Hence A > 0 and |H ∩ (F,wS)| > δθn−1.
Suppose now that α ∈ L. There is little difference with the previous case.

It is clear that mH
α = 0. Hence, Inequality (2.1) becomes

|H ∩ (F,wS)| 6 q2n+m−1 − kqnqn−1 + δθn−1. (2.3)

and Equation (2.2) becomes

|H ∩ (F,wS)| = qn((l − 1)qn−1 −
∑
γ∈L

mH
γ ) + δθn−1. (2.4)

Again, if A = (l − 1)qn−1 −
∑

γ∈Lm
H
γ < 0, then still Aqn + δθn−1 > 0, a

contradiction since δ < q.
So for an arbitrary hyperplane H, |H ∩ (F,wS)| > δθn−1 and |π0 ∩

(F,wS)| = δθn−1, hence min{
∑

x∈H wS(x)‖H is a hyperplane of PG(2n +
m, q)} = δθn−1.

We conclude that (F,wS) is a {δθn, δθn−1; 2n+m, q}-minihyper. �

We now can formulate a version of Theorem 2.2.5 for Tn,m(E).
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Theorem 2.3.4. Let S be a partial spread of S = Tn,m(E), n > 1, which
covers (∞) and has deficiency δ < ε, with q + ε the size of the smallest
non-trivial blocking sets in PG(2, q), q > 2, then S can be extended to a
spread.

Proof. The condition on δ implies that δ < q and so (F,wS) is a {δθn,
δθn−1; 2n + m, q}-minihyper. By Theorem 2.1.10, (F,wS) is the sum of δ
n-dimensional spaces. Since the points of (F,wS)∩π0 are the points of some
elements of E , counted with multiplicity, the n-dimensional spaces of (F,wS)
necessarily intersect π0 in an element of E , and hence are lines of type (a) of
Tn,m(E). Those lines extend S to a spread. �

We now will describe an example of a TGQ on which the above theorem
can be applied. Therefore we need some extra definitions. The overview we
give here is based on parts of [96] and [68].

We start with the construction of a GQ via “q-clans”.
Define G = {(α, c, β)‖α, β ∈ GF(q)2, c ∈ GF(q)}. Define a binary opera-

tion · on G by

(α, c, β) · (α′, c′, β′) = (α + α′, c+ c′ + βα′T , β + β′)

It is clear that G, · is a group with center C = {(0, c,0)‖c ∈ GF(q)}, with
0 = (0, 0). Let C = {Au‖u ∈ GF(q)} be a set of q distinct upper triangular
2 × 2-matrices over GF(q). Then C is called a q-clan provided Au − Ar is
anisotropic whenever u 6= r. This condition expresses that α(Au−Ar)αT = 0
only has the trivial solution α = (0, 0). Let

Au =

(
xu yu
0 zu

)
with xu, yu, zu, u ∈ GF(q). When q is odd, put Ku = Au + ATu , then C is a
q-clan if and only if

−det(Ku −Kr) = (yu − yr)2 − 4(xu − xr)(zu − zr) (2.5)

is a non-square of GF(q) whenever r, u ∈ GF(q), r 6= u. When q is even, C is
a q-clan if and only if

yu 6= yr and Trq→2((xu + xr)(zu + zr)(yu + yr)
−2) = 1 (2.6)

whenever r, u ∈ GF(q), r 6= u.
Define a family of subgroups of G by A(u) = {(α, αAuα

T , αKu) ∈ G‖α ∈
GF(q)}, u ∈ GF(q) and A(∞) = {(0, 0, β) ∈ G‖β ∈ GF(q)2}. Put J =
{A(u)‖u ∈ GF(q) ∪ {∞}}. Then J∗ = {A∗(u) = A(u)C, u ∈ GF(q) ∪ {∞}}.
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Theorem 2.3.5. The pair (J, J∗) is a 4-gonal family if and only if C is a
q-clan. Hence if C is a q-clan, then it defines a GQ of order (q2, q).

Now we introduce flocks of quadratic cones and we describe the connection
with q-clans.

A flock of the quadratic cone K with vertex v of PG(3, q) is a partition
of the points of K \ {v} into q pairwise disjoint irreducible conics. A flock
is determined by q planes not on v. If these q planes share a common line,
then the flock is called linear.

J. A. Thas shows in [93] that the conditions (2.5) and (2.6) are precisely
the conditions for the equations xuX0 +zuX1 +yuX2 +X3 = 0, xu, yu, zu, u ∈
GF(q), to constitute a flock of the quadratic cone with equation X0X1 = X2

2

and vertex (0, 0, 0, 1) in PG(3, q). We conclude:

Theorem 2.3.6. To any flock F of the quadratic cone of PG(3, q) corre-
sponds a GQ of order (q2, q).

If F is a flock, then we denote the corresponding GQ by S(F). Let us now
consider an example of a flock GQ. Let q be odd. Consider q planes πt with
equation tX0 −mtσX1 +X3 = 0, t ∈ GF(q), m a fixed non-square in GF(q)
and σ ∈ Aut(GF(q)). These q planes form a flock FK of the cone X0X1 = X2

2

in PG(3, q) and the flock is linear if and only if σ = 1. The corresponding
GQ S(FK) is called the Kantor semifield (flock) GQ. This GQ is a TGQ for
some base line; hence the point line dual is a TGQ for some base point and
hence S(F)D = Tn,m(E) for some egg E of PG(2n+m− 1, q′).

We now are interested in the parameters n,m of E . This GQ is studied
in the literature and it is known from [79, 82] that the kernel of S(FK)D is
the fixed field of σ. Hence, if σ 6= 1, then S(FK)D is a TGQ with kernel
GF(q′), the fixed field of σ, and necessarily q′n = q. Hence S(F)D is a TGQ
of order (q′n, q′2n), or S(FK)D = Tn,m(E) with necessarily n > 1, making
S(FK) different from T3(O).

Theorem 2.3.7. (Payne [80]) The TGQ S(FK)D = Tn,m(E) is isomorphic
to its translation dual.

The TGQ S(FK)D has a spread. This is not merely an observation; quite
a lot of definitions and lemmas are needed to prove this. We will not go into
detail about the existence of a spread, but we mention that the basic result
can be found in [94]. For more information, we refer to [96].

Hence, by Theorem 2.3.4,

Theorem 2.3.8. Let S be a partial spread of S(FK)D, S(FK) the Kantor
semifield flock GQ, which covers (∞) and has deficiency δ < ε, with q + ε
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the size of the smallest non-trivial minimal blocking sets in PG(2, q), q > 2,
then S can be extended to a spread.





Chapter 3
The smallest minimal blocking
sets of Q(6, q), q even

I
t is known that Q(6, q), q even, has no ovoids ([92]). The natural question
is how the smallest sets of points blocking every generator look like. In

this chapter we investigate this problem. We also develop ideas useful for
the forthcoming chapters.

We start with an introductory section. Basic ideas and results are ex-
plained. Furthermore, technical results for Q(4, q) are mentioned. The sec-
ond section contains the result itself, while the third section contains the
proofs of the technical results mentioned in the introduction.

The present chapter is based on joint work with L. Storme [37].

3.1 Introduction

From now on, we will frequently use the notation πn for an n-dimensional
subspace of a projective space.

Consider a polar space S. A blocking set K is a set of points of S such
that every generator meets K in at least one point. A blocking set K is
called minimal if and only if K \ {p} is not a blocking set for every point
p ∈ K. This definition is equivalent with the following property. If K is a
minimal blocking set, then for every p ∈ K, there exists a generator π such
that π ∩ K = {p}.

An ovoid is an example of a minimal blocking set. Furthermore no set
smaller than an ovoid can block all generators. It will become clear that also
ovoids of polar spaces play an important role in characterising blocking sets
of polar spaces different from ovoids. This is the main goal of this chapter,
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and we will characterise the smallest minimal blocking sets of Q(6, q), q even,
q > 16.

An important idea is found in [92] and recalled in [76]. Although the main
result of the latter paper is not used in this chapter, it recalls the following
easy to prove lemma, which is an important fact.

Lemma 3.1.1. If the quadric Q(2n, q), n > 2, admits an ovoid, then each
quadric Q(2m, q), n > m > 2, admits an ovoid.

Consider an ovoid O of Q(2n, q), n > 3, and consider all lines of Q(2n, q)
on a point p ∈ Q(2n, q) \ O. In the base of the tangent cone Tp(Q(2n, q)) ∩
Q(2n, q), the lines 〈p, r〉, r ∈ O ∩ Tp(Q(2n, q)), give rise to an ovoid O′ of
Q(2n− 2, q). This observation leads immediately to the above lemma.

More important for us is the generalisation to blocking sets; something
that will be one of the first lemmas of the next section.

Suppose now that K is a minimal blocking set of Q(6, q), q even, of size
at most q3 +q. It will become clear that K gives rise to minimal blocking sets
of Q(4, q), q even. Concerning these objects, we have the following theorem.

Theorem 3.1.2. (Eisfeld et al. [42]) Let B be a blocking set of Q(4, q),
q even, q > 16, of size q2 + 1 + r, with 0 < r 6

√
q. Then B consists of an

ovoid and r extra points. Hence, a minimal blocking set of Q(4, q), q even,
q > 16, has size q2 + 1 + r, r >

√
q.

Theorem 3.1.2 and a generalisation of Lemma 3.1.1 will give combinatorial
information about blocking sets of Q(6, q).

Combinatorial and geometric information on minimal blocking sets of
Q(4, q) will be the key elements in solving the problem. Since Q(4, q) ∼=
W(3, q)D, and Q(4, q) is self-dual if and only if q is even, also results on
covers can be useful. Before mentioning some of the used results, we give
some more definitions.

Consider a GQ S of order (s, t). A blocking set of S is a set B of points
such that every line of S meets B in at least one point. Recall that this
definition is consistent with the definition of a blocking set of a polar space.
A concept like minimality is defined in the usual way. A cover C is a set of
lines of S such that every point is contained in at least one line of C. It is
clear that blocking sets and covers are dual concepts. A cover C is called
minimal if no proper subset of C is still a cover of S. A point p is called a
multiple point or an excess point of C if it is contained in at least two lines
of C. The excess of p is the number of lines of C on p minus one. The weight
of a line with respect to a given cover is the minimum of the excesses of the
points belonging to this line.
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We now can mention results from [42]. For the definition of a “sum of
lines”, we refer to Definition 2.1.9, Section 2.1.3. The next theorem was a
basic argument in [42] to prove Theorem 3.1.2.

Theorem 3.1.3. Let C be a minimal cover of Q(4, q). Let |C| = q2 + 1 + r,
with q + r smaller than the cardinality of the smallest non-trivial blocking
sets in PG(2, q). Then the multiple points form a sum of lines, contained in
Q(4, q), where the weight of a line in this sum is equal to the weight of this
line with respect to the cover, and with the sum of the weights of the lines
equal to r.

We will use an adapted version of Theorem 3.1.3, admitting a larger
excess. The proof will be given in Section 3.3, Lemma 3.3.1.

Lemma 3.1.4. Let C be a minimal cover of Q(4, q), |C| = q2 +1+r, 0 < r 6
q−1. If each multiple point has excess at least

√
q, then the set E of multiple

points is a sum of lines, with the sum of the weights of the lines equal to r.

The following lemma is also the adaption of a theorem from [42] for q
even. For the proof, we refer to Section 3.3, Lemma 3.3.6.

Lemma 3.1.5. A minimal cover of Q(4, q), q even, of size q2 +1+ r, having
only points of positive excess at least

√
q satisfies r > q+4

6
.

Finally, we will prove a quite technical result on covers of Q(4, q). The
proof can be found in Section 3.3, Lemma 3.3.7 and Lemma 3.3.8.

Lemma 3.1.6. Suppose that C is a minimal cover of Q(4, q) of size q2+1+r,
0 < r < q, for which there is a line L not in C such that every point of L lies
on r + 1 lines of C, but all other points of Q(4, q) lie on one line of C, then
(r + 2)|q or r = q − 1. Furthermore, r 6 q

2
− 2 is impossible.

Suppose now that K is a minimal blocking set of Q(6, q). A multiple line
with respect to K is a line of Q(6, q) meeting K in at least two points. Using
a projection argument, we will show that the multiple lines must contain
many points. It will become clear that the lemmas imply that the number
of points on a multiple line is at least q − 1. A final argument shows the
following theorem.

Theorem 3.1.7. Let K be a minimal blocking set of Q(6, q), q even, |K| 6
q3 + q, q > 32. Then there is a point p ∈ Q(6, q) \ K with the following
property: Tp(Q(6, q)) ∩Q(6, q) = pQ(4, q) and K consists of all the points of
the lines L on p meeting Q(4, q) in an ovoid O, minus the point p itself, and
|K| = q3 + q.
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3.2 Proof of the theorem

When possible, proofs are given for general q. Suppose for this section that
K is a minimal blocking set of Q(6, q), q even, |K| = q3 + 1 + δ, 0 < δ < q.
The first observation is very short, but will be very useful.

Lemma 3.2.1. If p is a point of Q(6, q), p ∈ K, then |Tp(Q(6, q))∩K| 6 1+δ.

Proof. Since K is minimal, there exists a generator π on p such that
π∩K = {p}. Consider π. On the q2 lines of π not on p, there are q planes of
Q(6, q) different from π. Every one of these q3 planes needs to be blocked by
a point of K \ Tp(Q(6, q)). None of these points of K \ Tp(Q(6, q)) is double
counted. Hence there are at most δ + 1 points in Tp(Q(6, q)) ∩ K. �

Corollary 3.2.2. Every plane of Q(6, q) contains at most 1 + δ points of K.

Proof. Suppose that π∩K = {p1, . . . , pn}. Since |Tp1(Q(6, q))∩K| 6 1+δ,
|π ∩ K| 6 1 + δ. �

Lemma 3.2.1 also provides the possibility to generalise the idea of Lemma
3.1.1.

Lemma 3.2.3. If p ∈ Q(6, q)\K, then p projects the points of Tp(Q(6, q))∩K
onto a minimal blocking set of Q(4, q), with Q(4, q) the base of the cone
Tp(Q(6, q)).

Proof. Consider a point p ∈ Q(6, q)\K. Then Tp(Q(6, q)) intersects Q(6, q)
in a singular quadric with vertex p and base a non-singular quadric Q(4, q)
in a hyperplane of Tp(Q(6, q)). It is clear that the lines of Q(6, q) on p and a
point of K meet Q(4, q) in a blocking set B. Suppose that B is not minimal.
Then there is a point s ∈ B such that every line of Q(4, q) on s contains
another point of B. But B is the projection of Tp(Q(6, q)) ∩ K. If p projects
s′ ∈ K on s, then there are q+1 planes on 〈p, s′〉 containing at least one other
point of K, hence |Ts′(Q(6, q)) ∩ K| > 1 + δ, a contradiction. We conclude
that B is minimal. �

After these lemmas for general q, we suppose for the remainder of this
section that q is even and q > 32. We now will prove that multiple lines
contain a lot of points. We rely on Theorem 3.1.2.

Lemma 3.2.4. If L is a line of Q(6, q), then |L∩K| = 0, 1 or |L∩K| > 1+
√
q.
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Proof. Suppose that 2 6 |L ∩ K| < 1 +
√
q. There exists a generator π of

Q(6, q) through L such that π∩K = L∩K. For, if every generator of Q(6, q)
on L would contain more points of K than L∩K, then every point of L∩K
would contain more than 1+q points of K in its tangent cone, a contradiction.
We count the pairs (u, v) with u ∈ π \ L and v ∈ K \ π and u ∈ Tv(Q(6, q)).
Since u ∈ π \L and |L∩K| > 2, u cannot project Tu(Q(6, q))∩K on an ovoid
of Q(4, q), so |Tu(Q(6, q))∩K| > q2 +1+

√
q > q2 +|L∩K| if |L∩K| < 1+

√
q.

So we find a lower bound of q2(q2 + 1) for the number of pairs.
If v is a point of K \ π, then Tv(Q(6, q)) intersects π in a line, so with v

correspond q or 0 points of π \ L, hence (q3 + 1 + δ − |L ∩ K|)q is an upper
bound for the number of pairs, and since |L ∩ K| > 2, we can increase the
upper bound to (q3 + δ − 1)q. So necessarily (q3 + δ − 1)q > (q2 + 1)q2 or
q4 + q2 − q > q4 + q2, which is not possible. �

The next step is to prove that if a generator of Q(6, q) contains more than
one point of K, it contains a lot of points of K, and they are collinear.

Lemma 3.2.5. If π is a generator of Q(6, q), then |π ∩K| = 1 or |π ∩K| >
1 +
√
q, and all points of π ∩ K lie on a line of Q(6, q).

Proof. If |π ∩ K| > 2, then by the previous lemma, π contains at least√
q + 1 points of K on a line L. Suppose that π contains another point

p ∈ K not on L. There are at least
√
q + 1 lines on p containing at least√

q + 1 points of K; the point p included. Hence π would contain at least√
q(
√
q + 1) + 1 > 1 + q points of K, a contradiction. �

The following two lemmas give information on how the points of K can
be concentrated in a tangent cone.

Lemma 3.2.6. Suppose that p 6∈ K. If there is a generator on p containing
exactly one point of K, then |Tp(Q(6, q))∩K| 6 q2+q, else |Tp(Q(6, q))∩K| >
(
√
q + 1)(q2 + 1).

Proof. Suppose that π is a generator of Q(6, q) on p containing exactly
one point s ∈ K. Consider the q2 − q lines of π not through s or p. Each
line lies in q generators of Q(6, q) different from π. The q(q2 − q) generators
of Q(6, q) on these lines of π are blocked by at least one point of K, so at
most q2 + q points remain for Tp(Q(6, q)) ∩K. If all generators on p contain
at least

√
q + 1 points of K, then |Tp(Q(6, q)) ∩ K| > (

√
q + 1)(q2 + 1). �

Lemma 3.2.7. Suppose that π is a generator of Q(6, q) containing at least√
q+1 points of K on the line L. Let p ∈ π\L, then |Tp(Q(6, q))∩K| 6 q2+q.
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Proof. Let π∩K = {s0, . . . , sn} (n >
√
q). If every generator on p contains

more than one point of K, then also the q + 1 generators on 〈s0, p〉 contain
more than one point of K, while the only point of K they share is the point
s0. Hence |Ts0(Q(6, q))∩K| > 1+q, a contradiction. By the previous lemma,
|Tp(Q(6, q)) ∩ K| 6 q2 + q. �

Consider now a generator π which contains at least
√
q+1 points of K on

a line L. If p ∈ π\L, the preceding lemma ensures us that |Tp(Q(6, q))∩K| 6
q2 + q, while p cannot project the points of Tp(Q(6, q)) ∩ K on an ovoid of
Q(4, q), since the generator π is projected on a line of Q(4, q) containing at
least

√
q + 1 points of the projected blocking set B. Hence B is the dual

of a cover C, |C| = q2 + 1 + r and C only has multiple points of excess at
least

√
q. Moreover B is minimal by Lemma 3.2.3. Lemma 3.1.4 shows that

the multiple points of C form a sum of lines with the sum of the weights of
the lines equal to r and from Lemma 3.1.5, it follows that r > (q + 4)/6.
For the next lemma we use the fact that the multiple points of C form a
sum of lines. For the blocking set B this means the following. There exist
some points (possibly one), such that all lines of Q(4, q) on these points are
multiple lines. We call this a sum of pencils. Since B is minimal, such a
point does not belong to B. Call all the lines on such a point a pencil. The
weight of the pencil is then the minimum number of points of B a line of the
pencil contains minus one. The sum of the weights of the pencils is equal to
r.

We now present a lemma which already starts indicating that K must
look like a cone over an ovoid of Q(4, q).

Lemma 3.2.8. There exists a point p′ ∈ Q(6, q) \ K only lying on q2 + 1
lines each having at least

√
q+ 1 points of K, and these lines meet Q(4, q) in

an ovoid, where Q(4, q) is the base of the cone Tp′(Q(6, q)).

Proof. Consider a generator π, π ∩ K = {s0, . . . , sn}, n > 0. Necessarily
n >

√
q and all points of π ∩ K lie on a line L. Consider s ∈ π \ L. By

Lemma 3.2.7, |Ts(Q(6, q))∩K| 6 q2 + q, and s does not project the points of
Ts(Q(6, q)) ∩K on an ovoid. As explained before, s projects these points on
a blocking set B of Q(4, q) such that the multiple lines form a sum of pencils.
Consider such a pencil of Q(4, q) represented by the point p. The q + 1 lines
of the pencil are the projections of q + 1 lines M1, . . . ,Mq+1 of Q(6, q), all
containing at least

√
q+1 points ofK and intersecting the line 〈s, p〉. Consider

the point p′ = 〈s, p〉 ∩M1. Suppose that |Tp′(Q(6, q))∩K| 6 q2 + q. Then p′

lies on at most (q − 1)/
√
q 6
√
q lines of {M1, . . . ,Mq+1}. If we now project

from p′, then there are at most q2 +q−√q and at least q2 +1 projected points
since M1 is projected on one point of Q(4, q). Some lines Mi are not projected
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on one point. Again we find a blocking set B with the multiple lines forming a
sum of pencils; there are at least q+1−√q projected lines Mi having at least√
q + 1 projected points. So since the sum of pencils consists of at most

√
q

distinct pencils, all lines through the intersection point of the projected lines
Mi have at least

√
q+1 points; but the projection of M1 consists of one point,

a contradiction. Hence |Tp′(Q(6, q)) ∩ K| > (
√
q + 1)(q2 + 1). Lemma 3.2.6

implies that all generators on p′ contain at least
√
q+1 collinear points of K.

In such a generator on p′, the points of K lie on one line. If one of these lines
does not pass through p′, then by Lemma 3.2.7, |Tp′(Q(6, q))∩K| 6 q2 + q, a
contradiction, so all these lines pass through p′ and contain at least

√
q + 1

points of K. Hence every generator on p′ contains exactly one line on p′

which contains at least
√
q + 1 points of K, which implies that p′ projects

these lines on an ovoid of Q(4, q). �

By Lemma 3.1.5, it is possible to increase the number of points of K on
a multiple line.

Lemma 3.2.9. If a line L of Q(6, q) contains more than one point of K,
then it contains at least (q + 10)/6 points of K.

Proof. Consider a generator π on L. As in the proof of Lemma 3.2.4, we
count the number of pairs (u, v), u ∈ π\L and v ∈ K\π and u ∈ Tv(Q(6, q)).
Suppose now that |L ∩ K| < (q + 10)/6. A point u projects the points of
Tu(Q(6, q))∩K on a blocking set B of size q2 + 1+ r satisfying the conditions
of Lemma 3.1.5, so r > (q + 4)/6, so q2 + 1 + (q + 4)/6 6 |Tu(Q(6, q))∩K| 6
q2 + q. As in the proof of Lemma 3.2.4, the hypothesis |L ∩K| < (q + 10)/6
leads to a contradiction. �

From the proof of Lemma 3.2.8, on every multiple line L, there is a point
p′ lying on q2+1 multiple lines. We stress this result in the following corollary.

Corollary 3.2.10. Every multiple line L contains at least (q + 10)/6 points
of K and every multiple line L has a point not in K lying on q2 + 1 multiple
lines to K.

Finally, we can prove the main theorem of this section.

Theorem 3.2.11. Let K be a minimal blocking set of Q(6, q), |K| 6 q3 + q,
q even, q > 32. Then there is a point p ∈ Q(6, q) \ K with the following
property: Tp(Q(6, q)) ∩ Q(6, q) = pQ(4, q) and K consists of all the points
of the lines L on p meeting Q(4, q) in an ovoid O, minus the point p itself.
Moreover, |K| = q3 + q.
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Proof. By Lemma 3.2.8 and Corollary 3.2.10, there is a point p 6∈ K such
that there are q2 + 1 lines on p each containing at least (q + 10)/6 points
of K. Consider p and a multiple line L on p such that |L ∩ K| is minimal.
Denote |L ∩K| = s (then s > (q + 10)/6). Consider a generator π on L. By
Lemma 3.2.7, |Tu(Q(6, q))∩K| 6 q2 +q for each u ∈ π\L, and u projects the
points of Tu(Q(6, q))∩K on a minimal blocking set B of Q(4, q). As explained
after Lemma 3.2.7, |B| > q2 + 1 + (q + 4)/6, the excess of a multiple line is
at least (q + 4)/6 and the multiple lines form a sum of pencils with the sum
of the weights of the pencils equal to r; with |B| = q2 + 1 + r.

Now count as in Lemma 3.2.4 the pairs (u, v) with u ∈ π\L and v ∈ K\π
and u ∈ Tv(Q(6, q)). If we suppose that |Tu(Q(6, q))∩K| > q2+s for all points
u ∈ π \L, we obtain the inequality q4 + q2 − q > q2(q2 + 1), a contradiction.
So we find a point u ∈ π \L such that |Tu(Q(6, q))∩K| 6 q2 + s. Equality is
needed since the multiple lines of the projection form a sum of pencils and
the sum of the weights of the pencils is equal to r, with |B| = q2 + 1 + r, and
B the projected blocking set. Since s−1 is the minimal weight of the secants
to K, there is at least one pencil with weight s − 1, the sum of the weights
in the sum of the pencils is at least s− 1, but |Tu(Q(6, q)) ∩ K| 6 q2 + s, so
|B| 6 q2 + 1 + (s − 1), and there is exactly one pencil of weight s − 1, all
multiple lines have excess s − 1 and |B| = q2 + 1 + (s − 1). By the dual of
Lemma 3.1.6, s− 1 = q − 2 or s− 1 = q − 1.

Hence the minimal number of points of K on a secant line on p is q − 1
or q. Suppose that s− 1 = q − 2. So far, we have q2 + 1 lines L0, . . . , Lq2 on
p containing at least q − 1 points, and |Tp(Q(6, q)) ∩ K| > (q2 + 1)(q − 1).
Consider a point p′ 6= p, p′ ∈ L0 \ K, |L0 ∩ K| = q − 1. There are at least q2

points of K necessary to block the q2(q+ 1) generators on p′ not on p, hence
|Tp(Q(6, q))∩K| 6 q3 + q− q2 = (q2 + 1)(q− 1) + 1 and all multiple lines on
p, except maybe one, contain exactly q− 1 points of K. At least q2 points of
the q2(+1) points of K\Tp(Q(6, q)) lie in each Tu(Q(6, q)), u 6= p, u 6∈ K and
u lying on a secant to K on p. No two of these q2(+1) points are collinear on
Q(6, q), otherwise they are on a secant not on p containing at least q−1 points
of K, this secant lies in a tangent cone containing at least (q2+1)(q−1) points
of K, which is not possible since |Tp(Q(6, q))∩K| > (q2+1)(q−1). By Lemma
3.2.5, a generator cannot contain two secants toK, hence p projects the points
of Tp(Q(6, q))∩K on an ovoid of Q(4, q). This also implies that two distinct
points u and u′, u 6= p 6= u′, each lying on a secant to K on p, cannot be
collinear on Q(6, q). Select q+2 points u1, . . . , uq+2, each lying on a secant to
K on p, ui 6∈ K, ui 6= p. These points define at least a 3-dimensional space. In

the intersection

q+2⋂
i=1

Tui(Q(6, q)) lie at least q2−q−1 points of K\Tp(Q(6, q))



3.3. Proof of the technical results 

since each intersection Tui(Q(6, q)) ∩ K contains at least q2 of the q2(+1)
points of K \ Tp(Q(6, q)). Hence these q2 − q − 1 points of K \ Tp(Q(6, q))
lie in the intersection of tangent hyperplanes on q + 2 non-collinear points
of Q(6, q) and are two by two non-collinear. The smallest space which can
contain q2 − q − 1 such points is a 3-space. Since they lie in the intersection
of q + 2 tangent hyperplanes on non-collinear points of Q(6, q), they lie in
a 3-space necessarily intersecting Q(6, q) in an elliptic quadric. Since the
3-space containing this quadric is the intersection of tangent hyperplanes,
this 3-space contains the nucleus of Q(6, q); a contradiction since an elliptic
quadric does not have a nucleus.

The hypothesis s−1 = q−2 leads us to a contradiction and s−1 = q−1.
Hence there are q2 + 1 lines on p containing q points of K, |K| = q3 + q and
p projects the points of Tp(Q(6, q)) ∩ K on an ovoid of Q(4, q). �

Since all ovoids of PG(3, 32) have been classified by C. M. O’Keefe,
T. Penttila and G. Royle [75], we have a complete classification of the small-
est blocking sets of Q(6, 32). Namely, the only ovoids of PG(3, 32) are the
elliptic quadric and the Tits-ovoid. Since Q(4, q), q even, is isomorphic to the
GQ W(3, q), q even, and since, by results of B. Segre ([86]) and J.A. Thas
([90]), a set K is an ovoid of PG(3, q), q even, if and only if it is an ovoid of
W(3, q), q even, the classification of the ovoids of Q(4, 32) is obtained. We
conclude:

Theorem 3.2.12. Let q = 32. Let K be a minimal blocking set of Q(6, q),
|K| 6 q3 +q. Then there is a point p ∈ Q(6, q)\K with the following property:
Tp(Q(6, q)) ∩ Q(6, q) = pQ(4, q) and K consists of all the points of the lines
L on p meeting Q(4, q) in an elliptic quadric or a Tits-ovoid O, minus the
point p itself. Moreover |K| = q3 + q.

3.3 Proof of the technical results

In this section, we will give a proof of Lemmas 3.1.4, 3.1.5 and 3.1.6. We can
start immediately with Lemma 3.1.4.

Lemma 3.3.1. Let C be a minimal cover of Q(4, q), |C| = q2 +1+r, 0 < r 6
q−1. If each multiple point has excess at least

√
q, then the set E of multiple

points is a sum of lines, with the sum of the weights of the lines equal to r.

Proof. Denote by e(p) the excess of a point p. Counting the points
according to their excess, we find |E| = r(q+1). Every hyperplane of PG(4, q)
intersects E in r mod q points, since |C| ≡ 1 + r mod q, every hyperplane
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intersects Q(4, q) in 1 mod q points and every hyperplane intersects a line
of C in 1 mod q points.

Suppose that π is a plane of PG(4, q), π ∩ E = ∅, and suppose that
π1, . . . , πq+1 are the q + 1 hyperplanes on π. Since |πi ∩ E| ≡ r mod q, put
|πi ∩ E| = r + liq. Hence r(q + 1) =

∑q+1
i=1 |πi ∩ E| = r(q + 1) + q

∑q+1
i=1 li,

from which
∑q+1

i=1 li = 0. So if α is a hyperplane on π, π ∩ E = ∅, then
|α ∩ E| =

∑
p∈α∩E e(p) = r.

Suppose that p ∈ E, where e(p) = k is the minimal excess of a point
of E. Necessarily k >

√
q. Since the total excess is r(q + 1), the number

of distinct points of E, not counted according to their excess, is at most√
q(q+ 1). We can find a plane π on p only sharing p with E. Suppose again

that π1, . . . , πq+1 are the q+1 hyperplanes on π. Put again |πi∩E| = r+ liq,
then |E| = |E ∩ π| + |E \ π| = k +

∑
p∈E\π e(p) = k +

∑q+1
i=1 (r + liq − k) =

−qk+r(q+1)+q
∑q+1

i=1 li, from which
∑q+1

i=1 li = k. Hence there is a hyperplane
πi such that r + q 6 |πi ∩ E| 6 r + kq or, since for x ∈ E, e(x) = k >

√
q,

we have |{x ∈ E ∩ πi}| 6 q + r/k 6 q + r/
√
q 6 q +

√
q. If π′ ⊂ πi, and π′

is a plane such that π′ ∩ E = ∅, then |πi ∩ E| = r, hence every plane of πi
contains at least one point of E. This shows that πi ∩ E blocks every plane
of πi. Since q + 1 6 |{x ∈ E ∩ πi}| 6 q +

√
q, πi ∩ E contains a line (recall

the definitions in Section 1.2.4 and Theorem 1.2.20, or [26], also mentioned
in Section 1.2.4), necessarily on p, since π only shares p with E.

We prove by induction on the excess of the multiple points of E that there
is a line in E on every point of E. As induction hypothesis, we suppose that
on all points of E with excess at most k lies a line completely in E. Suppose
then that p is a point with minimum excess k′ > k. As above, there is a plane
π such that E ∩ π = {p}; the same counting as above proves the existence of
a hyperplane πi ⊃ π such that q+ r 6 |πi∩E| 6 r+ k′q. Again, πi∩E must
block all planes in πi. If a line of E lies in πi, then it must be a line on p;
hence we can suppose that the lines contained in E having points of weight
at most k in πi intersect πi in one point. If N is the number of distinct points
of πi of excess less than k′, then N points of excess at least

√
q are lying on

a line in E, intersecting πi in exactly one point. Hence |{x ∈ E ∩πi}|−N 6
(k′q + r −N√q)/k′ 6 q+ (q − 1−N√q)/(√q + 1). To be allowed to do the
substitution (r −N√q)/k′ 6 (r −N√q)/(√q + 1), we must have r > N

√
q,

which we will prove in the next paragraph. Working further with the above
inequality, we find |{x ∈ E ∩ πi}| 6 q +

√
q − 1 + N/(

√
q + 1). In the next

paragraph we also prove that the number of distinct lines contained in E is
at most (q − 1)/

√
q 6
√
q; so |{x ∈ E ∩ πi}| 6 q +

√
q. As in the preceding

paragraph, πi ∩E blocks every plane of πi, hence πi ∩E must contain a line,
and since π ⊂ πi only shares p with E, this line must pass through p.
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We now will prove that the condition r > N
√
q holds. Suppose that

L and M are two distinct lines contained in E, where k is the minimal
excess of the points of L, and where k′ is the minimal excess of the points
of M . Suppose that L ∩M = {t}. Suppose that e(t) = k + k′ − s, s > 0.
We can find a plane π only sharing t with E. We know from the second
paragraph that

∑q+1
i=1 li = k + k′ − s, if πi (i = 1, . . . , q + 1) are the q + 1

hyperplanes on π. Now 〈L, π〉 contains q + 1 points with excess at least
k. Hence |〈L, π〉 ∩ E| > kq + r and |〈M,π〉 ∩ E| > k′q + r, which implies∑q+1

i=1 li > k+k′, a contradiction. (If 〈L, π〉 = 〈M,π〉, then the same counting
arguments hold, |〈L, π〉 ∩E| > (k+ k′)q.) We conclude e(t) > k+ k′. Hence
every line contained in E gives rise to at least

√
q(q + 1) of the total excess

r(q + 1) 6 q2 − 1, which implies that at most (q − 1)/
√
q <

√
q lines are

contained in E and N
√
q 6 r.

In the final paragraph, we show by induction that E is a sum of lines.
Suppose that E consists of one line L, and suppose that the minimal excess
of a point on L is k. If we remove this line k times, then a set E ′ of excess
(r−k)(q+1) remains. But if a point has excess k′ > k, repeating the previous
arguments, we find a hyperplane πi with at least q + 1 distinct points of E ′,
since this hyperplane intersects E ′ in a blocking set in πi; but the only points
of E ′ are the points of L; so every point of L still has positive excess. So
every point of L has excess larger than k. We conclude that the weight of L
is r. Suppose as the induction hypothesis that the result is true if E would
consist of s distinct lines and suppose now that E consists of s + 1 distinct
lines. As above, look for the minimal excess k of a point of E. Consider
a line L through this point lying in E and subtract k from the excess of
every point on L. If a point p on L has positive excess larger than k, then
it lies on a second line in E. Namely, from the standard arguments, for the
remaining weighted set E ′, we can find a hyperplane πi through a plane π
with π ∩E ′ = {p}, sharing at least q+ 1 points with E ′; this means that the
remaining points must form a blocking set in πi. Since we can describe E ′ as
a union of at most

√
q lines, a line L′ of E must lie in πi, this line L′ must

pass through p; so p lies on a second line L′; and then e(p) > k + k′ with
k′ the minimal excess of the points of L′. So if we subtract k(q + 1) from
the total excess of E by subtracting k from the excess of every point of L,
the remaining set E ′ has size (r − k)(q + 1) (counting the points according
to their excess), and every point of E ′ still has excess at least

√
q, so by the

induction hypothesis E ′ is a sum of lines. Then E is a sum of lines with the
sum of the weights of the lines equal to r. �

To prove Lemma 3.1.5, we need two extra definitions, a result of Bichara
and Korchmáros and a lemma on covers of Q(4, q).
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Definition 3.3.2. Let Ω be a (q+2)-set in a projective plane. A point p ∈ Ω
is an internal nucleus of Ω if every line on p contains exactly two points of
Ω.

Theorem 3.3.3. (Bichara and Korchmáros [13]) If S is a (q+ 2)-set in
PG(2, q), q even, and if S has r internal nuclei, r > q/2, then every point of
Ω is an internal nucleus.

Definition 3.3.4. Suppose that C is a cover of Q(4, q). A line L of Q(4, q)
is called a good line if L 6∈ C and L contains no multiple points of C.

Lemma 3.3.5. A cover C of Q(4, q) of size q2 + 1 + r, 0 6 r 6 q, always
has a good line.

Proof. There are q2 + 1 + r lines in C and at most r(q + 1) distinct
excess points; all lying on at most q − 1 lines not in C. So there are at
most r(q + 1)(q − 1) + q2 + 1 + r lines of Q(4, q) which are not good. For
0 6 r 6 q, this number is smaller than the total number of lines of Q(4, q),
so for 0 6 r 6 q, the cover C has at least one good line. �

We now can prove Lemma 3.1.5.

Lemma 3.3.6. A minimal cover of Q(4, q), q even, of size q2 + 1 + r, only
having points of positive excess at least

√
q satisfies r > (q + 4)/6.

Proof. Let L be a good line of C and let M1, . . . ,Mq+1 be the lines of C
intersecting L. Define L⊥ as the plane 〈L, n〉, with n the nucleus of Q(4, q).
Since L⊥ is tangent to Q(4, q), L⊥ ∩ Q(4, q) = L and Mj 6⊂ 〈L,Mi〉 if i 6= j.
Hence the planes L⊥, 〈L,Mi〉, i = 1, . . . , q + 1, define a (q + 2)-set S in the
quotient geometry ∆ of L. There are q2 + q+ 1 3-spaces on L, q+ 1 of them
are tangent hyperplanes, so there are q2 3-spaces α on L such that α∩Q(4, q)
is a hyperbolic quadric Q+(3, q) in α. Consider a tangent hyperplane α on L.
It contains exactly one line Mi. So every line in ∆ on the point L⊥ contains
exactly the two points L⊥ and 〈L,Mi〉 of S. Consider now the q2 3-spaces α
on L for which α∩Q(4, q) = Q+(3, q). Count the number of pairs (M,Q) for
which M ∈ C and Q is a hyperbolic quadric on L and M . If M ∩ L = {p},
then there are q 3-spaces α on 〈L,M〉 such that α ∩ Q(4, q) is a Q+(3, q)
containing M . If M ∩ L = ∅, then there is exactly one 3-space α = 〈L,M〉
such that α∩Q(4, q) = Q+(3, q). We find q(q+1)+q2 +r−q = 2q2 +r pairs.
Since there are q2 Q+(3, q) on L, each one of them contains exactly 2 lines
of C, except for at most r, which contain at least 3 lines of C. So at least
q + 2 − 3r elements of S are internal nuclei of S since at most 3r elements
of S lie on a line in ∆ defining a Q+(3, q) through L with at least three lines



3.3. Proof of the technical results 

Mi. Suppose that q+ 2− 3r > q/2, then by Theorem 3.3.3, every point of S
is an internal nucleus of S, meaning that S only has 0- and 2-secants. So if
L is a good line and r < (q + 4)/6, then the hyperbolic quadrics of Q(4, q)
on L always contain 0 or 2 lines of C intersecting L.

Since r 6 q − 1, the multiple points of C form a sum of lines, with the
sum of the weights of the lines equal to r (Lemma 3.3.1). Every line has
weight at least

√
q. Let N be a line of this sum. Then N 6∈ C since C is

minimal. If N has weight k, then N is intersected by at least (k + 1)(q + 1)
lines of C with k >

√
q. Interpreting N⊥ and the planes 〈N,M〉, with M a

line of C intersecting N , in the quotient geometry ∆′ of N , we define a set
S ′, now of size at least (k+1)(q+1)+1. Consider a line of ∆′ not containing
N⊥, but containing at least 3 points of S ′. This line defines a hyperbolic
quadric of Q(4, q) through N and containing at least 3 lines N1, N2, N3 of C
intersecting N . The regulus of this hyperbolic quadric containing N cannot
contain a good line, since otherwise the hyperbolic quadric cannot contain 3
lines of C intersecting N ; so every line of that regulus must either belong to
C or must contain multiple points. Since N1 ∈ C, every line of the regulus of
N belonging to C has a multiple point. Since the multiple points form a sum
of lines L, with the sum of the weights of the lines equal to r < (q + 4)/6,
and where every line of L has at least weight

√
q, there are at most

√
q/6

distinct lines in that sum. Hence the previous situation is only possible if a
line N ′ of this sum intersects N and lies on this hyperbolic quadric. So the
solids of hyperbolic quadrics of Q(4, q) through N containing at least 3 lines
of C intersecting N must pass through one of at most

√
q/6 planes through

N .
Define S ′′ as the set of points in ∆′ which correspond with the planes

〈N,N ′〉 and N⊥, N ′ ∈ L, |L| 6 √q/6; then |S ′′| 6 √q/6 + 1. A line of ∆′

not on N⊥ containing at least 3 elements of S ′ must pass through one of the
points of S ′′ \ {N⊥} and since there are lines of ∆′ on N⊥ containing more
than 2 points of S ′, all lines in ∆′ containing at least 3 points of S ′ pass
through a point of S ′′.

There are at least (q + 1)(
√
q + 1) lines intersecting N defining at least

(q + 1)(
√
q + 1) points of S ′. Consider a point p of S ′ different from N⊥.

Suppose that n lines on p contain one other point pi of S ′. Consider all
the points p1, . . . , pn, p, and the at least (q + 1)(

√
q + 1)− (n + 1) points of

S ′ \ {p1, . . . , pn, p}. Those points must lie on at most
√
q/6 + 1 lines through

the points of S ′′, a contradiction. We conclude that r > (q + 4)/6. �

For the proof of Lemma 3.1.6, we will use the model T2(O) for Q(4, q).
We will prove Lemma 3.1.6 in two smaller lemmas. Considering T2(O), a line
of type (b) will be denoted by [p], p ∈ O. For the definition and basic results
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about T2(O), we refer to Section 2.1.1 and in particular Theorem 2.1.5.

Lemma 3.3.7. Suppose that C is a minimal cover of Q(4, q) ∼= T2(O) of size
q2 + 1 + r, 0 < r < q, for which there is a line L not in C such that every
point of L lies on r + 1 lines of C, but all other points of T2(O) lie on one
line of C, then (r + 2)|q or r = q − 1.

Proof. Suppose that r < q−2. We may assume that L is a line of type (b),
denoted by [p0]. Since (∞) has excess r, C contains r + 1 lines of type (b),
[p1], . . . , [pr+1], and every tangent plane to O in p0 contains r+1 lines of type
(a). There remain q2 +1+r−(r+1)−q(r+1) = q(q−r−1) lines of type (a)
of C. On each point pr+2, . . . , pq of O, there are q lines of C. Consider a plane
α 6= π0, π0 the plane containing O, on the line p0pq. Since r < q−2, there are
other points pi than p0 and pq such that [pi] 6∈ C. There are q+ q(r+ 1) lines
of type (a) of C on pq and p0, so q2 +1+r−(r+1)−q−q(r+1) = q2−q(r+2)
lines of type (a) of C are intersecting α in exactly one point of type (i). Hence
q(r + 2) points of α must be covered by lines on p0 or pq in α, so each plane
on pqp0 different from π0 contains exactly r + 2 lines on either pq or p0 since
the only multiple points are points of type (ii) and (∞). So it is possible to
partition the q lines of C through pq into sets of size r + 2; so (r + 2)|q and
the lemma follows. �

Lemma 3.3.8. Under the same conditions as in the previous lemma, r 6
q/2− 2 is impossible.

Proof. We now assume that L is a line of type (a), so (∞) has excess 0
and C contains exactly one line [p0] of type (b). Denote by L the line of type
(a) such that every point on it lies on r + 1 lines L1, . . . , Lr+1 of C; L 6∈ C.
By the transitivity of the stabilizer group of Q(4, q) on the point set, we can
assume that the line of C passing through (∞) does not intersect L, then
p0 6∈ L.

Suppose that p1 ∈ L ∩ O. Then one tangent plane on p1 lies on r + 1
lines of C, the other q − 1 tangent planes lie on one line of C, so there are
(q−1)+ r+1 = q+ r lines of type (a) of C on p1. The other points p2, . . . , pq
of O lie on q lines of type (a) of C. Consider the point p2 and all planes
different from π0, O ⊆ π0, on it. A tangent plane to O on p2 contains exactly
one line of type (a). A plane α, α 6= π0, on 〈p2, p0〉 is intersected in a point
of type (i) by q2 + r− q lines of type (a) of C, so there are at least q − r > 0
points of type (i) not covered by those lines; at most r + 1 of those lines
intersect α in the point α ∩ L; so at most q points of type (i) of α are not
covered by those lines and hence α must contain exactly one line of type (a)
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of C. A plane α, α 6= π0, on 〈p2, pi〉, i = 3, . . . , q, is intersected in a point of
type (i) by q2 + r − 2q lines of type (a) of C. As in the previous case, there
are now between 2q and 2q − r points of type (i) not covered by those lines;
so two lines of C lie in the plane α. It is possible that these 2 lines both lie
on pi or on p2. If one line lies on pi and the other on p2, they intersect in
α ∩ L.

A plane α, α 6= π0, on 〈p1, p2〉 different from 〈p2, L〉 is intersected by
exactly q2 +r−q− (q+r) = q2−2q lines of type (i) of C. Since L∩α = {p1},
these lines intersect α in different points, hence exactly two lines of C either
on p1 or p2 lie in α. Finally we consider the plane 〈p2, L〉. There are 2q + r
lines of type (a) of C on p1 and p2. In the q − 1 planes on 〈p1, p2〉 different
from π0 and 〈p2, L〉 lie exactly 2 lines; so r+ 2 lines remain, in 〈p2, L〉. Since
the intersection points must lie on L, these lines pass either through p1 or p2.

Suppose that the r + 2 lines pass through p2. Consider the quotient
geometry ∆ of p2, with relation to PG(3, q). The q lines of type (a) of C on
p2 together with the tangent line to O in the point p2 and the line 〈p2, p0〉
define a set S of q+2 points in ∆. All lines of ∆ intersect S in 0, 1 or 2 points,
except for one line M (the line corresponding with 〈p2, L〉); M intersects S in
r+2 points s1, . . . , sr+2. Define S ′ = (S\M)∪{s1}, then S ′ is a (q−r+1)-arc
which can be extended in r + 1 ways to a (q − r + 2)-arc. If r 6 q/2 − 2,
then q − r + 1 > q − (q/2 − 2) + 1 > q/2 + 3. A (q/2 + 2)-arc in PG(2, q),
q even, can be extended in a unique way to a complete arc [60, Cor. 10.3].
Hence S must be a (q+ 2)-arc and the plane 〈p2, L〉 contains r+ 2 lines of C
on the point p1, since all lines in ∆ must intersect S in 0 or 2 points. Since
we can repeat the arguments for all the points p2, . . . , pq, we conclude that
all the planes 〈p2, L〉, . . . , 〈pq, L〉 contain r + 2 lines of type (a) of C on p1.
So (q − 1)(r + 2) ≤ q + r which is impossible. �

These last two lemmas lead to Lemma 3.1.6.

3.4 Final remarks

We mention that Theorem 3.1.7 follows from a more general result, which
was independently proved by K. Metsch.

Theorem 3.4.1. (Metsch [70]) Every set of points of W(2n + 1, q) that
meets all generators has at least qn+1 + qn−1 points. Equality can only occur
for even q and then the set consists of the points outside the vertex of a cone
with a vertex of dimension n− 2 over an ovoid in a W(3, q).

Since for q even, Q(6, q) ∼= W(5, q), Theorem 3.1.7 can be derived from
this theorem. However, it is interesting to compare the two different proofs.
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Our proof focusses on the projection of the blocking set. It also relies very
heavily on the results on blocking sets of Q(4, q), q even.

The proof of K. Metsch starts immediately with purely combinatorial
arguments and focusses on the general case W(2n+ 1, q), n > 1. Bounds on
the smallest minimal blocking sets different from an ovoid of W(3, q) are not
needed.

It is interesting to see that also in the proof of K. Metsch, a lot of argu-
ments are proved for q even and q odd. Of course, the arguments can not
be translated completely since W(3, q), q odd, has no ovoid, [81]. The lower
bound achieved in [70] is improved in [45], using an inductive argument and
a result from [42]. An example of a minimal blocking set of W(2n + 1, q)
is also constructed in [45]. The question whether the lower bound is sharp
remains open however.



Chapter 4
The smallest minimal blocking
sets of Q(6, q), q odd prime

T
he existence or non-existence of ovoids of Q(6, q), q odd, is not com-
pletely solved. It is known that Q(6, q) has ovoids for q = 3r, r > 1.

Furthermore, a recent result of S. Ball [4], together with a result of S. Ball,
P. Govaerts and L. Storme [6], implies that the only ovoids of Q(4, q), q an
odd prime, are elliptic quadrics Q−(3, q). Then a result of J. A. Thas and
C. M. O’Keefe [76], implies that Q(6, q) has no ovoids when q > 3 is an odd
prime.

Again we can try to find the smallest sets of points meeting every gener-
ator of Q(6, q), when it has no ovoids. We can also try to find the smallest
minimal blocking sets of Q(6, q), q odd, different from an ovoid of Q(6, q),
when Q(6, q) has ovoids.

The present chapter is based on joint work with L. Storme [36] and joint
work with K. Metsch [34].

4.1 Introduction

For this chapter we use the notations introduced in Section 3.1. Since we are
dealing with Q(6, q), q odd, we can use the associated polarity, and we will
denote it by ⊥. Hence, if p is a point of Q(6, q), the notation Tp(Q(6, q)) will
be replaced with p⊥.

The situation is more complex compared with Q(6, q), q even. First, we
mention the central result of [76].

Theorem 4.1.1. If for some q, q > 3, every ovoid of Q(4, q) is an elliptic
quadric, then Q(6, q) has no ovoid.

71
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Recently, the following result was shown ([4] and [6]).

Theorem 4.1.2. If q is prime, then every ovoid of Q(4, q) is an elliptic
quadric.

Hence, we can conclude that Q(6, q), q > 3 prime, has no ovoids. Con-
cerning the non-existence of ovoids of Q(6, q), q odd, this is the only known
result.

When q = 3h, some examples of ovoids of Q(6, q) are known. We refer to
[65], [91] and [92].

Two questions now arise. Is it possible to classify the smallest minimal
blocking sets of Q(6, q), q odd, when it has no ovoids and, can we classify
the smallest minimal blocking sets different of ovoids of Q(6, q), q odd, when
Q(6, q) has ovoids?

Concerning the general question, it seems reasonable to think about the
techniques of Chapter 3, since the proofs are independent of the existence
of ovoids of Q(6, q). If we want to use the same arguments, it is clear that
a replacement for Theorem 3.1.2 is needed. Finding a “q-odd version” of
that theorem seems very difficult. Therefore we can only present results for
q = 3, 5, 7. For these small values, it was possible to obtain some results on
minimal blocking sets of Q(4, q) which replaced Theorem 3.1.2, although we
needed a computer search. We will mention all obtained results, therefore
we need a few more concepts.

Recall the definition of a blocking set and a cover of a GQ from Section 3.1.
The concepts multiple point, excess of a point and weight of a line with respect
to a cover were also given in Section 3.1 and we will dualise these concepts
now. Suppose that B is a blocking set of the GQ S. A multiple line is a line
of S meeting B in more than one point. The excess of a line L is the number
of points of B it contains minus one. The weight of a point with respect to a
given blocking set is the minimum of the excesses of the lines on this point.

Again in Section 3.1, we mentioned a special case (Theorem 3.1.3) of the
following theorem.

Theorem 4.1.3. (Eisfeld et al. [42]) Let C be a cover of a classical
generalised quadrangle S of order (q, t) embedded in PG(d, q). Let |C| =
qt+ 1 + r, with q + r smaller than the cardinality of the smallest non-trivial
blocking sets in PG(2, q). Then the multiple points of C form a sum of lines
of PG(d, q), where the weight of a line in this sum is equal to the weight of
this line with respect to the cover, and with the sum of the weights of the lines
equal to r.1

1This is exactly the formulation found in [42], except for the notation S for the GQ,
and where we replaced “contained in Q” by “of PG(d, q)”
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Figure 4.1: A line of PG(3, q) dualises to a pencil or a grid

The concept sum of lines was defined in Section 2.1.3, Definition 2.1.9.
Since all classical generalised quadrangles are embedded in some projective
space PG(n, q), the above theorem describes the set of multiple points in
terms of projective points and projective lines of the ambient projective space.
However, one has to be extremely careful in the case of W(3, q) concerning
the interpretation of this theorem. It is clear that all the multiple points are
points of the GQ S. This does not, however, imply in general that the lines
of the sum are lines of the GQ S. If S is a quadric, for instance Q(4, q), then
all lines of the sum of lines are indeed lines of the quadric, since otherwise
projective points not belonging to the quadric would become multiple points
of the given cover of the quadric. If S is W(3, q), which is the situation
we need in this chapter, then every point of PG(3, q) is a point of W(3, q),
hence it is possible that projective lines which are not lines of the GQ S,
are lines of the sum of lines describing the set of multiple points. Hence the
interpretation is that the sum of lines is a sum of lines of PG(3, q).

Consider a cover C of the GQ S = W(3, q), satisfying the conditions
of Theorem 4.1.3. This cover C dualises to a blocking set B of the GQ
S ′ = Q(4, q). The sum of multiple lines can now be described by pencils, i.e.
q+ 1 lines of S ′ on a point, the dual of a line of PG(3, q) which is also a line
of S, and reguli, lying in 3-dimensional spaces intersecting S ′ = Q(4, q) in a
hyperbolic quadric Q+(3, q), corresponding to the q + 1 points on a line of
PG(3, q) \ S. We will be interested in the situation where only pencils occur
in this sum.

The following lemma is based on similar results from [48].

Lemma 4.1.4. Suppose that C is a cover of S = W(3, q), of size q2 + 1 + r,
with q + r smaller than the cardinality of the smallest non-trivial blocking
set in PG(2, q), such that the multiple points of C are a sum A of lines of
PG(3, q). If L is a line of A, L not a line of W(3, q), then L⊥ ∈ A, with ⊥
the symplectic polarity corresponding to W(3, q).



 4. The smallest minimal blocking sets of Q(6, q), q odd prime

Proof. Suppose that L is a line of A, but not a line of S. Since L 6∈ S,
L 6∈ C, so L is intersected by at least 2q + 2 lines of C. Then also L⊥ is
intersected by these at least 2q + 2 lines of C.

If L⊥ 6∈ A, then L⊥ intersects at most r lines of A, so the sum of the
excesses of the points of L⊥ is at most r. But it is at least 2q+ 2− (q+ 1) =
q + 1, so also L⊥ ∈ A. �

Consider now a blocking set B of Q(4, q), q odd, of size |B| = q2 + 1 + r.
This corresponds to a cover C of W(3, q). If r = 1, then Theorem 4.1.3
implies that the multiple points of C lie on a unique line L of PG(3, q), with
weight 1. This implies that L⊥ = L, since otherwise the sum of lines would
contain two lines with weight 1, a contradiction since the sum of the weights
of the lines equals r = 1. If r = 2, then either the multiple points of C lie on
a unique line with weight 2, or on two lines with weight one. If we suppose
that all lines of the sum have weight 2, then, by the same arguments as for
r = 1, the sum of lines consists of a unique line of weight 2 belonging to
W(3, q). We can formulate the following corollary.

Corollary 4.1.5. Let B be a minimal blocking set of Q(4, q), q odd, |B| =
q2+1+r, q+r smaller than the cardinality of the smallest non-trivial blocking
sets in PG(2, q). If r = 1, then the multiple lines pass through a common
point p ∈ Q(4, q) \ B. If r = 2, and all multiple lines have excess 2, then all
multiple lines pass through a common point p ∈ Q(4, q) \ B.

This corollary is not a complete replacement of Theorem 3.1.2, since it
only gives information on how the multiple lines are structured. Still it
enables to prove for q = 3, and for q = 5, 7 with the aid of a computer, the
following results.

Lemma 4.1.6. ([36]) If B is a minimal blocking set of Q(4, 3) different from
an ovoid, then |B| > 11.

Proof. Suppose that B is a minimal blocking set of Q(4, 3), |B| = 11. Note
that an ovoid O of Q(4, 3) has size 10. Then there exists a point p 6∈ B, such
that all 4 lines of Q(4, 3) on p contain 2 points of B (Corollary 4.1.5), i.e.
p⊥ ∩ B = {p1, . . . , p8}. There remain 3 points r1,r2,r3 in B. Those points
cannot be collinear with the points p1, . . . , p8, since the only 2-secants to B
pass through p. Hence, (∩3

i=1r
⊥
i )∩p⊥∩Q(4, 3) = p⊥\(B∪{p}) = {s1, . . . , s4}.

But the polar space of 〈s1, s2, s3, s4〉 is at most a line, so this would be a line
containing r1, r2, r3, a contradiction. �

Lemma 4.1.7. ([38]) If B is a minimal blocking set of Q(4, q), q = 5, 7,
different from an ovoid of Q(4, q), then |B| > q2 + 2.
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Lemma 4.1.8. ([38]) There is no minimal blocking set B of size 52 on
Q(4, 7) such that there is one point of Q(4, 7) with q + 1 lines on it being
blocked by exactly three points of B.

These lemmas were as replacement for Theorem 3.1.2 sufficient to classify
the smallest minimal blocking sets of Q(6, q), q = 3, 5, 7, different from an
ovoid.

The above mentioned approach only gives results for q = 3, 5, 7. There-
fore one can wonder if the recent Theorem 4.1.2 can be useful to prove the
classification for all q prime. It will become clear that in the proofs of the
characterisation, we often find ovoids of Q(4, q). When those ovoids all are
elliptic quadrics, it is easier to handle intersections of ovoids. Therefore we
can try to find the classification using basically the result of Theorem 4.1.2.

The goal of this chapter is to prove the following theorem.

Theorem 4.1.9. Let K be a minimal blocking set of Q(6, q), q an odd prime,
different from an ovoid of Q(6, q) and with |K| 6 q3 + q. Then there is a
point p ∈ Q(6, q)\K with the following property: p⊥∩Q(6, q) = pQ(4, q) and
K consists of all the points of the lines L on p meeting Q(4, q) in an elliptic
quadric Q−(3, q), minus the point p itself, and |K| = q3 + q.

4.2 The smallest minimal blocking sets of

Q(6, q), q = 3, 5, 7

In this section, we will discuss Theorem 4.1.9 for q = 3, 5, 7. We will give a
complete proof only for q = 3, since the cases q = 5, 7 will be handled in a
different way in the next section.

For this section, suppose that K is a minimal blocking set of Q(6, q),
different from an ovoid, and with |K| = q3 + 1 + δ, 0 < δ < q. At first, we
recall Lemma 3.2.1, Corollary 3.2.2 and Lemma 3.2.3 from Section 3.2. The
proofs were given in Section 3.2 for general q.

Lemma 4.2.1. If p is a point of Q(6, q), p ∈ K, then |p⊥ ∩ K| 6 1 + δ.

Corollary 4.2.2. Every generator of Q(6, q) contains at most 1 + δ points
of K.

Lemma 4.2.3. If p ∈ Q(6, q) \ K, then p projects the points of p⊥ ∩ K onto
a minimal blocking set of Q(4, q).

We now suppose that q = 3, 5, 7. One of the key lemmas in Section 3.2
was Lemma 3.2.4. We can now prove a replacement for q = 3, 5, 7 using
Lemma 4.1.6, Lemma 4.1.7 and Lemma 4.1.8.
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Lemma 4.2.4. Suppose that K is a minimal blocking set of Q(6, q), q =
3, 5, 7, not an ovoid, and with |K| 6 q3 + q. If L is a line of Q(6, q), then
|L ∩ K| = 0, 1 or |L ∩ K| > 3.

Proof. Suppose that |L ∩ K| = 2. Consider a generator π ⊆ Q(6, q) such
that L ⊂ π and L∩K = π ∩K. Suppose that every generator on L contains
a point of K not on L ∩ K. This would imply |p⊥ ∩ K| > 1 + q, for every
p ∈ L ∩ K, a contradiction with Lemma 4.2.1. Hence, such a generator π
exists. Count the pairs (u, v), u ∈ π \L, v ∈ K\π, u ∈ v⊥. By Lemma 4.1.6,
Lemma 4.1.7 and Lemma 4.2.3, |u⊥ ∩K| > q2 + 2. We find a lower bound of
q2(q2 +2). If v ∈ K\π, then v⊥ intersects π in a line, hence to v correspond q
or 0 points of π\L, which gives (q3+q−|L∩K|)q as upper bound. Necessarily
(q3 + q−2)q > (q2 +1)q2, a contradiction. Hence |L∩K| < 2, or |L∩K| > 2.

�

In [36], this latter lemma is, together with further steps, sufficient to prove
Theorem 4.1.9 for q = 5, 7.

Suppose now that q = 3. Lemma 4.2.1 and Lemma 4.2.4 lead immediately
to the following corollary.

Corollary 4.2.5. If π is a generator of Q(6, 3), then |π∩K| = 1 or |π∩K| =
3, and all points of π ∩ K are collinear.

This corollary leads to

Corollary 4.2.6. Consider a line L of Q(6, 3) with the property that |L∩K| =
3, and let L \ K = {p}. Then K ⊆ p⊥ ∩Q(6, 3).

Proof. If r ∈ K \ p⊥, then r ∈ r′⊥, for some r′ ∈ L ∩ K. But then
|r′⊥ ∩ K| > |L ∩ K|+ 1 = 4. This contradicts Lemma 4.2.1. �

We now can prove the following theorem.

Theorem 4.2.7. Let K be a minimal blocking set of Q(6, q = 3), different
from an ovoid, with |K| 6 q3 + q. Then there is a point p ∈ Q(6, 3) \ K
with the following property: p⊥ ∩ Q(6, 3) = pQ(4, 3) and K consists of all
the points of the lines L on p meeting Q(4, 3) in an elliptic quadric Q−(3, 3),
minus the point p itself, and |K| = q3 + q.

Proof. We know from the previous corollary that there exists a point
p ∈ Q(6, 3) \ K, such that K ⊆ p⊥ ∩ Q(6, 3). Suppose that some line L of
Q(6, q) through p intersecting K in at least one point contains a point r,
r 6= p, r 6∈ K.
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Since r ∈ Q(6, 3) \ K, we have that |r⊥ ∩ K| > 10, and since K ⊆ p⊥,
|L⊥ ∩ K| > 10. Suppose that |L ∩ K| = 1, since |L ∩ K| = 2 is excluded by
Lemma 4.2.4; then at least 9 points of L⊥ ∩ K lie in the 4 planes of Q(6, q)
on L, but not on L. Hence, at least one of those planes contains at least 4
points of K, a contradiction with Corollary 4.2.5. So the only possibility is
that p lies on q2 + 1 distinct 3-secants to K which project from p onto an
ovoid of Q(4, 3), which is necessarily an elliptic quadric Q−(3, 3). �

4.3 The smallest minimal blocking sets of

Q(6, q), q > 3, q prime

In this section, we will give a complete proof for Theorem 4.1.9 for all q > 3
prime. The proof is heavily relying on Theorem 4.1.2. Furthermore, also
general results on blocking sets of quadrics play a role. At first, we generalise
slightly the concept of a blocking set of a polar space.

Suppose that S is a polar space of rank n, hence having generators of
dimension n− 1. A blocking set with respect to s-dimensional spaces is a set
K of points of S such that every s-dimensional subspace of S meets K in at
least one point. When s = n− 1, we call K simply a blocking set of S, so the
new definition coincides with the old one. All concepts concerning blocking
sets like minimality can be generalised straightforwardly.

The first result we state is a theorem concerning blocking sets of elliptic
quadrics. The version we mention here is a special case of a more general
theorem on blocking sets with respect to c-dimensional subspaces of the el-
liptic quadric Q−(2n+ 1, q), 0 6 c 6 n− 1, which can be found in [72]. The
special case we state can also be found in [71].

Theorem 4.3.1. Suppose that K is a minimal blocking set of the elliptic
quadric Q−(5, q), |K| 6 q3 +q, then there exists a point p ∈ Q−(5, q)\K such
that K = (p⊥ ∩Q−(5, q)) \ {p}.

The next result is a theorem concerning blocking sets with respect to lines
of Q+(2n + 1, q). We state the particular case n = 2. The general theorem
can be found in [73].

Theorem 4.3.2. Let K be a blocking set with respect to lines of Q+(5, q),
|K| 6 q|Q+(3, q)| = q3 + 2q2 + q. Then K contains a blocking set with
respect to lines that is contained in a hyperplane of PG(5, q). In particular,
|K| > |Q(4, q)| = q3 + q2 + q + 1.
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Suppose now that K is a minimal blocking set of Q(6, q), q > 3, q prime,
|K| = q3 + 1 + δ, 1 6 δ < q. A point p ∈ Q(6, q) \ K will be called a small
point when |p⊥ ∩ K| = q2 + 1.

We will try to find as much as possible 3-dimensional elliptic quadrics in
the set K. The first lemma immediately gives cones over elliptic quadrics.

Lemma 4.3.3. If p ∈ Q(6, q) \ K, then |p⊥ ∩ K| > q2 + 1. If equality holds,
then there exists a 4-dimensional space αp on p that meets Q(6, q) in a cone
over an elliptic quadric Q−(3, q) with vertex p and such that each one of the
q2 + 1 lines of Q(6, q) in αp on p meets K in a unique point.

Proof. Recall Lemma 4.2.3, which implies that |p⊥ ∩K| > q2 + 1 and if we
have equality, projecting p⊥∩K from p we find an ovoid O of the base Q(4, q)
of the cone p⊥ ∩ Q(6, q). This ovoid is now necessarily an elliptic quadric
Q−(3, q). Define αp := 〈Q−(3, q), p〉. Then αp is a 4-dimensional subspace
satisfying the conditions of the lemma. �

Lemma 4.3.4. If π is a generator of Q(6, q) meeting K in a unique point
p, then π contains a small point. Also, every line of π that contains a small
point but not p, contains a second small point.

Proof. Count pairs (r, s) with r ∈ π\{p} and s ∈ K\{p} such that r ∈ s⊥.
This gives ∑

r∈π\{p}

(|r⊥ ∩ K| − 1) 6 (|K| − 1)(q + 1),

since every point of K\{p} is perpendicular to q+1 points of π. As the right
hand side is at most (q3 + q − 1)(q + 1) < (q2 + q)(q2 + 1), it follows that
|r⊥ ∩K| − 1 < q2 + 1 for at least one point r ∈ π \ {p}. Hence, π contains a
small point r.

Now consider a line L of π containing a small point r but not p. As r
is a small point, every generator of Q(6, q) on r meets K in a unique point.
Hence, |L⊥ ∩ K| is equal to the number q + 1 of generators of Q(6, q) on L.
Count the number of pairs (t, s) with t ∈ L and s ∈ K such that t ∈ s⊥.
Then the q + 1 points of L⊥ ∩ K occur in q + 1 such pairs and every other
point of K occurs in exactly one such pair. This implies that∑

t∈L

|t⊥ ∩ K| 6 (q + 1)2 + (|K| − q − 1) = |K|+ q2 + q.

The left hand side is at most q3 + q2 + 2q = (q + 1)(q2 + 1) + (q − 1), so at
most q − 1 points t ∈ L can have |t⊥ ∩ K| > q2 + 2. �
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Lemma 4.3.5. Suppose that L is a line of Q(6, q), L∩K = ∅, and containing
at least two small points. Then there exists a plane β meeting Q(6, q) in a
conic Q(2, q) and such that L⊥ ∩K consists of the q + 1 points of this conic.

Proof. Let p and r be small points on the line L. From Lemma 4.3.3, we
find two 4-dimensional subspaces αp and αr. Since L∩K = ∅, it is clear that
L ∩ αp = {p} and L ∩ αr = {r}, hence αp ∩ αr ⊂ L⊥ and αp ∩ αr ∩ L = ∅.
Since the subspaces αp, αr and L⊥ have dimension 4, the subspace αp∩αr has
dimension 2. Since L⊥ ∩Q(6, q) is a cone LQ(2, q), the plane αp ∩ αr meets
Q(6, q) in a conic Q(2, q). Lemma 4.3.3 also implies that αp ∩ K = p⊥ ∩ K
and αr ∩K = r⊥ ∩K. Hence, αp ∩αr ∩Q(6, q)∩K = p⊥ ∩ r⊥ ∩K = L⊥ ∩K.
So the conic αp ∩ αr ∩Q(6, q) belongs to K. �

Lemma 4.3.6. Suppose that p is a small point and suppose that r is a point
of αp ∩K. Then the set αp ∩K can be written as the union of q plane conics
sharing two by two only the point r. There are at least 1

2
(q+1) different ways

to do this.

Proof. Suppose that π is a generator of Q(6, q) on the line 〈p, r〉. Let
L1, L2, . . . , Lq be the lines of π on p different from 〈p, r〉. By Lemma 4.3.3
and Lemma 4.3.4, each line Li contains a small point ri different from p.
Lemma 4.3.5 shows that Ci := 〈p, ri〉⊥ ∩ K is a conic that is contained in
αp ∩K. Each conic Ci contains r. Two different conics Ci and Cj only share
r, because Ci ∩ Cj ⊂ L⊥i ∩ L⊥j = π⊥ and π⊥ meets Q(6, q) only in π. Thus,
the q conics Ci describe αp ∩ K as required.

The same can be done for each one of the q + 1 generators on the line
〈p, r〉. We show that each conic arises from at most two generators. It is
sufficient to show this for C1. It is clear that C⊥1 is a 3-dimensional subspace
meeting Q(6, q) in an elliptic quadric Q−(3, q) or in a hyperbolic quadric
Q+(3, q). But, in every generator on 〈p, r〉 that gives rise to C1, we have a
line L1 on p such that C1 ⊂ L⊥1 . This implies that C⊥1 meets Q(6, q) in a
hyperbolic quadric Q+(3, q). Since a point of a hyperbolic quadric Q+(3, q)
lies on two lines of Q+(3, q), this shows that C1 can arise only from at most
two planes. �

The fact that we are dealing only with elliptic quadrics as ovoids of Q(4, q)
is a very strong condition. This becomes clear with the next lemma, where
we really find elliptic quadrics in the 4-dimensional spaces αp associated to
small points p.

Lemma 4.3.7. For every small point p, the set p⊥ ∩K is an elliptic quadric
Q−(3, q).
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Proof. Suppose that p is a small point and that r is a point of p⊥∩K = αp∩
K. Since we supposed that q > 3, we find from Lemma 4.3.6 three different
families of conics {Ci‖1 6 i 6 q}, {Di‖1 6 i 6 q} and {Ei‖1 6 i 6 q}, two
conics of the same family only share the point r and the union of the q conics
of one family is the set αp ∩ K.

A conic Di that is not in the family {Ci} shares with each conic Ci the
point r and at most one further point. Thus such a conic Di meets each
conic Cj in r and a second point. This shows that two conics from different
families are distinct and share two points. Then C1 ∩ D1 consists of two
points r and s, and the supporting planes span a 3-space β.

Every conic Ei that does not contain s, contains r and one more point
from C1 and D1, which implies that Ei is contained in β. Hence q− 1 of the
conics Ei lie in β. The same argument now shows that β contains q−1 conics
of all of the three families. Now it is easy to see that αp ∩ K is contained in
β, which proves the lemma. �

Lemma 4.3.8. If there exists a 5-dimensional subspace containing at least
q3 + 1 points of K, then K is as stated in Theorem 4.1.9.

Proof. Denote the 5-dimensional subspace containing at least q3 +1 points
of K by α.

We will consider the different possibilities for the structure of α∩Q(6, q)
but we start with a remark that applies for all three possibilities for this
structure. If there is a line L of α ∩ Q(6, q) that does not meet K, then
every generator of Q(6, q) on L that is not contained in α meets K in a point
outside α. As |α ∩ K| > q3 + 1, there can be at most |K| − (q3 + 1) 6 q − 1
such generators on such a line.

If α ∩ Q(6, q) = Q−(5, q), then any generator (which is a line) of this
Q−(5, q) lies on q+1 generators of Q(6, q) that do not lie in α, so the previous
remark shows that all generators of Q−(5, q) meet K. Then Theorem 4.3.1
gives the structure of K.

Now consider the case that α is tangent to Q(6, q) at a point p, that is,
α ∩ Q(6, q) is a cone pQ with vertex p over a base Q = Q(4, q). Then every
line of the cone that does not pass through p lies in q generators of Q(6, q)
that are not contained in α, so the remark above implies that all lines of
the cone pQ that do not pass through p meet K. Thus, each Q(4, q) of pQ
contains at least q2 + 1 points of K with equality if and only if Q(4, q)∩K is
an ovoid of Q(4, q). Count the number of pairs (Q4, r), Q4 ⊂ pQ a quadric
Q(4, q), r ∈ K ∩ Q4. We find q5(q2 + 1) 6 |K ∩ α|q4, which implies that
|K ∩ α| = q3 + q, each such Q(4, q) meets K in an ovoid and that K is
contained in pQ (but p 6∈ K). By the hypothesis on q and Theorem 4.1.2, for
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each Q(4, q) of pQ(4, q), the ovoid Q(4, q)∩K is an elliptic quadric Q−(3, q).
Consider one elliptic quadric Q1 := Q−(3, q) of pQ(4, q) that is contained
in K. Then the cone pQ1 contains p and q3 + q further points. We show
that K consists of these latter q3 + q points, proving the desired structure
of K. Suppose the contrary, then there would be a point r in pQ(4, q) ∩ K
outside pQ1. Then 〈Q1, r〉 is a 4-dimensional space intersecting pQ(4, q) in a
parabolic quadric Qr(4, q). This latter Qr(4, q) shares Q1 and also r with K.
This is false since it must share an elliptic quadric with K.

Consider finally the case α ∩ Q(6, q) = Q+(5, q). To block all lines of
Q+(5, q), at least |Q(4, q)| = q3+q2+q+1 points are needed (Theorem 4.3.2).
Hence, there exists a line L of Q+(5, q) not meeting K. In Q(6, q), the line
L lies in q + 1 generators and two of these lie in Q+(5, q). The remaining
q − 1 planes of Q(6, q) on L meet K in points outside α. Thus |α ∩ K| 6
|K| − (q − 1) 6 q3 + 1. Hence, |α ∩ K| = q3 + 1 and exactly q − 1 points of
K do not lie in α. Also, the q− 1 points of K \α are perpendicular to L and
similarly to every line of α∩Q(6, q) that is skew to K. Since the q− 1 points
span different planes with L, they are two by two non-perpendicular. Then
three of these points span a plane π that meets Q(6, q) in a conic C. This
shows that all lines of Q+(5, q) that do not meet K lie in C⊥, which intersects
Q(6, q) in a Q±(3, q). Since L lies in C⊥ ∩ Q(6, q), C⊥ ∩ Q(6, q) = Q+(1, q).
Since q+1 points are enough to block all lines of a Q+(3, q), this implies that
we can adjoin q + 1 points to α ∩ K in order to obtain a set B blocking all
lines of Q+(5, q). Then |B| 6 |α ∩ K| + q + 1 = q3 + q + 2, a contradiction
since B must contain at least q3 + q2 + q + 1 points (Theorem 4.3.2). �

Lemma 4.3.9. Suppose that p ∈ K, then there exists a 4-dimensional sub-
space α on p such that α∩K contains at least q+ 1 elliptic quadrics Q−(3, q)
all containing p.

Proof. Consider a generator π of Q(6, q) meeting K in the unique point p ∈
K. Such a generator exists since K is a minimal blocking set. Lemma 4.3.4
implies that π contains at least q + 1 small points, denoted here by ri, i =
1, . . . , q+1. Lemma 4.3.7 implies that the set Qri := r⊥i ∩K is a 3-dimensional
elliptic quadric Qri := Q−(3, q) for every small point ri. If r1 and r2 are small
points of the generator π such that the line r1r2 does not contain p, then
Lemma 4.3.5 implies that Qr1 ∩Qr2 is a conic.

First we consider the case that we find three non-collinear small points
r1, r2, r3 in π that generate with p different lines. Then the quadrics Qr1 ,
Qr2 and Qr3 meet two by two in a conic, but they do not share a conic
(since this conic would be perpendicular to the generator π = 〈r1, r2, r3〉 and
π⊥∩Q(6, q) is a 3-space only sharing π with Q(6, q)). Thus Qr1 , Qr2 and Qr3
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span together a 4-dimensional subspace β. From Lemma 4.3.4 we know that
every line of π on r1 that does not contain any of the points r2, r3, p contains
a second small point r′. Then r′ either does not lie on pr2 or not on pr3.
We may assume that it does not lie on pr2. Then r1, r2, r

′ are non-collinear
and on different lines with p, so as before Qr1 , Qr2 and Qr′ span together
a 4-dimensional subspace. Of course, this 4-dimensional subspace is β, so
Qr′ ⊆ β. Since there are q choices for r′, r2 and r3 included, this case is
handled.

Now consider the case that all small points of π lie on two lines of π
on p. Let these lines be L = {p, p1, . . . , pq} and M = {p, r1, . . . , rq}. Then
Lemma 4.3.4 implies that all points pi and ri are small points. For different
i, the elliptic quadrics Qpi only share p; this is because the points pi are
small, so every generator on the line L meets K only in one point which is
p. Thus different i yield different 3-dimensional subspaces αi := 〈Qpi〉 and
similarly different 3-dimensional subspaces βi := 〈Qri〉. From Lemma 4.3.5,
we know that each subspace αi ∩ βj is a plane that meets Q(6, q) in a conic,
which is Qpi∩Qrj . Different pairs (i, j) give different planes, because different
quadrics Qpi and also different quadrics Qrj only share the point p. If two of
the αi, say α1 and α2, meet in a plane, then γ := 〈α1, α2〉 is a 4-dimensional
subspace; in this case, every βi meets α1 and α2 in different planes and thus
is contained in γ, which proves the claim of the lemma. Hence, assume that
different αi share at most a line, and similarly for the βi. Each βi meets α1

and α2 in planes, so γ := 〈α1, α2〉 is a 5-dimensional space, and N := α1∩α2

is a line on p. These two planes βi∩α1 and βi∩α2 share a line since they lie in
the 3-dimensional subspace βi, so they share the line N . Hence, N ⊆ βi ⊆ γ
for all i. By the same argument, N is contained in all subspaces αi, since
αi ∩ β1 and αi ∩ β2 are planes in αi; so they intersect in a line; this line is
contained in β1 ∩ β2 = N . Then N lies in the perp of all points pi and all
points ri, which implies that N is a tangent line on p meeting Q(6, q) only in
p. Then the q elliptic quadrics Qri cover q3 +1 points of γ∩Q(6, q) and these
points lie in K. Thus we can apply Lemma 4.3.8, so K lies in a 4-dimensional
subspace. But this is a contradiction, as the quadrics Qri are contained in K
and span a 5-dimensional subspace. �

Lemma 4.3.10. The set K is as described in Theorem 4.1.9.

Proof. Consider a 4-space γ as in Lemma 4.3.9. Then γ ∩ K contains q
quadrics Q−i (3, q). Since two such quadrics share at most q + 1 points, it
follows that

|γ ∩ K| > q(q2 + 1)−
(
q

2

)
(q + 1) =

q(q2 + 3)

2
.



4.3. The smallest minimal blocking sets of Q(6, q), q > 3, q prime 

Since γ ∩Q(6, q) contains quadrics Q−i (3, q), then γ ∩Q(6, q) is a Q(4, q) or
a cone with point vertex over a Q−(3, q). Assume that γ ∩Q(6, q) = Q(4, q).
Consider two Q−i (3, q) contained in γ ∩ K, and choose a point p that lies in
exactly one of them. Then p⊥ meets the other Q−i (3, q) in a Q(2, q), since
p⊥ ∩ Q(4, q) is a cone pQ(2, q). The q + 1 lines of this cone all intersect the
other Q−i (3, q) in one point. Thus p⊥ contains 1 + (q + 1) points of K, a
contradiction with Lemma 4.2.1.

Hence, γ ∩ Q(6, q) is a cone with point vertex s over a Q−(3, q). Since
|γ ∩ K| > q, we have s 6∈ K by Lemma 4.2.1. Put b := |γ ∩ K|, and
denote by M the set of points of γ ∩ Q(6, q) that do not lie in K and that
are different from s. Then b + |M| = q(q2 + 1). Put K′ := K \ γ. Then
b+ |K′| = |K| 6 q3 + q, so |K′| 6 |M|.

Let r ∈M. Then |r⊥∩K| > q2 + 1 by Lemma 4.3.3, but the argument of
the proof of Lemma 4.3.3 even shows that at least q2 + 1 lines of Q(6, q) on
r meet K. Since r lies on a unique line of γ ∩Q(6, q) = sQ−(3, q), it follows
that r lies on at least q2 lines of Q(6, q) that meet K in a point but, do not
lie in γ. Hence, |r⊥ ∩ K′| > q2 for r ∈M.

Let r′ ∈ K′. We first show that r′ is not perpendicular to s. Assume
the contrary. Then sr′ is a line of Q(6, q) and lies in q + 1 generators of
Q(6, q). Each one of these generators lies in s⊥ and thus meets γ in a line on
s. Since γ ∩K contains elliptic quadrics Q−i (3, q), each such line meets K. It
follows that each one of the q + 1 generators on sr′ meets γ ∩ K. But then
r′⊥ contains q + 1 points of K, a contradiction with Lemma 4.2.1. Hence,
r′ is not perpendicular to s. Then β := r′⊥ ∩ γ is a 3-dimensional subspace
that meets Q(6, q) in a Q−(3, q). We know that γ ∩K contains at least q+ 1
elliptic quadrics Q−i (3, q). Such an elliptic quadric Q−i (3, q) does not intersect
β in a conic, or else |r′⊥∩K| > 1 + (1 + q). This contradicts Lemma 4.2.1. If
they all meet β in only one point, that is, each one of the q+1 3-dimensional
subspaces spanned by these elliptic quadrics meets β in a tangent plane of
β ∩ Q(6, q) = Q−(3, q), then not all these tangent planes can be equal since
only q hyperplanes of γ through a plane of β intersect Q(6, q) in an elliptic
quadric. This implies that the q+1 elliptic quadrics cover at least two points
of β∩K, so |β∩K| > 2, which implies that |β∩M| = q2 +1−|β∩K| 6 q2−1.

Count the number of pairs (r, r′) ∈M×K′, with r ∈ r′⊥, to obtain

|M|q2 6
∑
r∈M

|r⊥ ∩ K′| =
∑
r′∈K′
|r′⊥ ∩M| 6 |K′|(q2 − 1).

Since |K′| 6 |M|, this implies that M = ∅. Hence, all points of the cone
sQ−(3, q), except the vertex s, lie in K. This proves the lemma. �

We conclude Sections 4.2 and 4.3 with the obtained theorem
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Theorem 4.3.11. Let K be a minimal blocking set of Q(6, q), q an odd
prime, different from an ovoid of Q(6, q), and with |K| 6 q3 + q. Then there
is a point p ∈ Q(6, q)\K with the following property: p⊥∩Q(6, q) = pQ(4, q)
and K consists of all the points of the lines L on p meeting Q(4, q) in an
elliptic quadric Q−(3, q), minus the point p itself, and |K| = q3 + q.

In the next chapter, we will obtain a similar result on the smallest blocking
sets of Q(2n, q), n > 3, q odd prime.



Chapter 5
The smallest minimal blocking
sets of Q(2n, q), q odd prime

I
n this chapter, we “lift” the results of the previous chapter to higher di-
mensions. At first, we describe the known results concerning the existence

or non-existence of ovoids of the quadrics Q(2n, q), n > 3, q odd. Although
the situation for Q(6, q), q odd, is not completely solved, it is known that
Q(2n, q), q odd, n > 4, has no ovoids [49]. However, it will become clear that
existence or non-existence of ovoids of Q(6, q) will have important implica-
tions.

The present chapter is based on joint work with L. Storme [36].

5.1 Introduction

In the previous chapter, we already mentioned the known results on the
existence and non-existence of ovoids of Q(6, q), q odd. Consider now the
parabolic quadric Q(8, q), then the following result is known.

Theorem 5.1.1. (Gunawardena and Moorhouse [49]) The polar space
Q(8, q), q odd, has no ovoids.

Hence, using Lemma 3.1.1, we immediately find that the polar spaces
Q(2n, q), q odd, n > 4, have no ovoids.

We can find examples of minimal blocking sets of these polar spaces, and
to describe these examples, we first introduce the following concept.

Suppose that αO is a cone with vertex the k-dimensional subspace α and
base some set O of points lying in some subspace π, π ∩ α = ∅. Then the
truncated cone α∗O is defined as αO\α, hence as the set of points of the cone

85
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αO where the points of the vertex α are removed from. If α is the empty
subspace, then α∗O = O. In this chapter, we will often use this concept.

Consider now the polar space Q(2n, q), for some q odd, such that Q(6, q)
has no ovoids. All Q(2n, q), q odd prime, q > 3, satisfy this condition. It is
clear that the truncated cone π∗n−3O, πn−3 an (n− 3)-dimensional subspace
contained in Q(2n, q) and O an ovoid of Q(4, q), the base of the cone π⊥n−3 ∩
Q(2n, q) (with ⊥ the polarity of Q(2n, q)), constitutes a minimal blocking
set of Q(2n, q) of size qn+ qn−2. This is the known example for Q(6, q) of the
previous chapter.

Consider now Q(2n, q) for some q odd such that Q(6, q) has ovoids, for
instance when q = 3r, r > 1. Then we can construct smaller minimal
blocking sets of Q(2n, q), n > 4, now using ovoids of Q(6, q). It is clear that
the truncated cone π∗n−4O, πn−4 an (n − 4)-dimensional subspace contained
in Q(2n, q) and O an ovoid of Q(6, q), the base of the cone π⊥n−4 ∩ Q(2n, q)
(with ⊥ the polarity of Q(2n, q)), is a minimal blocking set of Q(2n, q) of
size qn + qn−3.

In this chapter, we characterise the smallest minimal blocking sets of
Q(2n, q), n > 4, q an odd prime. To obtain the classification, it will become
clear that results concerning the smallest minimal blocking sets of Q(6, q)
(different from an ovoid) are crucial. Since the results of the previous chapter
are restricted to q an odd prime, we cannot omit this restriction in this
chapter. Furthermore, when q > 3, prime, we can use the fact that all ovoids
of Q(4, q) are elliptic quadrics and that Q(6, q) has no ovoids.

In Section 5.2, we will prove the following theorem.

Theorem 5.1.2. The smallest minimal blocking sets of Q(2n, q), q > 3
prime, n > 4, are truncated cones π∗n−3Q−(3, q), πn−3 ⊂ Q(2n, q), Q−(3, q) ⊂
π⊥n−3 ∩Q(2n, q), and have size qn + qn−2.

In Section 5.5, we will prove the following theorem

Theorem 5.1.3. The smallest minimal blocking sets of Q(2n, q = 3), n > 4
are truncated cones π∗n−4O, πn−4 ⊂ Q(2n, q), O an ovoid of Q(6, q) ⊂ π⊥n−4∩
Q(2n, q), and have size qn + qn−3.

We will use an induction hypothesis to prove the two theorems. To end
this section, we give a generalisation of Lemma 3.2.1 and Lemma 3.2.3. These
lemmas will be used in both Sections 5.2 and 5.5.

Lemma 5.1.4. Suppose that K is a minimal blocking set of Q(2n, q), differ-
ent from an ovoid, with |K| = qn + δ, 1 < δ 6 qn−2. Suppose that p ∈ K,
then |p⊥ ∩ K| 6 δ.
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Proof. By the minimality of K, there exists a generator πn−1 of Q(2n, q)
such that πn−1 ∩ K = {p}. There are qn−1 hyperplanes in πn−1 not passing
through the point p, and there are q generators different from πn−1 on each
hyperplane of πn−1, which must contain at least one point of K. Hence, at
least qn−1 · q points of K lie outside p⊥, and so |p⊥ ∩ K| 6 δ. �

Lemma 5.1.5. Suppose that K is a minimal blocking set of Q(2n, q), dif-
ferent from an ovoid, with |K| = qn + δ, 1 < δ 6 qn−2. If p is a point of
Q(2n, q)\K, n > 4, then the points of p⊥∩K are projected from p onto Kp, a
minimal blocking set of Q = Q(2n− 2, q), the base of the cone p⊥ ∩Q(2n, q).

Proof. Choose Q as fixed base of the cone p⊥∩Q(2n, q). Denote by Kp the
projection of the set p⊥∩K from p. Suppose now that Kp is not minimal, then
there exists a point p′ ∈ Kp such that every generator πn−2 of Q through p′

contains at least one other point of Kp. There are (q+1)(q2 +1) . . . (qn−2 +1)
generators of Q on p′, and every point of Kp \ {p′} that lies in p′⊥ ∩ Q can
block (q+1)(q2 +1) . . . (qn−3 +1) of these generators. So if Kp is not minimal,
then at least qn−2 + 1 points of Kp different from p′ are needed to block all
generators on p′. Hence, for some point r ∈ K on the line pp′, |r⊥∩K| > qn−2,
a contradiction with the previous lemma. We conclude Kp to be minimal. �

5.2 Part 1: Q(6, q) has no ovoids

For this section, we suppose that q > 3 is an odd prime. This implies that
every ovoid of Q(4, q) is an elliptic quadric Q−(3, q) and that Q(6, q) has no
ovoids.

Suppose that K is a minimal blocking set of Q(2n, q), |K| = qn + δ, 1 <
δ 6 qn−2, n > 4. As induction hypothesis, we suppose that Theorem 5.1.2
is proved for Q(2n − 2, q). This hypothesis is satisfied for n = 4, i.e. the
theorem is true for Q(6, q).

Before we start, we define bn := qn−2(q2 + 1) = |π∗n−3Q−(3, q)|, n > 2.

Lemma 5.2.1. Let r be a point of Q(2n, q) \ K, then |r⊥ ∩ K| > bn−1. If
equality holds, then there exists an (n+1)-dimensional subspace αr, such that
r ∈ αr ⊂ r⊥ and αr ∩ Q(2n, q) = πn−3Q−(3, q). In other words, the points
of K ∩ r⊥ are projected from r onto a truncated cone π∗n−4Q−(3, q) ⊂ αr,
r 6∈ πn−4. Moreover, a line L on r contained in Q(2n, q) meets K if and only
if L ⊂ αr \ πn−3.

Proof. Applying the induction hypothesis to the base of the cone r⊥ ∩
Q(2n, q) = rQ(2n−2, q), we find that |r⊥∩K| > bn−1. If equality holds, then
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necessarily r projects the points of r⊥∩K onto a truncated cone π∗n−4Q−(3, q).
The only lines of Q(2n, q) on r that meet K are the lines of Q(2n, q) ∩ αr,
passing through r, but not lying in πn−3. The (n + 1)-dimensional space αr
is the space 〈r, πn−4Q−(3, q)〉. �

The next lemma proves that equality occurs for some points r ∈ Q(2n, q)\
K. If there is equality, the previous lemma assures that the projected struc-
ture is a truncated cone. It will be crucial to prove that not only the projec-
tion of r⊥∩K is a truncated cone, but also the set r⊥∩K itself is a truncated
cone.

Lemma 5.2.2. There exists a point r ∈ Q(2n, q)\K such that |r⊥∩K| = bn−1.

Proof. Count the elements of the set S = {(p, r)‖p ∈ K, r ∈ Q(2n, q)\K, p ∈
r⊥}. For every point p ∈ K, at most qθ2n−3 points of p⊥∩Q(2n, q) are points
of Q(2n, q) \ K. With |K| 6 bn, we find bnqθ2n−3 as upper bound U for |S|.
Suppose now that for every r ∈ Q(2n, q)\K, there are at least bn−1 +1 points
p ∈ K, satisfying p ∈ r⊥. Then we find as lower bound for |S|, again using
|K| 6 bn, the number L = (bn−1 + 1)(θ2n−1 − bn). We find for n > 7

U − L = −q2n−2 + q2n−3 − q2n−4 − q2n−6 − q2n−7 − . . .− qn+1

−qn − 2qn−1 − qn−2 − 2qn−3 − qn−4 − . . .− q − 1.

For n = 4, 5 and 6, we find −q6 + q5 − q4 − q3 − q2 − 2q− 1, −q8 + q7 − q6 −
2q4 − q3 − 2q2 − q − 1 and −q10 + q9 − q8 − q6 − 2q5 − q4 − 2q3 − q2 − q − 1
respectively. Since U−L < 0 if we suppose that |r⊥∩K| > bn−1 for all points
r ∈ Q(2n, q) \K, we find that there must exist a point r ∈ Q(2n, q) \K with
|r⊥ ∩ K| = bn−1. �

Lemma 5.2.3. Suppose that L ⊂ Q(2n, q) is a line for which L ∩ K = ∅. If
|L⊥ ∩ K| = bn−2, then |K| = bn and |r⊥ ∩ K| = bn−1 for all points r ∈ L.

Proof. By Lemma 5.2.1, |r⊥i ∩ K| > bn−1 for all points ri ∈ L. The
sets r⊥i ∩ K have exactly bn−2 points in common, which implies that |K| =
|
⋃q
i=0(r⊥i ∩K)| > (q+1)(bn−1−bn−2)+bn−2 = bn > |K|. Hence, |r⊥i ∩K| = bn−1

for all points ri ∈ L and |K| = bn. �

At this point, we know that there exist points r ∈ Q(2n, q) \ K with
|r⊥ ∩K| = bn−1. We will now prove that, for such points r, the set r⊥ ∩K is
a truncated cone π∗n−4Q−(3, q). The following lemma plays a crucial role.
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Figure 5.1: The situation in Lemma 5.2.4

Lemma 5.2.4. Suppose that r ∈ Q(2n, q) \ K such that |r⊥ ∩ K| = bn−1.
If β is a hyperplane of αr on r not containing the vertex πn−3 of the cone
αr ∩Q(2n, q), then the points of β∩K lie in an (n−1)-dimensional subspace
β of β, r 6∈ β, and β ∩Q(2n, q) = πβn−5Q−(3, q).

Proof. Since β is a hyperplane of αr on r not containing the vertex πrn−3

of the cone αr ∩ Q(2n, q) = πrn−3Q−r (3, q), β ∩ Q(2n, q) is a cone with base

Q−
β

(3, q) and vertex πβn−4, an (n−4)-dimensional subspace on r. When n = 4,

this subspace is the point r itself. The properties of the polarity associated

to Q(2n, q) imply that β
⊥ ∩ Q(2n, q) = πβn−4Qβ(2, q), and this cone meets

the cone αr in the space πrn−3. Thus there must exist a line L of Q(2n, q)

contained in β
⊥

such that L ∩ αr = {r}, L 6⊆ α⊥r . Since L ⊂ β
⊥

, we find
β = L⊥ ∩ αr. By Lemma 5.2.1, L does not meet K.

Since L⊥∩K ⊂ r⊥∩K ⊆ αr, it is clear that L⊥∩K = β∩K. Lemma 5.2.1
implies that |L⊥ ∩ K| = bn−2. Suppose that p is a point of L \ {r}, then
Lemma 5.2.3 implies that |p⊥ ∩ K| = bn−1. By Lemma 5.2.1, there exists an
(n+1)-dimensional subspace αp that meets Q(2n, q) in the cone πpn−3Q−p (3, q)
and p⊥ ∩ K ⊂ αp. Furthermore, αp contains bn−1 points of K, while L⊥

contains bn−2 points of K, hence L⊥ intersects αp in a hyperplane β
′

of αp,

with p ∈ β′. We conclude that L⊥ ∩ K is a subset of β and β
′
. The spaces

β and β
′

are different since β does not contain the line L and so p 6∈ β.
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Hence, L⊥ ∩ K lies in the (n − 1)-dimensional subspace β ∩ β′; it cannot
lie in a subspace of lower dimension by Lemma 5.2.1. It is impossible that
r ∈ β = β∩β′; or else r projects the points of β∩K onto an (n−2)-dimensional
subspace, but the projected points form a truncated cone π∗n−5Q−(3, q) which

lies in a space of dimension n−1. The subspace β = β∩β′ intersects Q(2n, q)
in a cone πβn−5Q−(3, q), since 〈β, r〉 = β ⊆ r⊥ and β intersects Q(2n, q) in

πβn−4Q−
β

(3, q). �

Lemma 5.2.5. Suppose that r is a point of Q(2n, q)\K such that |r⊥∩K| =
bn−1. Then there exists an n-dimensional subspace αr, r 6∈ αr, such that
αr ∩Q(2n, q) = πn−4Q−(3, q) and such that the truncated cone π∗n−4Q−(3, q)
is equal to the set r⊥ ∩ K.

Proof. Consider the (n + 1)-dimensional space αr with αr ∩ Q(2n, q) =
πn−3Q−(3, q). Suppose that β1 is a hyperplane of αr, not containing πn−3 and
containing the point r. By Lemma 5.2.4, β1 contains an (n− 1)-dimensional
subspace β1, r 6∈ β1, such that β1 ∩ Q(2n, q) = πβ1

n−5Q−β1
(3, q) and β1 ∩ K =

β1 ∩ K = πβ1∗
n−5Q−β1

(3, q). Choose a conic Q(2, q) ⊂ Q−β1
(3, q). We can find a

hyperplane β2 of αr, β2 6= β1, r ∈ β2, πn−3 6⊆ β2, β1 6⊆ β2, but πβ1

n−5Q(2, q) ⊆
β2. Again, by Lemma 5.2.4, we find an (n − 1)-dimensional subspace β2,
r 6∈ β2, β2 ∩Q(2n, q) = πβ2

n−5Q−β2
(3, q), and β2 ∩ K = β2 ∩ K = πβ2∗

n−5Q−β2
(3, q).

Necessarily, πβ1

n−5 = πβ2

n−5, and Q(2, q) ⊂ Q−β2
(3, q) 6= Q−β1

(3, q).

Define π1 := 〈Q−β1
(3, q)〉 and π2 := 〈Q−β2

(3, q)〉. Consider the n-dimen-

sional space γ = 〈πβ1

n−5, π1, π2〉. The two solids π1 and π2 are skew to πn−3,
hence, πn−3 6⊆ γ. Furthermore, r 6∈ γ, since then γ would be an n-dimensional
subspace on r, not containing πn−3, spanned by points of r⊥ ∩ K, a contra-
diction with Lemma 5.2.4. We conclude that γ ∩Q(2n, q) = πγn−4Q−γ (3, q).

Choose an arbitrary conic Q′(2, q) ⊂ Q−β1
(3, q), Q′(2, q) 6= Q(2, q), and

|Q′(2, q) ∩Q(2, q)| = 2. Consider the q + 1 (n− 1)-dimensional subspaces δi
of γ through the (n−2)-dimensional subspace 〈Q′(2, q), πβ1

n−5〉. One δi, say δ1,
is the space 〈πγn−4,Q

′(2, q)〉. Consider now a space δi, i 6= 1. It is clear that
δi is spanned by points of K, since the quadrics Q−βj(3, q) ⊂ K, j = 1, 2, and

δi intersects the spaces πj in distinct conics of Q−βj(3, q), j = 1, 2, or contains

π1. If p is a point of Q(2n, q), p ∈ δi \ (β1 ∪ β2 ∪ πγn−4), such that p 6∈ K,
then by Lemma 5.2.1, the line 〈r, p〉 meets K in exactly one point t. But
then the space 〈t, δi〉 ⊆ αr is an n-dimensional subspace on r, not containing
πn−3 and spanned by points of r⊥ ∩ K, a contradiction with Lemma 5.2.4.
We conclude that every point p ∈ (γ ∩Q(2n, q)) \ 〈Q′(2, q), πγn−4〉 lies in K.

Letting vary the conic Q′(2, q), we can reach every point p ∈ (Q(2n, q))∩
γ) \ πγn−4, since the intersection of all conics of Q−β1

(3, q), sharing two points
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with Q(2, q) is empty. Hence, γ ∩K = π∗n−4Q−γ (3, q), the space γ is the space
αr. �

Lemma 5.2.6. The set K is a truncated cone π∗n−3Q−(3, q).

Proof. From Lemma 5.2.2, we find a point r ∈ Q(2n, q) \ K satisfying
|r⊥ ∩ K| = bn−1. The n-dimensional subspace αr from Lemma 5.2.5 meets
Q(2n, q) in a cone πrn−4Q−r (3, q). Choose Q = Q(2n− 2, q) as the base of the
cone r⊥∩Q(2n, q) in such a way that 〈Q〉 contains the cone πrn−4Q−r (3, q). Let
L be a line of Q(2n, q) on r such that L 6⊆ πr⊥n−4∩Q(2n, q), which implies that
L⊥ does not contain the vertex πrn−4 of αr. Thus L⊥ meets αr in a hyperplane
of αr, and this hyperplane meets Q(2n, q) in a cone πn−5Q−(3, q). Note that
n > 4. If n = 4, then this hyperplane meets Q(2n, q) in an elliptic quadric
Q−(3, q).

As L⊥ ∩ K is contained in r⊥ ∩ K ⊆ αr ∩ K, it follows that L⊥ ∩ K is
a truncated cone πL∗n−5Q−L(3, q). Hence, |L⊥ ∩ K| = bn−2. By Lemma 5.2.3,
|t⊥ ∩ K| = bn−1 for all points t ∈ L. Every point t ∈ L gives rise to a
truncated cone t⊥ ∩ K = πt∗n−4Q−t (3, q), and all these truncated cones share
the truncated cone L⊥∩K = πL∗n−5Q−L(3, q). Denote the subspace spanned by
L⊥ ∩ K by βL.

Every point of K is collinear with a point of L, which implies that K is the
union of these q + 1 cones. It follows that |K| = bn, and that K is contained
in the union of the q + 1 n-dimensional subspaces αs, s ∈ L, that share the
(n− 1)-dimensional subspace βL.

Consider now a second line L′ of Q(2n, q) on r such that L′ 6⊆ πr⊥n−4 ∩
Q(2n, q) and choose it in such a way that βL 6⊆ L′⊥. This is possible since
〈βL, r〉⊥ = 〈r, πLn−5Q(2, q)〉 has only dimension n − 1. Then, as for L, the
subspace βL′ := 〈L′⊥ ∩K〉 has dimension n− 1, and is contained in αt for all
t ∈ L′. We have βL′ 6= βL. Let p be a point of L′ with p 6= r. Then αp has
dimension n and meets αr in βL′ . Furthermore, βL′ ∩K = πL

′∗
n−5Q−L′(3, q) and

|Q−L′(3, q) ∩Q−L(3, q)| > 1.
Varying the point t ∈ L′, the tangent hyperplanes t⊥ vary over the hy-

perplanes through L′⊥, hence, every point of the (n− 4)-dimensional spaces
πsn−4, s ∈ L, lies in some t⊥, t ∈ L′. Every point of πsn−4, s ∈ L, lies on lines
with q points of K, to the points of Q−L(3, q) ∩ Q−L′(3, q), and hence belongs
to one of the vertices πtn−4, t ∈ L′.

Consider a fixed point s ∈ L \ {r}, fixed points p1 ∈ πrn−4, p2 ∈ πsn−4,
p1, p2 6∈ πrn−4 ∩ πsn−4 = πLn−5. Consider a fixed point u ∈ πr∗n−4Q−r (3, q), then
it is possible to select a line L′′, satisfying the conditions of L′, for which
u ∈ L′′⊥. Then the preceding arguments show that the set 〈u, p2〉 \ {p2} is
contained in K.
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Consider an arbitrary line M of πr∗n−4Q−r (3, q) passing through p1 and
containing q points of K. The q2 points of 〈M, p2〉 \ 〈p1, p2〉 all lie in K;
this implies that the truncated cone 〈πrn−4, π

s
n−4〉∗Q−r (3, q) lies in K. Since

|K| = |〈πrn−4, π
s
n−4〉∗Q−r (3, q)| = bn, this truncated cone must be equal to K.

�

We may conclude Theorem 5.1.2.

Theorem 5.2.7. The smallest minimal blocking sets of Q(2n, q), q > 3
prime, n > 4, are truncated cones π∗n−3Q−(3, q), πn−3 ⊂ Q(2n, q), Q−(3, q) ⊂
π⊥n−3 ∩Q(2n, q), and have size qn + qn−2.

5.3 Interlude 1: Q(8, q), q = 3

In this section, we suppose that Q(6, q) has ovoids. This is true for all q = 3r,
r > 1. For some values of q, different non-isomorphic classes of ovoids are
known ([65], [91] and [92]). Suppose now that O is an ovoid of Q(6, q). A
short observation learns that 〈O〉 ∩ Q(6, q) = Q(6, q). For, let Ω = 〈O〉.
It is impossible that Ω ∩ Q(6, q) is any singular quadric. For, assume that
〈O〉∩Q(6, q) = πsQ, a cone with vertex πs, an s-dimensional subspace, s > 0,
and base Q, a non-singular quadric of dimension at most 4. Then πs projects
O onto an ovoid of Q. However, no non-singular quadric of dimension at
most four has ovoids of size q3 + 1. If 〈O〉 ∩ Q(6, q) = Q(4, q), then O
must necessarily be an ovoid of Q(4, q); impossible since |O| > q2 + 1. If
〈O〉 ∩ Q(6, q) = Q+(5, q), then O must be an ovoid of Q+(5, q); impossible
since |O| > q2 + 1. Finally, 〈O〉 ∩ Q(6, q) = Q−(5, q) is impossible, since
Q−(5, q) has no ovoids.

In this section, we will prove Theorem 5.1.3, without the restriction q = 3,
for n = 4, and supposing that Q(6, q) has an ovoid and that the smallest
minimal blocking set of Q(6, q) different from an ovoid, is a truncated cone
p∗O, O an ovoid of Q(4, q). These results are valid for q = 3 (Theorem 4.2.7).
Suppose for this section that K is a minimal blocking set of Q(8, q), q odd,
|K| = q4 + δ, δ 6 q. The way the result is proved, looks very similar to the
proofs of the results of Chapter 3 and Chapter 4.

Lemma 5.3.1. If L is a line of Q(8, q), then |L ∩ K| = 0, 1 or |L ∩ K| = q.

Proof. Suppose that q−1 > |L∩K| > 2. Consider a generator π on L such
that L ∩ K = π ∩ K. By Lemma 5.1.4, such a generator exists. Count the
pairs (u, v), u ∈ π \L and v ∈ K\π, u ∈ v⊥. Since u ∈ π \L and |L∩K| > 2,
u cannot project u⊥∩K on an ovoid of Q(6, q), so |u⊥∩K| > q3 +q > q3 +1+
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|L∩K| since the projection is a minimal blocking set of Q(6, q) (Lemma 5.1.5).
We find a lower bound of (q3 + q2)(q3 + q − |L ∩ K|) > (q3 + q2)(q3 + 2).
The first factor comes from the number of points in π \ L. If v ∈ K \ π,
then v⊥ intersects π in a plane, hence to v correspond q2 + q or q2 points of
π \ L. So we find (q4 + δ − |L ∩ K|)(q2 + q) as upper bound for the number
of pairs (u, v), and since 2 6 |L ∩ K|, we can change this upper bound to
(q4 + δ− 2)(q2 + q). So necessarily (q4 + δ− 2)(q2 + q) > (q3 + q2)(q3 + 2) or,
since δ 6 q, (q4 + q − 2)(q2 + q) > (q3 + q2)(q3 + 2), a contradiction. �

Corollary 5.3.2. If π is a generator of Q(8, q), then |π∩K| = 1 or |π∩K| =
q, and all points of π ∩ K lie on a line.

Proof. If |π ∩ K| > 2, then any line L spanned by two points of π ∩ K
contains already q points of K. Lemma 5.1.4 admits no further points of K
in π. �

Lemma 5.3.3. Suppose that p 6∈ K. If there is a generator π on p containing
exactly 1 point of K, then |p⊥ ∩ K| 6 q3 + q, else |p⊥ ∩ K| = q(q3 + 1).

Proof. Suppose that p ∈ π, π∩K = {s}. There are q3− q2 planes in π not
through s or p. All generators of Q(8, q), different from π on these planes
only share points with K\π. For, a point r of K\π has a tangent hyperplane
not containing π; so π intersects this tangent hyperplane in a plane Ω; this
plane Ω and r define a unique generator. Hence q(q3 − q2) points of K are
needed to block them; so at most q4 + q− (q4− q3) = q3 + q points of K lie in
p⊥∩K. If every generator on p contains q points of K, then |p⊥∩K| = q4 +q.

�

Lemma 5.3.4. Suppose that π is a generator of Q(8, q), |π∩K| = q, 〈π∩K〉 =
L. If p ∈ π \ L, then |p⊥ ∩ K| = q3 + q.

Proof. If all generators on p contain q points of K, then in particular
also all generators on 〈s, p〉, s ∈ π ∩ K, hence |s⊥ ∩ K| > q, contradicting
Lemma 5.1.4. So, |p⊥ ∩ K| 6 q3 + q. Since p must project the points of
p⊥ ∩ K on Kp, a minimal blocking set of Q(6, q) different from an ovoid
(Lemma 5.1.5), |Kp| > q3 + q. Hence |p⊥ ∩ K| = q3 + q. �

We end with the following theorem.

Theorem 5.3.5. If Q(6, q), q odd, has an ovoid and the smallest minimal
blocking set of Q(6, q), different from an ovoid, is a truncated cone p∗O, with
O an ovoid of Q(4, q), then the smallest minimal blocking set of Q(8, q), q
odd, is a truncated cone p∗O′, with O′ an ovoid of Q(6, q).
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Proof. Consider a generator π of Q(8, q) such that |π∩K| = q, 〈π∩K〉 = L.
Consider s ∈ π \L. By the previous lemma, |s⊥∩K| = q3 + q, and s projects
the points of Ts(Q(8, q))∩K onto a minimal blocking set Ks of Q(6, q), being
a truncated cone p∗O, O an ovoid of Q(4, q). The q2 + 1 lines containing
q points of Ks are projections of q2 + 1 lines Mi of Q(8, q), |Mi ∩ K| = q.
Suppose that Mi ∩ 〈s, p〉 = p′i. Suppose that |p′⊥i ∩ K| 6 q3 + q. For some i,
for instance i = 1, p′ = p′i lies on a line Mi. The point p′ projects p′⊥ ∩ K
necessarily on a minimal blocking set of Q(6, q) which is an ovoid, hence
|p′⊥ ∩ K| = q3 + q. Consider now all generators on the line M1. There are
(q2 + 1)(q + 1) such generators and they are all blocked by the points of
M1 ∩ K. Since there are q3(q2 + 1)(q + 1) generators left in p′⊥ ∩ Q(8, q),
and every point of p′⊥ ∩ K blocks (q2 + 1)(q + 1) of them, every generator
on p′ not on M1 contains exactly 1 point of K. This is a contradiction since
every generator on a plane 〈p′,Mj〉 is a generator on p′ containing q points
of K. We conclude that |p′⊥ ∩K| = q(q3 + 1) = q4 + q, so |K| = q4 + q, every
generator through p′ contains q collinear points of K, and these q collinear
points of K in a generator through p′ lie on a line through p′ (Lemma 5.3.4
Furthermore, p′ projects all points of K on an ovoid of Q(6, q). �

Using the results on Q(6, 3) from Chapter 4, we obtain the following
theorem.

Theorem 5.3.6. The smallest minimal blocking sets of Q(8, q = 3) are trun-
cated cones p∗O, p ∈ Q(8, q), O an ovoid of Q(6, q) ⊂ p⊥∩Q(8, q), and have
size q4 + q.

5.4 Interlude 2: geometric behaviour of ovoids

of Q(6, q)

In this section we explore some geometric properties of ovoids of Q(6, q).
The first lemma is an observation we made in the previous section.

Lemma 5.4.1. The points of O span the 6-dimensional projective space
PG(6, q).

The second lemma is an observation which was implicitly made in [76].

Lemma 5.4.2. The ovoid O does not contain an elliptic quadric Q−(3, q).

Proof. Suppose the contrary, i.e., some Q−(3, q) ⊆ O. Since O spans the
6-dimensional space, there is a point p ∈ O\Q−(3, q). The space 〈p,Q−(3, q)〉
intersects Q(6, q) in a parabolic quadric Q(4, q), containing at least q2 + 2
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points of O, a contradiction, since any Q(4, q) can intersect O in at most
q2 + 1 points, the number of points of an ovoid of Q(4, q). �

In Chapter 4, we already mentioned the important result of [6]. The
main result of [4] is the following theorem, which is used in [6] to prove
Theorem 4.1.2.

Theorem 5.4.3. (Ball [4]) Let O be an ovoid of Q(4, q), q = ph, p prime.
Every elliptic quadric Q−(3, q) on Q(4, q) intersects O in 1 mod p points.

This theorem leads, also in [6], to the following interesting property of
ovoids of Q(6, q).

Theorem 5.4.4. (Ball et al. [6]) An ovoid O of Q(6, q), q = ph, p prime,
intersects every elliptic quadric Q−(5, q) on Q(6, q) in 1 mod p points.

We use Theorem 5.4.3 to prove the following lemma. It shows also that
“t mod p” results have important applications.

Lemma 5.4.5. The ovoid O does not contain any ovoid O′ of Q(4, q) ⊆
Q(6, q).

Proof. Suppose the contrary, i.e., suppose that there is some ovoid O′ of
Q(4, q) ⊆ Q(6, q), with O′ ⊆ O. By the previous lemma, we may suppose
that O′ is not an elliptic quadric and hence, 〈O′〉 is a 4-dimensional projective
space α, such that α ∩ Q(6, q) = Q(4, q). Since O spans the 6-dimensional
space, we can choose a point p ∈ O\α. Since α contains an ovoid of Q(4, q),
p 6∈ α⊥, hence p⊥ ∩ Q(4, q) = Q±(3, q), or p⊥ ∩ Q(4, q) = rQ(2, q) which is
a tangent cone to Q(4, q). All these 3-dimensional quadrics intersect O′ in 1
mod p points, hence, at least one point r ∈ O′ belongs to p⊥, a contradiction.

�

We call a hyperplane α of PG(6, q) hyperbolic, elliptic respectively, if
α ∩Q(6, q) = Q+(5, q), α ∩Q(6, q) = Q−(5, q) respectively.

Corollary 5.4.6. Any hyperbolic hyperplane α has the property that 〈α ∩
O〉 = α.

Proof. Suppose that α is a 5-dimensional subspace such that α∩Q(6, q) =
Q+(5, q). Then necessarily α intersects O in an ovoid O′ of Q+(5, q). Since
any ovoid of Q(4, q) is not contained in O, the ovoid O′ spans the 5-dimen-
sional space α. �

With the aid of the computer, we also found the following result for q = 3.

Lemma 5.4.7. Any elliptic hyperplane α of Q(6, 3) has the property that
〈α ∩ O〉 = α.
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5.5 Part 2: Q(6, q) has ovoids

For this section, we suppose that Q(6, q) has ovoids and that the smallest
minimal blocking sets of Q(6, q) different from ovoids are truncated cones
p∗O, p ∈ Q(6, q), O an ovoid of Q(4, q) ⊆ p⊥Q(6, q). This hypothesis is
true for q = 3 (Theorem 4.2.7). We will prove in this section the following
theorem.

Theorem 5.5.1. Suppose that Q(6, q) has ovoids and that the smallest min-
imal blocking sets of Q(6, q), different from ovoids, are truncated cones p∗O,
p ∈ Q(6, q), O an ovoid of Q(4, q). Then the smallest minimal blocking sets
of Q(2n, q), n > 5, are truncated cones π∗n−4O, πn−4 ⊂ Q(2n, q), O an ovoid
of Q(6, q) ⊂ π⊥n−4 ∩Q(2n, q), and have size qn + qn−3.

Suppose that K is a minimal blocking set of Q(2n, q), |K| = qn + δ, 1 <
δ 6 qn−3, n > 5. As induction hypothesis, we suppose that Theorem 5.5.1
is proved for Q(2n − 2, q). This hypothesis is satisfied for n = 5, i.e. the
theorem is true for Q(8, q) (Theorem 5.3.5).

Before we start, we define bn := qn−3(q3 + 1) = |π∗n−4O|, n > 4.
It will become clear that we can repeat the proof chain from Section 5.2.

Lemma 5.5.2. Let r be a point of Q(2n, q) \ K, then |r⊥ ∩ K| > bn−1. If
equality holds, then there exists an (n + 3)-dimensional subspace αr, such
that r ∈ αr ⊂ r⊥ and αr ∩ Q(2n, q) = πn−4Q(6, q). Moreover, every line L
on r contained in Q(2n, q) meets K if and only if L meets a truncated cone
π∗n−5O contained in αr ∩Q(2n, q), with O an ovoid of a quadric Q(6, q), and
such that the points of K ∩ r⊥ are projected from r onto a truncated cone
π∗n−5O ⊂ αr, r 6∈ πn−5, O an ovoid of Q(6, q).

Proof. Applying the induction hypothesis to the base of the cone r⊥ ∩
Q(2n, q) = rQ(2n − 2, q), we find that |r⊥ ∩ K| > bn−1. If equality holds,
then necessarily r projects the points of r⊥∩K onto a truncated cone π∗n−5O,
hence only lines L ⊂ Q(2n, q) on r meeting π∗n−5O meet K. The (n + 3)-
dimensional space αr is the space 〈r, πn−5O〉, since O spans a 6-dimensional
space. �

As in Section 5.2, also here we prove that equality occurs for some points
r ∈ Q(2n, q) \K. If there is equality, the previous lemma assures us that the
projected structure is a truncated cone we look for. It will again be crucial
to prove that not only the projection of r⊥ ∩K is a truncated cone, but also
that the set r⊥ ∩ K is a truncated cone.

Lemma 5.5.3. There exists a point r ∈ Q(2n, q)\K such that |r⊥∩K| = bn−1.
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Proof. Count the number of elements of the set S = {(p, r)‖p ∈ K, r ∈
Q(2n, q) \ K, p ∈ r⊥}. For every point p ∈ K, at most qθ2n−3 points of
p⊥ ∩Q(2n, q) are points of Q(2n, q) \ K. With |K| 6 bn, we find bnqθ2n−3 as
upper bound U for |S|. Suppose now that for every r ∈ Q(2n, q) \ K, there
are at least bn−1 + 1 points p ∈ K, p ∈ r⊥. Then we find as lower bound for
|S|, again using |K| 6 bn, the number L = (bn−1 + 1)(θ2n−1 − bn). We find
for n > 8,

U − L = −q2n−2 − q2n−3 + q2n−4 − q2n−5 − q2n−6 − q2n−8 − . . .− qn

−2qn−1 − qn−2 − qn−3 − 2qn−4 − qn−5 − . . .− q − 1

For n = 5, 6 and 7, we find −q8 − q7 + q6 − q5 − 2q4 − q2 − 2q − 1, −q10 −
q9 + q8− q7− q6− q5− q4− q3− 2q2− q− 1 and −q12− q11 + q10− q9− q8−
2q6 − q5 − q4 − 2q3 − q2 − q− 1 respectively. Since this number U −L < 0 if
we suppose that |r⊥ ∩K| > bn−1 for all points r ∈ Q(2n, q) \ K, we find that
there must exist a point r ∈ Q(2n, q) \ K with |r⊥ ∩ K| = bn−1. �

Lemma 5.5.4. Suppose that L ⊂ Q(2n, q) is a line, L∩K = ∅. If |L⊥∩K| =
bn−2, then |K| = bn and |r⊥ ∩ K| = bn−1 for all points r ∈ L.

Proof. By Lemma 5.5.2, |r⊥i ∩ K| > bn−1 for all points ri ∈ L. The
sets r⊥i ∩ K have exactly bn−2 points in common, which implies that |K| =
|
⋃q
i=0(r⊥i ∩K)| > (q+1)(bn−1−bn−2)+bn−2 = bn > |K|. Hence, |r⊥i ∩K| = bn−1

for all points ri ∈ L and |K| = bn. �

Lemma 5.5.5. Suppose that r ∈ Q(2n, q) \ K such that |r⊥ ∩ K| = bn−1.
If β is a hyperplane of αr on r not containing the vertex πn−4 of the cone
αr ∩Q(2n, q), then the points of β∩K lie in an (n+ 1)-dimensional subspace
β of β, r 6∈ β.

Proof. Since β is a hyperplane of αr on r not containing the vertex
πrn−4 of the cone αr∩Q(2n, q) = πrn−4Q(6, q), β∩Q(2n, q) is a cone with base

Qβ(6, q) and vertex πβn−5, an (n−5)-dimensional subspace on r. When n = 5,
this subspace is the point r itself. The properties of the polarity associated

to Q(2n, q) imply that β
⊥ ∩ Q(2n, q) = πβn−5Q+

β
(1, q), and this cone meets

the cone αr in the space πrn−4. Thus there must exist a line L of Q(2n, q)

contained in β
⊥

such that L∩αr = {r}. Since L ⊂ β
⊥

, we find β = L⊥∩αr.
By Lemma 5.5.2, L does not meet K.

Since L⊥∩K ⊆ r⊥∩K ⊆ αr, it is clear that L⊥∩K = β∩K. Lemma 5.5.2
implies that |L⊥∩K| = bn−2. Suppose that p is a point of L\{r}. Lemma 5.5.4
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Figure 5.2: The situation in Lemma 5.5.5

implies that |p⊥ ∩ K| = bn−1. By Lemma 5.5.2, there exists an (n + 3)-
dimensional subspace αp that meets Q(2n, q) in the cone πpn−4Qp(6, q) and
p⊥ ∩ K ⊂ αp. Furthermore, αp contains bn−1 points of K, while L⊥ contains

bn−2 points of K, hence L⊥ intersects αp in a hyperplane β
′
of αp, with p ∈ β′.

We conclude that L⊥ ∩ K is a subset of β and β
′
. The spaces β and β

′
are

different since β does not contain the line L, and so p 6∈ β. Hence, L⊥ ∩ K
lies in the (n + 1)-dimensional subspace β ∩ β′; it cannot lie in a subspace

of lower dimension by Lemma 5.5.2. It is impossible that r ∈ β = β ∩ β′;
or else r projects the points of β ∩ K onto an n-dimensional subspace, but
the projected points form a truncated cone π∗n−6O, O an ovoid of Q(6, q),

which lies in a space of dimension n+ 1. The subspace β = β ∩ β′ intersects
Q(2n, q) in a cone πβn−6Q(6, q), since 〈β, r〉 = β ⊆ r⊥ and β intersects Q(2n, q)

in πβn−5Qβ(6, q). �

Lemma 5.5.6. Suppose that r is a point of Q(2n, q)\K such that |r⊥∩K| =
bn−1. Then there exists an (n + 2)-dimensional subspace αr, r 6∈ αr, such
that αr ∩ Q(2n, q) = πn−5Qr(6, q), and such that the truncated cone π∗n−5O,
O an ovoid of Qr(6, q), is equal to the set r⊥ ∩ K.

Proof. Consider the (n + 3)-dimensional space αr with αr ∩ Q(2n, q) =
πn−4Q(6, q). Suppose that β1 is a hyperplane of αr, not containing πn−4 and



5.5. Part 2: Q(6, q) has ovoids 

containing the point r. By Lemma 5.5.5, β1 contains an (n+ 1)-dimensional
subspace β1, r 6∈ β1, such that β1 ∩ Q(2n, q) = πβ1

n−6Qβ1(6, q) and β1 ∩ K =

β1 ∩ K = πβ1∗
n−6Oβ1 , Oβ1 an ovoid of Qβ1(6, q). Define π1 := 〈Oβ1〉. Choose

a hyperbolic hyperplane α ⊆ π1, α ∩ Qβ1(6, q) = Q+
α (5, q). We can find a

hyperplane β2 of αr, β2 6= β1, r ∈ β2, πn−4 6⊆ β2, but πβ1

n−6Q+
α (5, q) ⊆ β2.

Again, by Lemma 5.5.5, we find an (n+ 1)-dimensional subspace β2, r 6∈ β2,
β2 ∩ Q(2n, q) = πβ2

n−6Qβ2(6, q), β2 ∩ K = β2 ∩ K = πβ2∗
n−6Oβ2 , Oβ2 an ovoid

of Qβ2(6, q). Necessarily, πβ1

n−6 = πβ2

n−6, and Q+
α (5, q) ⊂ Qβ2(6, q) 6= Qβ1(6, q).

Define now π2 := 〈Oβ2〉.
Consider the (n + 2)-dimensional space γ = 〈πβ1

n−6, π1, π2〉. The two 6-
dimensional spaces π1 and π2 are skew to πn−4, hence, πn−4 6⊆ γ. Further-
more, r 6∈ γ, since then γ would be an (n + 2)-dimensional subspace on
r, not containing πn−4, spanned by points of r⊥ ∩ K, a contradiction with
Lemma 5.5.5. We conclude that γ ∩Q(2n, q) = πγn−5Qγ(6, q).

Choose now an arbitrary hyperplane α′, α′ 6= α, of π1, such that 〈α′ ∩
Oβ1〉 = α′. This is possible, since all hyperbolic hyperplanes have this prop-
erty (Corollary 5.4.6), and, for q = 3, all elliptic hyperplanes have this prop-
erty (Lemma 5.4.7). Consider the q + 1 (n + 1)-dimensional spaces δi ⊂ γ
through the n-dimensional space 〈α′, πβ1

n−6〉. One of them, say δ1, is the space
〈α′, πγn−5〉. Consider now a space δi, i 6= 1. This space δi intersects π2 in a 5-
dimensional space through the 4-dimensional space ε := α∩α′. At most two
5-dimensional spaces through ε are tangent hyperplanes to Qβ2(6, q), hence,
at least q − 2 elliptic and hyperbolic hyperplanes of Qβ2(6, q) on ε remain,
hence, at least q − 2 spaces δi are possibly spanned by points of K. For
q > 5, at least one of them is a hyperbolic hyperplane and forr q = 3, we
can use both the elliptic and hyperbolic hyperplanes, so at least one such δi
is spanned by points of K. Consider such a δi, spanned by points of K. If p
is a point, p ∈ (δi ∩ Q(2n, q)) \ (β1 ∪ β2 ∪ πγn−5), such that p 6∈ K, then by
Lemma 5.5.2, the line 〈r, p〉 meets K in exactly one point t. But then the
space 〈t, δi〉 ⊆ αr is an (n + 2)-dimensional subspace on r, not containing
πn−4 and spanned by points of K, a contradiction with Lemma 5.5.5. We
conclude that every point p ∈ (γ ∩ Q(2n, q)) \ 〈α′, πγn−5〉 lies in K, provided
p lies in some subspace δi (which depends on the choice of α′), spanned by
points of K.

Letting vary the 5-dimensional space α′, we can reach every point p ∈
(γ ∩ Q(2n, q) \ πγn−5, since the intersection of all hyperbolic hyperplanes of
π1 is empty. We complete the proof by showing that every point p ∈ (γ ∩
Q(2n, q)) \ πγn−5 lies in an (n + 1)-dimensional space not on r, spanned by
points of K, and not containing πγn−5.

Consider p ∈ (γ ∩ Q(2n, q)) \ (β1 ∪ β2 ∪ πγn−5). The (n − 4)-dimensional
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subspace 〈πγn−5, p〉 ⊆ γ intersects the (n + 1)-dimensional space β2 in an
(n − 5)-dimensional space ζ. (If n = 5, then this is a point u belonging to
π2). If n > 5, then ζ intersects π2 in exactly one point u.

Choose a point x ∈ (β2∩K)\ζ, x 6∈ β1. This is possible since we excluded
at most one point of Oβ2 , namely the point u ∈ ζ ∩ π2. It is impossible that
Oβ2 = {u}∪(Oβ1∩Oβ2) since 〈Oβ1∩Oβ2〉 intersects Qβ1(6, q) in a hyperbolic
quadric, and an ovoid of a hyperbolic quadric contains q2 + 1 points. Hence,
x ∈ (β2 ∩ K) \ ζ, x 6∈ β1 exists.

The line 〈p, x〉 intersects β1 in exactly one point y 6∈ πβ1

n−6, else 〈p, y〉 ⊆ ζ,
but x 6∈ ζ.

The space 〈y, πβ1

n−6〉 intersects π1 in exactly one point z. If z ∈ α and
z = y, then 〈x, y〉 = 〈x, z〉 ⊆ π2, so p ∈ β2, which is false. If z ∈ α and
z 6= y, then y ∈ β2 and hence, p ∈ β2. We conclude that z 6∈ α. Choose one
5-dimensional space α′ ⊆ π1, α 6= α′, through z such that 〈α′ ∩ Oβ1〉 = α′.
Then 〈πβ1

n−6, z, α
′, x〉 = 〈πβ1

n−6, α
′, x〉 is an (n + 1)-dimensional subspace of γ

not containing πγn−5. For, suppose that πγn−5 ⊆ Ω := 〈πβ1

n−6, α
′, x〉, then since

z ∈ α′, z ∈ Ω and πβ1

n−6 ⊆ Ω, also y ∈ Ω. Furthermore, x ∈ Ω and y ∈ Ω,
which implies p ∈ Ω. Finally, πγn−5 ⊆ Ω, p ∈ Ω, which implies u ∈ Ω. Hence,

selecting α′ in such a way that u 6∈ 〈x, α′〉 will imply that πγn−5 6⊆ 〈π
β1

n−6, α
′, x〉.

This is possible. For, 〈π1, π2〉 is a 7-dimensional space, while 〈x, α′〉 is a 6-
dimensional space intersecting π2 in a hyperplane. All hyperbolic 5-spaces of
π1 on z intersect only in z, hence, all spaces 〈x, α′〉 only intersect in the line
〈x, z〉, So we can find an α′ through z, such that 〈x, α′〉 does not contain the
point u. �

Lemma 5.5.7. The set K is a truncated cone π∗n−4O, O an ovoid of Q(6, q).

Proof. From Lemma 5.5.3, we find a point r ∈ Q(2n, q) \ K satisfying
|r⊥ ∩ K| = bn−1. The (n + 2)-dimensional subspace αr from Lemma 5.5.6
meets Q(2n, q) in a cone πrn−5Qr(6, q). Choose Q = Q(2n−2, q) as the base of
the cone r⊥∩Q(2n, q) in such a way that 〈Q〉 contains the cone πrn−5Qr(6, q).
Let L be a line of Q(2n, q) on r such that L 6⊆ πr⊥n−5 ∩Q, which implies that
L⊥ does not contain the vertex πrn−5 of αr. Thus L⊥ meets αr in a hyperplane
of αr, and this hyperplane meets Q(2n, q) in a cone πLn−6QL(6, q). Note that
n > 5. If n = 5, then this hyperplane meets Q(2n, q) in a quadric QL(6, q).

As L⊥ ∩ K is contained in r⊥ ∩ K = αr ∩ K, it follows that L⊥ ∩ K is a
truncated cone πL∗n−6OL, OL an ovoid of QL(6, q). Hence, |L⊥ ∩ K| = bn−2.
By Lemma 5.5.4, |s⊥ ∩ K| = bn−1 for all points s ∈ L. Every point s gives
rise to a truncated cone s⊥ ∩ K = πs∗n−5Os, Os an ovoid of Qs(6, q), and all
these truncated cones share the truncated cone L⊥ ∩ K = πL∗n−6OL. Denote
the subspace spanned by L⊥ ∩ K by βL.
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Every point of K is collinear with a point of L, which implies that K is the
union of these q + 1 cones. It follows that |K| = bn, and that K is contained
in the union of the q+ 1 (n+ 2)-dimensional subspaces αs, s ∈ L, that share
the (n+ 1)-dimensional subspace βL.

Consider now a second line L′ of Q(2n, q) on r such that L′ 6⊆ πr⊥n−5 ∩
Q(2n, q) and choose it in such a way that βL 6⊆ L′⊥. This is possible since
〈βL, r〉⊥ = 〈r, πLn−6Q+(1, q)〉 has only dimension n − 3. Then, as for L, the
subspace βL′ := 〈L′⊥ ∩ K〉 has dimension n + 1 and is contained in αs for
all s ∈ L′. We have βL 6= βL′ . Let p be a point of L′ with p 6= r. Then
αp has dimension n+ 2 and meets αr in βL′ . Furthermore, βL′ ∩Q(2n, q) =
πL
′∗

n−6QL′(6, q), βL′ ∩K = πL
′∗

n−6OL
′
, OL′ an ovoid of QL′(6, q) and |OL′ ∩OL| >

1, since OL intersects every hyperplane of 〈OL〉 by Lemma 5.4.4
Varying the point t ∈ L′, the tangent hyperplanes t⊥ vary over the hy-

perplanes through L′⊥, hence, every point of the (n− 5)-dimensional spaces
πsn−5, s ∈ L, lies in some t⊥, t ∈ L′. Every point of πsn−5, s ∈ L, lies on lines
with q points of K, to the points of OL ∩ OL′ , and hence belongs to one of
the vertices πtn−5, t ∈ L′.

Consider a fixed point s ∈ L \ {r}, fixed points p1 ∈ πrn−5, p2 ∈ πsn−5,
p1, p2 6∈ πrn−5 ∩ πsn−5 = πLn−6. Consider a fixed point u ∈ πr∗n−5Or, then it is
possible to select a line L′′, satisfying the conditions of L′, for which u ∈ L′′⊥.
Then the preceding arguments show that the set 〈u, p2〉 \ {p2} is contained
in K.

Consider an arbitrary line M of πr∗n−5Or passing through p1 and containing
q points of K. The q2 points of 〈M, p2〉 \ 〈p1, p2〉 all lie in K; this implies that
the truncated cone 〈πrn−5, π

s
n−5〉∗Or lies in K. Since |K| = |〈πrn−5, π

s
n−5〉∗Or| =

bn, this truncated cone must be equal to K. �

We may conclude Theorem 5.5.1.

Theorem 5.5.8. Suppose that Q(6, q) has ovoids and that the smallest min-
imal blocking sets of Q(6, q) different from ovoids are truncated cones p∗O,
p ∈ Q(6, q), O an ovoid of Q(4, q). Then the smallest minimal blocking sets
of Q(2n, q), n > 4, are truncated cones π∗n−4O, πn−4 ⊂ Q(2n, q), O an ovoid
of Q(6, q) ⊂ π⊥n−4 ∩Q(2n, q), and have size qn + qn−3.

Together with Theorem 4.2.7, we find finally Theorem 5.1.3.

Theorem 5.5.9. The smallest minimal blocking sets of Q(2n, q = 3), n > 4,
are truncated cones π∗n−4O, πn−4 ⊂ Q(2n, q), O an ovoid of Q(6, q) ⊂ π⊥n−4∩
Q(2n, q), and have size qn + qn−3.
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5.6 Final remarks

Two main problems are left to characterise the smallest minimal blocking
sets of the polar space Q(2n, q), n > 3, q odd, in general.

Firstly, the existence or non-existence of ovoids of Q(6, q), q odd, q not
prime and q 6= 3h, h > 1, is not solved, although it is conjectured in [76]
that Q(6, q) has ovoids if and only if q = 3h, h > 1. As we have seen in the
previous sections, it is possible to formulate characterisation theorems only
supposing that the smallest minimal blocking sets of Q(6, q), different from
ovoids of Q(6, q), are known. The existence of ovoids of Q(6, q) changes of
course the characterisation of minimal blocking sets of Q(2n, q), n > 4, but
to prove the theorems in the higher dimensional case, the characterisation
for Q(6, q) is the most important part.

In the previous sections, characterisation theorems were obtained for the
q > 3 prime case using the classification of ovoids of Q(4, q), q prime. It is for
instance known that the ovoids of Q(4, 9) are classified ([103]), but it seems
that using this classification to characterise the smallest minimal blocking
sets of Q(6, 9), different from an ovoid, is much more complicated than doing
the characterisation of the smallest minimal blocking sets of Q(6, q), q > 3, q
prime, using the fact that all ovoids of Q(4, q), q prime, are elliptic quadrics.
Since presently it is not known that, for general q odd, q not a prime, the
classification of ovoids of Q(4, q) will be obtained, and, since a possible char-
acterisation can give many different cases, it seems more interesting to use
the techniques of Section 4.2, where the classification of the smallest minimal
blocking sets of Q(6, q), q = 3, 5, 7, is obtained using a lower bound on the
size of the smallest minimal blocking sets of Q(4, q), q = 3, 5, 7, different from
an ovoid of Q(4, q), q = 3, 5, 7.

This leads us to the second main problem, and, in the point of view of the
previous section, the most important: finding a lower bound on the size of
the smallest minimal blocking sets of Q(4, q), q odd, different from an ovoid.
In general, even minimal blocking sets of Q(4, q), q odd, of size q2 +2 are not
yet excluded.



Chapter 6
The smallest minimal blocking
sets of H(2n, q2)

I
t is known that the Hermitian variety H(2n, q2), n > 2, has no ovoids,
[92]. As for the other polar spaces having no ovoids, we can look how the

smallest sets of points blocking every generator, look like.
It will become clear that the Hermitian variety H(2n, q2) behaves very

nicely. Although the characterisation result is comparable to the result for
Q(2n, q), q > 3 prime, some important lemmas are easier to prove. Especially
the low dimensional case H(4, q2) can be handled in a more straightforward
way than Q(6, q), q > 3 prime, while the extension of the result to H(2n, q2),
n > 2, is very similar to the proof for Q(2n, q), q > 3, n > 3, q prime.

The present chapter is based on joint work with K. Metsch [35].

6.1 Introduction

In a paper of J.A. Thas [92], the non-existence for ovoids of H(2n, q2) is
proved. The proof is based on a counting argument, and goes on with the
use of geometric properties of H(2n, q2), proving the non-existence of an
ovoid.

In one of his papers, K. Metsch states that whenever the non-existence of
ovoids of some polar space P can be proved “easily”, then there is hope to
determine the smallest sets of points blocking every generator. With “easily”
is meant a proof based on a short counting argument. It is interesting to see
that it is indeed possible to prove the non-existence of ovoids of H(4, q2) with
a short argument. The proof is taken from [74].

Lemma 6.1.1. (Thas [92]) The polar space H(4, q2) has no ovoids.
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Proof. Suppose that H(4, q2) has an ovoid O. Consider an arbitrary point
p ∈ O. Then p lies on q6 lines intersecting H(4, q2) in 1 + q points. Since
|O| = q5 + 1, we find a line L on p intersecting H(4, q2) in 1 + q points and
intersecting O in exactly the point p. Every point of O \ {p} lies in x⊥, for
a unique point x ∈ L \ {p}. If x ∈ H(4, q2), then x lies on q3 + 1 lines of
H(4, q2) that all meet O in exactly one point and hence, |x⊥ ∩ O| = q3 + 1.
If x 6∈ H(4, q2), then x⊥ ∩ H(4, q2) = H(3, q2) and x⊥ ∩ O is an ovoid of this
H(3, q2). Hence again, |x⊥∩O| = q3 + 1. It follows that |O|− 1 = q2(q3 + 1),
a contradiction. �

An argument very similar to this counting will show that a minimal block-
ing set of H(4, q2) necessarily contains “a lot” more points than q5 + 1. This
behaviour can also be found in the polar spaces Q−(5, q) and W(2n + 1, q),
while for other polar spaces more arguments are needed to prove the non-
existence of ovoids, when possible.

After the use of counting arguments, we will proceed with the proof for
H(4, q2) in a way quite similar to the proof for Q(6, q), q prime.

6.2 The smallest minimal blocking sets of

H(4, q2)

In this section, we will prove the following theorem.

Theorem 6.2.1. Let K be a minimal blocking set of H(4, q2), |K| 6 q5 + q2.
Then there exists a point p ∈ H(4, q2) such that K = p∗H(2, q2) ⊆ p⊥ ∩
H(4, q2), and |K| = q5 + q2.

For this section, we suppose that K is a minimal blocking set of H(4, q2),
|K| = q5 + δ, 1 6 δ 6 q2. We start with the following traditional lemma.

Lemma 6.2.2. If p is a point of H(4, q2), p ∈ K, then |p⊥ ∩ K| 6 δ.

Proof. Since K is minimal, there exists a generator L of H(4, q2) such that
L ∩ K = {p}. Each point of L \ {p} lies on q3 generators of H(4, q2) which
meet K in at least one point different from p. Considering the q2 · q3 such
generators which meet K in a point of K\p⊥, we find |p⊥∩K| 6 |K|−q5 = δ.

�

Lemma 6.2.3. For all points r ∈ PG(4, q2) \ K holds |r⊥ ∩ K| > q3 + 1.
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Proof. Suppose that r ∈ H(4, q2) \ K. Then each one of the q3 + 1
generators of H(4, q2) through r meets K in at least one point of K. Hence,
|r⊥ ∩ K| > q3 + 1. If r ∈ PG(4, q2) \ H(4, q2), then r⊥ ∩ H(4, q2) = H(3, q2),
and all generators of H(3, q2) are generators of H(4, q2) and must meet K in
at least one point, hence again |r⊥ ∩ K| > q3 + 1. �

Lemma 6.2.4. If p ∈ K, then |p⊥ ∩ K| > q2 − q + 1.

Proof. There are q6 lines of PG(4, q2) on p not in the tangent cone p⊥. We
call these lines secants on p. At most |K| − 1 of those secant lines meet K in
a second point, hence we find that at least q6 − q5 + 1− δ secant lines L on
p meet K only in p. We prove that L⊥ ∩ K 6= ∅ for each such secant line L
on p. Therefore we count the set of pairs {(r, s)‖r ∈ K, s ∈ L, r ∈ s⊥}. Each
point r ∈ L⊥ ∩K occurs q2 + 1 times since r ∈ s⊥ for all s ∈ L. Every other
point r ∈ K occurs just once. By the previous lemma, every point s ∈ L\{p}
occurs in at least q3 + 1 pairs. Hence,

|K|+ |L⊥ ∩ K|q2 > |p⊥ ∩ K|+ q2(q3 + 1).

As |K| 6 q5 + q2, we find L⊥ ∩ K 6= ∅. So far, we have q6 − q5 + 1 − δ
secant lines L on p satisfying L⊥ ∩K 6= ∅. It is clear that L⊥ ∩K ⊂ p⊥ ∩K.
The subspaces L⊥ ∩ K are planes of the 3-dimensional space p⊥ not passing
through p. As every point of (p⊥ ∩ K) \ {p} lies in q4 such planes of p⊥, it
follows that |(p⊥ \{p})∩K|q4 > q6− q5 + 1− δ. Hence, |p⊥∩K| > q2− q+ 1.

�

The power of using the polarity together with the geometric structure of
the Hermitian variety becomes clear with Lemma 6.2.4. The first two lemmas
can be repeated for e.g. the parabolic quadric Q(6, q), q odd. But with the
same arguments, we can never reach a conclusion like in Lemma 6.2.4. The
reason is that all (2n− 1)-dimensional non-singular subvarieties of H(2n, q2)
have generators of the same dimension as H(2n, q2). This is not the fact for
e.g. Q(6, q). It contains hyperbolic quadrics in 5 dimensions, also containing
planes as generators, but it also contains elliptic quadrics in 5 dimensions,
which only contain lines as generators.

Lemmas 6.2.2, 6.2.3 and 6.2.4 also lead to the following corollary.

Corollary 6.2.5. H(4, q2) has no ovoids.

Proof. An ovoid satisfies the hypothesis on K for this section, with δ = 1.
Lemma 6.2.2 and Lemma 6.2.4 imply δ > q2 − q + 1, a contradiction. �
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The lower bound on δ in Lemma 6.2.4 is strong enough to work immedi-
ately towards the desired structure for K. We first introduce the following
notation. If p is a point, p ∈ H(4, q2), then wp + 1 is the smallest number
of points of K that lie on a generator of H(4, q2) on p. Since K is minimal,
wp = 0 for all p ∈ K. For a line L, we define wL =

∑
p∈Lwp.

The following lemma is comparable to Lemma 3.2.6.

Lemma 6.2.6. If r is a point, r ∈ H(4, q2) \ K, wr = 0, then |r⊥ ∩ K| 6
q3 − q2 + q + δ.

Proof. Let L be a generator on r meeting K in exactly one point p. Each
one of the q2− 1 points of L \ {p, r} lies on q3 further generators meeting K.
Hence,

(|p⊥ ∩ K| − 1) + (|r⊥ ∩ K| − 1) 6 |K| − 1− (q2 − 1)q3.

From Lemma 6.2.4, we have |p⊥ ∩K| > q2 − q + 1, and |K| = q5 + δ. Hence,
|r⊥ ∩ K| 6 q3 − q2 + q + δ. �

The next lemma implies already a certain structure for K. Finding a line
of H(4, q2) intersecting K in more than one point implies that there exists a
point on that generator such that all generators on that point intersect K in
more than one point.

Lemma 6.2.7. If L is a generator of H(4, q2) meeting K in more than one
point, then L contains a point s ∈ H(4, q2) \ K, with ws > 0.

Proof. Suppose that L meets K in more than one point. Suppose that
ws = 0 for all s ∈ L \K. Define k+ 1 = |L∩K|. We again count the number
of pairs in {(r, s)‖r ∈ K, s ∈ L, r ∈ s⊥}. Each one of the k + 1 points of
L ∩ K occurs in q2 + 1 pairs, every other point of K occurs in exactly one
pair. We can apply Lemma 6.2.2 to the points of L∩K and Lemma 6.2.6 to
the points of L \ K. Hence,

|K|+ (1 + k)q2 6 (1 + k)δ + (q2 − k)(q3 + δ − q2 + q + 1).

Since |K| = q5 + δ, we obtain k(q3 + q+ 1) 6 q2(δ− q2 + q). Since k > 1 and
δ 6 q2, this is a contradiction. �

We can now prove that a generator contains exactly one point of K or
contains ”a lot” of points of K. We mention the extra condition q > 2 for
the next lemma. The case q = 2 will be handled separately.

Lemma 6.2.8. Suppose that q > 2. If p ∈ H(4, q2) \ K and wp > 0, then
wp > q2 − q.
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Proof. Define b = wp. Let L be a generator on p, |L∩K| = wp + 1 = b+ 1.
Count again the number of pairs in the set {(r, s)‖r ∈ K, s ∈ L, r ∈ s⊥}. We
find

|K|+ (1 + b)q2 =
∑
s∈L

|s⊥ ∩ K|.

If s ∈ L∩K, then, by Lemma 6.2.4, |s⊥∩K| > q2−q+1. If s ∈ L\(K∪{p}), s
lies on q3 +1 generators meeting K, hence |s⊥∩K| > q3 +b+1. Furthermore,
all q3 + 1 generators on p meet K in at least 1 + wp = 1 + b points. Hence,

|K|+ (1 + b)q2 > (1 + b)(q2− q+ 1) + (q2− b− 1)(q3 + b+ 1) + (q3 + 1)(1 + b),

giving δ > (b + 1)(q2 − q − b + 1). As δ 6 q2 and supposing that q > 2, we
find b < 1 or b > q2 − q − 1, hence, since we supposed that wp = b > 0,
wp = b > q2 − q. �

A final step is now sufficient to prove the result for H(4, q2), q > 2.

Lemma 6.2.9. Suppose that q > 2, then there exists a point r ∈ H(4, q2)\K
such that K is the truncated cone r∗H(2, q2) ⊆ r⊥ ∩ K.

Proof. SinceK is not an ovoid, there exists a generator LmeetingK in more
than 1 point. By Lemma 6.2.7 and Lemma 6.2.8, L contains a point r with
wr > q2−q. Hence, r⊥ contains at least (q3 +1)(wr+1) = (q3 +1)(q2−q+1)
points of K.

There cannot be a second point r′ ∈ H(4, q2) with this property, because
otherwise we could conclude that

|K| > 2(q3 + 1)(q2 − q + 1)− |r⊥ ∩ r′⊥ ∩ K|

As |K| 6 (q3 + 1)q2 and

|r⊥ ∩ r′⊥ ∩ K| 6 |r⊥ ∩ r′⊥ ∩ H(4, q2)| 6 q3 + 1,

this is a contradiction.
Hence, every generator that meets K in more than 1 point, must pass

through r. However, Lemma 6.2.4 implies that every point of K lies on a
generator meeting K in more than 1 point. Hence, all points of K lie in r⊥.
As r 6∈ K and as K meets all generators, it is clear that K must consist of all
points of r⊥ ∩ H(4, q2) different from r, since each point x ∈ r⊥ ∩ H(4, q2),
with x 6= r, lies on a generator M with M ∩ r⊥ = {x}. �

In the final lemma, we handle the case q = 2.
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Lemma 6.2.10. Suppose that q = 2, then there exists a point r ∈ H(4, q2)\K
such that K is the truncated cone r∗H(2, q2) ⊆ r⊥ ∩ K.

Proof. Lemma 6.2.2 implies that every generator meets K in at most
δ 6 q2 = 4 points. Suppose that there exists a generator L meeting K in
exactly 4 points, and let r be the point of L not in K. Then Lemma 6.2.2
implies that δ = q2 = 4 and p⊥ ∩ K = L ∩ K for all points p ∈ L ∩ K. As
every point of K is collinear to at least one point of L, it follows that K ⊆ r⊥,
which finishes the proof. Hence, the lemma is proved if we can prove that
there exists a generator meeting K in 4 points.

Assume the contrary, hence every generator meets K in 1, 2 or 3 points.
Let s1, s2 and s3 be the number of generators of H(4, q2) meeting K in 1,
2 and 3 points, respectively. Then s1 + s2 + s3 = (q3 + 1)(q5 + 1). Also
s1 + 2s2 + 3s3 = |K|(q3 + 1), since every point of K lies on q3 + 1 generators
of H(4, q2). Lemma 6.2.4 implies that |p⊥ ∩ K| > 3 for p ∈ K, so we have
2s2 + 6s3 > 2|K|. The two equations and the inequality together imply that
s3 > 0. Hence, there exists a generator that meets K in 3 points.

Consider a point r ∈ H(4, q2) \ K, put b := wr, and let L be a generator
on r that meets K in exactly 1 + b points. Since no generator contains 4
points of K, b 6 2. Lemma 6.2.4 implies that |s⊥ ∩ K| > 3, for every point
s ∈ L ∩ K, so s⊥ ∩ K contains at least 2 − b points of K not lying on L.
Each one of the q2 − 1 − b points s of L not lying in K ∪ {r} lies on q3 + 1
generators, so q3 of these meet K in points outside L. This implies that there
are at least (1 + b)(2 − b) + (q2 − 1 − b)q3 points in K not lying on L and
not collinear with r. Hence, |r⊥ ∩K| 6 |K| − (1 + b)(2− b)− (q2 − 1− b)q3.
Hence, |r⊥∩K| 6 10 + b(b+ 7). If b = 0, this gives |r⊥∩K| 6 10; as r lies on
q3 +1 = 9 generators, this implies that all generators on r meet K in 1 point,
except for maybe one generator that contains two points of K. If b = 1, then
|r⊥ ∩K| 6 18. Since b = wr = 1, wr + 1 = 2 is the smallest number of points
of K on every generator on r. Hence, all q3 + 1 generators on r meet K in
exactly 2 points and |r⊥ ∩ K| = 18.

As we have seen above, there exists a generator that meets K in 3 points.
Then wr = 0 and wr = 1 is impossible for the 2 points r ∈ L \ K. Hence,
wr > 2 for the 2 points r ∈ L \K. There are 17 generators containing one of
these 2 points, and each generator meets K in at least 3 points. This implies
|K| > 17 · 3, a contradiction. �

Lemmas 6.2.9 and 6.2.10 together imply Theorem 6.2.1.
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6.3 The smallest minimal blocking sets of

H(2n, q2), n > 2

In this section, we prove the following theorem.

Theorem 6.3.1. Let K be a minimal blocking set of H(2n, q2), n > 2, |K| 6
q2n−2(q3 + 1). Then there exists an (n − 2)-dimensional subspace πn−2 ⊂
H(2n, q2) such that K is the truncated cone π∗n−2H(2, q2) ⊆ π⊥n−2 ∩H(2n, q2),
and |K| = q2n−2(q3 + 1).

We suppose for this section that K is a minimal blocking set of H(2n, q2),
n > 2, |K| 6 bn, with bn defined as

bn := q2n−2(q3 + 1) = |π∗n−2H(2, q2)|.

To prove the theorem, we use induction on n. The case n = 2 is handled
in Section 6.2.

Lemma 6.3.2. Let r be a point of H(2n, q2) \ K. Then |r⊥ ∩ K| > bn−1.
If equality holds, then there exists an (n + 1)-dimensional subspace αr, such
that r ∈ αr ⊂ r⊥ and αr ∩ H(2n, q2) = πn−2H(2, q2). Moreover, every line
L on r contained in H(2n, q2) meets K if and only if L ⊂ αr \ πn−2. In
other words, the points of K∩ r⊥ are projected from r onto a truncated cone
π∗n−3H(2, q2) ⊂ αr, r 6∈ πn−3.

Proof. Applying the induction hypothesis to the base of the cone r⊥ ∩
H(2n, q2) = rH(2n − 2, q2), we find that |r⊥ ∩ K| > bn−1. If equality
holds, then necessarily r projects the points of r⊥ ∩K onto a truncated cone
π∗n−3H(2, q2). The (n+1)-dimensional space αr is the space 〈r, πn−3H(2, q2)〉.

�

The next lemma is a generalisation of Lemma 5.2.3 and also Lemma 5.5.4.
The importance of the generalisation will become clear afterwards.

Lemma 6.3.3. Suppose that β ⊂ H(2n, q2) is an s-dimensional subspace
with β ∩K = ∅. Then |β⊥ ∩K| > bn−s−1. Equality implies that |K| = bn and
|r⊥ ∩ K| = bn−1 for all r ∈ β.

Proof. Count the number of pairs in the set {(r, t)‖r ∈ K, t ∈ β, r ∈ t⊥}.
We obtain

|β⊥ ∩ K|q
2s+2 − 1

q2 − 1
+ (|K| − |β⊥ ∩ K|)q

2s − 1

q2 − 1
=
∑
t∈β

|t⊥ ∩ K|.
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Using |K| 6 bn, |r⊥ ∩K| > bn−1 for all r ∈ H(2n, q2) \K and bn = q2bn−1, we
find that |β⊥ ∩ K| > bn−s−1.

Suppose that |β⊥ ∩K| = bn−s−1. Using again that |r⊥ ∩K| > bn−1 for all
r ∈ H(2n, q2) \ K, we now find that |K| > bn, which implies that |K| = bn
and henceforth also |r⊥ ∩ K| = bn−1 for all r ∈ β. �

It is not possible to prove the lemma for hyperplanes of generators of
quadrics. With the next lemma, it turns out that exactly the hyperplanes of
generators case is very useful to prove that equality occurs in Lemma 6.3.2.

Lemma 6.3.4. There exists a point r ∈ H(2n, q2) \ K such that |r⊥ ∩ K| =
bn−1.

Proof. Consider a point p ∈ K and a generator πn meeting K only
in p. Such a generator exists, since we assumed K to be minimal. The
generator πn contains q2n−2 hyperplanes πn−1 not containing p. Suppose that
|π⊥n−1∩K| > q3+2 for all the subspaces πn−1. Since all points p ∈ K\πn belong
to exactly one π⊥n−1, we find that |K| > q2n−2(q3 + 1) + 1, where we counted
the point p separtely, contradicting with |K| 6 bn. Applying Lemma 6.3.3 to
any subspace πn−1, with |πn−1 ∩ K| 6 q3 + 1, gives the lemma. �

Also now it is crucial to prove that in case of equality, not only the
projection of r⊥ ∩ K, but also the set r⊥ ∩ K itself is a truncated cone.

Lemma 6.3.5. Suppose that r is a point r ∈ H(2n, q2) \ K, with |r⊥ ∩ K| =
bn−1. If β is a hyperplane of αr on r not containing the vertex πn−2 of the
cone αr ∩ H(2n, q2), then the points of β ∩ K lie in an (n − 1)-dimensional
subspace β of β, r 6∈ β.

Proof. Since β is a hyperplane of αr on r not containing the vertex πrn−2

of the cone αr ∩H(2n, q2) = πrn−2Hr(2, q2), β ∩H(2n, q2) is a cone with base

Hr(2, q2) and vertex πβn−3, an (n−3)-dimensional subspace on r. When n = 3,
this subspace is the point r itself. The properties of the polarity associated

to H(2n, q2) imply that β
⊥ ∩H(2n, q2) = πβn−3Hβ(1, q2), and this cone meets

the space αr in the space πrn−2. Thus there must exist a line L of H(2n, q2)

contained in β
⊥

such that L∩αr = {r}. Since L ⊂ β
⊥

, we find β = L⊥∩αr.
By Lemma 6.3.2, L does not meet K.

Since L⊥∩K ⊆ r⊥∩K ⊆ αr, it is clear that L⊥∩K = β∩K. Lemma 6.3.2
implies that |L⊥∩K| = bn−2. Suppose that p is a point of L\{r}. Lemma 6.3.3
implies that |p⊥ ∩ K| = bn−1. By Lemma 6.3.2, there exists an (n + 1)-
dimensional subspace αp that meets H(2n, q2) in a cone πpn−2Hp(2, q2) and
p⊥ ∩ K ⊂ αp. Furthermore, αp contains bn−1 points of K, while L⊥ contains
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bn−2 points of K, hence L⊥ intersects αp in a hyperplane β
′
of αp, with p ∈ β′.

We conclude that L⊥ ∩ K is a subset of β and β
′
. The spaces β and β

′
are

different since β does not contain the line L and hence the point p 6∈ β.
Hence L⊥ ∩ K lies in the (n − 1)-dimensional subspace β ∩ β′, and cannot
lie in a subspace of lower dimension by Lemma 6.3.2. It is impossible that
r ∈ β = β∩β′; or else r projects the points of β∩K onto an (n−2)-dimensional
space, but these projected points form a truncated cone πn−4Hr(2, q2) which
lies in a space of dimension n − 1. Since L⊥ ∩ K = β ∩ K, the lemma is
proved. �

Lemma 6.3.6. Suppose that r is a point r ∈ H(2n, q2)\K such that |r⊥∩K| =
bn−1. Then there exists an n-dimensional subspace αr, r 6∈ αr, such that
αr ∩H(2n, q2) = πn−3H(2, q2), and such that the truncated cone π∗n−3H(2, q2)
is equal to the set r⊥ ∩ K.

Proof. Consider the (n + 1)-dimensional space αr with αr ∩ H(2n, q2) =
πn−2H(2, q2). Suppose that β1 is a hyperplane of αr, not containing πn−2 and
containing the point r. By Lemma 6.3.5, β1 contains an (n− 1)-dimensional
subspace β1, r 6∈ β1, such that β1 ∩H(2n, q2) = πβ1

n−4Hβ1(2, q2) and β1 ∩K =

β1 ∩ K = πβ1∗
n−4Hβ1(2, q2). Choose a tangent line T to Hβ1(2, q2) in the plane

of Hβ1(2, q2). We can find a hyperplane β2 of αr, β2 6= β1, r ∈ β2, πn−2 6⊆ β2,
β1 6⊆ β2, but πβ1

n−4T ⊆ β2. Again, by Lemma 6.3.5, we find an (n − 1)-

dimensional subspace β2, r 6∈ β2, β2∩H(2n, q2) = πβ2∗
n−4Hβ2(2, q2). Necessarily,

πβ1

n−4 = πβ2

n−4, and T is a tangent line to Hβ2(2, q2) 6= Hβ1(2, q2).
Define π1 := 〈Hβ1(2, q2)〉 and π2 := 〈Hβ2(2, q2)〉. Consider the n-dimen-

sional space γ = 〈πβ1

n−4, π1, π2〉. The two planes π1 and π2 are skew to πn−2,
hence, πn−2 6⊆ γ. Furthermore, r 6∈ γ, since then γ would be an n-dimensional
subspace on r, not containing πn−2, spanned by points of r⊥ ∩ K, a contra-
diction with Lemma 6.3.5. We conclude that γ ∩ H(2n, q2) = πγn−3Hγ(2, q2).

Choose an arbitrary Hermitian line H′(1, q2) ⊂ Hβ1(2, q2), H′(1, q2) con-
taining the point T ∩ Hβ1(2, q2). Consider the q2 + 1 (n − 1)-dimensional
subspaces δi of γ through the (n− 2)-dimensional subspace 〈H′(1, q2), πβ1

n−4〉.
One δi, say δ1, is the space 〈πγn−3H′(1, q2)〉. Consider now a space δi, i 6= 1.
It is clear that δi is spanned by points of K, since the Hermitian curves
Hβj(2, q2) ⊂ K, j = 1, 2, and δi intersects the spaces πj in secants to
Hβj(2, q2), j = 1, 2, or contains Hβ1(2, q2). If p is a point of H(2n, q2),
p ∈ δi \ (β1 ∪ β2 ∪ πγn−3) such that p 6∈ K, then by Lemma 6.3.2, the line
〈r, p〉 meets K in exactly one point t. But then the space 〈t, δi〉 ⊆ αr is an
n-dimensional subspace on r, not containing πn−2 and spanned by points of
r⊥ ∩ K, a contradiction with Lemma 6.3.5. We conclude that every point
p ∈ (γ ∩ H(2n, q2)) \ 〈H′(1, q2), πγn−3〉 lies in K.



 6. The smallest minimal blocking sets of H(2n, q2)

Letting vary the Hermitian line H′(1, q2), we can reach every point p ∈
(γ ∩ H(2n, q2)) \ πγn−3, since the intersection of all these Hermitian lines is
empty. Hence, γ ∩ K = πγ∗n−3Hγ(2, q2), and the space γ is the space αr. �

Theorem 6.3.7. Let K be a minimal blocking set of H(2n, q2), n > 2, |K| 6
q2n−2(q3 + 1). Then there exists an (n − 2)-dimensional subspace πn−2 ⊂
H(2n, q2) such that K is the truncated cone π∗n−2H(2, q2) ⊆ π⊥n−2, and |K| =
q2n−2(q3 + 1).

Proof. From Lemma 6.3.4, we find a point r ∈ H(2n, q2) \ K satisfying
|r⊥ ∩ K| = bn−1. The n-dimensional subspace αr from Lemma 6.3.6 meets
H(2n, q2) in a cone πrn−3Hr(2, q2). Choose the base H = H(2n− 2, q2) of the
cone r⊥ ∩ H(2n, q2) in such a way that 〈H〉 contains the cone πrn−3Hr(2, q2).
Let L be a line of H(2n, q2) on r such that L 6⊆ πr⊥n−3, which implies that L⊥

does not contain the vertex πrn−3 of αr. Thus L⊥ meets αr in a hyperplane
of αr, and this hyperplane meets H(2n, q2) in a cone πn−4H(2, q2). Note that
n > 3. If n = 3, then this hyperplane meets H(2n, q2) in a Hermitian curve
H(2, q2).

As L⊥ ∩ K is contained in r⊥ ∩ K = αr ∩ K, it follows that L⊥ ∩ K is
a truncated cone π∗n−4H(2, q2). Hence, |L⊥ ∩ K| = bn−2. By Lemma 6.3.3,
|s⊥ ∩ K| = bn−1 for all points s ∈ L. Every point s ∈ L gives rise to a
truncated cone s⊥ ∩ K = πs∗n−3H(2, q2), and all these truncated cones share
the truncated cone L⊥ ∩K = π∗n−4H(2, q2). Denote the subspace spanned by
L⊥ ∩ K by βL.

Every point of K is collinear with a point of L, which implies that K is the
union of these q2 + 1 cones. It follows that |K| = bn, and that K is contained
in the union of the q2 + 1 n-dimensional subspaces αs, s ∈ L, that share the
(n− 1)-dimensional subspace βL.

Consider now a second line L′ of H(2n, q2) on r such that L′⊥ 6⊆ πr⊥n−3 ∩
H(2n, q2). and choose it in such a way that βL 6⊆ L′⊥. This is possible since
〈βL, r〉⊥ has only dimension n − 1. Then, as for L, the subspace βL′ :=
〈L′⊥∩K〉 has dimension n−1, and is contained in αs for all s ∈ L′. We have
βL′ 6= βL, since βL 6⊆ L′⊥. Let p be a point of L′ with p 6= r. Then αp has
dimension n and meets αr in βL′ . Furthermore, βL′ ∩K = πL

′∗
n−4HL′(2, q2) and

|HL′(2, q2) ∩ HL(2, q2)| > 1.
Varying the point t ∈ L′, the tangent hyperplanes t⊥ vary over the hy-

perplanes through L′⊥, hence, every point of the (n− 3)-dimensional spaces
πsn−3, s ∈ L, lies in some t⊥, t ∈ L′. Every point of πsn−3, s ∈ L, lies on lines
with q2 points of K to the points of HL(2, q2)∩HL′(2, q2), and hence belongs
to one of the vertices πtn−3, t ∈ L′.
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Consider a fixed point s ∈ L \ {r}, two fixed points p1 ∈ πrn−3, p2 ∈ πsn−3,
p1, p2 6∈ πrn−3 ∩ πsn−3. Consider a fixed point u ∈ πr∗n−3Hr(2, q2), then it is
possible to select a line L′′, satisfying the conditions of L′, for which u ∈ L′′⊥.
Then the preceding arguments show that the set 〈u, p2〉 \ {p2} is contained
in K.

Consider an arbitrary line M of πr∗n−3Hr(2, q2) passing through p1 and
containing q2 points of K. The q4 points of 〈M, p2〉 \ 〈p1, p2〉 all lie in K;
this implies that the truncated cone 〈πrn−3, π

s
n−3〉∗Hr(2, q2) lies in K. Since

|K| = |〈πrn−3, π
s
n−3〉∗Hr(2, q2)| = bn, this cone must be equal to K. �





Bijlage A
Nederlandstalige samenvatting

I
n dit proefschrift onderzoeken we voornamelijk partiële spreads van be-
paalde eindige veralgemeende vierhoeken en blokkerende verzamelingen

van bepaalde eindige klassieke polaire ruimten. We beschouwen steeds ein-
dige veralgemeende vierhoeken en de eindige klassieke polaire ruimten die op-
gebouwd zijn uit deelstructuren van de eindige projectieve ruimten PG(n, q).
We starten deze samenvatting met een kort overzicht van de belangrijkste
definities en gekende resultaten uit Hoofdstuk 1. Daarna beschrijven we de
resultaten uit de opeenvolgende hoofdstukken, alsook de belangrijkste con-
clusies.

A.1 Inleiding

In Hoofdstuk 1 wordt het onderzoek gesitueerd en worden basisbegrippen uit
eindige projectieve meetkunde ingevoerd. We verwijzen naar enkele belang-
rijke referentiewerken [59, 60, 61, 81], voor een uitvoerige inleiding tot en be-
schrijving van eindige projectieve ruimten, eindige veralgemeende vierhoeken
en eindige klassieke polaire ruimten. We herhalen hier kort de belangrijkste
definities.

Definitie A.1.1. Een blokkerende verzameling van PG(2, q) is een verzame-
ling B van punten van PG(2, q), zodat elke rechte van PG(2, q) minstens 1
punt van B bevat. Een blokkerende verzameling B wordt triviaal genoemd
als ze een rechte van PG(2, q) bevat; ze wordt minimaal genoemd als B \{p}
geen blokkerende verzameling is voor elk punt p ∈ B.

Definitie A.1.2. Een t-spread van PG(n, q) is een verzameling S van t-
dimensionale deelruimten van PG(n, q) zodat elk punt van PG(n, q) bevat is
in juist 1 element van S.
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Definitie A.1.3. De eindige klassieke polaire ruimten zijn:

(i) De niet-singuliere kwadrieken in oneven dimensie, Q+(2n+1, q), n > 1,
en Q−(2n+ 1, q), n > 2, samen met de deelruimten erin bevat; dit zijn
polaire ruimten van rang n+ 1 en n.

(ii) De niet-singuliere parabolische kwadriek in even dimensie, Q(2n, q),
n > 2, samen met de deelruimten erin bevat; dit is een polaire ruimte
van rang n.

(iii) De punten van PG(2n+1, q), n > 1, samen met de totaal isotrope deel-
ruimten van een niet-singuliere symplectische polariteit van PG(2n +
1, q); dit is een polaire ruimte van rang n+ 1.

(iv) De niet-singuliere Hermitische variëteit in PG(2n, q), samen met de
deelruimten erin bevat, n > 2 (respectievelijk, PG(2n + 1, q), n > 1);
dit is een polaire ruimte van rang n (respectievelijk rang n+ 1).

Zij S een polaire ruimte van rang n, dan worden de deelruimten van S van
dimensie n− 1 ook generatoren genoemd.

Definitie A.1.4. Een eindige veralgemeende vierhoek van de orde (s, t) is
een punt-rechte meetkunde (P ,B, I), P en B disjuncte verzamelingen, I⊆
(P × B) ∪ (B × P), waarbij I voldoet aan de volgende axioma’s:

(i) Elk punt is incident met 1 + t rechten (t > 1) en twee verschillende
rechten zijn incident met ten hoogste 1 punt.

(ii) Elke rechte is incident met 1 + s punten (s > 1) en twee verschillende
rechten zijn incident met ten hoogste 1 punt.

(iii) Als x een punt is en L een rechte niet incident met x, dan bestaat er
een uniek paar (y,M) ∈ P × B, zodat x I M I y I L.

De natuurlijke getallen s en t zijn de parameters van de veralgemeende vier-
hoek S en S is een veralgemeende vierhoek van orde (s, t). Wanneer s = t,
dan is S een veralgemeende vierhoek van de orde s.

We merken tenslotte op dat eindige klassieke polaire ruimten van rang 2
veralgemeende vierhoeken zijn.

Definitie A.1.5. Zij G = (P ,B, I) een eindige veralgemeende vierhoek.

(i) Een ovöıde is een verzameling O van punten van G zodat elke rechte
van G juist 1 punt van O bevat.
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(ii) Een blokkerende verzameling is een verzameling B van punten van G
zodat elke rechte van G ten minste 1 punt van B bevat.

(iii) Een spread is een verzameling S van rechten van G zodat elk punt van
G bevat is in juist 1 element van S.

(iv) Een bedekking is een verzameling C van rechten van G zodat elk punt
van G bevat is in ten minste 1 element van C.

Definitie A.1.6. Zij G = (P ,B, I) een eindige klassieke polaire ruimte van
rang n, n > 3.

(i) Een ovöıde is een verzameling O van punten van G zodat elke generator
van G juist 1 punt van O bevat.

(ii) Een t-blokkerende verzameling is een verzameling B van punten van G
zodat elke t-dimensionale deelruimte van G ten minste 1 punt van B
bevat. Als t de dimensie van de generatoren is, dan spreken wij ook
kortweg van blokkerende verzameling.

(iii) Een t-spread is een verzameling S van t-dimensionale deelruimten van
G zodat elk punt van G bevat is in juist 1 element van S.

(iv) Een t-bedekking is een verzameling C van t-dimensionale deelruimten
van G zodat elk punt van G bevat is in ten minste 1 element van C.

Voor een aantal basisresultaten omtrent de hierboven gedefinieerde struc-
turen, verwijzen we naar Hoofdstuk 1.

Tot slot vermelden we de definities van een aantal begrippen gerelateerd
aan een blokkerende verzameling en een bedekking van een veralgemeende
vierhoek.

Beschouw een veralgemeende vierhoek G = (P ,B, I). Stel dat B een
blokkerende verzameling is van G. Een meervoudige rechte met betrekking tot
B is een rechte van G die minstens 2 punten van B bevat. De surplus van
een rechte van G met betrekking tot B is 1 minder dan het aantal punten van
B bevat in deze rechte.

Stel dat C een bedekking is van G. Een meervoudig punt met betrekking
tot C is een punt van G dat op minstens twee rechten van C ligt. De surplus
van een punt met betrekking tot C is 1 minder dan het aantal rechten van C
door dit punt.
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A.2 Maximale partiële spreads van translatie

veralgemeende vierhoeken

Voor een willekeurige veralgemeende vierhoek is het bestaan van spreads
geenszins gegarandeerd. Voor een aantal gekende klassen echter is het be-
staan of niet bestaan van spreads aangetoond; we zullen verderop de details
omtrent de beschouwde veralgemeende vierhoeken vermelden.

Hoofdstuk 2 is gebaseerd op gezamelijk werk met M. R. Brown en L. Storme
[21].

Definitie A.2.1. Zij G = (P ,B, I) een eindige veralgemeende vierhoek.

(i) Een partiële spread is een verzameling S van rechten van G zodat elk
punt van G bevat is in ten hoogste 1 element van S. Een partiële spread
heet maximaal als en slechts als S niet kan uitgebreid worden tot een
grotere partiële spread.

(ii) Een bedekking is een verzameling C van rechten van G zodat elk punt
van G bevat is in ten minste 1 element van C. Een bedekking C heet mi-
nimaal als geen enkele echte deelverzameling van C nog een bedekking
is.

Probleem 1. Wanneer de veralgemeende vierhoek G = (P ,B, I) een spread
heeft, dan kan men onderzoeken wanneer partiële spreads uitbreidbaar zijn
tot spreads of wanneer bedekkingen een spread bevatten, en dus herleidbaar
zijn tot spreads. Met andere woorden, we trachten een bovengrens, respec-
tievelijk ondergrens, te vinden voor het aantal elementen in een maximale
partiële spread, respectievelijk een minimale bedekking van G. Men kan even-
eens in het geval van niet bestaan van een spread deze boven- en ondergrens
onderzoeken.

Probleem 1 is ook een klassiek probleem voor de ruimte PG(n, q). Re-
cent werden er een aantal resultaten beschreven in [45]. Gebruikmakend van
analoge technieken zullen we het bestaande probleem beschouwen voor een
belangrijke klasse van eindige veralgemeende vierhoeken, namelijk translatie
veralgemeende vierhoeken, verderop genoteerd met TGQ. We zullen TGQs
definiëren aan de hand van een model in de projectieve ruimte PG(N, q).
Voor een alternatieve definitie en belangrijke gekende resultaten hieromtrent,
verwijzen we naar Hoofdstuk 2 en Sectie 2.1. Voorafgaand aan de definitie
van TGQs, geven we een definitie van drie belangrijke structuren in PG(n, q).

Definitie A.2.2. (i) Een ovaal van PG(2, q) is een verzameling O van
q + 1 punten van PG(2, q), zodat geen drie punten van O collineair
zijn.
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(ii) Een ovöıde van PG(3, q), q > 2, is een verzameling O van q2 +1 punten
van PG(3, q), zodat geen drie punten van O collineair zijn.

(iii) Een egg is een verzameling E van qm+1 (n−1)-dimensionale deelruimten
αi van P = PG(2n+m−1, q), zodat elke drie deelruimten een (3n−1)-
dimensionale deelruimte van P opspannen, en zodat elke αi bevat is in
een (n + m− 1)-dimensionale deelruimte βi, scheef aan elke αj, j 6= i.
We noemen βi de raakruimte aan E in het element αi.

We merken op dat het begrip “egg” een veralgemening is van de be-
grippen “ovaal” en “ovöıde”. We vermelden kort enkele belangrijke gekende
resultaten over ovalen en ovöıden.

Stelling A.2.3. (i) (Segre [83, 84]) In PG(2, q), q oneven, is elke ovaal
een kegelsnede Q(2, q).

(ii) (Barlotti [7], Panella [77]) Elke ovöıde van PG(3, q), q oneven, is
een elliptische kwadriek Q−(3, q).

(iii) (Brown [20]) Als een ovöıde O van PG(3, q), q > 2, q even, een
kegelsnede Q(2, q) bevat, dan is O een elliptische kwadriek Q−(3, q).

We definiëren nu de structuur T (n,m, q).

Definitie A.2.4. Zij E een egg in P = PG(2n + m − 1, q). We bedden de
ruimte P in PG(2n+m, q) in als hypervlak, en we definiëren een punt-rechte
meetkunde (P ,B, I) als volgt. De verzameling P bestaat uit de volgende
elementen:

(i) de punten van PG(2n+m, q) \ P ,

(ii) de (n+m)-dimensionale deelruimten van PG(2n+m, q) die P snijden
in 1 van de raakruimten aan E ,

(iii) het symbool (∞).

De verzameling B bestaat uit de volgende elementen:

(a) de n-dimensionale deelruimten van PG(2n+m, q) die P snijden in een
element van E ,

(b) de elementen van E .

Een punt van type (i) is enkel incident met rechten van type (a); de incidentie
is de natuurlijke incidentie van de ruimte PG(2n+m, q). Een punt van type
(ii) is enkel incident met alle rechten van type (a) die erin bevat zijn en met
het unieke element van E dat erin bevat is. Het punt (∞) is incident met
alle rechten van type (b) en met geen enkele rechte van type (a).
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De meetkunde T (n,m, q) is een veralgemeende vierhoek van de orde
(qn, qm).

De klasse van de TGQs is per definitie de klasse van alle structuren
T (n,m, q). We noteren T (n,m, q) in wat volgt als Tn,m(E). De TGQ T (1, 1, q)
noteren we ook met T2(O), O is nu een ovaal van PG(2, q). De TGQ T (1, 2, q)
noteren we ook met T3(O), O is nu een ovöıde van PG(3, q). We merken ook
op dat T2(O) ∼= Q(4, q) als en slechts als O een kegelsnede Q(2, q) is en dat
T3(O) ∼= Q−(5, q) als en slechts als O een elliptische kwadriek Q−(3, q) is.
Omdat alle ovalen kegelsneden zijn als q oneven is, geldt ook T2(O) ∼= Q(4, q)
als q oneven is.

De TGQ T2(O) heeft steeds een ovöıde, terwijl de TGQ T3(O) steeds
een spread heeft. Als O een translatieovaal van PG(2, q), q even, is, dan
is T2(O) zelfduaal, dus dan heeft T2(O) een spread. Voor de definitie van
translatieovaal verwijzen we naar Sectie 2.1.2; we vermelden dat de kegel-
snede Q(2, q), q even, een translatieovaal is. Tenslotte heeft de TGQ Q(4, q),
q oneven geen spread ([81]). Voor een willekeurige egg E is er geen crite-
rium voor het bestaan of niet bestaan van spreads van Tn,m(E). In Sectie 2.3
wordt een voorbeeld van een TGQ Tn,m(E) gegeven, verschillend van T2(O)
en verschillend van T3(O), die een spread bezit.

Resultaten over het vermelde spreadprobleem omtrent partiële t-spreads
en t-bedekkingen van projectieve ruimten PG(n, q) en eindige klassieke po-
laire ruimten werden in [45] bereikt door karakteriseringen van bepaalde mi-
nihypers te gebruiken. We geven de definitie van minihypers en aanverwante
structuren, en we vermelden de belangrijkste karakterisatieresultaten.

Definitie A.2.5. Een {f,m;N, q}-minihyper is een koppel (F,w), F een
deelverzameling van de puntenverzameling van PG(N, q), en w een gewichts-
functie w : PG(N, q) → N : x 7→ w(x), die voldoet aan de volgende voor-
waarden:

(i) w(x) > 0 ⇐⇒ x ∈ F ,

(ii)
∑

x∈F w(x) = f , en

(iii) min{
∑

x∈H w(x)‖H ∈ H} = m, met H de verzameling van alle hyper-
vlakken van PG(N, q).

Karakterisatiestellingen omtrent minihypers gebruiken vaak de volgende
structuur.

Definitie A.2.6. Stel dat A de verzameling is van alle t-dimensionale deel-
ruimten van PG(N, q). Een som van t-dimensionale deelruimten is een ge-
wichtsfunctie w: A → N: πt 7→ w(πt). Een dergelijke som van t-deelruimten
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induceert een gewichtsfunctie op de deelruimten van kleinere dimensie als
volgt. Als πr een deelruimte is van dimensie r < t, dan definiëren we
w(πr) =

∑
π∈A,π⊃πr w(π). Meer bepaald is het gewicht van een punt de

som van de gewichten van alle t-dimensionale deelruimten door dat punt.
Een som van t-dimensionale deelruimten heet een som van n t-dimensionale
deelruimten als de som van de gewichten van alle t-dimensionale deelruimten
gelijk is aan n.

We vermelden nu onmiddellijk de volgende karakterisatiestelling. We
gebruiken θµ = qµ+1−1

q−1
.

Stelling A.2.7. Stel dat q > 2 en δ < ε, met q + ε de grootte van de
kleinste niet triviale blokkerende verzameling van PG(2, q). Als (F,w) een
{δθµ, δθµ−1;N, q}-minihyper is, zodat µ 6 N−1, dan is w de gewichtsfunctie
op de punten van PG(N, q) gëınduceerd door een som van δ µ-dimensionale
deelruimten.

A.2.1 Algemene resultaten

Stel nu dat S een partiële spread is van Tn,m(E) met deficiëntie δ, dit is,
|S| = qn+m + 1− δ. Een gat met betrekking tot S is een punt x van Tn,m(E),
zodat x niet bevat is in een rechte van S. Voor het vervolg noteren we met
π0 de (2n + m − 1)-dimensionale deelruimte die E bevat. Stel dat n > 1,
m.a.w., E is geen ovaal of ovöıde, dan stellen we voor elk punt x ∈ π0 dat
x ∈ E als en slechts als x ∈ α voor een element α ∈ E .

Definitie A.2.8. Stel dat α ∈ E . Definieer Aα = qn als α ∈ S en definieer
Aα als het aantal rechten van type (a), incident in PG(2n+m, q) met α, als
α 6∈ S. We definiëren de lokale deficiëntie van α met betrekking tot S als
∆α = qn − Aα. We definiëren de lokale deficiëntie van x ∈ α, α ∈ E , met
betrekking tot S, als δx = ∆α.

Als n = 1, m.a.w., als E een ovaal of een ovöıde is, dan zijn de elementen
van E reeds punten van π0, dus dan valt het onderscheid tussen ∆x en δx
weg. De volgende definitie is geldig in alle gevallen.

Definitie A.2.9. Stel dat S een partiële spread is van Tn,m(E), |S| = qn+m+
1− δ. We definiëren een gewichtsfunctie wS : PG(2n+m, q)→ N als volgt:

(i) Als x ∈ PG(2n + m, q) \ π0 en x is een gat met betrekking tot S, dan
wS(x) = 1, zoniet, wS(x) = 0.

(ii) Als x ∈ E , definieer wS(x) = δx.
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(iii) wS(x) = 0, ∀x ∈ π0 \ E .

Deze gedefinieerde gewichtsfunctie bepaalt een minihyper (F,wS) van
PG(2n + m, q). We vermelden het volgende lemma, dat onmiddellijk tot
de eerste stelling leidt.

Lemma A.2.10. Stel dat S een partiële spread is van Tn,m(E), met de-
ficiëntie δ < q, zodat het punt (∞) bedekt wordt. Dan is wS de gewichtsfunc-
tie van een {δθn, δθn−1; 2n+m, q}-minihyper (F,wS).

Gebruikmakend van de karakterisatie van dergelijke minihypers (Stel-
ling A.2.7), bekomen we de volgende stelling.

Stelling A.2.11. Stel dat S een partiële spread is van Tn,m(E), met de-
ficiëntie δ < ε, met q + ε de grootte van de kleinste niet triviale blokkerende
verzameling van PG(2, q), en zodat het punt (∞) bedekt wordt, dan kan S
uitgebreid worden tot een spread van Tn,m(E).

A.2.2 Verbetering voor q een kwadraat

Wanneer q een kwadraat is, dan is de kleinste niet triviale blokkerende ver-
zameling van PG(2, q) een Baer deelvlak. Niet zozeer de verschillen in onder-
grenzen voor de kleinste niet triviale blokkerende verzamelingen, maar echter
het vinden van deze Baer deelmeetkundes stelt ons in staat Stelling A.2.11 te
verbeteren voor T2(O) wanneer q een kwadraat is. We bekomen het volgende
resultaat.

Stelling A.2.12. Stel dat q een kwadraat is en dat S een partiële spread
is van T2(O), met deficiëntie δ 6 q

4
, zodat elke blokkerende verzameling van

PG(2, q) van grootte ten hoogste q + δ een rechte of een Baer deelvlak bevat,
en zodat (∞) bedekt wordt. Dan kan S uitgebreid worden tot een spread van
T2(O).

Er bestaat een niet triviale blokkerende verzameling van PG(2, q), van
grootte q + q

4
+ 1, q even en een kwadraat, die geen Baer deelvlak bevat.

Daardoor kunnen de grenzen van Stelling A.2.12 de waarde q
4

niet overschrij-
den.

A.2.3 Het resultaat voor Q(4, q), q even

Wanneer we veronderstellen dat S een partiële spread is, zodat (∞) niet be-
dekt wordt, dan wordt in zekere zin de symmetrie verstoord; de verzameling
gaten met betrekking tot S vormt dan geen {δθn, δθn−1; 2n+m, q}-minihyper.
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Door gebruik te maken van het model T2(O) en de uitbreidbaarheid van
(q− 1)-bogen van PG(2, q), kunnen we interessante resultaten bekomen. We
vermelden hierbij het volgende resultaat.

Stelling A.2.13. Stel dat q even is, en stel dat S een maximale partiële
spread van T2(O) is, met deficiëntie δ 6 q − 1. Dan moet het punt (∞)
bedekt worden.

Wanneer we nu veronderstellen dat O een kegelsnede Q(2, q) is, m.a.w.,
T2(O) ∼= Q(4, q), dan vinden we de volgende stelling.

Stelling A.2.14. Stel dat q even is. Als S een maximale partiële spread is
van Q(4, q) met positieve deficiëntie, dan geldt |S| 6 q2 − q + 1.

Deze laatste stelling verbetert punt (ii) van de volgende stelling.

Stelling A.2.15. (Tallini [88]) Beschouw Q(4, q):

(i) als q oneven is, dan heeft Q(4, q) geen spreads, en als S een partiële
spread is, dan geldt: |S| 6 q2 − q + 1.

(ii) als q even is, q > 4, en als S een maximale partiële spread met positieve
deficiëntie is, dan geldt: |S| < q2 − q

2
.

A.2.4 Voorbeelden van maximale partiële spreads van
T2(O) en T3(O)

Op het einde van Sectie 2.3 volgen voorbeelden van maximale partiële spreads
van T2(O) en T3(O). We vermelden het volgende resultaat.

Stelling A.2.16. (i) Als T2(O), q even, een spread heeft, dan heeft T2(O)
een maximale partiële spread van grootte q2 − q + 1, zodat (∞) bedekt
is.

(ii) De GQ T3(O) heeft een maximale partiële spread van grootte q3−q+1,
zodat (∞) bedekt wordt.

(iii) Als O de Tits ovöıde is, dan heeft T3(O) een maximale partiële spread
van grootte q3 − q + 2, zodat (∞) bedekt wordt.

Uit Stelling A.2.16 volgt dat de gevonden grens uit Stelling A.2.14 scherp
is.
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A.3 De kleinste minimale blokkerende verza-

melingen van Q(6, q), q even

Hoofdstuk 3 behandelt de karakterisering van de kleinste blokkerende verza-
melingen van Q(6, q), q even, q > 32. Het is een gekend resultaat dat Q(6, q),
q even, geen ovöıde heeft [92]. Het is bijgevolg een natuurlijk probleem om
de kleinste minimale blokkerende verzamelingen van Q(6, q) te onderzoeken.
We zullen veronderstellen dat K een minimale blokkerende verzameling is
van Q(6, q), zodat q3 + 1 < |K| 6 q3 + q. De bovengrens is zo gekozen omdat
we een eenvoudig voorbeeld van een minimale blokkerende verzameling van
Q(6, q) kunnen vinden. Kies een willekeurig punt p ∈ Q(6, q). Beschouw de
basis Q(4, q) van de kegel Tp(Q(6, q))∩Q(6, q), en kies een ovöıde O van deze
basis Q(4, q). Beschouw de kegel met top p en basis O, dan vormen de pun-
ten van deze kegel zonder de top p, een minimale blokkerende verzameling
van Q(6, q), van grootte q3 + q.

Hoofdstuk 3 is gebaseerd op gezamenlijk werk met L. Storme [37].
Een belangrijk idee omtrent projecties van ovöıden van polaire ruimten

vinden we terug in [92]. De informatie is beperkt tot ovöıden van Q(2n, q),
maar het idee kan uitgebreid worden naar blokkerende verzamelingen van
polaire ruimten in het algemeen.

Lemma A.3.1. Als de kwadriek Q(2n, q), n > 2, ovöıden heeft, dan heeft
elke kwadriek Q(2m, q), n > m > 2, een ovöıde.

In het lemma wordt de projectie van de ovöıde van Q(2n, q) beschouwd,
vanuit een punt van de kwadriek niet op deze ovöıde. Dit idee zullen we
ook gebruiken om gegevens over blokkerende verzamelingen van Q(4, q), q
even, te gebruiken om eigenschappen van de blokkerende verzamelingen B
van Q(6, q), q even, te bewijzen.

De volgende stelling uit [42] geeft belangrijke informatie over blokkerende
verzamelingen van Q(4, q), q even, q > 32.

Stelling A.3.2. Stel dat B een blokkerende verzameling is van Q(4, q), q
even, q > 32, met als grootte q2 + 1 + r, met 0 < r 6

√
q. Dan is B de unie

van een ovöıde met een verzameling van r extra punten buiten deze ovöıde.
Bijgevolg heeft een minimale blokkerende verzameling van Q(4, q), q even,
q > 32, verschillend van een ovöıde, een grootte van q2 + 1 + r, r >

√
q.

Omdat Q(4, q), q even, zelfduaal is, kan informatie over bedekkingen van
Q(4, q) vertaald worden naar informatie over blokkerende verzamelingen. Het
blijkt dat een uitgebreide versie van de volgende stelling nuttig is om de
informatie over de grootte van een blokkerende verzameling van Q(6, q) te
verkrijgen. We vermelden eerst de basisstelling.
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Stelling A.3.3. Stel dat C een minimale bedekking is van Q(4, q). Stel dat
|C| = q2 + 1 + r, met q+ r kleiner dan de grootte van de kleinste niet triviale
blokkerende verzameling in PG(2, q). De meervoudige punten van C vormen
een som van rechten, bevat in Q(4, q), waarbij het gewicht van een rechte
in deze som gelijk is aan het gewicht van deze rechte met betrekking tot de
bedekking, en waarbij de som van de gewichten van de rechten gelijk is aan
r.

In Sectie 3.3 wordt een uitgebreide versie van deze stelling bewezen. We
vermelden deze uitgebreide versie.

Lemma A.3.4. Stel dat C een minimale bedekking is van Q(4, q), met grootte
q2 +1+r, 0 < r 6 q−1. Als elk meervoudig punt minstens surplus

√
q heeft,

dan is de verzameling van meervoudige punten een som van rechten, met de
som van de gewichten van de rechten gelijk aan r.

Dit lemma geeft aanleiding tot het volgende lemma, waarvan we het be-
wijs geven in Sectie 3.3.

Lemma A.3.5. Voor een minimale blokkerende verzameling van Q(4, q), q
even, met grootte q2 + 1 + r, r > 0, zodat er enkel punten zijn met positieve
excess van tenminste

√
q, geldt dat r > q+4

6
.

Door gebruik te maken van het model T2(O) voor Q(4, q) bekomen we
ook het volgende resultaat.

Lemma A.3.6. Stel dat C een minimale bedekking is van Q(4, q), met grootte
q2 + 1 + r, 0 < r < q, zodat er een rechte L ∈ Q(4, q) \ C is zodat elk punt
van L op r+ 1 rechten van C ligt, en zodat alle andere punten van Q(4, q) op
1 rechte van C liggen, dan geldt (r + 2)|q, of, r = q − 1. Daarenboven geldt
dat r 6 q

2
− 2 onmogelijk is.

We vermelden nu de belangrijkste stappen om tot de karakterisatie te
komen. We veronderstellen dat K een minimale blokkerende verzameling is
van Q(6, q), |K| = q3 + 1 + δ, 0 < δ 6 q − 1. Het projectieargument, samen
met de veronderstellingen omtrent K, leidt tot de volgende twee lemma’s.

Lemma A.3.7. Voor elk punt p ∈ Q(6, q), p ∈ K, geldt |Tp(Q(6, q)) ∩ K| 6
1 + δ.

Lemma A.3.8. Voor elk punt p ∈ Q(6, q) \ K vinden we dat p de punten
van Tp(Q(6, q))∩K projecteert op een minimale blokkerende verzameling van
Q(4, q), met Q(4, q) de basis van de kegel Tp(Q(6, q)) ∩Q(6, q).
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Telargumenten, samen met de resultaten van Stellingen A.3.2 en A.3.3,
en Lemma’s A.3.4, A.3.5 en A.3.6 leiden tot het volgende lemma.

Lemma A.3.9. Stel dat L een rechte is van Q(6, q), zodat L minstens 2
punten van K bevat. Dan bevat L minstens q+10

6
punten van K.

Deze informatie stelt ons dan in staat de volgende karakterisatiestelling
te bewijzen. De voorwaarde q > 32 volgt rechtstreeks uit de voorwaarde
q > 32 bij Stelling A.3.2.

Stelling A.3.10. Stel dat K een minimale blokkerende verzameling is van
Q(6, q), q even, q > 32, zodat |K| 6 q3 + q. Dan bestaat er een punt p ∈
Q(6, q)\K, zodat Tp(Q(6, q))∩Q(6, q) = pQ(4, q) en de punten van K zijn de
punten van de rechten L door p die Q(4, q) snijden in een ovöıde O, behalve
het punt p zelf. Daarenboven geldt |K| = q3 + q.

Stelling A.3.10 werd onafhankelijk bewezen werd door K. Metsch [70].
We vermelden zijn resultaat.

Stelling A.3.11. Elke blokkerende verzameling van W(2n+ 1, q) bevat min-
stens qn+1 + qn−1 punten. Er kan enkel gelijkheid zijn als q even is en dan
bestaat deze verzameling uit de punten van een kegel met top een (n − 2)-
dimensionale ruimte π en basis een ovöıde van W(3, q), bevat in de poolruimte
van π, behalve de punten van de top zelf.

Omdat voor even q geldt dat W(5, q) ∼= Q(6, q) kan onze karakterisatie-
stelling hieruit afgeleid worden. Wanneer we de twee bewijzen vergelijken,
dan zien we echter vrij belangrijke verschillen. Ons bewijs steunt essentieel op
resultaten omtrent minimale blokkerende verzamelingen van Q(4, q), q even,
terwijl het bewijs van K. Metsch voornamelijk combinatorische argumenten
over W(2n+1, q) gebruikt en er geen grenzen nodig zijn voor minimale blok-
kerende verzamelingen van W(3, q) verschillend van een ovöıde.

A.4 De kleinste minimale blokkerende verza-

melingen van Q(6, q), q oneven priem

In Hoofdstuk 4 worden de kleinste blokkerende verzamelingen van Q(6, q),
q oneven, onderzocht. In tegenstelling tot Q(6, q), q even, is het bestaan of
niet bestaan van ovöıden van Q(6, q), q oneven, niet volledig gekend. Het
is bekend dat Q(6, q), q = 3r, r > 1, ovöıden heeft. Daarenboven werd
recent aangetoond dat Q(4, q), q oneven priem, enkel elliptische kwadrieken
Q−(3, q) als ovöıde bezit [6]. Dit heeft als gevolg dat Q(6, q), q > 3, priem,
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geen ovöıden bezit [76]. Het bestaan of niet bestaan van ovöıden voor alle
andere waarden van q is een open probleem; er is echter een conjectuur die
stelt dat Q(6, q) ovöıden heeft als en slechts als q = 3r, r > 1.

Hoofdstuk 4 is gebaseerd op gezamelijk werk met L. Storme [36] en geza-
melijk werk met K. Metsch [34].

In dit hoofdstuk gaan we na in hoeverre de resultaten uit Hoofdstuk 3 ver-
taald kunnen worden naar Q(6, q), q oneven. Als eerste invalshoek besluiten
we om dezelfde weg te bewandelen als in Hoofdstuk 3, daar de combinatori-
sche argumenten en de projectieargumenten onafhankelijk zijn van q. Het is
echter ook duidelijk dat Stelling A.3.2 zeer belangrijk is, en een versie voor q
oneven is dan ook noodzakelijk als we dezelfde technieken willen gebruiken.
Doordat een even sterke versie van Stelling A.3.2 voor oneven q voorlopig
echter niet gekend is, kunnen we met de gekende technieken uit Hoofdstuk 3
enkel resultaten bekomen voor q = 3, 5, 7. We starten met een overzicht van
deze resultaten, waarna we beschrijven hoe we een karakterisatieresultaat
verkrijgen voor q > 3, q priem. We veronderstellen voor de rest van deze
sectie dat K een minimale blokkerende verzameling is van Q(6, q), q oneven,
|K| = q3 + 1 + δ, 0 < δ < q.

A.4.1 De karakterisatie voor q = 3, 5, 7

Zoals vermeld is een versie van Stelling A.3.2 nodig voor q oneven. Uit [42]
beschikken we over het volgende resultaat.

Stelling A.4.1. Stel dat C een bedekking is van de klassieke veralgemeende
vierhoek S van orde (q, t). Stel dat |C| = qt + r + 1, met q + r kleiner dan
de grootte van de kleinste niet triviale blokkerende verzameling van PG(2, q).
Dan zijn de meervoudige punten met betrekking tot C de punten van een
som van rechten van PG(n, q), waarbij deze punten alle bevat zijn in S, en
zodat het gewicht van een rechte in deze som gelijk is aan het gewicht van
deze rechte met betrekking tot de bedekking, en met de som van de gewichten
gelijk aan r.

Uit deze stelling kunnen we een belangrijk gevolg halen omtrent blokke-
rende verzamelingen van Q(4, q), q oneven.

Stelling A.4.2. Stel dat B een blokkerende verzameling is van Q(4, q), q
oneven, |B| = q2 + 1 + r, q + r kleiner dan de grootte van de kleinste niet
triviale blokkerende verzameling van PG(2, q). Als r = 1, dan hebben alle
meervoudige rechten juist 1 punt p ∈ Q(4, q) \ B gemeenschappelijk. Als
r = 2, en alle meervoudige rechten hebben excess 2, dan hebben alle juist 1
punt p ∈ Q(4, q) \ B gemeenschappelijk.
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Hieruit kunnen we onmiddellijk het volgende lemma bewijzen.

Lemma A.4.3. Als B een minimale blokkerende verzameling is van Q(4, 3),
verschillend van een ovöıde, dan geldt |B| > 11.

Opnieuw gebruikmakend van Stelling A.4.1, vinden we, met behulp van
een computer, de volgende resultaten voor q = 5, 7.

Lemma A.4.4. Stel dat B een minimale blokkerende verzameling is van
Q(4, q), q = 5, 7, verschillend van een ovöıde van Q(4, q). Dan geldt |B| >
q2 + 2.

Lemma A.4.5. Er bestaat geen minimale blokkerende verzameling B van
Q(4, 7), met |B| = 52, zodat er een punt p ∈ Q(4, 7) \ B bestaat met de
eigenschap dat alle rechten van Q(4, 7) door p juist 3 punten van B bevatten.

Deze drie lemma’s zijn voldoende als vervanging van Stelling A.3.2 om,
met behulp van dezelfde technieken als in Hoofdstuk 3, de kleinste mini-
male blokkerende verzamelingen verschillend van een ovöıde van Q(6, q),
q = 3, 5, 7, te classificeren. We vermelden dat de Lemma’s A.3.7 en A.3.8
ook hier een belangrijke rol spelen.

Stelling A.4.6. Stel dat K een minimale blokkerende verzameling is van
Q(6, q), q = 3, 5, 7, verschillend van een ovöıde van Q(6, q), |K| 6 q3+q. Dan
bestaat er een punt p ∈ Q(6, q)\K met de volgende eigenschap: p⊥∩Q(6, q) =
pQ(4, q) en K bestaat uit de punten van de rechten L van Q(6, q) door p die
Q(4, q) snijden in een elliptische kwadriek Q−(3, q), behalve het punt p zelf.
Daarenboven geldt |K| = q3 + q.

A.4.2 De karakterisatie voor q > 3, q priem

Wanneer we terug het projectieargument, met name de Lemma’s A.3.7 en
A.3.8, beschouwen, dan kunnen we nagaan of we de classificatie van ovöıden
van Q(4, q), q oneven priem, niet kunnen aanwenden om de kleinste blokke-
rende verzamelingen van Q(6, q), q oneven priem, te karakteriseren. Immers,
stel dat voor een punt p ∈ Q(6, q)\K geldt dat |p⊥∩K| = q2+1. Lemma A.3.8
impliceert dan onmiddellijk dat de punten van p⊥∩K door p op een elliptische
kwadriek Q−(3, q) geprojecteerd worden.

Deze observatie leidt vrijwel onmiddellijk tot het volgende lemma.

Lemma A.4.7. Beschouw een punt p ∈ Q(6, q) \ K, dan geldt |p⊥ ∩ K| >
q2+1. Als er gelijkheid optreedt, dan bestaat er een 4-dimensionale deelruimte
αp door p die Q(6, q) snijdt in een kegel met top p en basis een elliptische kwa-
driek, en zodat elke rechte van Q(6, q)∩αp door p de blokkerende verzameling
K in een uniek punt snijdt.
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We vermelden daarbij ook het volgende lemma.

Lemma A.4.8. Veronderstel dat L een rechte is van Q(6, q), scheef aan K,
en zodat L twee punten p1 en p2 bevat met de eigenschap |p⊥i ∩ K| = q2 + 1,
i = 1, 2. Dan bestaat er een vlak β dat Q(6, q) snijdt in een kegelsnede Q(2, q)
en zodat L⊥ ∩ K = Q(2, q).

Met behulp van een telargument kunnen we eenvoudig een groot aantal
punten p ∈ Q(6, q) \K vinden met de eigenschap |p⊥ ∩K| = q2 + 1. Daaren-
boven impliceert Lemma A.4.8 het bestaan van een groot aantal kegelsneden
in K. De speciale eigenschap dat alle ovöıden elliptische kwadrieken Q−(3, q)
zijn, levert dus onmiddellijk een speciale structuur voor K. We vermelden
hierbij twee lemma’s.

Lemma A.4.9. Veronderstel dat voor een punt p ∈ Q(6, q) \ K geldt dat
|p⊥∩K| = q2 +1, en dat het punt r behoort tot αp∩K. Dan is het mogelijk de
verzameling αp∩K te schrijven als de unie van q kegelsneden Q(2, q), die twee
aan twee enkel het punt r gemeenschappelijk hebben. Er zijn daarenboven ten
minste 1

2
(q + 1) verschillende manieren om deze verzameling te beschrijven.

De eerste voorwaarde in het volgende lemma ontstaat juist omdat we
zullen gebruiken dat 1

2
(q + 1) > 2.

Lemma A.4.10. Veronderstel dat q > 3. Veronderstel dat voor een punt
p ∈ Q(6, q) \ K geldt dat |p⊥ ∩ K| = q2 + 1. Dan is de verzameling p⊥ ∩ K
een elliptische kwadriek Q−(3, q).

Dit lemma stelt ons nu in staat om, met behulp van een drietal andere
lemma’s, de volgende karakterisatiestelling te bewijzen.

Stelling A.4.11. Stel dat K een minimale blokkerende verzameling is van
Q(6, q), q > 3 priem, zodat |K| 6 q3+q. Dan bestaat er een punt p ∈ Q(6, q)\
K met de volgende eigenschap: p⊥ ∩ Q(6, q) = pQ(4, q) en K bestaat uit de
punten op de rechten van Q(6, q) door p die Q(4, q) snijden in een elliptische
kwadriek Q−(3, q), behalve het punt p zelf. Daarenboven geldt |K| = q3 + q.

A.5 De kleinste minimale blokkerende verza-

melingen van Q(2n, q), q oneven priem

Hoofdstuk 5 is gebaseerd op gezamelijk werk met L. Storme [36]. In dit hoofd-
stuk gebruiken we de resultaten van Hoofdstuk 4 om de kleinste blokkerende
verzamelingen van Q(2n, q), n > 4, q oneven priem, te karakteriseren. Met
betrekking tot ovöıden vermelden we het volgende resultaat.



 A. Nederlandstalige samenvatting

Stelling A.5.1. (Gunawardena and Moorhouse [49]) De polaire ruimte
Q(8, q), q oneven, heeft geen ovöıden.

Door Lemma A.3.1 kunnen we besluiten dat Q(2n, q), q oneven, n > 4,
geen ovöıden heeft. Net zoals voor Q(6, q) kunnen we voor Q(2n, q) vrij
eenvoudig voorbeelden van minimale blokkerende verzamelingen vinden. We
gebruiken daarvoor de volgende definitie.

Definitie A.5.2. Stel dat αO een kegel is, met top α, een k-dimensionale
ruimte, en basis O, met O een puntenverzameling gelegen in een ruimte π,
π∩α = ∅. Dan definiëren we de afgeknotte kegel α∗O als αO\α, met andere
woorden, de punten van α∗O zijn de punten van αO met uitzondering van de
punten van α. Als α de ledige deelruimte is, dan geldt bij definitie α∗O = O.

Stel nu dat Q(6, q), q oneven, geen ovöıden heeft. Dan is π∗n−3O, πn−3 ⊆
Q(2n, q), een (n− 3)-dimensionale ruimte, π⊥n−3 ∩Q(2n, q) = πn−3Q(4, q), O
een ovöıde van Q(4, q), een minimale blokkerende verzameling van Q(2n, q),
n > 4, met als grootte qn + qn−2.

Stel nu dat Q(6, q), q oneven, een ovöıde heeft. Dan is π∗n−4O, πn−4 ⊆
Q(2n, q) een (n− 4)-dimensionale ruimte, π⊥n−4 ∩ Q(2n, q) = πn−4Q(6, q), O
een ovöıde van Q(6, q), een minimale blokkerende verzameling van Q(2n, q),
n > 4, met als grootte qn + qn−3.

Voor bepaalde waarden van q oneven kennen de kleinste minimale blok-
kerende verzameling (verschillend van een ovöıde) van Q(6, q), we zullen deze
informatie vervolgens aanwenden door opnieuw projectieargumenten te ge-
bruiken.

We veronderstellen eerst dat Q(6, q), q oneven, geen ovöıden heeft, en
dat de kleinste minimale blokkerende verzameling van Q(6, q), q oneven, een
afgeknotte kegel p∗Q−(3, q) is, Q−(3, q) ⊆ Q(4, q), met Q(4, q) de basis van
de kegel p⊥ ∩Q(6, q). Deze veronderstelling is waar voor q > 3, q priem.

We zullen de volgende stelling bewijzen.

Stelling A.5.3. De kleinste minimale blokkerende verzamelingen van de
kwadriek Q(2n, q), q > 3 priem, n > 4, zijn afgeknotte kegels π∗n−3Q−(3, q),
πn−3 ⊆ Q(2n, q), Q−(3, q) ⊆ π⊥n−3 ∩Q(2n, q).

We veronderstellen dat K een minimale blokkerende verzameling is van
Q(2n, q), n > 4, |K| = qn + δ, 1 < δ 6 qn−2.

We zullen de karakterisatie bewijzen met behulp van een inductiehypo-
these; we veronderstellen dat Stelling A.5.3 bewezen is voor Q(2n − 2, q),
n > 4. Deze veronderstelling is geldig voor n = 4. De eerste twee lemma’s
zijn een uitbreiding van Lemma’s A.3.7 en A.3.8.



A.5. Blokkerende verzamelingen van Q(2n, q), q oneven priem 

Lemma A.5.4. Veronderstel dat p ∈ K, dan geldt |p⊥ ∩ K| 6 δ.

Lemma A.5.5. Stel dat p ∈ Q(2n, q) \K, n > 4, dan worden de punten van
p⊥ ∩ K door p geprojecteerd op Kp, een minimale blokkerende verzameling
van Q = Q(2n− 2, q), de basis van de kegel p⊥ ∩Q(2n, q).

Met behulp van de veronderstelling omtrent K, en een telargument, be-
wijzen we het volgende lemma.

Lemma A.5.6. Er bestaat een punt r ∈ Q(2n, q) \ K, zodat |r⊥ ∩ K| =
qn−1 + qn−3.

Stel dat voor een punt r ∈ Q(2n, q) \ K geldt dat |r⊥ ∩ K| = qn−1 +
qn−3. Door de inductiehypothese en Lemma A.5.5 volgt onmiddellijk dat
de verzameling r⊥ ∩ K geprojecteerd wordt op een afgeknotte kegel. Het is
essentieel om te bewijzen dat niet alleen de projectie een afgeknotte kegel
is, maar de verzameling r⊥ ∩ K zelf een afgeknotte kegel is. In drie stappen
bekomen we het volgende lemma.

Lemma A.5.7. Veronderstel dat r een punt is van Q(2n, q) \ K, met |r⊥ ∩
K| = qn−1 + qn−3, dan geldt r⊥ ∩ K = π∗n−4Q−(3, q).

Met behulp van dit lemma kunnen we nu de verzameling K karakteri-
seren. We merken op dat het feit dat alle ovöıden van Q(4, q), q oneven
priem, elliptische kwadrieken zijn bepaalde vereenvoudigingen oplevert. We
vermelden het laatste lemma.

Lemma A.5.8. De verzameling K is een afgeknotte kegel π∗n−3Q−(3, q).

Daarmee kunnen we Stelling A.5.3 besluiten.
We veronderstellen nu dat Q(6, q), q oneven, ovöıden heeft, en dat de

kleinste minimale blokkerende verzamelingen van Q(6, q), afgeknotte kegels
p∗O zijn, O een ovöıde van Q(4, q). Deze veronderstelling is waar voor q = 3.
Daarenboven zijn alle ovöıden van Q(4, 3) elliptische kwadrieken, maar we
zullen deze eigenschap niet gebruiken.

In tegenstelling tot de vorige situatie, kunnen we deze informatie niet op
dezelfde manier vertalen naar Q(2n, q), n > 4. We kunnen wel de classificatie
van de kleinste minimale blokkerende verzamelingen van Q(8, q) bekomen,
met behulp van technieken vergelijkbaar met de technieken uit de Hoofd-
stukken 3 en 4. Omdat we de kleinste minimale blokkerende verzamelingen
van Q(6, 3) kennen (en niet alleen informatie hebben over de grootte, cfr.
Hoofdstuk 4), vinden we in enkele stappen de volgende stelling.
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Stelling A.5.9. Stel dat Q(6, q), q oneven, een ovöıde heeft en dat de kleinste
minimale blokkerende verzamelingen van Q(6, q), verschillend van een ovöıde,
afgeknotte kegels p∗O zijn, O een ovöıde van Q(4, q). Dan zijn de kleinste
minimale blokkerende verzamelingen van Q(8, q), q oneven, afgeknotte kegels
p∗O′, O′ een ovöıde van Q(6, q).

We beschikken nu over vergelijkbare informatie als in de vorige situatie.
Het blijkt echter noodzakelijk meetkundige eigenschappen over ovöıden van
Q(6, q) kort te onderzoeken om alle lemma’s aan te passen aan de nieuwe
situatie. We vermelden de belangrijkste resultaten.

Stelling A.5.10. (Ball et al. [6]) Een ovöıde van Q(6, q), q = ph, p priem,
h > 1, heeft 1 mod p punten gemeen met elke elliptische kwadriek Q−(5, q)
bevat in Q(6, q).

Lemma A.5.11. Beschouw een ovöıde O van Q(6, q). Beschouw een hyper-
vlak α van PG(6, q), zodat α ∩Q(6, q) = Q+(5, q). Dan geldt 〈α ∩ O〉 = α.

We zullen de nu volgende stelling bewijzen, op een vergelijkbare manier
als in de vorige situatie.

Stelling A.5.12. Veronderstel dat Q(6, q) ovöıden heeft en dat de kleinste
minimale blokkerende verzamelingen van Q(6, q), verschillend van een ovöıde,
afgeknotte kegels p∗O zijn, p ∈ Q(6, q), O een ovöıde van Q(4, q). Dan zijn de
kleinste minimale blokkerende verzamelingen van Q(2n, q), n > 5, afgeknotte
kegels π∗n−4O′, πn−4 ⊆ Q(2n, q), O′ een ovöıde van Q(6, q) ⊆ π⊥n−4∩Q(2n, q).

We veronderstellen dat K een minimale blokkerende verzameling is van
Q(2n, q), n > 5, |K| = qn + δ, 1 < δ 6 qn−3. Lemma’s A.5.4 en A.5.5 blijven
geldig in deze situatie, Lemma’s A.5.6 en Lemma A.5.7 worden aangepast.

Lemma A.5.13. Er bestaat een punt r ∈ Q(2n, q) \ K, zodat |r⊥ ∩ K| =
qn−1 + qn−4.

Lemma A.5.14. Veronderstel dat r een punt is van Q(2n, q) \K, met |r⊥ ∩
K| = qn−1 + qn−4, dan geldt r⊥ ∩ K = π∗n−4O, O een ovöıde van de basis
Q(6, q) van de kegel π⊥n−4 ∩Q(2n, q).

Lemma A.5.15. De verzameling K is een afgeknotte kegel π∗n−4O, O een
ovöıde van de basis Q(6, q) van de kegel π⊥n−4 ∩Q(2n, q).

Stelling A.5.12 en de resultaten van Hoofdstuk 4 leiden tot de volgende
stelling.

Stelling A.5.16. De kleinste minimale blokkerende verzamelingen van Q(2n,
q = 3), n > 4, zijn afgeknotte kegels π∗n−4O, O een ovöıde van Q(6, q = 3),
met O bevat in de basis van de kegel π⊥n−4 ∩Q(2n, q).
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A.6 De kleinste minimale blokkerende verza-

melingen van H(2n, q2)

Hoofdstuk 6 is gebaseerd op gezamelijk werk met K. Metsch [35].
Het is een gekend resultaat dat H(2n, q2) geen ovöıden heeft [92]. Opnieuw

kunnen we de kleinste minimale blokkerende verzamelingen van H(2n, q2)
onderzoeken. Zoals in Hoofdstukken 4 en 5 zullen we eerst de kleinste mini-
male blokkerende verzamelingen van H(4, q2) karakteriseren. Nadien zullen
we deze karakterisatie aanwenden om de kleinste minimale blokkerende ver-
zamelingen van H(2n, q2), n > 3, te karakteriseren. Ook in dit geval is het
mogelijk om voorbeelden van minimale blokkerende verzamelingen te vinden.

Beschouw H(2n, q2), n > 2, en een (n− 2)-dimensionale deelruimte πn−2

bevat in H(2n, q2). Dan is πn−2H(2, q2), H(2, q2) de basis van de kegel
π⊥n−2 ∩ H(2n, q2), met ⊥ de polariteit geassocieerd aan H(2n, q2), een mi-
nimale blokkerende verzameling van H(2n, q2).

We veronderstellen nu dat K een minimale blokkerende verzameling is
van H(4, q2), |K| = q5 + δ, 1 6 δ 6 q2.

We starten met een klassiek lemma.

Lemma A.6.1. Voor elk punt p ∈ K geldt |p⊥ ∩ K| 6 δ.

Het volgende lemma zal sterke implicaties hebben.

Lemma A.6.2. Voor alle punten r ∈ PG(4, q2)\K geldt dat |r⊥∩K| > q3+1.

Dit lemma geeft aanleiding tot het volgende lemma, wat onmiddellijk een
goede ondergrens geeft voor δ, en daarenboven het niet bestaan van ovöıden
van H(4, q2) tot gevolg heeft.

Lemma A.6.3. Voor elk punt p ∈ K geldt dat |p⊥ ∩ K| > q2 − q + 1.

Deze informatie stelt ons nu in staat om, via een drietal lemma’s, de
karakterisatie te bewijzen. Net zoals in het geval van de kwadrieken zullen
we trachten aan te tonen dat generatoren (rechten) van H(4, q2) ofwel juist 1
punt, ofwel “veel” punten van K bevatten. We gebruiken de volgende notatie.
Beschouw een punt p ∈ H(4, q2), dan is wp + 1 het minimaal aantal punten
van K op alle rechten van H(4, q2) door p. We bekomen de volgende lemma’s.

Lemma A.6.4. Voor elk punt r ∈ H(4, q2) \ K, met wr = 0, geldt dat
|r⊥ ∩ K| 6 q3 − q2 + q + δ.

Lemma A.6.5. Stel dat L een rechte is van H(4, q2), die minstens 2 punten
met K gemeen heeft, dan bestaat er een punt s ∈ L \ K, met ws > 0.
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Lemma A.6.6. Veronderstel dat q > 2. Beschouw een punt p ∈ H(4, q2)\K,
met wp > 0, dan geldt wp > q2 − q.

Dit lemma stelt ons in staat, om met behulp van een laatste lemma, de
karakterisatie voor q > 2 te voltooien. In een afzonderlijk lemma behandelen
we het geval q = 2. Daarin zullen we rechtstreeks gebruik maken van de
verkregen ondergrens voor δ uit Lemma A.6.3. We bekomen de volgende
stelling.

Stelling A.6.7. De kleinste minimale blokkerende verzamelingen van de
Hermitische variëteit H(4, q2) zijn afgeknotte kegels p∗H(2, q2), H(2, q2) de
basis van de kegel p⊥ ∩ H(4, q2).

In de laatste sectie van Hoofdstuk 6 veralgemenen we de karakterisatie
naar H(2n, q2). We bereiken deze karakterisatie op een volkomen analoge
manier als voor Q(2n, q), q > 3 priem. We vermelden de laatste stelling.

Stelling A.6.8. De kleinste minimale blokkerende verzamelingen van de
Hermitische variëteit H(2n, q2), n > 2, zijn afgeknottekegels π∗n−2H(2, q2),
met H(2, q2) de basis van de kegel π⊥n−2 ∩ H(2n, q2).
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t-cover, 21

minimal, 21
t-regulus, 20
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t-secant, 12
t-secant line, 12
t-spread, 19

admitting, 22
aregular, 20
geometric, 19
normal, 19
partial t-spread, 21
regular, 20

4-gonal family, 30

A
absolute, 8
affine space, 6

order, 10

B
Baer cone, 36
blocking k-set, 16
blocking set, 16

minimal, 16, 55
multiple line, 57, 72
projecgive triad, 16
projective triangle, 16
small, 17
trivial, 16

blocking set with respect to s-dimensional
spaces, 77

blocking set with respect to t-spaces, 18

C
classical polar space

elliptic quadric, 11
Hermitian variety, 11
hyperbolic quadric, 11
parabolic quadric, 11

collineation, 7
automorphism, 7
coordinate frame, 8

conic, 10
coordinate vector, 5
correlation, 8
cover

excess, 56
excess point, 56
minimal, 56
multiple point, 56

D
dual classical generalised quadrangles, 26
dual grid, 25

E
egg, 15

tangent space, 15
external line, 12

F
finite classical generalised quadrangles, 26
finite field, 1
finite fields, 1
finite generalised quadrangle, 25
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blocking set, 56
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non-concurrent, 25
order, 25
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partial spread, 29

deficiency, 39
hole, 29

regular, 26
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spread, 27
symmetry about a point, 30
TGQ, 30
trace, 25
translation generalised quadrangle, 30
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whorl about a point, 30

flock, 52
linear, 52

fundamental theorem of projective geom-
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generalised polygons, 24
GQ, 25
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Hermitian curve, 10
Hermitian varieties

projective index, 11
Hermitian variety, 10, 11

generator, 11
singular, 10
tangent hyperplane, 10
tangent space, 10

hole, 22
hyperoval, 13

axis, 33
regular, 13

translation hyperoval, 33
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internal nucleus, 66
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linearly independent, 5
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nucleus, 11
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oval, 12
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pointed conic, 13
translation oval, 33

ovoid, 13
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secant plane, 13
tangent plane, 13
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partial t-spread

deficiency, 22
hole, 22
maximal, 21

planar ovoid, 34
point-line geometry, 2
point-line incidence structure, 2
polar space, 22

blocking set, 55
dimension, 22
finite classical, 23
generator, 23
line, 23
ovoid, 27
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spread, 27
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conjugate, 8
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projective index, 8
self-conjugate, 8

projective plane, 2
blocking set, 16
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coordinate frame, 8
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dimension, 3
Hermitian curve, 10
Hermitian variety, 10
linear, 3
linear subspace, 3
linearly independent, 3
order, 10
Pappian, 4
polarity, 8
quadratic set, 11
quadric, 10
rank, 3
reciprocity, 8
span, 3
tangent line, 11
tangent space, 11
theorem of Desargues, 4
theorem of Pappus, 4

projective triad, 16
projective triangle, 16
projectivity, 8

Q
quadratic set, 11
quadric, 10

elliptic quadric, 10
generator, 11
hyperbolic quadric, 10
maximal subspace, 11
nucleus, 11
parabolic quadric, 10
projective index, 11
singular, 10
tangent hyperplane, 10
tangent space, 10

R
reciprocity, 8
Redei type blocking set, 17

S

secant line, 12
Shult space

linear, 24
subspace, 24

shult space, 24
non-degenerate, 24

small point, 78
standard form of

Hermitian variety, 11
quadric, 11

sum of pencils, 60
weight, 60

T
tangent line, 12
trace function, 1
translation plane, 20
truncated cone, 85

U
unital, 16

V
variety

Hermitian variety, 11
quadric, 11
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