### Articles (peer reviewed)

- Maximal partial spreads of T
_{2}(O) and T_{3}(O). (with M.R. Brown and L. Storme) [pdf] European J. Combin., 24(1):73-84, 2003. - The smallest minimal blocking sets of Q(6,q), q even. (with L. Storme) [pdf] J. Combin. Des., 11(4):290-303, 2003
- On the size of minimal blocking sets of Q(4,q), for q = 5,7. (with A. Hoogewijs and L. Storme) [pdf] SIGSAM Bull., 38(3):67-84, 2004.
- Small point sets that meet all generators of Q(2n,p), p > 3 prime. (with K. Metsch) [pdf] J. Combin. Theory Ser. A, 106(2):327-333, 2004.
- Minimal blocking sets of size q
^{2}+2 of Q(4,q), q an odd prime, do not exist. (with K. Metsch) [pdf] Finite Fields Appl., 11(2):305-315, 2005. - The smallest point sets that meet all generators of H(2n,q
^{2}). (with K. Metsch) [pdf] Discrete Math., 294(1-2):75-81, 2005. - On the smallest minimal blocking sets of Q(2n,q), for q an odd prime. (with L. Storme) [pdf] Discrete Math., 294(1-2):83-107, 2005.
- The hermitian variety H(5; 4) has no ovoid. (with K. Metsch) [pdf] Bull. Belg. Math. Soc. Simon Stevin, 12(5):727-733, 2006.
- The two smallest minimal blocking sets of Q(2n,3), n >= 3. (with L. Storme) [pdf] Bull. Belg. Math. Soc. Simon Stevin, 12(5):735-742, 2006.
- Blocking all generators of Q
^{+}(2n+1,3), n >= 4. (with L. Storme) [pdf] Des. Codes Cryptogr., 39(3):323-333, 2006. - The maximum size of a partial spread in H(5,q
^{2}) is q^{3}+ 1. [pdf] J. Combin. Theory Ser. A, 114(4):761-768, 2007. - Characterization results on small blocking sets of the polar spaces Q
^{+}(2n+1,2) and Q^{+}(2n+1,3). (with K. Metsch and L. Storme) [pdf] Des. Codes Cryptogr., 44(1-3):197-207, 2007. - Complete arcs on the parabolic quadric Q(4,q). (with A. Gacs) [pdf] Finite Fields Appl., 14(1):14-21, 2008.
- Partial ovoids and partial spreads in hermitian polar spaces. (with A. Klein, K. Metsch and L. Storme) [pdf] Des. Codes Cryptogr., 47(1-3):21-34, 2008.
- A non-existence result on Cameron-Liebler line classes. (with A Hallez and L. Storme) [pdf] J. Combin. Des., 16(4):342-349, 2008
- Partial ovoids and partial spreads in symplectic and orthogonal polar spaces. (with A. Klein, K. Metsch and L. Storme) [pdf] European J. Combin., 29(5):1280-1297, 2008.
- Characterization results on arbitrary non-weighted minihypers and on linear codes meeting the Griesmer bound. (with K. Metsch and L. Storme) [pdf] Des. Codes Cryptogr., 49(1-3):187-197, 2008.
- Characterization results on arbitrary weighted minihypers and on linear codes meeting the Griesmer bound. (with K. Metsch and L. Storme) [pdf] Adv. Math. Comm., 2(3):261-272, 2008.
- Partial ovoids and partial spreads of classical finite polar spaces. (with A. Klein, K. Metsch and L. Storme) [pdf] Serdica Math. J., 34:689-714, 2008.
- Tight sets, weighted m-covers and their links to minihypers. (with A. Hallez, P. Govaerts and L. Storme) [pdf] Des. Codes Cryptogr., 50(2):187-201, 2009.
- Computing with the square root of NOT. (with A. De Vos and L. Storme) [pdf] Serdica Comput. J., 3(4):359-370, 2009
- A characterization result on a particular class of non-weighted minihypers. (with A. Hallez and L. Storme) [pdf] Des. Codes Cryptogr., 63(2):187-201, 2012.
- On sets of vectors of a finite vector space in which every subset of basis size is a basis II. (with S. Ball) [pdf] Des. Codes Cryptogr., 65(1-2):5-14, 2012.
- The known maximal partial ovoids of size q
^{2}-1 of Q(4,q). (with K. Coolsaet and A. Siciliano) [pdf] J. Combin. Des., 21(3):89-100, 2013 - On large maximal partial ovoids of the parabolic quadric Q(4,q). [pdf] Des. Codes Cryptogr., 68(1-3):3-10, 2013
- Sets of generators blocking all generators in finite classical polar spaces. (with A. Hallez, K. Metsch, and L. Storme.) J. Combin. Theory Ser. A, 120(2):318-339, 2013.
- On the structure of the directions not determined by a large ane point set. (with P. Sziklai, and M. Takáts.) J. Algebr. Combin., 38(4): 889-899, 2013.
- A new family of tight sets in Q+(5,q). (with J. Demeyer, K. Metsch and M. Rodgers) Des. Codes Cryptogr., 25 pp., to appear.

### Chapters

- Substructures of finite classical polar spaces. In Current research topics in Galois geometry, Mathematics Research Developments, chapter 2, pages 35-61. NOVA Sci. Publ., New York, 2012. [pdf]