The pdf version links often to the final version, but this version might differ from the published version. When possible, a link to the published version is provided.

Articles (peer reviewed)

  1. Maximal partial spreads of T2(O) and T3(O). (with M.R. Brown and L. Storme) [pdf] European J. Combin., 24(1):73-84, 2003.
  2. The smallest minimal blocking sets of Q(6,q), q even. (with L. Storme) [pdf] J. Combin. Des., 11(4):290-303, 2003
  3. On the size of minimal blocking sets of Q(4,q), for q = 5,7. (with A. Hoogewijs and L. Storme) [pdf] SIGSAM Bull., 38(3):67-84, 2004.
  4. Small point sets that meet all generators of Q(2n,p), p > 3 prime. (with K. Metsch) [pdf] J. Combin. Theory Ser. A, 106(2):327-333, 2004.
  5. Minimal blocking sets of size q2+2 of Q(4,q), q an odd prime, do not exist. (with K. Metsch) [pdf] Finite Fields Appl., 11(2):305-315, 2005.
  6. The smallest point sets that meet all generators of H(2n,q2). (with K. Metsch) [pdf] Discrete Math., 294(1-2):75-81, 2005.
  7. On the smallest minimal blocking sets of Q(2n,q), for q an odd prime. (with L. Storme) [pdf] Discrete Math., 294(1-2):83-107, 2005.
  8. The hermitian variety H(5; 4) has no ovoid. (with K. Metsch) [pdf] Bull. Belg. Math. Soc. Simon Stevin, 12(5):727-733, 2006.
  9. The two smallest minimal blocking sets of Q(2n,3), n >= 3. (with L. Storme) [pdf] Bull. Belg. Math. Soc. Simon Stevin, 12(5):735-742, 2006.
  10. Blocking all generators of Q+(2n+1,3), n >= 4. (with L. Storme) [pdf] Des. Codes Cryptogr., 39(3):323-333, 2006.
  11. The maximum size of a partial spread in H(5,q2) is q3 + 1. [pdf] J. Combin. Theory Ser. A, 114(4):761-768, 2007.
  12. Characterization results on small blocking sets of the polar spaces Q+(2n+1,2) and Q+(2n+1,3). (with K. Metsch and L. Storme) [pdf] Des. Codes Cryptogr., 44(1-3):197-207, 2007.
  13. Complete arcs on the parabolic quadric Q(4,q). (with A. Gacs) [pdf] Finite Fields Appl., 14(1):14-21, 2008.
  14. Partial ovoids and partial spreads in hermitian polar spaces. (with A. Klein, K. Metsch and L. Storme) [pdf] Des. Codes Cryptogr., 47(1-3):21-34, 2008.
  15. A non-existence result on Cameron-Liebler line classes. (with A Hallez and L. Storme) [pdf] J. Combin. Des., 16(4):342-349, 2008
  16. Partial ovoids and partial spreads in symplectic and orthogonal polar spaces. (with A. Klein, K. Metsch and L. Storme) [pdf] European J. Combin., 29(5):1280-1297, 2008.
  17. Characterization results on arbitrary non-weighted minihypers and on linear codes meeting the Griesmer bound. (with K. Metsch and L. Storme) [pdf] Des. Codes Cryptogr., 49(1-3):187-197, 2008.
  18. Characterization results on arbitrary weighted minihypers and on linear codes meeting the Griesmer bound. (with K. Metsch and L. Storme) [pdf] Adv. Math. Comm., 2(3):261-272, 2008.
  19. Partial ovoids and partial spreads of classical finite polar spaces. (with A. Klein, K. Metsch and L. Storme) [pdf] Serdica Math. J., 34:689-714, 2008.
  20. Tight sets, weighted m-covers and their links to minihypers. (with A. Hallez, P. Govaerts and L. Storme) [pdf] Des. Codes Cryptogr., 50(2):187-201, 2009.
  21. Computing with the square root of NOT. (with A. De Vos and L. Storme) [pdf] Serdica Comput. J., 3(4):359-370, 2009
  22. A characterization result on a particular class of non-weighted minihypers. (with A. Hallez and L. Storme) [pdf] Des. Codes Cryptogr., 63(2):187-201, 2012.
  23. On sets of vectors of a finite vector space in which every subset of basis size is a basis II. (with S. Ball) [pdf] Des. Codes Cryptogr., 65(1-2):5-14, 2012.
  24. The known maximal partial ovoids of size q2-1 of Q(4,q). (with K. Coolsaet and A. Siciliano) [pdf] J. Combin. Des., 21(3):89-100, 2013
  25. On large maximal partial ovoids of the parabolic quadric Q(4,q). [pdf] Des. Codes Cryptogr., 68(1-3):3-10, 2013
  26. Sets of generators blocking all generators in finite classical polar spaces. (with A. Hallez, K. Metsch, and L. Storme.) J. Combin. Theory Ser. A, 120(2):318-339, 2013.
  27. On the structure of the directions not determined by a large ane point set. (with P. Sziklai, and M. Takáts.) J. Algebr. Combin., 38(4): 889-899, 2013.
  28. A new family of tight sets in Q+(5,q). (with J. Demeyer, K. Metsch and M. Rodgers) Des. Codes Cryptogr., 25 pp., to appear.

Chapters

  1. Substructures of finite classical polar spaces. In Current research topics in Galois geometry, Mathematics Research Developments, chapter 2, pages 35-61. NOVA Sci. Publ., New York, 2012. [pdf]
faculty logo
Research Group Incidence Geometry Homepage van Jan De Beule