A set of points \mathcal{T} of a finite classical polar space \mathcal{P} of rank r+1 is *i*-tight if for any point $P \in \mathcal{P}$,

$$|P^{\perp} \cap \mathcal{T}| = \begin{cases} i\theta_{r-1} + q^r & , P \in \mathcal{T}, \\ i\theta_{r-1} & , P \notin \mathcal{T}. \end{cases}$$

We show that an *i*-tight set in the Hermitian variety H(2r + 1, q), $81 \leq q$ odd square, is a union of pairwise disjoint Baer subgeometries $PG(2r + 1, \sqrt{q})$ and generators of H(2r + 1, q), when $i < (q^{2/3} - 1)/2$. We extend the result to tight sets in the symplectic polar space W(2r + 1, q). These results are an improvement of the previous results where the upper bound on *i* was $q^{5/8}/\sqrt{2} + 1$. Combining the generalized version of known techniques with recent results on blocking sets and minihypers, we present an alternative proof of this result and consequently improve the upper bound on *i* to $(q^{2/3} - 1)/2$.