On stability theorems in finite geometry

J. De Beule

Department of Mathematics Ghent University

> March 3, 2011 Seminar UPC

- structure with parameters (e.g. size)
- bound on the parameter(s)
- example(s) meeting the bound
- Stability: what is known if an example is "close" to an extremal case?
- Spectrum: second, third, etc. smallest/largest example

- structure with parameters (e.g. size)
- bound on the parameter(s)
- example(s) meeting the bound
- Stability: what is known if an example is "close" to an extremal case?
- Spectrum: second, third, etc. smallest/largest example

- structure with parameters (e.g. size)
- bound on the parameter(s)
- example(s) meeting the bound
- Stability: what is known if an example is "close" to an extremal case?
- Spectrum: second, third, etc. smallest/largest example

- structure with parameters (e.g. size)
- bound on the parameter(s)
- example(s) meeting the bound
- Stability: what is known if an example is "close" to an extremal case?
- Spectrum: second, third, etc. smallest/largest example

- structure with parameters (e.g. size)
- bound on the parameter(s)
- example(s) meeting the bound
- Stability: what is known if an example is "close" to an extremal case?
- Spectrum: second, third, etc. smallest/largest example

- $A := \{1, 2, \ldots, n\},\$
- $\mathcal{F} \subseteq 2^A$,
- $F \in \mathcal{F} \Rightarrow |F| = k$; k fixed, 2k < n,
- $F_1, F_2 \in \mathcal{F} \Rightarrow F_1 \cap F_2 \neq \emptyset$

Theorem (Erdős-Ko-Rado)

$$|\mathcal{F}| \leq \binom{n-1}{k-1}$$

- $A := \{1, 2, \ldots, n\},\$
- $\mathcal{F} \subseteq 2^A$,
- $F \in \mathcal{F} \Rightarrow |F| = k$; k fixed, 2k < n,
- $F_1, F_2 \in \mathcal{F} \Rightarrow F_1 \cap F_2 \neq \emptyset$

Theorem (Erdős-Ko-Rado)

$$|\mathcal{F}| \leq \binom{n-1}{k-1}$$

- $A := \{1, 2, \ldots, n\},\$
- $\mathcal{F} \subseteq 2^A$,
- $F \in \mathcal{F} \Rightarrow |F| = k$; k fixed, 2k < n,
- $F_1, F_2 \in \mathcal{F} \Rightarrow F_1 \cap F_2 \neq \emptyset$

Theorem (Erdős-Ko-Rado)

$$|\mathcal{F}| \leq \binom{n-1}{k-1}$$

Let K be the set of all k-1 subsets of A not containing a given element of A, say 1. Define

$$\mathcal{F} = \{\{1\} \cup K | K \in \mathcal{K}\}$$

Then \mathcal{F} is an extremal example.

- The above example is the unique extremal example.
- $|\mathcal{F}| \leq \binom{n-1}{k-1} \binom{n-1}{n-k-1} + 1$ when $\bigcap \mathcal{F} = \emptyset$.
- example: (recall: 2k < n) $\mathcal{F}' := \mathcal{F} \setminus \{F | F \cap \{2, 3, \dots, k+1\} = \emptyset\} \cup \{2, 3, \dots, k+1\}$

Let K be the set of all k-1 subsets of A not containing a given element of A, say 1. Define

$$\mathcal{F} = \{\{1\} \cup K | K \in \mathcal{K}\}$$

Then \mathcal{F} is an extremal example.

- The above example is the unique extremal example.
- $|\mathcal{F}| \le \binom{n-1}{k-1} \binom{n-1}{n-k-1} + 1 \text{ when } \cap \mathcal{F} = \emptyset.$
- example: (recall: 2k < n) $\mathcal{F}' := \mathcal{F} \setminus \{F | F \cap \{2, 3, ..., k + 1\} = \emptyset\} \cup \{2, 3, ..., k + 1\}$

Let \mathcal{K} be the set of all k-1 subsets of A not containing a given element of A, say 1. Define

$$\mathcal{F} = \{\{1\} \cup K | K \in \mathcal{K}\}$$

Then \mathcal{F} is an extremal example.

- The above example is the unique extremal example.
- \bullet $|\mathcal{F}| \leq {n-1 \choose k-1} {n-1 \choose n-k-1} + 1$ when $\bigcap \mathcal{F} = \emptyset$.
- example: (recall: 2k < n)</p>

Let K be the set of all k-1 subsets of A not containing a given element of A, say 1. Define

$$\mathcal{F} = \{\{1\} \cup K | K \in \mathcal{K}\}$$

Then \mathcal{F} is an extremal example.

- The above example is the unique extremal example.
- $|\mathcal{F}| \leq {n-1 \choose k-1} {n-1 \choose n-k-1} + 1$ when $\bigcap \mathcal{F} = \emptyset$.
- example: (recall: 2k < n) $\mathcal{F}' := \mathcal{F} \setminus \{F | F \cap \{2, 3, ..., k + 1\} = \emptyset\} \cup \{2, 3, ..., k + 1\}$

• Suppose S is a set of vectors in V(k, q), $q = p^h$ with the property that every subset of size k is a basis

Theorem (Bose)

If
$$p \ge k = 3$$
, then $|S| \le q + 1$

Theorem (Segre

If $p \ge k = 3$, and |S| = q + 1, then S is a normal rational curve

- Going the the projective space PG(k-1,q), we talk about arcs.
- Segre's theorem is maybe the birth of "finite geometry"

• Suppose S is a set of vectors in V(k, q), $q = p^h$ with the property that every subset of size k is a basis

Theorem (Bose)

If
$$p \ge k = 3$$
, then $|S| \le q + 1$

Theorem (Segre

If $p \ge k = 3$, and |S| = q + 1, then S is a normal rational curve

- Going the the projective space PG(k-1,q), we talk about arcs.
- Segre's theorem is maybe the birth of "finite geometry"

• Suppose S is a set of vectors in V(k, q), $q = p^h$ with the property that every subset of size k is a basis

Theorem (Bose)

If
$$p \ge k = 3$$
, then $|S| \le q + 1$

Theorem (Segre)

If $p \ge k = 3$, and |S| = q + 1, then S is a normal rational curve

- Going the the projective space PG(k-1,q), we talk about arcs.
- Segre's theorem is maybe the birth of "finite geometry"

Theorem (Segre)

If \mathcal{K} is arc in PG(2,q) with $|\mathcal{K}| \geq q - \sqrt{q} + 1$ when q is even and $|\mathcal{K}| \geq q - \sqrt{q}/4 + 7/4$ when q is odd, then \mathcal{K} is contained in an arc of maximum size (that is, in an oval or hyperoval).

MDS-conjecture

Conjecture

|S| has size at most q + 1 when q is odd, unless q is even, k = 3 or k = q - 1, then |S| has size at most q + 2.

Theorem (Ball)

|S| has size at most $q + k + 1 - \min(k, p)$, where $k \le q$.

MDS-conjecture

Conjecture

|S| has size at most q + 1 when q is odd, unless q is even, k = 3 or k = q - 1, then |S| has size at most q + 2.

Theorem (Ball)

|S| has size at most $q + k + 1 - \min(k, p)$, where $k \le q$.

An example in finite geometry

- Consider V(2, GF(q)) = AG(2, q).
- Suppose $v_1, v_2 \in AG(2, q)$, denote $v_1 = (x_1, y_1), v_2 = (x_2, y_2)$. Define $d := \langle x_1 x_2, y_1 y_2 \rangle$.
- There are q + 1 directions: $\{(0,1)\} \cup \{(1,x) | x \in GF(q)\}.$
- Any pointset A ⊆ AG(2, q) of size at least q + 1 determines all directions.

Theorem (Szőnyi)

A set of $q - k > q - \sqrt{q}/2$ points of AG(2, q) which does not determine a set \mathcal{D} , of more than (q + 1)/2 directions, can be extended to a set of q points not determining the set of directions \mathcal{D} .

An example in finite geometry

- Consider V(2, GF(q)) = AG(2, q).
- Suppose $v_1, v_2 \in AG(2, q)$, denote $v_1 = (x_1, y_1), v_2 = (x_2, y_2)$. Define $d := \langle x_1 x_2, y_1 y_2 \rangle$.
- There are q + 1 directions: $\{(0,1)\} \cup \{(1,x) | x \in GF(q)\}.$
- Any pointset $A \subseteq AG(2, q)$ of size at least q + 1 determines **all** directions.

Theorem (Szőnyi)

A set of $q - k > q - \sqrt{q}/2$ points of AG(2, q) which does not determine a set \mathcal{D} , of more than (q + 1)/2 directions, can be extended to a set of q points not determining the set of directions \mathcal{D} .

An example in finite geometry

- Consider V(2, GF(q)) = AG(2, q).
- Suppose $v_1, v_2 \in AG(2, q)$, denote $v_1 = (x_1, y_1), v_2 = (x_2, y_2)$. Define $d := \langle x_1 x_2, y_1 y_2 \rangle$.
- There are q + 1 directions: $\{(0,1)\} \cup \{(1,x) | x \in GF(q)\}.$
- Any pointset $A \subseteq AG(2, q)$ of size at least q + 1 determines **all** directions.

Theorem (Szőnyi)

A set of $q - k > q - \sqrt{q}/2$ points of AG(2,q) which does not determine a set \mathcal{D} , of more than (q+1)/2 directions, can be extended to a set of q points not determining the set of directions \mathcal{D} .

partitioning V(2t + 2, GF(q))

- Consider the vector space V(2t+2,q)
- Partition the set of non-zero vectors by t + 1-dimensional sub vector spaces?
- $V(2t+2,q) \setminus \{0\}, \cdot = GF(q^{2t+2}) \setminus \{0\}, \cdot =: L, K := GF(q^2) \setminus \{0\},$
- $S := \{tK | t \in GF(q^{2t+2})\}$, i.e. the cosets of $K \subset L$,
- Alle elements of S are GF(q) vector spaces, sharing no element of V(2t + 2, q) \ {0}
- This is the standard example of a partition, clearly $|S| = \frac{q^{2t+2}-1}{q^2-1}$.

Going from V(2t+2,q) to PG(2t+1,q), we call S a spread of PG(2t+1,q).

partitioning V(2t + 2, GF(q))

- Consider the vector space V(2t+2,q)
- Partition the set of non-zero vectors by t + 1-dimensional sub vector spaces?
- $V(2t+2,q) \setminus \{0\}, \cdot = GF(q^{2t+2}) \setminus \{0\}, \cdot =: L,$ $K := GF(q^2) \setminus \{0\},$
- $S := \{tK | t \in GF(q^{2t+2})\}$, i.e. the cosets of $K \subset L$,
- Alle elements of S are GF(q) vector spaces, sharing no element of $V(2t + 2, q) \setminus \{0\}$
- This is the standard example of a partition, clearly $|S| = \frac{q^{2t+2}-1}{q^2-1}$.

Going from V(2t+2,q) to PG(2t+1,q), we call S a spread of PG(2t+1,q).

partitioning V(2t + 2, GF(q))

- Consider the vector space V(2t + 2, q)
- Partition the set of non-zero vectors by t + 1-dimensional sub vector spaces?
- $V(2t+2,q) \setminus \{0\}, \cdot = GF(q^{2t+2}) \setminus \{0\}, \cdot =: L,$ $K := GF(q^2) \setminus \{0\},$
- $S := \{tK | t \in GF(q^{2t+2})\}$, i.e. the cosets of $K \subset L$,
- Alle elements of S are GF(q) vector spaces, sharing no element of $V(2t + 2, q) \setminus \{0\}$
- This is the standard example of a partition, clearly $|S| = \frac{q^{2t+2}-1}{q^2-1}$.

Going from V(2t+2,q) to PG(2t+1,q), we call S a spread of PG(2t+1,q).

partitioning a symplectic space

- We stick to t = 1, V = V(4, q).
- Consider an non-degenerate alternating form $f: V(4, q) \to GF(q)$, i.e. f(x, x) = 0 for any vector x, and $Rad(f) = \{0\}$.
- e.g. $f(x, y) = x_1y_2 x_2y_1 + x_3y_4 x_4y_3$
- Can we partition $V(4, q) \setminus \{0\}$ now using vector planes that are *totally isotropic* with relation to f.

Going from V(4, q) to PG(3, q), we denote (V, f) as W(3, q), and call it the symplectic polar space of rank 2.

partitioning a symplectic space

- We stick to t = 1, V = V(4, q).
- Consider an non-degenerate alternating form $f: V(4, q) \to GF(q)$, i.e. f(x, x) = 0 for any vector x, and $Rad(f) = \{0\}$.
- e.g. $f(x, y) = x_1y_2 x_2y_1 + x_3y_4 x_4y_3$
- Can we partition $V(4, q) \setminus \{0\}$ now using vector planes that are *totally isotropic* with relation to f.

Going from V(4, q) to PG(3, q), we denote (V, f) as W(3, q), and call it the symplectic polar space of rank 2.

partitioning a symplectic space

- We stick to t = 1, V = V(4, q).
- Consider an non-degenerate alternating form $f: V(4, q) \to GF(q)$, i.e. f(x, x) = 0 for any vector x, and $Rad(f) = \{0\}$.
- e.g. $f(x, y) = x_1y_2 x_2y_1 + x_3y_4 x_4y_3$
- Can we partition $V(4, q) \setminus \{0\}$ now using vector planes that are *totally isotropic* with relation to f.

Going from V(4, q) to PG(3, q), we denote (V, f) as W(3, q), and call it the symplectic polar space of rank 2.

stability for spreads of PG(2t + 1, q)

- \mathcal{S} is a partial t spread if it consists of mutually skew t-dimensional subspaces of $\operatorname{PG}(2t+1,q), \ |\mathcal{S}| = \frac{q^{2t+2}-1}{q^2-1} \delta$
- S is *maximal* if no *t*-dimensional subspace of PG(2t + 1, q) is skew to all elements of S.

Theorem (Metsch)

A maximal partial t-spread in PG(2t + 1, q), q non square, with deficiency $\delta > 0$ satisfies $8\delta^3 - 18\delta^2 + 8\delta + 4 \ge 3q^2$

stability for spreads of PG(2t + 1, q)

- $\mathcal S$ is a partial t spread if it consists of mutually skew t-dimensional subspaces of $\operatorname{PG}(2t+1,q), \ |\mathcal S| = \frac{q^{2t+2}-1}{q^2-1} \delta$
- S is *maximal* if no *t*-dimensional subspace of PG(2t + 1, q) is skew to all elements of S.

Theorem (Metsch)

A maximal partial t-spread in PG(2t + 1, q), q non square, with deficiency $\delta>0$ satisfies $8\delta^3-18\delta^2+8\delta+4\geq 3q^2$

stability for spreads of W(3, q)

Theorem (Brown, DB, Storme)

Suppose that S is a maximal partial spread of W(3,q), q even, with deficiency $\delta > 0$. Then $\delta \geq q-1$. This bound is sharp, i.e., examples of size q^2-q exist.

Theorem (Govaerts, Storme, Van Maldeghem)

Suppose that S is a spread of W(3, q) with deficiency $0 < \delta < \sqrt{q}$. Then δ must be even.

Corollary

A partial spread of W(3, q) of size q^2 can always be extended to a spread.

stability for spreads of W(3, q)

Theorem (Brown, DB, Storme)

Suppose that S is a maximal partial spread of W(3, q), q even, with deficiency $\delta > 0$. Then $\delta \geq q - 1$. This bound is sharp, i.e., examples of size $q^2 - q$ exist.

Theorem (Govaerts, Storme, Van Maldeghem)

Suppose that S is a spread of W(3,q) with deficiency $0 < \delta < \sqrt{q}$. Then δ must be even.

Corollary

A partial spread of W(3, q) of size q^2 can always be extended to a spread.

stability for spreads of W(3, q)

- First open case: do maximal partial spreads of size $q^2 1$ of W(3, q), q odd, exist?
- This is a huge difference with the PG(3, q) case.

We define a graph $\Gamma = (V, E)$

- Set V of vertices := points of AG(3, q)
- Choose a fixed set of directions D
- Define $x, y \in V$ adjacent if and only if $\langle x y \rangle \notin D$.

Lemma

A maximal partial spread of W(3,q) of size $q^2 - 1$ is equivalent to a maximal clique of size $q^2 - 2$ in Γ if D is a conic.

Theorem

A maximal partial spread of W(3, q), $q = p^h$, p odd prime, does not exist if h > 1

- Open case: h = 1, known examples for p ∈ {3,5,7,11}, but not for larger values.
- Known examples can be constructed from a subgroup of size q² − 1 of PSL(2, q).

Theorem

A maximal partial spread of W(3, q), $q = p^h$, p odd prime, does not exist if h > 1

- Open case: h = 1, known examples for p ∈ {3,5,7,11}, but not for larger values.
- Known examples can be constructed from a subgroup of size q² - 1 of PSL(2, q).

Theorem

A maximal partial spread of W(3, q), $q = p^h$, p odd prime, does not exist if h > 1

- Open case: h = 1, known examples for p ∈ {3,5,7,11}, but not for larger values.
- Known examples can be constructed from a subgroup of size q² - 1 of PSL(2, q).

Jaeger's conjecture

Conjecture

for all matrices $X \in GL(n, q)$, there exists a vector $y \in GF(q)^n$ with the property that y and Xy have no zero coordinate.

true for q a non-prime