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Stability in mathematics

structure with parameters (e.g. size)

bound on the parameter(s)

example(s) meeting the bound

Stability: what is known if an example is “close” to an
extremal case?

Spectrum: second, third, etc. smallest/largest example
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An example in set theory

A := {1,2, . . . ,n},

F ⊆ 2A,

F ∈ F ⇒ |F | = k ; k fixed, 2k < n,

F1,F2 ∈ F ⇒ F1 ∩ F2 6= ∅

Theorem (Erdős-Ko-Rado)

|F| ≤
(n−1

k−1

)
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An example in set theory

Let K be the set of all k − 1 subsets of A not containing a given
element of A, say 1. Define

F = {{1} ∪ K‖K ∈ K}

Then F is an extremal example.

Theorem (Hilton-Milner)

The above example is the unique extremal example.

|F| ≤
(n−1

k−1

)

−
( n−1

n−k−1

)

+ 1 when
⋂F = ∅.

example: (recall: 2k < n)
F ′ := F \ {F‖F ∩ {2,3, . . . , k + 1} = ∅} ∪ {2,3, . . . , k + 1}
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Arcs and Segre

Suppose S is a set of vectors in V (k ,q), q = ph with the
property that every subset of size k is a basis

Theorem (Bose)

If p ≥ k = 3, then |S| ≤ q + 1

Theorem (Segre)

If p ≥ k = 3, and |S| = q + 1, then S is a normal rational curve

Going the the projective space PG(k − 1,q), we talk about
arcs.

Segre’s theorem is maybe the birth of “finite geometry”
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Arcs and Segre

Theorem (Segre)

If K is arc in PG(2,q) with |K| ≥ q −√
q + 1 when q is even and

|K| ≥ q −√
q/4 + 7/4 when q is odd, then K is contained in an

arc of maximum size (that is, in an oval or hyperoval).
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MDS-conjecture

Conjecture

|S| has size at most q + 1 when q is odd, unless q is even,
k = 3 or k = q − 1, then |S| has size at most q + 2.

Theorem (Ball)

|S| has size at most q + k + 1 − min(k ,p), where k ≤ q.
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An example in finite geometry

Consider V (2,GF(q)) = AG(2,q).

Suppose v1, v2 ∈ AG(2,q), denote
v1 = (x1, y1), v2 = (x2, y2). Define d := 〈x1 − x2, y1 − y2〉.
There are q + 1 directions: {(0,1)} ∪ {(1, x)‖x ∈ GF(q)}.

Any pointset A ⊆ AG(2,q) of size at least q + 1 determines
all directions.

Theorem (Szőnyi)

A set of q − k > q −√
q/2 points of AG(2,q) which does not

determine a set D, of more than (q + 1)/2 directions, can be
extended to a set of q points not determining the set of
directions D.

Jan De Beule Stability theorems in finite geometry
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partitioning V (2t + 2,GF(q))

Consider the vector space V (2t + 2,q)

Partition the set of non-zero vectors by t + 1-dimensional
sub vector spaces?

V (2t + 2,q) \ {0}, · = GF(q2t+2) \ {0}, · =: L,
K := GF(q2) \ {0},

S := {tK‖t ∈ GF(q2t+2)}, i.e. the cosets of K ⊂ L,

Alle elements of S are GF(q) vector spaces, sharing no
element of V (2t + 2,q) \ {0}
This is the standard example of a partition, clearly
|S| = q2t+2

−1
q2

−1 .

Going from V (2t + 2,q) to PG(2t + 1,q), we call S a spread of
PG(2t + 1,q).
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partitioning a symplectic space

We stick to t = 1, V = V (4,q).

Consider an non-degenerate alternating form
f : V (4,q) → GF(q), i.e. f (x , x) = 0 for any vector x , and
Rad(f ) = {0}.

e.g. f (x , y) = x1y2 − x2y1 + x3y4 − x4y3

Can we partition V (4,q) \ {0} now using vector planes that
are totally isotropic with relation to f .

Going from V (4,q) to PG(3,q), we denote (V , f ) as W(3,q),
and call it the symplectic polar space of rank 2.

Jan De Beule Stability theorems in finite geometry
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stability for spreads of PG(2t + 1, q)

S is a partial t spread if it consists of mutually skew
t-dimensional subspaces of PG(2t + 1,q), |S| = q2t+2

−1
q2

−1 − δ

S is maximal if no t-dimensional subspace of PG(2t + 1,q)
is skew to all elements of S.

Theorem (Metsch)

A maximal partial t-spread in PG(2t + 1,q), q non square, with
deficiency δ > 0 satisfies 8δ3 − 18δ2 + 8δ + 4 ≥ 3q2

Jan De Beule Stability theorems in finite geometry
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stability for spreads of W(3, q)

Theorem (Brown, DB, Storme)

Suppose that S is a maximal partial spread of W(3,q), q even,
with deficiency δ > 0. Then δ ≥ q − 1. This bound is sharp, i.e.,
examples of size q2 − q exist.

Theorem (Govaerts, Storme, Van Maldeghem)

Suppose that S is a spread of W(3,q) with deficiency
0 < δ <

√
q. Then δ must be even.

Corollary

A partial spread of W(3,q) of size q2 can always be extended
to a spread.

Jan De Beule Stability theorems in finite geometry
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stability for spreads of W(3, q)

First open case: do maximal partial spreads of size q2 − 1
of W(3,q), q odd, exist?

This is a huge difference with the PG(3,q) case.
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A direction problem in AG(3, q)

We define a graph Γ = (V ,E)

Set V of vertices := points of AG(3,q)

Choose a fixed set of directions D

Define x , y ∈ V adjacent if and only if 〈x − y〉 6∈ D.

Lemma

A maximal partial spread of W(3,q) of size q2 − 1 is equivalent
to a maximal clique of size q2 − 2 in Γ if D is a conic.

Jan De Beule Stability theorems in finite geometry
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A direction problem in AG(3, q)

Theorem

A maximal partial spread of W(3,q), q = ph, p odd prime, does
not exist if h > 1

Open case: h = 1, known examples for p ∈ {3,5,7,11},
but not for larger values.

Known examples can be constructed from a subgroup of
size q2 − 1 of PSL(2,q).
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Jaeger’s conjecture

Conjecture

for all matrices X ∈ GL(n,q), there exists a vector y ∈ GF(q)n

with the property that y and Xy have no zero coordinate.

true for q a non-prime

Jan De Beule Stability theorems in finite geometry
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