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tight sets in generalized quadrangles

Definition (S.E. Payne, 1987)
A point set A of a finite generalized quadrangle is tight if on
average, each point of A is collinear with the maximum number
of points of A

Theorem (S.E. Payne, 1973)
Let A be a tight set of a generalized quadrangle S Then there
exists a number x > 0 such that P is collinear with exactly x
points of A when P 6∈ A and P is collinear with exactly s + x
points when P ∈ A.
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tight sets in generalized quadrangles

An x-tight set behaves combinatorially and the disjoint union of
x lines of the generalized quadrangles
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Finite classical polar spaces

V (d + 1,q): d + 1-dimensional vector space over the finite
field GF(q).
f : a non-degenerate sesquilinear or non-singular quadratic
form on V (d + 1,q).

Definition
A finite classical polar space associated with a form f is the
geometry consisting of subspaces of PG(d ,q) induced by the
totally isotropic sub vector spaces with relation to f .
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Finite classical polar spaces

A polar space contains points, lines, planes, etc. of the ambient
projective space.

Definition
The generators of a polar space are the subspaces of
maximal dimension.
The rank of a polar space is the vector dimension of its
generators
For a point P, the set P⊥ of points of S collinear with P is
the intersection of the tangent hyperplane at P with S.
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Finite classical polar spaces

flavours: orthogonal polar spaces: quadrics; symplectic polar
spaces; hermitian polar spaces.

polar space rank form
Q(2n,q) n x2

0 + x1x2 + . . .+ x2n−1x2n
Q+(2n + 1,q) n + 1 x0x1 + . . .+ x2nx2n+2
Q−(2n + 1,q) n f (x0, x1) + x2x3 + . . .+ x2nx2n+2
W(2n + 1,q) n + 1 x0y1 + y1x0 + . . . x2ny2n+1 + x2n+1y2n

H(2n,q2) n xq+1
0 + . . . xq+1

2n
H(2n + 1,q2) n + 1 xq+1

0 + . . . xq+1
2n+1
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Finite classical polar spaces: some examples

space rank # points # generators
Q(4,q) 2 (q2 + 1)(q + 1) (q2 + 1)(q + 1)
Q(6,q) 3 (q3 + 1)(q2 + 1)(q + 1) (q3 + 1)(q2 + 1)(q + 1)

Q−(5,q) 2 (q3 + 1)(q + 1) (q3 + 1)(q2 + 1)

Q+(5,q) 3 (q2 + 1)(q2 + q + 1) 2(q2 + 1)(q + 1)
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Strongly regular graphs

Definition
Let Γ = (X ,∼) be a graph, it is strongly regular with parameters
(n, k , λ, µ) if all of the following holds:

(i) The number of vertices is n.
(ii) Each vertex is adjacent with k vertices.
(iii) Each pair of adjacent vertices is commonly adjacent to λ

vertices.
(iv) Each pair of non-adjacent vertices is commonly adjacent

to µ vertices.
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Adjacency matrix

Let Γ = (X ,∼) be a srg(n, k , λ, µ).

Definition
The adjacency matrix of Γ is the matrix A = (aij) ∈ Cn×n

aij =

{
1 i ∼ j
0 i 6∼ j

Theorem (proof: e.g. Brouwer, Cohen, Neumaier)

The matrix A satisfies

A2 + (µ− λ)A + (n − k)I = µJ
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Eigenvalues and eigenspaces

Corollary
The matrix A has three eigenvalues:

k , (1)

r =
λ− µ+

√
(λ− µ)2 + 4(k − µ)

2
> 0, (2)

s =
λ− µ−

√
(λ− µ)2 + 4(k − µ)

2
< 0; (3)

and furthermore
Cn = 〈j〉 ⊥ V+ ⊥ V−.
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Relations on the parameters

Lemma

nµ = (k − r)(k − s), (4)
rs = µ− k , (5)

k(k − λ− 1) = (n − k − 1)µ. (6)
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Finite classical polar spaces and strongly regular
graphs

Definition
Let S be a finite classical polar space. Let V be the set of
points. Define the relation ∼ on two different points of S as
follows: P ∼ Q if and only if P and Q are collinear in S, and
P 6∼ P. The graph Γ = (V ,∼) is called the point graph of S.

Lemma
The point graph of a finite classical polar space is a strongly
regular graph
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An example

Consider S = Q(4,q) (x2
0 + x1x2 + x3x4, rank 2). The

parameters of the point graph are:
n = (q2 + 1)(q + 1)

k = q(q + 1)

λ = q − 1
µ = q + 1

The eigenvalues apart from k are
r = q − 1
s = −q − 1
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Geometrical definition

Let S be a finite classical polar space of rank r over the finite
field GF(q). Denote by θn(q) := qn−1

q−1 the number of points in an
n − 1-dimensional projective space.

Definition
An m-ovoid is a set O of points such that every generator of S
meets O in exactly m points.

Definition
An i -tight set is a set T of points such that

|P⊥ ∩ T | =

{
iθr−1(q) + qr−1 if P ∈ T

iθr−1(q) if P 6∈ T
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Graph theoretical definition

Let Γ be the point graph of a finite classical polar space. Any
vector χ ∈ Cn defines a weighted point set of S. Denote the
all-one vector by j .

Definition (after Delsarte)

A vector χ ∈ 〈j〉 ⊥ V− a weighted ovoid.
A vector χ ∈ 〈j〉 ⊥ V+ a weighted tight set.
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An inequality

Lemma (Delsarte)

Let Γ be an srg(n, l , λ, µ) with eigenvalues r , s different from k.
Let χ ∈ Cn. Then

(jχ>)2k + s(nχχ> − (jχ>)2) ≤ nχAχ>

≤ (jχ>)2k + r(nχχ> − (jχ>)2).
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Lemma
Let χ be a weighted ovoid. Then the first inequality
becomes an equality
Let χ be a weighted tight set. Then the second inequality
becomes an equality
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The most elementary tight set

Lemma
Let S be a finite classical polar space. Let χ be the
characteristic vector of a generator of S. Then χ is a tight set.

In graph theoretic terms, a generator is a clique, i.e.
χAχT = x(x − 1) (where x is the number of vertices in the
clique).

Corollary
Let χ be the characteristic vector of a clique and a tight set.
Then jχT = 1− k

s .
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Ovoids

Corollary

Let χ represent a co-clique, i.e. χAχT = 0. If χ is also an ovoid,
then jχT = ns

s−k .
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How to define the parameters?

Lemma
Let χ be a weighted ovoid. It is called a weighted m-ovoid if
jχT = m ns

s−k .
Let χ be a weighted tight set. It is called a weighted i-tight
set if jχT = i(1− k

s ).
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How m-ovoids and i-tight sets meet

Theorem
Let χ be a weighted m-ovoid. Let ψ be a weighted i-tight set.
Then

χψ> = mi .
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Ovoids

Definition (Tits 1962)

Consider the projective space PG(d ,K ), K any field. An ovoid
is a set O of points such that the tangent lines at any point
P ∈ O is the set of lines through P in a hyperplane of PG(d ,K ).

Ovoids of projective spaces are rare: they only exist in
dimensions 2 and 3.
An ovoid of PG(3,q), q even yields an ovoid of W(3,q), q
even, and vice versa.
Ovoids of polar spaces are defined for the first time in 1972
by J.A. Thas in the geometrical way.
Ovoids of polar spaces are rare: they only occur in low
rank.
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Existence and non-existence of ovoids of polar spaces

open cases: existence of ovoids of H(5,q2), Q(6,q),
q = ph, 3 6= p prime, h > 1.
partially open cases: existence of ovoids of Q+(2n + 1,q)
and H(2n + 1,q2).
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Older results revisited

Theorem (J.A. Thas, 1981)

The polar spaces Q−(5,q), H(4,q2) and W(5,q) have no
ovoids.

Proof (for Q−(5,q)).

Assume that O is an ovoid of Q−(5,q)

Choose P,Q ∈ O, l := 〈P,Q〉
Count pairs (R,S), R ∈ l \ O, S ∈ O \ {P,Q}, R ∈ S⊥.
This counting yields (q − 1)(q2 + 1) = q3 − 1, a
contradiction
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Older results revisited

Lemma
Let P,Q ∈ Q−(5,q) be two non-collinear points. Then
qχ{P,Q} + χ{P,Q}⊥ is a weighted (q + 1)-tight set.
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Older results revisited

Theorem
The polar space Q−(5,q) has no ovoids

Proof.
Assume that O is an ovoid of Q−(5,q). Choose P,Q ∈ O.
Let χT := qχ{P,Q} + χ{P,Q}⊥ , then χT · χO = q + 1,
Observe on the other hand that χT · χO = 2q, a
contradiction

There is a similar proof for the non-existence of ovoids of
H(4,q2) and W(5,q).
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Older results revisited

Theorem (S.E. Payne and J.A. Thas, 1984)

The polar space W(3,q) has ovoids if and only if q is even.

Lemma

Let l be a line of PG(3,q) \W(3,q). Then l ∪ l⊥ is a 2-tight set.
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Older results revisited

Proof.
Assume that O is an ovoid of W(3,q).
Consider any line l of W(3,q), consider P := l ∩ O,
R ∈ l ∈ \{P}, S ∈ l \ {R,P}.
The q lines of W(3,q) on R different from l lie in a plane π.
Their sum is a weighted q-tight set T
The q lines mi of π on S different from l are not lines of
W(3,q): we obtain q 2-tight sets.
Observe that the lines mi partition the set T ∩ O and that
each line contains 0 or 2 points of O.
This yields 2 | q.
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Older results revisited

Theorem (A. Blokhuis, G.E. Moorehouse, 1995)

The hyperbolic quadric Q+(2n + 1,q), q = ph, n ≥ 3 has no
ovoids if

pn >

(
2n + p
2n + 1

)2

−
(

2n + p − 1
2n + 1

)2

.

Theorem (G.E. Moorehouse, 1996)

The hermitian variety H(2n + 1,q2), q = ph, n ≥ 2 has no
ovoids if

p2n+1 >

(
2n + p
2n + 1

)2

−
(

2n + p − 1
2n + 1

)2

.
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Older results revisitedt

Theorem (J. Bamberg, JDB, F. Ihringer)

No ovoids of Q+(9,q), q even, exist.
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Older results revisited

Theorem (JDB, Klaus Metsch)

The hermitian variety H(5,4) has no ovoids.

Theorem (O’Keefe, Thas)

The parabolic quadric Q(6,q), q prime, has no ovoids
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An improvement to an existing result

Theorem (A. Klein, 2004)

The hermitian variety H(2d − 1,q2) has no ovoid if d > q3 + 1.

Theorem (J. Bamberg, JDB, F. Ihringer)

The hermitian variety H(2d − 1,q2) has no ovoid if
d > q3 − q2 + 2.

Theorem (J. Bamberg, JDB, F. Ihringer)

The hyperbolic quadric Q+(2d − 1,q2) has no ovoid if
d > q2 − q + 3.
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Open cases

non-existence of ovoids of H(5,q2), Q(6,q), q = ph, 3 6= p
prime, h > 1, Q+(7,q) for certain values of q, Q+(9,q).
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History of Cameron-Liebler line classes

1982: Cameron and Liebler studied irreducible collineation
groups of PG(d ,q) having equally many point orbits as line
orbits
Such a group induces a symmetrical tactical
decomposition of PG(d ,q).
They show that such a decomposition induces a
decomposition with the same property in any
3-dimensional subspace.
They call any line class of such a tactical decomposition a
“Cameron-Liebler line class”
A CL line class is characterized as follows: L is a CL class
with parameter x if and only if |L ∩ S| = x for any spread S.
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History of Cameron-Liebler line classes

trivial examples: Star(P), Line(π), union and complements

Conjecture
The only Cameron-Liebler line classes are the trivial examples

Theorem (A. Bruen, K. Drudge, 1999)

Let q be odd, there exists a Cameron-Liebler line class with
parameter q2+1

2 .
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Non-existence results

Apart from many non-existence results for small parameter, the
most general and most recent result is the following.

Theorem (A.L. Gavrilyuk, K. Metsch, 2014)
Let L be a CL line class with parameter x. Let n be the number
of lines of L in a plane. Then(

x
2

)
+ n(n − x) ≡ 0 (mod q + 1)
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Input (Morgan Rodgers, May 2011): there exist
Cameron-Liebler line classes with parameter x = q2−1

2 for
q ∈ {5,9,11,17, . . .}.
They all are stabilized by a cyclic group of order q2 + q + 1.
Question: are these member of an infinite family?
Through Klein-correspondence: a Cameron-Liebler line
class with parameter x is an x-tight set of Q+(5,q).
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The construction of the infinite family

We are looking for a vector χT such that

(χT −
x

q2 + 1
j)A = (q2 − 1)(χT −

x
q2 + 1

j)
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The construction of the infinite family

Using the cyclic group of order q2 + q + 1:

(χ′T −
x

q2 − 1
j ′)A′ = (q2 − 1)(χ′T −

x
q2 − 1

j ′)
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The construction of the infinite family

Using the cyclic group of order q2 + q + 1:

(χ′T −
x

q2 − 1
j ′)B = (q2 − 1)(χ′T −

x
q2 − 1

j ′)

Assume that q 6≡ 1 (mod 3) then all orbits have length
q2 + q + 1, this induces a tactical decomposition of A′
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The construction of the infinite family

Definition
Let A = (aij) be a matrix A partition of the row indices into
{R1, . . . ,Rt} and the column indices into {C1, . . . ,Ct ′} is a
tactical decomposition of A if the submatrix (ap,l)p∈Ri ,l∈Cj has
constant column sums cij and row sums rij for every (i , j).

the matrix B = (cij).
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The construction of the infinite family

Theorem (Higman–Sims, Haemers (1995))

Suppose that A can be partitioned as

A =

 A11 · · · A1k
...

. . .
...

Ak1 · · · Akk


with each Aii square and each Aij having constant column sum
cij . Then any eigenvalue of the matrix B = (cij) is also an
eigenvalue of A.
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The construction of the infinite family

We use a description of Q+(5,q) in GF(q3)× GF(q3).
Assuming that q ≡ 1 (mod 4), we have control on the
entries of the matrix B, and, it turns out that B is a block
circulant matrix!
Now we have the eigenvector we are looking for, and also
yields the full symmetry group of the tight set.
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The infinite family

Theorem (JDB, J. Demeyer, K. Metsch, M. Rodgers)

There exist a CL line class of PG(3,q), q ≡ 5,9 (mod 12) with
a symmetry group of order 3q−1

2 (q2 + q + 1).

The same infinite family has been found by K. Momihara, T.
Feng and Q. Xiang, independently.
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Short and incomplete overview

CL line classes: most recent non-existence results: L.
Beukemann, A. Gavrilyuk, K. Metsch, A.L. Mogilnykh; an
infinite family with parameter q2+1

2 , q ≤ 5, different form the
Bruen-Drudge example (A. Cossidente and F. Pavese).
Construction results on tight sets of finite classical polar
spaces: A. Cossidente and F. Pavese, e.g. tight sets of
W(5,q)

Results on tight sets of other geometries: J. Bamberg, T.
Penttila, S. Kelly, M. Law, J. Schillewaert, A. Devillers (tight
sets of (non-classical) GQs)
. . .
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Short and incomplete overview

. . .
Construction of tight sets in other geometries: related to
quadrics (B. De Bruyn, I. Cardinali), and partial
quadrangles (J. Bamberg, F. De Clerck and N. Durante)
Characterisation results: assume that T is a non weighted
x-tight set of a polar space S. What is the bound n on x
such that x < n implies that T is the disjoint union of
generators: recent results of K. Metsch.
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