$\mathcal{S} = (\mathcal{P}, \mathcal{B}, I)$ is a finite generalized quadrangle if:

- (i) Each point is incident with 1+t $(t\geqslant 1)$ lines and two distinct points are incident with at most one line
- (ii) Each line is incident with 1+s points $(s\geqslant 1)$ and two distinct lines are incident with at most one point
- (iii) If x is a point and L is a line not incident with x, then there is a unique pair $(y,M)\in \mathcal{P}\times \mathcal{B}$ for which $x \mathrel{\mathrm{I}} M \mathrel{\mathrm{I}} y \mathrel{\mathrm{I}} L$

points:

- (i) the points of $PG(3,q) \setminus PG(2,q)$
- (ii) the hyperplanes X of $\operatorname{PG}(3,q)$ for which $|X\cap\mathcal{O}|=1$
- (iii) one new symbol (∞)

lines:

- (a) the lines of $\mathrm{PG}(3,q)$ not contained in $\mathrm{PG}(2,q)$ meeting $\mathcal O$ in a unique point
- (b) the points of $\mathcal O$

incidence: the point (∞) is not incident with a line of type (a) and incident with every line of type (b). Incidence between the other points and lines is the inherited incidence of PG(3,q)

- A spread of a GQ is a set of lines which partition the point set
- A partial spread of a GQ is a set of lines such that every point of the GQ lies on at most one line.
- A maximal partial spread is a partial spread which is not contained in a bigger partial spread.

Known Results (G. Tallini)

- \bullet if q is odd, ${\bf Q}(4,q)$ has no spreads, and if S is a partial spread then $|S|\leqslant q^2-q+1$
- \bullet if q is even, $q\geqslant 4$ and S is a maximal partial spread, $|S|< q^2-\frac{q}{2}$

A $\{f, m; N, q\}$ minihyper is a pair (F, w), where F is subset of the point set of $\mathrm{PG}(N,q)$ and w is a weight function $w:\mathrm{PG}(N,q)\to\mathbb{N}:x\mapsto w(x)$, satisfying

(i)
$$w(x) > 0 \iff x \in F$$

(ii)
$$\sum_{x \in F} = f$$

(iii) min $\{\sum_{x\in H} w(x) || H \in \mathcal{H}\} = m$, where \mathcal{H} is the set of hyperplanes of PG(N,q).

Theorem 1. (Blokhuis, Storme, Szőnyi) Let B be a blocking set in PG(2,q), $q=p^h$, prime of size q+1+c. Let $c_2=c_3=2^{\frac{-1}{3}}$ and $c_p=1$ for p>3

- (i) If $q=p^{2d+1}$ and $c< c_p q^{\frac{2}{3}}$ then B contains a line
- (ii) If 4 < q and q is a square an $c < c_p q^{\frac{2}{3}}$, then B contains a line or a Baer subplane

Theorem 2. (Govaerts, Storme) Let (F, w) be a $\{\delta(q+1), \delta; N, q\}$ -minihyper, q > 2, satisfying $0 \le \delta < \epsilon$, where $q + \epsilon$ is the size of the smallest non trivial blocking set in $\mathrm{PG}(2,q)$. Then w is the weight function induced on the points of $\mathrm{PG}(N,q)$ by a sum of δ lines.

Theorem 3. Let q be even and S be a partial spread of $T_2(\mathcal{O})$ of size $q^2+1-\delta$ which covers (∞) . S can be extended if $\delta < \epsilon$, with $q + \epsilon$ the size of the smallest non trivial blocking set in $\mathrm{PG}(2,q)$

Theorem 4. Let q be even and square, and S be a partial spread of $T_2(\mathcal{O})$ of size $q^2+1-\delta$ which covers (∞) . S can be extended if $\delta < c_p q^{\frac{2}{3}}$

Theorem 5. Let q be even and S be a maximal partial spread of $T_2(\mathcal{O})$ of size $q^2 + 1 - \delta$ which does not cover (∞) . S cannot be maximal if $\delta < q$.