The smallest minimal blocking sets of $\mathrm{Q}(2n,q)$ for small odd q.

Jan De Beule joint work with Leo Storme

Definitions

An ovoid \mathcal{O} of a polar space is a set of points such that every maximal totally isotropic subspace meets \mathcal{O} in exactly one point. If \mathcal{O} is an ovoid of $\mathrm{Q}(2n,q)$ then $|\mathcal{O}|=q^n+1$

The polar spaces $Q^-(2n,q)$ $(n \geqslant 2)$, $W(2n+1,q) \cong Q(2n,q)$ $(n \geqslant 2, q \text{ even})$, W(2n+1,q) $(n \geqslant 1, q \text{ odd})$ and U(2n,q) $(n \geqslant 2)$ have no ovoids (J. Thas).

A blocking set \mathcal{K} of a polar space is a set of points such that every maximal totally isotropic subspace meets \mathcal{K} in at least one point. If \mathcal{K} is a blocking set of $\mathrm{Q}(2n,q)$ then $|\mathcal{K}|=q^n+1+r$.

 \mathcal{K} is minimal iff $\mathcal{K} \setminus \{p\}$ is not a blocking set for all $p \in \mathcal{K}$,

Known Results

- The characterization of the smallest minimal blocking sets of $Q^-(2n,q)$ and W(2n+1,q) (q even) (Metsch)
- The characterization of the smallest minimal blocking sets of Q(6,q), q even, $q\geqslant 32$ (De Beule and Storme)
- Lower bound for the smallest minimal blocking set of W(2n+1,q) (q odd). (Metsch and also Govaerts and Storme)

Ovoids of Q(2n,q), q odd

Theorem 1. (Gunawardena and Moorhouse) Q(2n,q), q odd, $n \geqslant 4$ has no ovoids.

Theorem 2. (O' Keefe and Thas) If every ovoid of Q(4, q), q odd, is an elliptic quadric, then Q(6, q) has no ovoids.

Corollary 1. Q(6,5) and Q(6,7) have no ovoids

Q(6,3) has ovoids.

Starting Point

Theorem 3. (Eisfeld, Storme, Szőnyi and Sziklai) A blocking set of Q(4,q), q even, $q \geqslant 32$, of size $q^2 + 1 + r$, with $0 < r \leqslant \sqrt{q}$, contains an ovoid.

replacement for q odd is needed!

Theorem 4. If \mathcal{B} is a minimal blocking set of Q(4,3) different from an ovoid, then $|\mathcal{B}| > 11$.

Theorem 5. (computerresult) If \mathcal{B} is a minimal blocking set of Q(4,q), q=5,7, different from an ovoid of Q(4,q), then $|\mathcal{B}| > q^2 + 2$.

Looking in tangent cones

Supose K is a minimal blocking set of Q(2n+2,q), of size $q^{n+1}+1+r$, $r < q^{n-1}$.

Lemma 1. If $p \in \mathcal{K}$, then $|T_p(Q(2n + 2, q)) \cap \mathcal{K}| \leq r$.

Lemma 2. If $p \notin \mathcal{K}$, then p projects \mathcal{K} onto \mathcal{K}_p , a minimal blocking set of $Q(2n,q) \subset T_p(Q(2n+2,q))$

The lowest dimension: Q(6,q) and Q(8,q)

Theorem 6. Let \mathcal{K} be a minimal blocking set (different from an ovoid) of Q(6,q), q=3,5,7, f size $|\mathcal{K}| \leq q^3+q$, Then there is a point $p \in Q(6,q) \setminus \mathcal{K}$ with the following property: $T_p(Q(6,q)) \cap Q(6,q) = pQ(4,q)$ and \mathcal{K} consists of all the points of the lines L on p meeting Q(4,q) in an ovoid \mathcal{O} , minus the point p itself, and $|\mathcal{K}| = q^3 + q$.

Theorem 7. Let \mathcal{K} be a minimal blocking of Q(8,3), of size $|\mathcal{K}| \leq q^4 + q$, Then there is a point $p \in Q(8,3) \setminus \mathcal{K}$ with the following property: $T_p(Q(8,3)) \cap Q(8,3) = pQ(6,3)$ and \mathcal{K} consists of all the points of the lines L on p meeting Q(6,3) in an ovoid \mathcal{O} , minus the point p itself, and $|\mathcal{K}| = q^4 + q$.

$$Q(2n+2,q)$$

Theorem 8. The smallest minimal blocking set of Q(2n+2,q) q=5,7, $n\geqslant 3$, q odd, is a cone $\pi_{n-3}\mathcal{O}\setminus\pi_{n-3}$, \mathcal{O} an elliptic quadric, $\mathcal{O}\subset Q(4,q)$, with $T_{\pi_{n-3}}(Q(2n+2,q))=\pi_{n-3}Q(4,q)$

Theorem 9. The smallest minimal blocking set of Q(2n+2,3), $n \ge 4$, q odd, is a cone $\pi_{n-4}\mathcal{O} \setminus \pi_{n-4}$, \mathcal{O} an ovoid of Q(4,q), with $T_{\pi_{n-4}}(Q(2n+2,q)) = \pi_{n-4}Q(4,q)$