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Galois geometry

PG(d ,q): Projective space of dimension d over finite field
GF(q): elements are subspaces of dimension at least 1 of
the d + 1 dimensional vector space over GF(q).

Analytic framework: coordinates, matrix groups etc.

Sesquilinear and quadratic forms: totally isotropic
elements of underlying vector space make a nice
geometry: classical polar space.

Finite simple groups of Lie type.
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definitions

Definition

A spread of PG(3,q) is a partition of the point set by lines.

Definition

A set L of lines of PG(3,q) is a Cameron-Liebler line class with
parameter x if and only if |L ∩ S| = x for every spread S of
PG(3,q).
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definitions

Introduced in an attempt to classify collineation groups of
PG(3,q) that have equally many point orbits and line orbits.

different equivalent definitions.

Definition

A set L of lines of PG(3,q) is a Cameron-Liebler line class with
parameter x if and only if for every line l

|{m ∈ L \ {l} | m ∩ l 6= ∅}| = (q + 1)x + (q2 − 1)χL(l)
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Classical polar spaces

θr (q) :=
qr+1−1

q−1

Definition

An x-tight set L of a finite classical polar space P of rank r ≥ 2,
is a set of xθr−1(q) points, such that

|P⊥ ∩ L| =

{

xθr−2(q) + qr−1 if P ∈ L
xθr−2(q) if P 6∈ L.
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Klein correspondence

A Cameron-Liebler line class of PG(3,q) with parameter x , is
equivalent to an x-tight set of Q+(5,q).
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Algebraic combinatorics

Theorem (Bamberg, Kelly, Law, Penttila)

Let A be the collinearity matrix of Q+(5,q), and let L be an
x-tight set with characteristic vector χ. Then

χ−
x

q2 − 1
j

is an eigenvector of A with eigenvalue q2 − 1, j the all one
vector.
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non-existence

Theorem (K. Metsch (2010))

A Cameron-Liebler line class in PG(3,q) with parameter x does
not exist for 2 < x ≤ q.
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Constructions

Constructions of Cameron-Liebler line classes:

Bruen, Drudge: q odd, x = q2+1
2

Govaerts, Penttila: q = 4, x ∈ {4,5}.
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The quest for new examples

q = 2 mod 3, x = (q+1)2

3

q = 3h, x = (q2−1)
2

For all examples, the group C3 : Cq2+q+1 is a subgroup of
the automorphism group
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Recent examples for q 6≡ 1 mod 3

Morgan Rodgers found examples for q ≤ 200:

q ≡ 1 mod 4: x = q2−1
2

q ≡ 2 mod 4: x = (q+1)2

3
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Using the group

G = Cq2+q+1

orbits on points of PG(3,q): π∞, {(1,0,0,0)}, q − 1 orbits
of length q2 + q + 1

orbits on lines of PG(3,q): lines through (1,0,0,0), lines in
π∞, q2 − 1 orbits of length q2 + q + 1.

reconstruct the example, and investigate the intersection
properties of the line class and the point orbits.
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Some observations

The q − 1 point orbits are third degree surfaces in PG(3,q).

The C3 is generated by the Frobenius automorphism from
Fq3 → Fq.

Some examples seems to have a larger automorphism
group.
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Bruen-Drudge construction

Choose an elliptic quadric Q−(3,q) in PG(3,q).

There are (q2+1)q2

2 secant lines

There are q + 1 tangent lines through each point of
Q−(3,q), choose half of them for each point

the secant lines together with the chosen tangent lines is a
Cameron-Liebler line class with parameter x = q2+1

2 .
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Algebraic description

We use Fq3 to represent AG(3,q).

The non-trivial point orbits are now

{βu i | β ∈ Fq \ {0}, i = 0 . . . q2 + q} ,

where u is an element of order q2 + q + 1 in Fq3 .

Notice: the Frobenius automorphism from Fq3 → Fq

stabilizes the point orbits.
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Combinatorics of the third degree surface

Suppose q 6= 3h

lines through 0: q2 + q + 1

lines at ∞: q2 + q + 1

lines meeting in 0 points: q2−q−2
3 (q2 + q + 1)

lines meeting in 1 point: q2−q−2
2 (q2 + q + 1)

lines meeting in 2 points: (q + 1)(q2 + q + 1)

lines meeting in 3 points: q2−q−2
6 (q2 + q + 1)
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Combinatorics of the third degree surface

Suppose q 6= 3h: all lines behave the same:

0 points of q−2
3 surfaces

1 point of q−2
2 surfaces

2 points of 1 surface

3 points of q−2
6 surfaces
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Combinatorics of the third degree surface

Suppose q = 3h: two line types:
Type (I): q2 lines:

0 points of q−3
3 surfaces

1 point of q−1
2 surfaces

2 points of 1 surface

3 points of q−3
6 surfaces

Type (II): q lines:

0 points of 2q−3
3 surfaces

3 points of q
3 surfaces
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Final objectives

describe infinite families of Cameron-Liebler line classes
for q = 2h, x = (q+1)2

3

describe infinite families of Cameron-Liebler line classes
for q = 3h, x = q2−1

2

investigate new examples: q = 27, x = (q+1)2

2 , this is
probably also a member of an infinite family.

describe more infinite families for q = ph, p 6∈ {2,3}.
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