Characterising point sets in AG(3, q) from intersection numbers

J. De Beule

(joint work with Kris Coolsaet, Alesandro Sicilinano and Péter Sziklai)

Department of Mathematics
Ghent University

Combinatorics 2012, Perugia

Definitions

Definition

Consider a set U of points of AG(n,q). A direction is called *determined by U* if and only if it is the slope of the line determined by two points of U. Denote by U_D the set of directions determined by U.

Corollary

If $|U| > q^{n-1}$, then all directions are determined by U.

a stability question

Consider a point set U in AG(3, q), $|U| = q^2 - \epsilon$, not determining a set N of directions. Can we extend U such that N remains unaffected?

partial ovoids of Q(4, q)

Definition

An *ovoid* of Q(4, q) is a set \mathcal{O} of points of Q(4, q) such that every line of Q(4, q) contains exactly one point of \mathcal{O} .

Definition

A partial ovoid of Q(4, q) is a set \mathcal{O} of points of Q(4, q) such that every line of Q(4, q) contains at most one point of \mathcal{S} . A partial ovoid is *maximal* if it cannot be extended to a larger partial ovoid.

partial ovoids of Q(4, q)

Definition

An *ovoid* of Q(4, q) is a set \mathcal{O} of points of Q(4, q) such that every line of Q(4, q) contains exactly one point of \mathcal{O} .

Definition

A partial ovoid of Q(4, q) is a set \mathcal{O} of points of Q(4, q) such that every line of Q(4, q) contains at most one point of \mathcal{S} . A partial ovoid is maximal if it cannot be extended to a larger partial ovoid.

partial ovoids of Q(4, q)

Definition

An *ovoid* of Q(4, q) is a set \mathcal{O} of points of Q(4, q) such that every line of Q(4, q) contains exactly one point of \mathcal{O} .

Definition

A partial ovoid of Q(4, q) is a set \mathcal{O} of points of Q(4, q) such that every line of Q(4, q) contains at most one point of \mathcal{S} . A partial ovoid is *maximal* if it cannot be extended to a larger partial ovoid.

another representation

Theorem

 $Q(4,q) \cong T_2(\mathcal{O}) \iff \mathcal{O} \text{ is a conic.}$

A (partial) ovoid \rightarrow becomes a set of points not determining the points of a conic at infinity.

another representation

Theorem

 $\mathrm{Q}(4,q)\cong \mathit{T}_2(\mathcal{O})\iff \mathcal{O}$ is a conic.

A (partial) ovoid \rightarrow becomes a set of points not determining the points of a conic at infinity.

another representation

Theorem

 $Q(4,q) \cong T_2(\mathcal{O}) \iff \mathcal{O} \text{ is a conic.}$

A (partial) ovoid \to becomes a set of points not determining the points of a conic at infinity.

a stability question in AG(3, q)

Suppose that U is a pointset of size $q^2 - 2$ in AG(3, q), not determining the points of a conic at infinity. Can U be extended with two points?

- (i) Yes, when $q = p^h$, h > 1: p odd: DB and Gács (2008) (p even: Brown, DB and Storme (2003)).
- (ii) Maximal examples exist when $p \in \{3, 5, 7, 11\}$.

An (alternative) description of the known examples

Theorem (K. Coolsaet, DB, A. Siciliano)

A maximal partial ovoid of size $q^2 - 2$ of Q(4, q), q odd, is equivalent with a sharply transitive subset of size $q^2 - 1$ of SL(2, q).

(i)
$$U = \{(a_i, b_i, c_i, 1) | i = 1 \dots q^2 - 2\}$$

(ii)
$$R(X, Y, Z, W) = \prod_{i=1}^{q^2-2} (X + a_i Y + b_i Z + c_i W)$$

 $R(X, Y, Z, W) \mid (X^q - X)^q$

(i)
$$U = \{(a_i, b_i, c_i, 1) | i = 1 \dots q^2 - 2\}$$

(ii)
$$R(X, Y, Z, W) = \prod_{i=1}^{q^2-2} (X + a_i Y + b_i Z + c_i W)$$

$$R(X, y, z, w) \mid (X^q - X)^q$$

(i)
$$U = \{(a_i, b_i, c_i, 1) | i = 1 \dots q^2 - 2\}$$

(ii)
$$R(X, Y, Z, W) = \prod_{i=1}^{q^2-2} (X + a_i Y + b_i Z + c_i W)$$

$$R(X, y, z, w) \mid (X^q - X)^q$$

(i)
$$U = \{(a_i, b_i, c_i, 1) | i = 1 \dots q^2 - 2\}$$

(ii)
$$R(X, Y, Z, W) = \prod_{i=1}^{q^2-2} (X + a_i Y + b_i Z + c_i W)$$

$$R(X, y, z, w) \mid (X^q - X)^q$$

(i)
$$U = \{(a_i, b_i, c_i, 1) | i = 1 \dots q^2 - 2\}$$

(ii)
$$R(X, Y, Z, W) = \prod_{i=1}^{q^2-2} (X + a_i Y + b_i Z + c_i W) = X^{q^2-2} + \sum_{i=1}^{q^2-2} \sigma_j(Y, Z, W) X^{q^2-2-j}$$

- (iii) $\sigma_1(Y, Z, W) = 0$ (by affine translation)
- (iv) a conic is not determined implies $\sigma_{2k}(Y,Z,W) = \sigma_2(Y,Z,W)^k, \ k=1\dots \frac{q-1}{2},$ $\sigma_{2j+1}(Y,Z,W) = 0, \ j=1\dots \frac{q-1}{2}$

(i)
$$U = \{(a_i, b_i, c_i, 1) | i = 1 \dots q^2 - 2\}$$

(ii)
$$R(X, Y, Z, W) = \prod_{i=1}^{q^2-2} (X + a_i Y + b_i Z + c_i W) = X^{q^2-2} + \sum_{i=1}^{q^2-2} \sigma_j(Y, Z, W) X^{q^2-2-j}$$

- (iii) $\sigma_1(Y, Z, W) = 0$ (by affine translation)
- (iv) a conic is not determined implies $\sigma_{2k}(Y, Z, W) = \sigma_2(Y, Z, W)^k$, $k = 1 \dots \frac{q-1}{2}$, $\sigma_{2j+1}(Y, Z, W) = 0$, $j = 1 \dots \frac{q-1}{2}$

(i)
$$U = \{(a_i, b_i, c_i, 1) | i = 1 \dots q^2 - 2\}$$

(ii)
$$R(X, Y, Z, W) = \prod_{i=1}^{q^2-2} (X + a_i Y + b_i Z + c_i W) = X^{q^2-2} + \sum_{i=1}^{q^2-2} \sigma_j(Y, Z, W) X^{q^2-2-j}$$

- (iii) $\sigma_1(Y, Z, W) = 0$ (by affine translation)
- (iv) a conic is not determined implies $\sigma_{2k}(Y, Z, W) = \sigma_2(Y, Z, W)^k$, $k = 1 \dots \frac{g-1}{2}$, $\sigma_{2i+1}(Y, Z, W) = 0$, $j = 1 \dots \frac{g-1}{2}$

(i)
$$U = \{(a_i, b_i, c_i, 1) | i = 1 \dots q^2 - 2\}$$

(ii)
$$R(X, Y, Z, W) = \prod_{i=1}^{q^2-2} (X + a_i Y + b_i Z + c_i W) = X^{q^2-2} + \sum_{i=1}^{q^2-2} \sigma_j(Y, Z, W) X^{q^2-2-j}$$

- (iii) $\sigma_1(Y, Z, W) = 0$ (by affine translation)
- (iv) a conic is not determined implies $\sigma_{2k}(Y, Z, W) = \sigma_2(Y, Z, W)^k$, $k = 1 \dots \frac{q-1}{2}$, $\sigma_{2j+1}(Y, Z, W) = 0$, $j = 1 \dots \frac{q-1}{2}$

$$P(X, Y, Z, W) := \sum_{i=1}^{q^2-2} (X + a_i Y + b_i Z + c_i W)^{q-1}$$
 (1)

$$= -2\frac{X^{q+1} - (\sigma_2(Y, Z, W))^{\frac{q+1}{2}}}{X^2 - \sigma_2(Y, Z, W)}$$
(2)

$$P(X, Y, Z, W) := \sum_{i=1}^{q^2-2} (X + a_i Y + b_i Z + c_i W)^{q-1}$$
 (1)

$$= -2\frac{X^{q+1} - (\sigma_2(Y, Z, W))^{\frac{q+1}{2}}}{X^2 - \sigma_2(Y, Z, W)}$$
(2)

hypothesis on intersection numbers

Suppose that P(X, Y, Z, W) = 0.

Conjecture

Suppose that U is a set of q^2 points in AG(3, q), q prime, such that every plane intersects U in 0 mod q points. Then U is a cylinder, i.e. the set of q^2 points on q distinct lines in one parallel class.

A general equality

Lemma

Suppose that
$$R(X_1,...,X_n) = \prod_{i=1}^d (a_i^1 X_1 + ... + a_i^n X_n),$$

 $a_i^j \in \mathbb{F}_q, \in \mathbb{N},$ and consider
 $P(X_1,...,X_n) = \sum_{i=1}^d (a_i^1 X_1 + ... + a_i^n X_n)^{q-1}.$ Then

$$P \cdot R = X_1^q \frac{\partial R}{\partial X_1} + ... + X_n^q \frac{\partial R}{\partial X_n}$$

A general equality

Lemma

Suppose that
$$R(X_1, ..., X_n) = \prod_{i=1}^d (a_i^1 X_1 + ... + a_i^n X_n),$$
 $a_i^j \in \mathbb{F}_q, \in \mathbb{N},$ and consider $P(X_1, ..., X_n) = \sum_{i=1}^d (a_i^1 X_1 + ... + a_i^n X_n)^{q-1}.$ Then
$$P \cdot R = X_1^q \frac{\partial R}{\partial X_i} + ... + X_n^q \frac{\partial R}{\partial X_i}$$

If we also suppose that U does not determine q+1 directions, assuming P(X, Y, Z, W) = 0 implies

$$\sigma_{k}(Y,Z,W) \equiv 0, k = lq + 1 \dots (l+1)q - l,$$

$$I = 0 \dots q - 1$$

$$(-j+1)\sigma_{j+q-1}(Y,Z,W) + (Y^{q}\frac{\partial\sigma_{j}}{\partial Y} + Z^{q}\frac{\partial\sigma_{j}}{\partial Z} + W^{q}\frac{\partial\sigma_{j}}{\partial W}) \equiv 0,$$

$$j = q+1 \dots q^{2} - q$$

$$Y^{q}\frac{\partial\sigma_{j}}{\partial Y} + Z^{q}\frac{\partial\sigma_{j}}{\partial Z} + W^{q}\frac{\partial\sigma_{j}}{\partial W} \equiv 0,$$

$$j = q^{2} - q + 1 \dots q^{2}$$

If we also suppose that U does not determine q+1 directions, assuming P(X, Y, Z, W) = 0 implies

$$\sigma_{k}(Y,Z,W) \equiv 0, k = lq + 1 \dots (l+1)q - l,$$

$$I = 0 \dots q - 1$$

$$(-j+1)\sigma_{j+q-1}(Y,Z,W) + (Y^{q}\frac{\partial\sigma_{j}}{\partial Y} + Z^{q}\frac{\partial\sigma_{j}}{\partial Z} + W^{q}\frac{\partial\sigma_{j}}{\partial W}) \equiv 0,$$

$$j = q+1 \dots q^{2} - q$$

$$Y^{q}\frac{\partial\sigma_{j}}{\partial Y} + Z^{q}\frac{\partial\sigma_{j}}{\partial Z} + W^{q}\frac{\partial\sigma_{j}}{\partial W} \equiv 0,$$

$$j = q^{2} - q + 1 \dots q^{2}$$

If we also suppose that U does not determine q+1 directions, assuming P(X, Y, Z, W) = 0 implies

$$\sigma_{k}(Y,Z,W) \equiv 0, k = lq + 1 \dots (l+1)q - l,$$

$$I = 0 \dots q - 1$$

$$(-j+1)\sigma_{j+q-1}(Y,Z,W) + (Y^{q}\frac{\partial\sigma_{j}}{\partial Y} + Z^{q}\frac{\partial\sigma_{j}}{\partial Z} + W^{q}\frac{\partial\sigma_{j}}{\partial W}) \equiv 0,$$

$$j = q + 1 \dots q^{2} - q$$

$$Y^{q}\frac{\partial\sigma_{j}}{\partial Y} + Z^{q}\frac{\partial\sigma_{j}}{\partial Z} + W^{q}\frac{\partial\sigma_{j}}{\partial W} \equiv 0,$$

$$j = q^{2} - q + 1 \dots q^{2}$$

Intersections with lines

Substitution Y := sZ + tW enables to use R(X, Y, Z, W) to investigate intersections with the q^2 lines through (0, 1, -s, -t).

$$\sigma_k^{s,t}(Z,W) \equiv 0, k = lq + 1 \dots (l+1)q - l,$$

$$I = 0 \dots q - 1$$

$$(-j+1)\sigma_{j+q-1}^{s,t}(Z,W) + (Z^q \frac{\partial \sigma_j^{s,t}}{\partial Z} + W^q \frac{\partial \sigma_j^{s,t}}{\partial W}) \equiv 0,$$

$$j = q + 1 \dots q^2 - q$$

$$Z^q \frac{\partial \sigma_j^{s,t}}{\partial Z} + W^q \frac{\partial \sigma_j^{s,t}}{\partial W} \equiv 0,$$

$$j = q^2 - q + 1 \dots q^2$$

Suppose that U is a pointset of size $q^2 + 1$ in AG(3, q), such that q + 1 points of a given conic at infinity have the property that each line on such a point meets U in at least one point. Can one point of U be removed?

- it is easy to find examples where a point can be removed
- for q an odd prime, the answer is yes (DB and Metsch 2005).
- the case $q = p^h$, p odd prime, h > 1 is open.
- this problem seems to be related to the cylinder conjecture