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Definitions

Definition

Consider a set U of points of AG(n,q). A direction is called
determined by U if and only if it is the slope of the line
determined by two points of U. Denote by UD the set of
directions determined by U.

Corollary

If |U| > qn−1, then all directions are determined by U.
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a stability question

Consider a point set U in AG(3,q), |U| = q2 − ǫ, not
determining a set N of directions. Can we extend U such that N
remains unaffected?
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partial ovoids of Q(4, q)

Definition

An ovoid of Q(4,q) is a set O of points of Q(4,q) such that
every line of Q(4,q) contains exactly one point of O.

Definition

A partial ovoid of Q(4,q) is a set O of points of Q(4,q) such
that every line of Q(4,q) contains at most one point of S. A
partial ovoid is maximal if it cannot be extended to a larger
partial ovoid.
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another representation

Theorem

Q(4,q) ∼= T2(O) ⇐⇒ O is a conic.

A (partial) ovoid → becomes a set of points not determining the
points of a conic at infinity.
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a stability question in AG(3, q)

Suppose that U is a pointset of size q2 − 2 in AG(3,q), not
determining the points of a conic at infinity. Can U be extended
with two points?

(i) Yes, when q = ph, h > 1: p odd: DB and Gács (2008)
(p even: Brown, DB and Storme (2003)).

(ii) Maximal examples exist when p ∈ {3,5,7,11}.
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An (alternative) description of the known examples

Theorem (K. Coolsaet, DB, A. Siciliano)

A maximal partial ovoid of size q2 − 2 of Q(4,q), q odd, is
equivalent with a sharply transitive subset of size q2 − 1 of
SL(2,q).
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computation using Rédei polynomial

(i) U = {(ai ,bi , ci ,1)‖i = 1 . . .q2 − 2}

(ii) R(X ,Y ,Z ,W ) =
∏q2

−2
i=1 (X + aiY + biZ + ciW )

R(X , y , z,w) | (X q − X )q

if yX1 + zX2 + wX2 = X3 = 0 is a line containing a
non-determined direction.
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(i) U = {(ai ,bi , ci ,1)‖i = 1 . . .q2 − 2}

(ii) R(X ,Y ,Z ,W ) =
∏q2

−2
i=1 (X + aiY + biZ + ciW ) =

X q2
−2 +

∑q2
−2

j=1 σj(Y ,Z ,W )X q2
−2−j

(iii) σ1(Y ,Z ,W ) = 0 (by affine translation)

(iv) a conic is not determined implies
σ2k (Y ,Z ,W ) = σ2(Y ,Z ,W )k , k = 1 . . .

q−1
2 ,

σ2j+1(Y ,Z ,W ) = 0, j = 1 . . .
q−1

2
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computation using Rédei polynomial

P(X ,Y ,Z ,W ) :=

q2
−2∑

i=1

(X + aiY + biZ + ciW )q−1 (1)

= −2
X q+1 − (σ2(Y ,Z ,W ))

q+1
2

X 2 − σ2(Y ,Z ,W )
(2)
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hypothesis on intersection numbers

Suppose that P(X ,Y ,Z ,W ) = 0.

Conjecture

Suppose that U is a set of q2 points in AG(3,q), q prime, such
that every plane intersects U in 0 mod q points. Then U is a
cylinder, i.e. the set of q2 points on q distinct lines in one
parallel class.
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A general equality

Lemma

Suppose that R(X1, . . . ,Xn) =
∏d

i=1(a
1
i X1 + . . . + an

i Xn),
aj

i ∈ Fq, ∈ N, and consider
P(X1, . . . ,Xn) =

∑d
i=1(a

1
i X1 + . . .+ an

i Xn)
q−1. Then

P · R = X q
1
∂R
∂X1

+ . . . + X q
n
∂R
∂Xn
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If we also suppose that U does not determine q + 1 directions,
assuming P(X ,Y ,Z ,W ) = 0 implies

σk (Y ,Z ,W ) ≡ 0 , k = lq + 1 . . . (l + 1)q − l ,

l = 0 . . . q − 1

(−j + 1)σj+q−1(Y ,Z ,W ) + (Y q ∂σj

∂Y
+ Z q ∂σj

∂Z
+ W q ∂σj

∂W
) ≡ 0 ,

j = q + 1 . . . q2 − q

Y q ∂σj

∂Y
+ Z q ∂σj

∂Z
+ W q ∂σj

∂W
≡ 0 ,

j = q2 − q + 1 . . . q2

Jan De Beule pointsets in AG(3, q)



university-logo

directions in affine spaces
intersection numbers mod p

The reverse way
A superstability question

If we also suppose that U does not determine q + 1 directions,
assuming P(X ,Y ,Z ,W ) = 0 implies

σk (Y ,Z ,W ) ≡ 0 , k = lq + 1 . . . (l + 1)q − l ,

l = 0 . . . q − 1

(−j + 1)σj+q−1(Y ,Z ,W ) + (Y q ∂σj

∂Y
+ Z q ∂σj

∂Z
+ W q ∂σj

∂W
) ≡ 0 ,

j = q + 1 . . . q2 − q

Y q ∂σj

∂Y
+ Z q ∂σj

∂Z
+ W q ∂σj

∂W
≡ 0 ,

j = q2 − q + 1 . . . q2

Jan De Beule pointsets in AG(3, q)



university-logo

directions in affine spaces
intersection numbers mod p

The reverse way
A superstability question

If we also suppose that U does not determine q + 1 directions,
assuming P(X ,Y ,Z ,W ) = 0 implies

σk (Y ,Z ,W ) ≡ 0 , k = lq + 1 . . . (l + 1)q − l ,

l = 0 . . . q − 1

(−j + 1)σj+q−1(Y ,Z ,W ) + (Y q ∂σj

∂Y
+ Z q ∂σj

∂Z
+ W q ∂σj

∂W
) ≡ 0 ,

j = q + 1 . . . q2 − q

Y q ∂σj

∂Y
+ Z q ∂σj

∂Z
+ W q ∂σj

∂W
≡ 0 ,

j = q2 − q + 1 . . . q2

Jan De Beule pointsets in AG(3, q)



university-logo

directions in affine spaces
intersection numbers mod p

The reverse way
A superstability question

Intersections with lines

Substitution Y := sZ + tW enables to use R(X ,Y ,Z ,W ) to
investigate intersections with the q2 lines through (0,1,−s,−t).

σ
s,t
k (Z ,W ) ≡ 0 , k = lq + 1 . . . (l + 1)q − l ,

l = 0 . . . q − 1

(−j + 1)σs,t
j+q−1(Z ,W ) + (Z q

∂σ
s,t
j

∂Z
+ W q

∂σ
s,t
j

∂W
) ≡ 0 ,

j = q + 1 . . . q2 − q

Z q
∂σ

s,t
j

∂Z
+ W q

∂σ
s,t
j

∂W
≡ 0 ,

j = q2 − q + 1 . . . q2
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Suppose that U is a pointset of size q2 + 1 in AG(3,q), such
that q + 1 points of a given conic at infinity have the property
that each line on such a point meets U in at least one point.
Can one point of U be removed?

it is easy to find examples where a point can be removed

for q an odd prime, the answer is yes (DB and Metsch
2005).

the case q = ph, p odd prime, h > 1 is open.

this problem seems to be related to the cylinder conjecture
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