

The Hermitian variety H(5,4) has no ovoids

Jan De Beule

joint work with: Klaus Metsch

Ghent University

Dept. Pure Mathematics and Computeralgebra

Introduction

- 6 Consider the Hermitian variety $H(2n+1,q^2)$, $n \geqslant 1$.
- An *ovoid* is a set of points \mathcal{O} of $H(2n+1,q^2)$ such that every generator of $H(2n+1,q^2)$ contains exactly one point of \mathcal{O} .
- 6 existence?

Known results

Blokhuis and Moorhouse: $H(2n+1,q^2)$ has no ovoids if

$$p^{2n+1} > {2n+p \choose 2n+1}^2 - {2n+p-1 \choose 2n+1}^2$$

Ovoids of $H(5, q^2)$ are not excluded.

Klein: $H(2n+1,q^2)$ has no ovoids if $n>q^3$

The geometry

- Using information on ovoids of H(3,4) and using the same trick of Klein, we find intersectionnumbers of a hypothetical ovoid of H(5,4) with planes.
- To obtain information on ovoids of H(3,4), we rely on q=4.

Possible extensions?

Penttila; Cimrakova and Fack (independently): classification of ovoids of H(3,9)

this may be used to extend the proof for q = 9

