On the smallest minimal blocking sets of Q(2n,q)

Jan De Beule joint work with Leo Storme

Definitions

An ovoid $\mathcal O$ of $\mathrm{Q}(2n,q)$ is a set of points such that every generator meets $\mathcal O$ in exactly one point, $|\mathcal O|=q^n+1$

A blocking set \mathcal{K} of Q(2n,q) is a set of points such that every generator meets \mathcal{K} in at least one point, $|\mathcal{K}| = q^n + 1 + r$.

 \mathcal{K} is minimal iff $\mathcal{K}\setminus\{p\}$ is not a blocking set for all $p\in\mathcal{K}$,

Part 1: Q(6,q), q even

Supose \mathcal{K} is a minimal blocking set of Q(6,q), q even, of size q^3+1+r , r< q.

Lemma 1. If $p \in Q(6,q)$, $p \in \mathcal{K}$, then $|T_p(Q(6,q)) \cap \mathcal{K}| \leq 1+r$.

Lemma 2. If $p \in Q(6,q)$, $p \notin \mathcal{K}$, then p projects \mathcal{K} onto a minimal blocking set of Q(4,q)

Theorem 1. (Eisfeld, Storme, Szőnyi and Sziklai) A blocking set of Q(4,q), q even, $q \geqslant 32$, of size $q^2 + 1 + r$, with $0 < r \leqslant \sqrt{q}$, contains an ovoid.

Corollary 1. If L is a line of Q(6,q), then $|L \cap \mathcal{K}| = 0, 1$ or $|L \cap \mathcal{K}| \geqslant 1 + \sqrt{q}$.

Theorem 2. Let \mathcal{K} be a minimal blocking set of Q(6,q), q even, $|\mathcal{K}| \leq q^3 + q$, $q \geq 32$. Then there is a point $p \in Q(6,q) \setminus \mathcal{K}$ with the following property: $T_p(Q(6,q)) \cap Q(6,q) = pQ(4,q)$ and \mathcal{K} consists of all the points of the lines L on p meeting Q(4,q) in an ovoid \mathcal{O} , minus the point p itself, and $|\mathcal{K}| = q^3 + q$.

Part 2: Q(6,5)

Lemma 3. If \mathcal{B} is a minimal blocking set of Q(4,5) and \mathcal{B} is not an ovoid, then $|\mathcal{B}|>27$

Theorem 3. Let \mathcal{K} be a minimal blocking set of Q(6, q = 5), $|\mathcal{K}| \leq q^3 + q$. Then there is a point $p \in Q(6, q) \setminus \mathcal{K}$ with the following property: $T_p(Q(6, q)) \cap Q(6, q) = pQ(4, q)$ and \mathcal{K} consists of all the points of the lines L on p meeting Q(4, q) in an ovoid \mathcal{O} , minus the point p itself, and $|\mathcal{K}| = q^3 + q$.

Part 3: Q(2n,q), q odd

Supose K is a minimal blocking set of Q(2n,q), of size q^n+1+r , $r< q^{n-2}$.

Lemma 4. If $p \in Q(2n,q)$, $p \in \mathcal{K}$, then $|T_p(Q(2n,q)) \cap \mathcal{K}| \leq 1 + r$.

Lemma 5. If $p \in Q(2n,q)$, $p \notin \mathcal{K}$, then p projects \mathcal{K} onto a minimal blocking set of Q(2n-2,q)

Lemma 6. There exists a point $p \in Q(2n,q) \setminus \mathcal{K}$ such that $|T_p(Q(2n,q)) \cap \mathcal{K}| = q^{n-1} + q^{n-3}$.

Applied on Q(8, q)

Lemma 7. There exists a line $L \subset \mathbb{Q}(8,q)$, $L \cap \mathcal{K} = \emptyset$, such that $|T_L(\mathbb{Q}(8,q)) \cap \mathcal{K}| = q^2 + 1$, and the set $T_L(\mathbb{Q}(8,q)) \cap \mathcal{K}$ is an ovoid of $\mathbb{Q}(4,q)$

Theorem 4. Let \mathcal{K} be a minimal blocking set of Q(8, q = 5), $|\mathcal{K}| \leq q^4 + q^2$. Then there is a line $L \subset Q(8, q)$, $L \cap \mathcal{K} = \emptyset$ with the following property: $T_L(Q(8, q)) \cap Q(8, q) = LQ(4, q)$ and \mathcal{K} consists of all the points of the lines on the points of L meeting Q(4, q) in an ovoid \mathcal{O} , minus the points of L, and $|\mathcal{K}| = q^4 + q^2$.