# The smallest minimal blocking sets of $Q^+(2n+1,q), q=2,3,4$

J. De Beule L. Storme

Department of Pure Mathematics and Computer Algebra Ghent University

August 15, 2005 / Geometric and Algebraic Combinatorics 3





# Polar spaces

- The hyperbolic quadric  $Q^+(2n+1,q)$  is the set of points of PG(d,q), d=2n+1, satisfying the equation  $X_0X_1+X_2X_3+\ldots+X_{d-1}X_d=0$ .
- The parabolic quadric Q(2n, q) is the set of points of PG(d, q), d = 2n, satisfying the equation  $X_0^2 + X_1X_2 + ... + X_{d-1}X_d = 0$ .

The case q = 4References

 There are other examples polar spaces: elliptic quadrics, Hermitian varieties, symplectic spaces.





## Polar spaces

- The hyperbolic quadric  $Q^+(2n+1,q)$  is the set of points of PG(d,q), d=2n+1, satisfying the equation  $X_0X_1+X_2X_3+\ldots+X_{d-1}X_d=0$ .
- The parabolic quadric Q(2n, q) is the set of points of PG(d, q), d = 2n, satisfying the equation  $X_0^2 + X_1X_2 + ... + X_{d-1}X_d = 0$ .

The case q = 4References

• There are other examples polar spaces: elliptic quadrics, Hermitian varieties, symplectic spaces.





## Polar spaces

- The hyperbolic quadric  $Q^+(2n+1,q)$  is the set of points of PG(d,q), d=2n+1, satisfying the equation  $X_0X_1+X_2X_3+\ldots+X_{d-1}X_d=0$ .
- The parabolic quadric Q(2n, q) is the set of points of PG(d, q), d = 2n, satisfying the equation  $X_0^2 + X_1X_2 + ... + X_{d-1}X_d = 0$ .

The case q=4References

 There are other examples polar spaces: elliptic quadrics, Hermitian varieties, symplectic spaces.





Definitions

#### Small minimal blocking sets of $\mathbf{Q}^+(2n+1,3), n\geq 5$ The case q=2The case q=4References

## Polar spaces

- $Q^+(2n+1,q)$  contains points, lines,..., n-dimensional subspaces.
- Q(2n, q) contains points, lines, ..., (n-1)-dimensional subspaces.
- the subspaces of maximal dimension are called generators.





Small minimal blocking sets of  $Q^+(2n+1,3)$ , n > 5The case a = 4References

**Definitions** 

## Polar spaces

- $Q^+(2n+1,q)$  contains points, lines,..., n-dimensional subspaces.
- Q(2n, q) contains points, lines, ..., (n-1)-dimensional subspaces.
- the subspaces of maximal dimension are called generators.





Small minimal blocking sets of  $Q^+(2n+1,3)$ ,  $n\geq 5$ The case q=2The case q=4

Definitions Some questions

## Ovoids of polar spaces

#### **Definition**

An *ovoid* is a set  $\mathcal{O}$  of points such that every generator contains exactly one point of  $\mathcal{O}$ .

- Ovoids of Q(6, q) are known for  $q = 3^h$  (Kantor; Thas).
- Ovoids of Q(6, q) do not exist when  $q = 2^h$  (Thas) and when q > 3 is an odd prime (Govaerts, Storme and Ball).
- Q<sup>+</sup>(7,2), Q<sup>+</sup>(7,3) and Q<sup>+</sup>(7,4) each have a unique ovoid (Kantor; Patterson; Gunawardena resp.).
- Q<sup>+</sup>(7, q) has ovoids for q odd prime or q ≡ 0 or 2 ( mod 3) (see Thas01 for references)





Small minimal blocking sets of  $Q^*(2n+1,3)$ ,  $n \ge 5$ The case q=2The case q=4

Definitions

## Ovoids of polar spaces

#### **Definition**

An *ovoid* is a set  $\mathcal{O}$  of points such that every generator contains exactly one point of  $\mathcal{O}$ .

References

- Ovoids of Q(6, q) are known for  $q = 3^h$  (Kantor; Thas).
- Ovoids of Q(6, q) do not exist when  $q = 2^h$  (Thas) and when q > 3 is an odd prime (Govaerts, Storme and Ball).
- Q<sup>+</sup>(7,2), Q<sup>+</sup>(7,3) and Q<sup>+</sup>(7,4) each have a unique ovoid (Kantor; Patterson; Gunawardena resp.).
- Q<sup>+</sup>(7, q) has ovoids for q odd prime or q ≡ 0 or 2 ( mod 3) (see Thas01 for references)





# Ovoids of polar spaces

#### Definition

An *ovoid* is a set  $\mathcal{O}$  of points such that every generator contains exactly one point of  $\mathcal{O}$ .

References

- Ovoids of Q(6, q) are known for  $q = 3^h$  (Kantor; Thas).
- Ovoids of Q(6, q) do not exist when  $q = 2^h$  (Thas) and when q > 3 is an odd prime (Govaerts, Storme and Ball).
- Q<sup>+</sup>(7,2), Q<sup>+</sup>(7,3) and Q<sup>+</sup>(7,4) each have a unique ovoid (Kantor; Patterson; Gunawardena resp.).
- $Q^+(7, q)$  has ovoids for q odd prime or  $q \equiv 0$  or 2 ( mod 3) (see Thas01 for references)





Small minimal blocking sets of  $Q = \{0, 1\}$  Small minimal blocking sets of  $Q = \{0, 1\}$  The case  $Q = \{0, 1\}$ 

Definitions

Some questions

## Blocking sets of polar spaces

#### **Definition**

A *blocking set* is a set  $\mathcal{B}$  of points such that every generator contains at least one point of  $\mathcal{B}$ .

References

#### Definition

A blocking set  $\mathcal{B}$  is *minimal* if  $\mathcal{B} \setminus \{p\}$  is not a blocking set for all points  $p \in \mathcal{B}$ .





Small minimal blocking sets of  $Q^*(9,3)$ . Small minimal blocking sets of  $Q^+(2n+1,3)$ ,  $n \ge 5$ . The case q=2. The case q=2.

Definitions

Some questions

## Blocking sets of polar spaces

#### **Definition**

A *blocking set* is a set  $\mathcal{B}$  of points such that every generator contains at least one point of  $\mathcal{B}$ .

References

#### **Definition**

A blocking set  $\mathcal{B}$  is *minimal* if  $\mathcal{B} \setminus \{p\}$  is not a blocking set for all points  $p \in \mathcal{B}$ .





#### References (Non)-existence of ovoids in high dimensions?

• (Blokhuis and Moorhouse)  $Q^+(2n+1,q)$ ,  $q=p^n$ , p prime has no ovoids if

$$p^n > \binom{2n+p}{2n+1} - \binom{2n+p-2}{2n+1}$$

- it follows e.g that  $Q^+(9,3)$  has no ovoids ...
- ... implying that  $Q^+(2n+1,3)$ , n > 4, has no ovoids.





# (Non)-existence of ovoids in high dimensions?

• (Blokhuis and Moorhouse)  $Q^+(2n+1,q)$ ,  $q=p^h$ , p prime has no ovoids if

$$p^n > \binom{2n+p}{2n+1} - \binom{2n+p-2}{2n+1}$$

- it follows e.g that Q<sup>+</sup>(9,3) has no ovoids . . .
- ... implying that  $Q^+(2n+1,3)$ ,  $n \ge 4$ , has no ovoids.





# (Non)-existence of ovoids in high dimensions?

• (Blokhuis and Moorhouse)  $Q^+(2n+1,q)$ ,  $q=p^h$ , p prime has no ovoids if

$$p^n > \binom{2n+p}{2n+1} - \binom{2n+p-2}{2n+1}$$

- it follows e.g that Q+(9,3) has no ovoids ...
- ... implying that  $Q^+(2n+1,3)$ ,  $n \ge 4$ , has no ovoids.





How to start Smallest blocking se

#### Some facts

- Q<sup>+</sup>(9,3) has no ovoid
- All ovoids of  $Q^+(7,3)$  span a hyperplane  $\pi$  of PG(6,3) and are ovoids of  $Q(6,3) = \pi \cap Q^+(7,3)$ .
- All ovoids of Q(4, q), q prime are elliptic quadrics  $Q^{-}(3, q)$ .





#### Some facts

- Q<sup>+</sup>(9,3) has no ovoid
- All ovoids of  $Q^+(7,3)$  span a hyperplane  $\pi$  of PG(6,3) and are ovoids of  $Q(6,3) = \pi \cap Q^+(7,3)$ .
- All ovoids of Q(4, q), q prime are elliptic quadrics  $Q^{-}(3, q)$ .





## Look in tangent cones of points

Suppose that  $\mathcal{B}$  is a minimal blocking set of  $Q^+(9,3)$ ,  $|\mathcal{B}| < q^4 + q$ 

• for all 
$$p \in \mathcal{B}$$
,  $|p^{\perp} \cap \mathcal{B}| < q$ 

- Ioi all  $p \in \mathcal{B}$ ,  $|p| \cap |\mathcal{B}| \leq q$
- If  $p \notin \mathcal{B}$  and  $|p^{\perp} \cap \mathcal{B}| = q^3 + 1$  then points of  $p^{\perp} \cap \mathcal{B}$  are *projected* from p onto an ovoid of  $Q^+(7,3)$ , which is an ovoid of Q(6,3) and lies in 6 dimensions.
- most difficult problem: show that the set  $p^{\perp} \cap \mathcal{B}$  is an ovoid of  $Q^+(7,3)$ .





## Look in tangent cones of points

Suppose that  $\mathcal{B}$  is a minimal blocking set of  $Q^+(9,3)$ ,  $|\mathcal{B}| < q^4 + q$ 

- for all  $p \in \mathcal{B}$ ,  $|p^{\perp} \cap \mathcal{B}| \leq q$
- If p ∉ B and |p<sup>⊥</sup> ∩ B| = q<sup>3</sup> + 1 then points of p<sup>⊥</sup> ∩ B are projected from p onto an ovoid of Q<sup>+</sup>(7,3), which is an ovoid of Q(6,3) and lies in 6 dimensions.
- most difficult problem: show that the set  $p^{\perp} \cap \mathcal{B}$  is an ovoid of  $Q^+(7,3)$ .





### Look in tangent cones of points

Suppose that  $\mathcal{B}$  is a minimal blocking set of  $Q^+(9,3)$ ,  $|\mathcal{B}| < q^4 + q$ 

- for all  $p \in \mathcal{B}$ ,  $|p^{\perp} \cap \mathcal{B}| \leq q$
- If p ∉ B and |p<sup>⊥</sup> ∩ B| = q<sup>3</sup> + 1 then points of p<sup>⊥</sup> ∩ B are projected from p onto an ovoid of Q<sup>+</sup>(7,3), which is an ovoid of Q(6,3) and lies in 6 dimensions.
- most difficult problem: show that the set  $p^{\perp} \cap \mathcal{B}$  is an ovoid of  $Q^{+}(7,3)$ .





# Special properties of the ovoid of $Q^+(7,3)$

- We consider parts of the projection: intersections with  $Q^+(5,3)$  that constitute ovoids of  $Q^+(5,3)$ .
- Those parts come from ovoids of Q<sup>+</sup>(5,3) before projection.
- We have to find enough parts: we used the computer.





# Special properties of the ovoid of $Q^+(7,3)$

- We consider parts of the projection: intersections with  $Q^+(5,3)$  that constitute ovoids of  $Q^+(5,3)$ .
- Those parts come from ovoids of Q<sup>+</sup>(5,3) before projection.
- We have to find enough parts: we used the computer.





# Special properties of the ovoid of $Q^+(7,3)$

- We consider parts of the projection: intersections with  $Q^+(5,3)$  that constitute ovoids of  $Q^+(5,3)$ .
- Those parts come from ovoids of Q<sup>+</sup>(5,3) before projection.
- We have to find enough parts: we used the computer.





How to start Smallest blocking set

#### use the ovoids

• Show that the points of  $\mathcal{B}$  lie in a 7-dimensional space.

#### Theorem

 $\mathcal{B}$  is a truncated cone  $r^*\mathcal{O}$ ,  $\mathcal{O}$  an ovoid of Q(6, 3).





How to start Smallest blocking set

#### use the ovoids

• Show that the points of  $\mathcal{B}$  lie in a 7-dimensional space.

#### Theorem

 $\mathcal{B}$  is a truncated cone  $r^*\mathcal{O}$ ,  $\mathcal{O}$  an ovoid of Q(6, 3).





- Suppose that  $\mathcal{B}$  is a minimal blocking set of  $Q^+(2n+1,3)$ ,  $|\mathcal{B}| \leq q^n + q^{n-3}$ .
- Suppose that the smallest minimal blocking sets of  $Q^+(2n_0+1,3)$ ,  $4 \le n_0 < n$  are truncated cones  $\pi_{n-4}^*\mathcal{O}$ ,  $\mathcal{O}$  an ovoid of Q(6,3).
- If  $p \notin \mathcal{B}$  and  $|p^{\perp} \cap \mathcal{B}| = q^{n-1} + q^{n-4}$  then the points of  $p^{\perp} \cap \mathcal{B}$  are projected from p onto a truncated cone  $\pi_{n-5}^* \mathcal{O}$ ,  $\mathcal{O}$  an ovoid of Q(6,3).
- If  $L \cap \mathcal{B} = \emptyset$  and  $|L^{\perp} \cap \mathcal{B}| = q^{n-2} + q^{n-5}$  then the points of  $p^{\perp} \cap \mathcal{B}$  are the points of a truncated cone  $\pi_{n-6}^* \mathcal{O}$ .





- Suppose that  $\mathcal{B}$  is a minimal blocking set of  $Q^+(2n+1,3)$ ,  $|\mathcal{B}| \leq q^n + q^{n-3}$ .
- Suppose that the smallest minimal blocking sets of  $Q^+(2n_0+1,3)$ ,  $4 \le n_0 < n$  are truncated cones  $\pi_{n-4}^*\mathcal{O}$ ,  $\mathcal{O}$  an ovoid of Q(6,3).
- If  $p \notin \mathcal{B}$  and  $|p^{\perp} \cap \mathcal{B}| = q^{n-1} + q^{n-4}$  then the points of  $p^{\perp} \cap \mathcal{B}$  are projected from p onto a truncated cone  $\pi_{n-5}^* \mathcal{O}$ ,  $\mathcal{O}$  an ovoid of Q(6,3).
- If  $L \cap \mathcal{B} = \emptyset$  and  $|L^{\perp} \cap \mathcal{B}| = q^{n-2} + q^{n-5}$  then the points of  $p^{\perp} \cap \mathcal{B}$  are the points of a truncated cone  $\pi_{n-6}^* \mathcal{O}$ .





- Suppose that  $\mathcal{B}$  is a minimal blocking set of  $Q^+(2n+1,3)$ ,  $|\mathcal{B}| \leq q^n + q^{n-3}$ .
- Suppose that the smallest minimal blocking sets of  $Q^+(2n_0+1,3)$ ,  $4 \le n_0 < n$  are truncated cones  $\pi_{n-4}^*\mathcal{O}$ ,  $\mathcal{O}$  an ovoid of Q(6,3).
- If  $p \notin \mathcal{B}$  and  $|p^{\perp} \cap \mathcal{B}| = q^{n-1} + q^{n-4}$  then the points of  $p^{\perp} \cap \mathcal{B}$  are projected from p onto a truncated cone  $\pi_{n-5}^*\mathcal{O}$ ,  $\mathcal{O}$  an ovoid of Q(6,3).
- If L ∩ B = Ø and |L<sup>⊥</sup> ∩ B| = q<sup>n-2</sup> + q<sup>n-5</sup> then the points of p<sup>⊥</sup> ∩ B are the points of a truncated cone π<sup>\*</sup><sub>n-6</sub>O.





- Suppose that  $\mathcal{B}$  is a minimal blocking set of  $Q^+(2n+1,3)$ ,  $|\mathcal{B}| \leq q^n + q^{n-3}$ .
- Suppose that the smallest minimal blocking sets of  $Q^+(2n_0+1,3)$ ,  $4 \le n_0 < n$  are truncated cones  $\pi_{n-4}^*\mathcal{O}$ ,  $\mathcal{O}$  an ovoid of Q(6,3).
- If  $p \notin \mathcal{B}$  and  $|p^{\perp} \cap \mathcal{B}| = q^{n-1} + q^{n-4}$  then the points of  $p^{\perp} \cap \mathcal{B}$  are projected from p onto a truncated cone  $\pi_{n-5}^*\mathcal{O}$ ,  $\mathcal{O}$  an ovoid of Q(6,3).
- If  $L \cap \mathcal{B} = \emptyset$  and  $|L^{\perp} \cap \mathcal{B}| = q^{n-2} + q^{n-5}$  then the points of  $p^{\perp} \cap \mathcal{B}$  are the points of a truncated cone  $\pi_{n-6}^* \mathcal{O}$ .





How to start again The result

## The final step

• If  $p \notin \mathcal{B}$  and  $|p^{\perp} \cap \mathcal{B}| = q^{n-1} + q^{n-4}$  then the points of  $p^{\perp} \cap \mathcal{B}$  are the points of a truncated cone  $\pi_{n-5}^* \mathcal{O}$ ,  $\mathcal{O}$  an ovoid of Q(6,3).

#### Theorem

 $\mathcal{B}$  is a truncated cone  $\pi_{n-4}^*\mathcal{O}$ ,  $\mathcal{O}$  an ovoid of Q(6,3).





Some facts
Blocking sets of  $Q^+(2n + 1, 2n + 1)$ 

#### Results on ovoids

• Q<sup>+</sup>(7,2) has a unique ovoid, lies in 7 dimensions

The case q=4References

- $Q^+(9,2)$  has no ovoid, hence  $Q^+(2n+1,2)$ ,  $n \ge 5$  has no ovoid
- $Q^+(5,2)$  has minimal blocking sets of size  $q^2 + 2$  (Blokhuis, O'Keefe, Payne, Storme and Wilbrink).





• Q<sup>+</sup>(7,2) has a unique ovoid, lies in 7 dimensions

References

- $Q^+(9,2)$  has no ovoid, hence  $Q^+(2n+1,2)$ ,  $n \ge 5$  has no ovoid
- $Q^+(5,2)$  has minimal blocking sets of size  $q^2 + 2$  (Blokhuis, O'Keefe, Payne, Storme and Wilbrink).





• Q<sup>+</sup>(7,2) has a unique ovoid, lies in 7 dimensions

References

- $Q^+(9,2)$  has no ovoid, hence  $Q^+(2n+1,2)$ ,  $n \ge 5$  has no ovoid
- $Q^+(5,2)$  has minimal blocking sets of size  $q^2 + 2$  (Blokhuis, O'Keefe, Payne, Storme and Wilbrink).





# Again a truncated cone

- We use the blocking set of  $Q^+(5,2)$  of size  $q^2 + 2$  to find lines of  $Q^+(7,2)$  containing 2 points of  $\mathcal{B}$ .
- This is sufficient to prove that B is a truncated cone.

References

• Using same techniques as for q = 3, we prove the result for  $Q^+(2n + 1, 2)$ .





# Again a truncated cone

- We use the blocking set of  $Q^+(5,2)$  of size  $q^2 + 2$  to find lines of  $Q^+(7,2)$  containing 2 points of  $\mathcal{B}$ .
- This is sufficient to prove that  $\mathcal{B}$  is a truncated cone.

The case q = 4 References

• Using same techniques as for q = 3, we prove the result for  $Q^+(2n + 1, 2)$ .





## Again a truncated cone

- We use the blocking set of  $Q^+(5,2)$  of size  $q^2 + 2$  to find lines of  $Q^+(7,2)$  containing 2 points of  $\mathcal{B}$ .
- This is sufficient to prove that  $\mathcal{B}$  is a truncated cone.

References

• Using same techniques as for q = 3, we prove the result for  $Q^+(2n + 1, 2)$ .





- Q<sup>+</sup>(7,4) has a unique ovoid, lies in 7 dimensions
- Existence of ovoids of Q<sup>+</sup>(9, 4) is oper
- There are small minimal blocking sets of  $Q^+(5,4)$ : size  $q^2 + 2$ ,  $q^2 + 3$  and  $q^2 + 4$ .
- Because q is still small, it may be possible to prove the the smallest minimal blocking sets different from an ovoid are truncated cones. Because the existence of ovoids of Q<sup>+</sup>(9, 4) is open, we cannot extend the result to higher dimensions.





- Q<sup>+</sup>(7,4) has a unique ovoid, lies in 7 dimensions
- Existence of ovoids of Q<sup>+</sup>(9,4) is open
- There are small minimal blocking sets of  $Q^+(5,4)$ : size  $q^2 + 2$ ,  $q^2 + 3$  and  $q^2 + 4$ .
- Because q is still small, it may be possible to prove the the smallest minimal blocking sets different from an ovoid are truncated cones. Because the existence of ovoids of Q<sup>+</sup>(9, 4) is open, we cannot extend the result to higher dimensions.





- Q<sup>+</sup>(7,4) has a unique ovoid, lies in 7 dimensions
- Existence of ovoids of Q<sup>+</sup>(9,4) is open
- There are small minimal blocking sets of  $Q^+(5,4)$ : size  $q^2 + 2$ ,  $q^2 + 3$  and  $q^2 + 4$ .
- Because q is still small, it may be possible to prove the the smallest minimal blocking sets different from an ovoid are truncated cones. Because the existence of ovoids of Q<sup>+</sup>(9,4) is open, we cannot extend the result to higher dimensions.





- Q<sup>+</sup>(7,4) has a unique ovoid, lies in 7 dimensions
- Existence of ovoids of Q<sup>+</sup>(9,4) is open
- There are small minimal blocking sets of  $Q^+(5,4)$ : size  $q^2 + 2$ ,  $q^2 + 3$  and  $q^2 + 4$ .
- Because q is still small, it may be possible to prove the the smallest minimal blocking sets different from an ovoid are truncated cones. Because the existence of ovoids of Q<sup>+</sup>(9,4) is open, we cannot extend the result to higher dimensions.





#### References

Thas01 J. A. Thas. Ovoids, spreads and m-systems of finite classical polar spaces. In Surveys in combinatorics, 2001 (Sussex), volume 288 of London Math. Soc. Lecture Note Ser., pages 241–267. Cambridge Univ. Press, Cambridge, 2001.



