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Definitions
Some questions

Polar spaces

The hyperbolic quadric Q+(2n + 1, q) is the set of points of
PG(d , q), d = 2n + 1, satisfying the equation
X0X1 + X2X3 + . . . + Xd−1Xd = 0.

The parabolic quadric Q(2n, q) is the set of points of
PG(d , q), d = 2n, satisfying the equation
X 2

0 + X1X2 + . . . + Xd−1Xd = 0.

There are other examples polar spaces: elliptic quadrics,
Hermitian varieties, symplectic spaces.

Jan De Beule blocking sets of Q+(2n + 1, q)



Introduction
Small minimal blocking sets of Q+(9, 3)

Small minimal blocking sets of Q+(2n + 1, 3), n ≥ 5
The case q = 2
The case q = 4

References

Definitions
Some questions

Polar spaces

The hyperbolic quadric Q+(2n + 1, q) is the set of points of
PG(d , q), d = 2n + 1, satisfying the equation
X0X1 + X2X3 + . . . + Xd−1Xd = 0.

The parabolic quadric Q(2n, q) is the set of points of
PG(d , q), d = 2n, satisfying the equation
X 2

0 + X1X2 + . . . + Xd−1Xd = 0.

There are other examples polar spaces: elliptic quadrics,
Hermitian varieties, symplectic spaces.

Jan De Beule blocking sets of Q+(2n + 1, q)



Introduction
Small minimal blocking sets of Q+(9, 3)

Small minimal blocking sets of Q+(2n + 1, 3), n ≥ 5
The case q = 2
The case q = 4

References

Definitions
Some questions

Polar spaces

The hyperbolic quadric Q+(2n + 1, q) is the set of points of
PG(d , q), d = 2n + 1, satisfying the equation
X0X1 + X2X3 + . . . + Xd−1Xd = 0.

The parabolic quadric Q(2n, q) is the set of points of
PG(d , q), d = 2n, satisfying the equation
X 2

0 + X1X2 + . . . + Xd−1Xd = 0.

There are other examples polar spaces: elliptic quadrics,
Hermitian varieties, symplectic spaces.

Jan De Beule blocking sets of Q+(2n + 1, q)



Introduction
Small minimal blocking sets of Q+(9, 3)

Small minimal blocking sets of Q+(2n + 1, 3), n ≥ 5
The case q = 2
The case q = 4

References

Definitions
Some questions

Polar spaces

Q+(2n + 1, q) contains points, lines,. . . , n-dimensional
subspaces.

Q(2n, q) contains points, lines, . . . , (n − 1)-dimensional
subspaces.

the subspaces of maximal dimension are called
generators.
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Definitions
Some questions

Ovoids of polar spaces

Definition

An ovoid is a set O of points such that every generator contains
exactly one point of O.

Ovoids of Q(6, q) are known for q = 3h (Kantor; Thas).

Ovoids of Q(6, q) do not exist when q = 2h (Thas) and
when q > 3 is an odd prime (Govaerts, Storme and Ball).

Q+(7, 2), Q+(7, 3) and Q+(7, 4) each have a unique ovoid
(Kantor; Patterson; Gunawardena resp.).

Q+(7, q) has ovoids for q odd prime or q ≡ 0 or 2 (
mod 3) (see Thas01 for references)
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Some questions

Blocking sets of polar spaces

Definition

A blocking set is a set B of points such that every generator
contains at least one point of B.

Definition

A blocking set B is minimal if B \ {p} is not a blocking set for all
points p ∈ B.
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Definitions
Some questions

(Non)-existence of ovoids in high dimensions?

(Blokhuis and Moorhouse) Q+(2n + 1, q), q = ph, p prime
has no ovoids if

pn >

(
2n + p
2n + 1

)
−

(
2n + p − 2

2n + 1

)

it follows e.g that Q+(9, 3) has no ovoids . . .

. . . implying that Q+(2n + 1, 3), n ≥ 4, has no ovoids.
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How to start
Smallest blocking set

Some facts

Q+(9, 3) has no ovoid

All ovoids of Q+(7, 3) span a hyperplane π of PG(6, 3) and
are ovoids of Q(6, 3) = π ∩Q+(7, 3).

All ovoids of Q(4, q), q prime are elliptic quadrics Q−(3, q).
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How to start
Smallest blocking set

Look in tangent cones of points

Suppose that B is a minimal blocking set of Q+(9, 3),
|B| ≤ q4 + q

for all p ∈ B, |p⊥ ∩ B| ≤ q

If p 6∈ B and |p⊥ ∩ B| = q3 + 1 then points of p⊥ ∩ B are
projected from p onto an ovoid of Q+(7, 3), which is an
ovoid of Q(6, 3) and lies in 6 dimensions.

most difficult problem: show that the set p⊥ ∩ B is an ovoid
of Q+(7, 3).
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How to start
Smallest blocking set

Special properties of the ovoid of Q+(7, 3)

We consider parts of the projection: intersections with
Q+(5, 3) that constitute ovoids of Q+(5, 3).

Those parts come from ovoids of Q+(5, 3) before
projection.

We have to find enough parts: we used the computer.
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How to start
Smallest blocking set

use the ovoids

Show that the points of B lie in a 7-dimensional space.

Theorem

B is a truncated cone r∗O, O an ovoid of Q(6, 3).
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How to start again
The result

Induction hypothesis

Suppose that B is a minimal blocking set of Q+(2n + 1, 3),
|B| ≤ qn + qn−3.

Suppose that the smallest minimal blocking sets of
Q+(2n0 + 1, 3), 4 ≤ n0 < n are truncated cones π∗n−4O, O
an ovoid of Q(6, 3).

If p 6∈ B and |p⊥ ∩ B| = qn−1 + qn−4 then the points of
p⊥ ∩ B are projected from p onto a truncated cone π∗n−5O,
O an ovoid of Q(6, 3).

If L ∩ B = ∅ and |L⊥ ∩ B| = qn−2 + qn−5 then the points of
p⊥ ∩ B are the points of a truncated cone π∗n−6O.
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How to start again
The result

The final step

If p 6∈ B and |p⊥ ∩ B| = qn−1 + qn−4 then the points of
p⊥ ∩ B are the points of a truncated cone π∗n−5O, O an
ovoid of Q(6, 3).

Theorem

B is a truncated cone π∗n−4O, O an ovoid of Q(6, 3).
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Some facts
Blocking sets of Q+(2n + 1, 2)

Results on ovoids

Q+(7, 2) has a unique ovoid, lies in 7 dimensions

Q+(9, 2) has no ovoid, hence Q+(2n + 1, 2), n ≥ 5 has no
ovoid

Q+(5, 2) has minimal blocking sets of size q2 + 2
(Blokhuis, O’Keefe, Payne, Storme and Wilbrink).
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Some facts
Blocking sets of Q+(2n + 1, 2)

Again a truncated cone

We use the blocking set of Q+(5, 2) of size q2 + 2 to find
lines of Q+(7, 2) containing 2 points of B.

This is sufficient to prove that B is a truncated cone.

Using same techniques as for q = 3, we prove the result
for Q+(2n + 1, 2).

Jan De Beule blocking sets of Q+(2n + 1, q)



Introduction
Small minimal blocking sets of Q+(9, 3)

Small minimal blocking sets of Q+(2n + 1, 3), n ≥ 5
The case q = 2
The case q = 4

References

Some facts
Blocking sets of Q+(2n + 1, 2)

Again a truncated cone

We use the blocking set of Q+(5, 2) of size q2 + 2 to find
lines of Q+(7, 2) containing 2 points of B.

This is sufficient to prove that B is a truncated cone.

Using same techniques as for q = 3, we prove the result
for Q+(2n + 1, 2).

Jan De Beule blocking sets of Q+(2n + 1, q)



Introduction
Small minimal blocking sets of Q+(9, 3)

Small minimal blocking sets of Q+(2n + 1, 3), n ≥ 5
The case q = 2
The case q = 4

References

Some facts
Blocking sets of Q+(2n + 1, 2)

Again a truncated cone

We use the blocking set of Q+(5, 2) of size q2 + 2 to find
lines of Q+(7, 2) containing 2 points of B.

This is sufficient to prove that B is a truncated cone.

Using same techniques as for q = 3, we prove the result
for Q+(2n + 1, 2).

Jan De Beule blocking sets of Q+(2n + 1, q)



Introduction
Small minimal blocking sets of Q+(9, 3)

Small minimal blocking sets of Q+(2n + 1, 3), n ≥ 5
The case q = 2
The case q = 4

References

Results on ovoids

Q+(7, 4) has a unique ovoid, lies in 7 dimensions

Existence of ovoids of Q+(9, 4) is open

There are small minimal blocking sets of Q+(5, 4): size
q2 + 2, q2 + 3 and q2 + 4.

Because q is still small, it may be possible to prove the the
smallest minimal blocking sets different from an ovoid are
truncated cones. Because the existence of ovoids of
Q+(9, 4) is open, we cannot extend the result to higher
dimensions.
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