Non-existence of maximal partial ovoids of Q(4, q), $q = p^h$, h > 1, p odd prime, of size $q^2 - 1$

J. De Beule A. Gács

Department of Pure Mathematics and Computer Algebra Ghent University

September 15, 2006 / Finite Geometries 2006

Finite Generalized Quadrangles

A finite generalized quadrangle (GQ) is a point-line geometry $\mathcal{S}=\mathcal{S}=(\mathcal{P},\mathcal{B},I)$ such that

- (i) Each point is incident with 1 + t lines $(t \ge 1)$ and two distinct points are incident with at most one line.
- (ii) Each line is incident with 1 + s points ($s \ge 1$) and two distinct lines are incident with at most one point.
- (iii) If x is a point and L is a line not incident with x, then there is a unique pair $(y, M) \in \mathcal{P} \times \mathcal{B}$ for which $x \mid M \mid y \mid L$.

The parabolic quadric Q(4, q): a finite classical generalized quadrangle of order q.

Finite Generalized Quadrangles

A finite generalized quadrangle (GQ) is a point-line geometry $\mathcal{S}=\mathcal{S}=(\mathcal{P},\mathcal{B},I)$ such that

- (i) Each point is incident with 1 + t lines $(t \ge 1)$ and two distinct points are incident with at most one line.
- (ii) Each line is incident with 1 + s points ($s \ge 1$) and two distinct lines are incident with at most one point.
- (iii) If x is a point and L is a line not incident with x, then there is a unique pair $(y, M) \in \mathcal{P} \times \mathcal{B}$ for which $x \mid M \mid y \mid L$.

The parabolic quadric Q(4, q): a finite classical generalized quadrangle of order q.

Ovoids and partial ovoids

Definition

An *ovoid* of a GQ \mathcal{S} is a set \mathcal{O} of points of \mathcal{S} such that every line of \mathcal{S} contains exactly one point of \mathcal{O} .

Definition

A partial ovoid of a GQ S is a set O of points of S such that every line of S contains at most one point of S. A partial ovoid is *maximal* if it cannot be extended to a larger partial ovoid.

We call "partial ovoids" also "arcs".

Ovoids and partial ovoids

Definition

An *ovoid* of a GQ \mathcal{S} is a set \mathcal{O} of points of \mathcal{S} such that every line of \mathcal{S} contains exactly one point of \mathcal{O} .

Definition

A partial ovoid of a GQ $\mathcal S$ is a set $\mathcal O$ of points of $\mathcal S$ such that every line of $\mathcal S$ contains at most one point of $\mathcal S$. A partial ovoid is maximal if it cannot be extended to a larger partial ovoid.

We call "partial ovoids" also "arcs".

- Q(4, q) has always ovoids.
- partial ovoids of size q² can always be extended to an ovoid
- We are interested in partial ovoids of size $q^2 1 \dots$
- ... which exist for q = 3, 5, 7, 11 and which do not exist for q = 9.
- When q is even, maximal partial ovoids of size $q^2 1$ do not exist.

Theorem

- Q(4, q) has always ovoids.
- partial ovoids of size q² can always be extended to an ovoid
- We are interested in partial ovoids of size $q^2 1 \dots$
- ... which exist for q = 3, 5, 7, 11 and which do not exist for q = 9.
- When q is even, maximal partial ovoids of size $q^2 1$ do not exist.

Theorem

- Q(4, q) has always ovoids.
- partial ovoids of size q² can always be extended to an ovoid
- We are interested in partial ovoids of size $q^2 1 \dots$
- ... which exist for q = 3,5,7,11 and which do not exist for q = 9.
- When q is even, maximal partial ovoids of size $q^2 1$ do not exist.

Theorem

- Q(4, q) has always ovoids.
- partial ovoids of size q² can always be extended to an ovoid
- We are interested in partial ovoids of size $q^2 1 \dots$
- ... which exist for q = 3, 5, 7, 11 and which do not exist for q = 9.
- When q is even, maximal partial ovoids of size $q^2 1$ do not exist.

Theorem

- Q(4, q) has always ovoids.
- partial ovoids of size q² can always be extended to an ovoid
- We are interested in partial ovoids of size $q^2 1 \dots$
- ... which exist for q = 3, 5, 7, 11 and which do not exist for q = 9.
- When q is even, maximal partial ovoids of size $q^2 1$ do not exist.

Theorem

- Q(4, q) has always ovoids.
- partial ovoids of size q² can always be extended to an ovoid
- We are interested in partial ovoids of size $q^2 1 \dots$
- ... which exist for q = 3, 5, 7, 11 and which do not exist for q = 9.
- When q is even, maximal partial ovoids of size q² 1 do not exist.

Theorem

Property of $(q^2 - 1)$ -arcs

Theorem

Let $\mathcal{S}=(\mathcal{P},\mathcal{B},I)$ be a GQ of order (s,t). Let \mathcal{K} be a maximal partial ovoid of size $st-\frac{t}{s}$ of \mathcal{S} . Let \mathcal{B}' be the set of lines incident with no point of \mathcal{K} , and let \mathcal{P}' be the set of points on at least one line of \mathcal{B}' and let I' be the restriction of I to points of \mathcal{P}' and lines of \mathcal{B}' . Then $\mathcal{S}'=(\mathcal{P}',\mathcal{B}',I')$ is a subquadrangle of order $(s,\rho=\frac{t}{s})$.

Corollary

Suppose that \mathcal{O} is a maximal (q^2-1) -arc of Q(4,q), then the lines of Q(4,q) not meeting \mathcal{O} are the lines of a hyperbolic quadric $Q^+(3,q)\subset Q(4,Q)$.

Property of $(q^2 - 1)$ -arcs

Theorem

Let $\mathcal{S}=(\mathcal{P},\mathcal{B},\mathrm{I})$ be a GQ of order (s,t). Let \mathcal{K} be a maximal partial ovoid of size $\mathrm{st}-\frac{t}{s}$ of \mathcal{S} . Let \mathcal{B}' be the set of lines incident with no point of \mathcal{K} , and let \mathcal{P}' be the set of points on at least one line of \mathcal{B}' and let I' be the restriction of I to points of \mathcal{P}' and lines of \mathcal{B}' . Then $\mathcal{S}'=(\mathcal{P}',\mathcal{B}',\mathrm{I}')$ is a subquadrangle of order $(s,\rho=\frac{t}{s})$.

Corollary

Suppose that $\mathcal O$ is a maximal (q^2-1) -arc of Q(4,q), then the lines of Q(4,q) not meeting $\mathcal O$ are the lines of a hyperbolic quadric $Q^+(3,q)\subset Q(4,Q)$.

The GQ $T_2(C)$

Definition

An oval of PG(2, q) is a set of q + 1 points C, such that no three points of C are collinear.

Let $\mathcal C$ be an oval of $\operatorname{PG}(2,q)$ and embed $\operatorname{PG}(2,q)$ as a hyperplane in $\operatorname{PG}(3,q)$. We denote this hyperplane with π_∞ Define points as

- (i) the points of $PG(3, q) \setminus PG(2, q)$
- (ii) the hyperplanes π of PG(3, q) for which $|\pi \cap \mathcal{C}| = 1$, and
- (iii) one new symbol (∞) .

Lines are defined as

- (a) the lines of PG(3, q) which are not contained in PG(2, q) and meet C (necessarily in a unique point), and
- (b) the points of C.

The GQ $T_2(C)$

Definition

An oval of PG(2, q) is a set of q + 1 points C, such that no three points of C are collinear.

Let $\mathcal C$ be an oval of $\operatorname{PG}(2,q)$ and embed $\operatorname{PG}(2,q)$ as a hyperplane in $\operatorname{PG}(3,q)$. We denote this hyperplane with π_∞ . Define points as

- (i) the points of $PG(3, q) \setminus PG(2, q)$,
- (ii) the hyperplanes π of PG(3, q) for which $|\pi \cap C| = 1$, and
- (iii) one new symbol (∞) .

Lines are defined as

- (a) the lines of PG(3, q) which are not contained in PG(2, q) and meet \mathcal{C} (necessarily in a unique point), and
- (b) the points of \mathcal{C} .

$T_2(\mathcal{C})$ and Q(4, q)

Theorem

When C is a conic of PG(2, q), $T_2(C) \cong Q(4, q)$.

Theorem

All ovals of PG(2, q) are conics, when q is odd.

Corollary

When q is odd, $T_2(\mathcal{C}) \cong Q(4, q)$.

Suppose now that q is odd and \mathcal{O} is a partial ovoid of $Q(4,q)\cong T_2(\mathcal{C})$. We may assume that $(\infty)\in\mathcal{O}$. If \mathcal{O} has size k, then $\mathcal{O}=\{(\infty)\}\cup U$, where U is a set of k-1 points of type (i).

Directions

The set \mathcal{O} is a partial ovoid, this implies that the line determined by two points of U cannot contain a point of \mathcal{C} .

So U is a set of points of AG(3, q) not determining q + 1 given directions.

If $|U|=q^2-2$, we want to show that U can be extended, so that the corresponding partial ovoid is not maximal. Keep in mind that this is not true for certain values of q Denote by D the set of directions determined by U, denote by O the set of points $\pi_{\infty} \setminus D$.

Choose π_{∞} : $X_3 = 0$. Set

$$U = \{(a_i, b_i, c_i, 1) : i = 1, \dots, k\} \subset AG(3, q), \text{ then } i \in AG(3, q), \text$$

$$D = \{(a_i - a_i, b_i - b_i, c_i - c_i, 0) : i \neq j\}$$

Define

$$R(X, Y, Z, W) = \prod_{i=1}^{K} (X + a_i Y + b_i Z + c_i W)$$

ther

$$R(X, Y, Z, W) = X^{k} + \sum_{i=1}^{k} \sigma_{i}(Y, Z, W)X^{k-i}$$

with $\sigma_i(X, Y, Z)$ the *i*-th elementary symmetric polynomial of the set $\{a_iY + b_iZ + c_iW | i = 1...k\}$.

Choose $\pi_{\infty}: X_3 = 0$. Set $U = \{(a_i, b_i, c_i, 1): i = 1, \dots, k\} \subset AG(3, q)$, then $D = \{(a_i - a_j, b_i - b_j, c_i - c_j, 0): i \neq j\}$ Define

$$R(X, Y, Z, W) = \prod_{i=1}^{k} (X + a_i Y + b_i Z + c_i W)$$

then

$$R(X, Y, Z, W) = X^k + \sum_{i=1}^k \sigma_i(Y, Z, W) X^{k-i}$$

with $\sigma_i(X, Y, Z)$ the *i*-th elementary symmetric polynomial of the set $\{a_iY + b_iZ + c_iW|i = 1...k\}$.

Lemma

For any $x, y, z, w \in GF(q)$, $(y, z, w) \neq (0, 0, 0)$, the multiplicity of -x in the multi-set $\{ya_i + zb_i + wc_i : i = 1, ..., k\}$ is the same as the number of common points of U and the plane $yX_0 + zX_1 + wX_2 + xX_3 = 0$.

From now on: $|U| = q^2 - 2$, q odd. We may then assume that $\sum a_i = \sum b_i = \sum c_i = 0$, implying $\sigma_1(X, Y, Z) = 0$.

$$L: yX_0 + zX_1 + wX_2 = X_3 = 0$$

Suppose that $L \cap O \neq \emptyset$ then $R(X, y, z, w)(X^2 - \sigma_2(y, z, w)) = (X^q - X)^q$.

From now on: $|U| = q^2 - 2$, q odd. We may then assume that $\sum a_i = \sum b_i = \sum c_i = 0$, implying $\sigma_1(X, Y, Z) = 0$. Consider a line L in π_{∞} :

$$L: yX_0 + zX_1 + wX_2 = X_3 = 0$$

Suppose that $L \cap O \neq \emptyset$ then $R(X, y, z, w)(X^2 - \sigma_2(y, z, w)) = (X^q - X)^q$.

Relations for σ

Define

$$S_k(Y,Z,W) = \sum_i (a_i Y + b_i Z + c_i W)^k$$

Lemma

If the line with equation $yX_0 + zX_1 + wX_2 = X_3 = 0$ has at least one common point with O, then $S_k(y, z, w) = 0$ for odd k and $S_k(y, z, w) = -2\sigma_2^{k/2}(y, z, w)$ for even k.

The main theorem

Theorem

If $|U| = q^2 - 2$, $q = p^h$ and $|O| \ge p + 2$, then U can be extended by two points to a set of q^2 points determining the same directions.

