Strongly regular graphs and substructures of finite classical polar spaces

Jan De Beule

Department of Mathematics Ghent University

June 25th, 2015 8th Slovenian International Conference on Graph Theory Kranjska Gora

Strongly regular graphs

Definition

Let $\Gamma = (X, \sim)$ be a graph, it is strongly regular with parameters (n, k, λ, μ) if all of the following holds:

- (i) The number of vertices is *n*.
- (ii) Each vertex is adjacent with *k* vertices.
- (iii) Each pair of adjacent vertices is commonly adjacent to λ vertices.
- (iv) Each pair of non-adjacent vertices is commonly adjacent to μ vertices.

We exclude "trivial cases".

Adjacency matrix

Let $\Gamma = (X, \sim)$ be a $srg(n, k, \lambda, \mu)$.

Definition

The adjacency matrix of Γ is the matrix $A=(a_{ij})\in\mathbb{C}^{n\times n}$

$$a_{ij} = \left\{ \begin{array}{ll} 1 & i \sim j \\ 0 & i \not\sim j \end{array} \right.$$

Theorem (proof: e.g. Brouwer, Cohen, Neumaier)

The matrix A satisfies

$$A^2 + (\mu - \lambda)A + (n - k)I = \mu J$$

Eigenvalues and eigenspaces

Corollary

The matrix A has three eigenvalues:

$$k$$
, (1)

$$r = \frac{\lambda - \mu + \sqrt{(\lambda - \mu)^2 + 4(k - \mu)}}{2} > 0,$$
 (2)

$$s = \frac{\lambda - \mu - \sqrt{(\lambda - \mu)^2 + 4(k - \mu)}}{2} < 0; \tag{3}$$

and furthermore

$$\mathbb{C}^n = \langle i \rangle \perp V_+ \perp V_-.$$

Line graph of PG(3, q)

- Vertices: lines of PG(3, q)
- Adjacency: two vertices are adjacent iff the corresponding lines meet.

Parameters of the line graph of PG(3, q)

•
$$n = (q^2 + q + 1)(q^2 + 1)$$

•
$$k = (q+1)^2 q$$
.

•
$$\lambda = 2q^2 + q - 1$$
.

•
$$\mu = (q+1)^2$$
.

•
$$r = q^2 - 1$$
.

•
$$s = -1 - q^2$$
.

History of Cameron-Liebler line classes

- 1982: Cameron and Liebler studied irreducible collineation groups of PG(d, q) having equally many point orbits as line orbits
- Such a group induces a symmetrical tactical decomposition of PG(d, q).
- They show that such a decomposition induces a decomposition with the same property in any 3-dimensional subspace.
- They call any line class of such a tactical decomposition a "Cameron-Liebler line class"

Cameron-Liebler line classes

Definition

A spread is a set S of lines of PG(3, q) partitioning the point set of PG(3, q).

$$\chi_{\mathcal{L}} \in \langle i \rangle \perp V_{+}$$

Cameron-Liebler line classes

Definition

A spread is a set S of lines of PG(3, q) partitioning the point set of PG(3, q).

Definition

A Cameron-Liebler line class with parameter x is a set \mathcal{L} of lines of PG(3, q) such that $|\mathcal{L} \cap \mathcal{S}| = x$ for any spread \mathcal{S} .

If \mathcal{L} is a CL-line class, then for the characteristic vector of the corresponding vertex set in the line graph it holds

$$\chi_{\mathcal{L}} \in \langle j \rangle \perp V_{+}$$

Cameron-Liebler line classes

Definition

A spread is a set S of lines of PG(3, q) partitioning the point set of PG(3, q).

Definition

A Cameron-Liebler line class with parameter x is a set \mathcal{L} of lines of PG(3, q) such that $|\mathcal{L} \cap \mathcal{S}| = x$ for any spread \mathcal{S} .

If \mathcal{L} is a CL-line class, then for the characteristic vector of the corresponding vertex set in the line graph it holds

$$\chi_{\mathcal{L}} \in \langle i \rangle \perp V_+$$

- "Trivial examples"
- Conjecture by Cameron and Liebler: these are the only examples
- Disproven by a construction of Bruen and Drudge
- Many (strong) non-existence results

- "Trivial examples"
- Conjecture by Cameron and Liebler: these are the only examples
- Disproven by a construction of Bruen and Drudge
- Many (strong) non-existence results

- "Trivial examples"
- Conjecture by Cameron and Liebler: these are the only examples
- Disproven by a construction of Bruen and Drudge
- Many (strong) non-existence results

- "Trivial examples"
- Conjecture by Cameron and Liebler: these are the only examples
- Disproven by a construction of Bruen and Drudge
- Many (strong) non-existence results

Theorem (A. Bruen, K. Drudge, 1999)

Let q be odd, there exists a Cameron-Liebler line class with parameter $\frac{q^2+1}{2}$.

$$\binom{x}{2} + n(n-x) \equiv 0 \pmod{q+1}$$

Theorem (A. Bruen, K. Drudge, 1999)

Let q be odd, there exists a Cameron-Liebler line class with parameter $\frac{q^2+1}{2}$.

Theorem (A.L. Gavrilyuk, K. Metsch, 2014)

Let \mathcal{L} be a CL line class with parameter x. Let n be the number of lines of \mathcal{L} in a plane. Then

$$\binom{x}{2} + n(n-x) \equiv 0 \pmod{q+1}$$

- Input (Morgan Rodgers, May 2011): there exist Cameron-Liebler line classes with parameter $x = \frac{q^2-1}{2}$ for $q \in \{5, 9, 11, 17, \ldots\}.$
- They all are stabilized by a cyclic group of order $a^2 + a + 1$.
- Question: are these member of an infinite family?

• We are looking for a vector χ_T such that

$$(\chi_T - \frac{x}{q^2 + 1}j)A = (q^2 - 1)(\chi_T - \frac{x}{q^2 + 1}j)$$

Not containing the trivial examples:

$$(\chi_T' - \frac{x}{q^2 - 1}j')A' = (q^2 - 1)(\chi_T' - \frac{x}{q^2 - 1}j')$$

• Using the cyclic group of order $a^2 + a + 1$:

$$(\chi_T' - \frac{x}{q^2 - 1}j')B = (q^2 - 1)(\chi_T' - \frac{x}{q^2 - 1}j')$$

• Assume that $q \not\equiv 1 \pmod{3}$ then all orbits have length $q^2 + q + 1$, this induces a tactical decomposition of A'

Definition

Let $A = (a_{ij})$ be a matrix A partition of the row indices into $\{R_1, \ldots, R_t\}$ and the column indices into $\{C_1, \ldots, C_{t'}\}$ is a *tactical decomposition* of A if the submatrix $(a_{p,l})_{p \in R_i, l \in C_j}$ has constant column sums c_{ij} and row sums r_{ij} for every (i, j).

• the matrix $B = (c_{ii})$.

Theorem (Higman–Sims, Haemers (1995))

Suppose that A can be partitioned as

$$A = \left(\begin{array}{ccc} A_{11} & \cdots & A_{1k} \\ \vdots & \ddots & \vdots \\ A_{k1} & \cdots & A_{kk} \end{array}\right)$$

with each A_{ii} square and each A_{ij} having constant column sum c_{ij} . Then any eigenvalue of the matrix $B = (c_{ij})$ is also an eigenvalue of A.

- Assuming that q = 1 (mod 4), we have control on the entries of the matrix B, and, it turns out that B is a block circulant matrix!
- Now we have the eigenvector we are looking for, and also yields the full symmetry group of the tight set.

The infinite family

Theorem (JDB, J. Demeyer, K. Metsch, M. Rodgers)

There exist a CL line class of PG(3, q), $q \equiv 5,9 \pmod{12}$ with a symmetry group of order $3\frac{q-1}{2}(q^2+q+1)$.

The same infinite family has been found by K. Momihara, T. Feng and Q. Xiang, independently.

The infinite family

Theorem (JDB, J. Demeyer, K. Metsch, M. Rodgers)

There exist a CL line class of PG(3, q), $q \equiv 5,9 \pmod{12}$ with a symmetry group of order $3\frac{q-1}{2}(q^2+q+1)$.

The same infinite family has been found by K. Momihara, T. Feng and Q. Xiang, independently.

Finite classical polar spaces

- V(d + 1, q): d + 1-dimensional vector space over the finite field GF(q).
- f: a non-degenerate sesquilinear or non-singular quadratic form on V(d+1,q).

Definition

A *finite classical polar space* associated with a form f is the geometry consisting of subspaces of PG(d, q) induced by the totally isotropic sub vector spaces with relation to f.

An easy example

- The Klein correspondence maps lines of PG(3, q) to points of PG(5, q) through their Plücker coordinates.
- These points satisfy the equation $X_0X_1 + X_2X_3 + X_4X_5 = 0$.
- This is a polar space of rank 3, denoted as $Q^+(5,q)$
- A Cameron-Liebler line class with parameter x is an x-tight set of $Q^+(5, q)$.

Geometrical definition

- S: a finite classical polar space of rank r over GF(q).
- $\theta_n(q) := \frac{q^n-1}{q-1}$ the number of points in an n-1-dimensional projective space.

Definition

An *i-tight set* is a set \mathcal{T} of points such that

$$|P^{\perp} \cap \mathcal{T}| = \begin{cases} i\theta_{r-1}(q) + q^{r-1} & \text{if } P \in \mathcal{T} \\ i\theta_{r-1}(q) & \text{if } P \notin \mathcal{T} \end{cases}$$

Definition

An m-ovoid is a set \mathcal{O} of points such that every generator of \mathcal{S} meets \mathcal{O} in exactly m points.

Geometrical definition

- S: a finite classical polar space of rank r over GF(q).
- $\theta_n(q) := \frac{q^n-1}{q-1}$ the number of points in an n-1-dimensional projective space.

Definition

An *i-tight set* is a set T of points such that

$$|P^{\perp} \cap \mathcal{T}| = \left\{ egin{array}{ll} i heta_{r-1}(q) + q^{r-1} & ext{if } P \in \mathcal{T} \ i heta_{r-1}(q) & ext{if } P
otin \mathcal{T} \end{array}
ight.$$

Definition

An m-ovoid is a set \mathcal{O} of points such that every generator of \mathcal{S} meets \mathcal{O} in exactly m points.

Geometrical definition

- S: a finite classical polar space of rank r over GF(q).
- $\theta_n(q) := \frac{q^{n}-1}{q-1}$ the number of points in an n-1-dimensional projective space.

Definition

An *i-tight set* is a set T of points such that

$$|P^{\perp} \cap \mathcal{T}| = \left\{ egin{array}{ll} i heta_{r-1}(q) + q^{r-1} & ext{if } P \in \mathcal{T} \ i heta_{r-1}(q) & ext{if } P
otin \mathcal{T} \end{array}
ight.$$

Definition

An *m-ovoid* is a set \mathcal{O} of points such that every generator of \mathcal{S} meets \mathcal{O} in exactly m points.

• If \mathcal{T} is an *i*-tight set, then

An easy example from finite geometry

$$\chi_{\mathcal{T}} \in \langle j \rangle \perp V_+$$

• If \mathcal{O} is an m-ovoid, then

$$\chi_{\mathcal{O}} \in \langle j \rangle \perp V_{-}$$

Theorem

Let $\mathcal O$ be a weighted m-ovoid. Let $\mathcal T$ be a weighted i-tight set. Then

$$\chi_{\mathcal{O}} \cdot \chi_{\mathcal{T}} = mi.$$

Ongoing research together with John Bamberg and Ferdinand Ihringer; to show non-existence of ovoids of certain finite classical polar spaces.

Possible applications

Theorem

Let $\mathcal O$ be a weighted m-ovoid. Let $\mathcal T$ be a weighted i-tight set. Then

$$\chi_{\mathcal{O}} \cdot \chi_{\mathcal{T}} = mi.$$

Ongoing research together with John Bamberg and Ferdinand Ihringer; to show non-existence of ovoids of certain finite classical polar spaces.