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Strongly regular graphs

Definition
Let Γ = (X ,∼) be a graph, it is strongly regular with parameters
(n, k , λ, µ) if all of the following holds:

(i) The number of vertices is n.
(ii) Each vertex is adjacent with k vertices.
(iii) Each pair of adjacent vertices is commonly adjacent to λ

vertices.
(iv) Each pair of non-adjacent vertices is commonly adjacent

to µ vertices.

We exclude “trivial cases”.
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Adjacency matrix

Let Γ = (X ,∼) be a srg(n, k , λ, µ).

Definition
The adjacency matrix of Γ is the matrix A = (aij) ∈ Cn×n

aij =

{
1 i ∼ j
0 i 6∼ j

Theorem (proof: e.g. Brouwer, Cohen, Neumaier)

The matrix A satisfies

A2 + (µ− λ)A + (n − k)I = µJ
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Eigenvalues and eigenspaces

Corollary
The matrix A has three eigenvalues:

k , (1)

r =
λ− µ+

√
(λ− µ)2 + 4(k − µ)

2
> 0, (2)

s =
λ− µ−

√
(λ− µ)2 + 4(k − µ)

2
< 0; (3)

and furthermore
Cn = 〈j〉 ⊥ V+ ⊥ V−.
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Line graph of PG(3,q)

Vertices: lines of PG(3,q)

Adjacency: two vertices are adjacent iff the corresponding
lines meet.
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Parameters of the line graph of PG(3,q)

n = (q2 + q + 1)(q2 + 1)

k = (q + 1)2q.
λ = 2q2 + q − 1.
µ = (q + 1)2.
r = q2 − 1.
s = −1− q2.
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History of Cameron-Liebler line classes

1982: Cameron and Liebler studied irreducible collineation
groups of PG(d ,q) having equally many point orbits as line
orbits
Such a group induces a symmetrical tactical
decomposition of PG(d ,q).
They show that such a decomposition induces a
decomposition with the same property in any
3-dimensional subspace.
They call any line class of such a tactical decomposition a
“Cameron-Liebler line class”
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Cameron-Liebler line classes

Definition
A spread is a set S of lines of PG(3,q) partitioning the point set
of PG(3,q).

Definition
A Cameron-Liebler line class with parameter x is a set L of
lines of PG(3,q) such that |L ∩ S| = x for any spread S.

If L is a CL-line class, then for the characteristic vector of the
corresponding vertex set in the line graph it holds

χL ∈ 〈j〉 ⊥ V+
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Existence and non-existence of CL-line classes

“Trivial examples”
Conjecture by Cameron and Liebler: these are the only
examples
Disproven by a construction of Bruen and Drudge
Many (strong) non-existence results
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Existence and non-existence of CL-line classes

Theorem (A. Bruen, K. Drudge, 1999)

Let q be odd, there exists a Cameron-Liebler line class with
parameter q2+1

2 .

Theorem (A.L. Gavrilyuk, K. Metsch, 2014)
Let L be a CL line class with parameter x. Let n be the number
of lines of L in a plane. Then(

x
2

)
+ n(n − x) ≡ 0 (mod q + 1)
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Input (Morgan Rodgers, May 2011): there exist
Cameron-Liebler line classes with parameter x = q2−1

2 for
q ∈ {5,9,11,17, . . .}.
They all are stabilized by a cyclic group of order q2 + q + 1.
Question: are these member of an infinite family?
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The construction of the infinite family

We are looking for a vector χT such that

(χT −
x

q2 + 1
j)A = (q2 − 1)(χT −

x
q2 + 1

j)
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The construction of the infinite family

Not containing the trivial examples:

(χ′T −
x

q2 − 1
j ′)A′ = (q2 − 1)(χ′T −

x
q2 − 1

j ′)
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The construction of the infinite family

Using the cyclic group of order q2 + q + 1:

(χ′T −
x

q2 − 1
j ′)B = (q2 − 1)(χ′T −

x
q2 − 1

j ′)

Assume that q 6≡ 1 (mod 3) then all orbits have length
q2 + q + 1, this induces a tactical decomposition of A′
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The construction of the infinite family

Definition
Let A = (aij) be a matrix A partition of the row indices into
{R1, . . . ,Rt} and the column indices into {C1, . . . ,Ct ′} is a
tactical decomposition of A if the submatrix (ap,l)p∈Ri ,l∈Cj has
constant column sums cij and row sums rij for every (i , j).

the matrix B = (cij).
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The construction of the infinite family

Theorem (Higman–Sims, Haemers (1995))

Suppose that A can be partitioned as

A =

 A11 · · · A1k
...

. . .
...

Ak1 · · · Akk


with each Aii square and each Aij having constant column sum
cij . Then any eigenvalue of the matrix B = (cij) is also an
eigenvalue of A.
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The construction of the infinite family

Assuming that q ≡ 1 (mod 4), we have control on the
entries of the matrix B, and, it turns out that B is a block
circulant matrix!
Now we have the eigenvector we are looking for, and also
yields the full symmetry group of the tight set.
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The infinite family

Theorem (JDB, J. Demeyer, K. Metsch, M. Rodgers)

There exist a CL line class of PG(3,q), q ≡ 5,9 (mod 12) with
a symmetry group of order 3q−1

2 (q2 + q + 1).

The same infinite family has been found by K. Momihara, T.
Feng and Q. Xiang, independently.
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Finite classical polar spaces

V (d + 1,q): d + 1-dimensional vector space over the finite
field GF(q).
f : a non-degenerate sesquilinear or non-singular quadratic
form on V (d + 1,q).

Definition
A finite classical polar space associated with a form f is the
geometry consisting of subspaces of PG(d ,q) induced by the
totally isotropic sub vector spaces with relation to f .
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An easy example

The Klein correspondence maps lines of PG(3,q) to points
of PG(5,q) through their Plücker coordinates.
These points satisfy the equation X0X1 + X2X3 + X4X5 = 0.
This is a polar space of rank 3, denoted as Q+(5,q)

A Cameron-Liebler line class with parameter x is an x-tight
set of Q+(5,q).
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Geometrical definition

S: a finite classical polar space of rank r over GF(q).

θn(q) := qn−1
q−1 the number of points in an n − 1-dimensional

projective space.

Definition
An i -tight set is a set T of points such that

|P⊥ ∩ T | =

{
iθr−1(q) + qr−1 if P ∈ T

iθr−1(q) if P 6∈ T

Definition
An m-ovoid is a set O of points such that every generator of S
meets O in exactly m points.
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Back to eigenspaces

If T is an i-tight set, then

χT ∈ 〈j〉 ⊥ V+

If O is an m-ovoid, then

χO ∈ 〈j〉 ⊥ V−
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Possible applications

Theorem
Let O be a weighted m-ovoid. Let T be a weighted i-tight set.
Then

χO · χT = mi .

Ongoing research together with John Bamberg and Ferdinand
Ihringer; to show non-existence of ovoids of certain finite
classical polar spaces.
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