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Blocking sets

Definition

Consider the projective plane PG(2, q). A set B of points of
PG(2, q), different from a line, is called a blocking set if any line
of PG(2, q) contains at least one point of B.

Definition

A blocking set B of PG(2, q) is called minimal if it does not
contain a smaller blocking set as a subset.

Examples:

The projective triangle

A Baer subplane

A Hermitian curve
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More blocking sets

Definition

Consider the projective space PG(n, q). A set B of points of
PG(2, q), different from a line, is called a blocking set if any
hyperplane of PG(n, q) contains at least one point of B. A
blocking set B of PG(n, q) is called minimal if it does not contain
a smaller blocking set as a subset.

Definition

Consider the projective plane PG(2, q). A set B of points of
PG(2, q) is called a t-fold blocking set if any line of PG(2, q)
contains at least t points of B. A t-fold blocking set B of
PG(2, q) is called minimal if it does not contain a smaller t-fold
blocking set as a subset.
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Minihypers

Definition

Consider the projective space PG(n, q). A weighted
{f , m; n, q}-minihyper, f ≥ 1, n ≥ 2, is a pair (F , w), where F is
a subset of the point set of PG(n, q) and where w is a weight
function w : PG(n, q) → N: x 7→ w(x), satisfying:

1 w(x) > 0 ⇐⇒ x ∈ F ,
2

∑

x∈F w(x) = f , and
3 min{∑x∈H w(x)‖H ∈ H} = m, where H is the set of

hyperplanes of PG(n, q).

Constructions . . .
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Linear codes

Definition

A linear [n, k , d ]-code C over the finite field GF(q) is a
k -dimensional subspace of the n-dimensional vector space
V (n, q), where d is the minimum distance of C.

Theorem

Suppose that C is a linear [n, k , d ] code. The Griesmer bound
states that

n ≥
k−1
∑

i=0

⌈

d
q i

⌉

= gq(k , d),

where dxe denotes the smallest integer greater than or equal to
x
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Linear codes meeting the Griesmer bound and
minihypers

Suppose that C is a linear [n, k , d ] code. Then we can write d
in an unique way as d = θqk−1 − ∑k−2

i=0 εiqλi such that θ ≥ 1
and 0 ≤ εi < q. Then the Griesmer bound for an [n, k , d ]-code
can be expressed as:

n ≥ θvk −
k−2
∑

i=0

εivλi+1

where vl = (q l − 1)/(q − 1), for any integer l ≥ 0.
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Linear codes meeting the Griesmer bound and
minihypers

Theorem

(Hamada and Helleseth) There is a one-to-one correspondence
between the set of all non-equivalent [n, k , d ]-codes meeting
the Griesmer bound and the set of all projectively distinct
{∑k−2

i=0 εivλi+1,
∑k−2

i=0 εivλi ; k − 1, q}-minihypers (F , w), such
that 1 ≤ w(p) ≤ θ for every point p ∈ F.

The link is described explicitly
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Linear codes meeting the Griesmer bound and
minihypers

Let G = (g1 · · ·gn) be a generator matrix for a linear
[n, k , d ]-code, meeting the Griesmer bound. We look at a
column of G as being the coordinates of a point in PG(k − 1, q).
Let the point set of PG(k − 1, q) be {s1, . . . , svk}. Let mi(G)
denote the number of columns in G defining si . Let m(G) be
the maximum value in {mi(G) | i = 1, 2, . . . , vk}. Then
θ = m(G) is uniquely determined by the code C and we call it
the maximum multiplicity of the code. Define the weight
function w : PG(k − 1, q) → N as w(si) = θ − mi(G),
i = 1, 2, . . . , vk . Let F = {si ∈ PG(k − 1, q) | w(si) > 0}, then
(F , w) is a {∑k−2

i=0 εivλi+1,
∑k−2

i=0 εivλi ; k − 1, q}-minihyper with
weight function w .
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Theorem

A weighted t-fold blocking set B of PG(2, q), q ≥ 4,
2 ≤ t <

√
q + 1 containing no line, has at least tq +

√
tq + 1

points.

Theorem

A weighted t-fold blocking set B of PG(2, q) containing at least
one point of weight one, of size |B| = t(q + 1) + r , t + r ≤ δ0,
contains a line.
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Table for δ0

p h δ0

p even ≤ √
q

p h = 1 ≤ (p + 1)/2
p 3 ≤ p2

2 6m + 1, m ≥ 1 ≤ 24m+1 − 24m − 22m+1/2
> 2 6m + 1, m ≥ 1 ≤ p4m+1 − p4m − p2m+1/2 + 1/2
2 6m + 3, m ≥ 1 < 24m+5/2 − 24m+1 − 22m+1 + 1

> 2 6m + 3, m ≥ 1 ≤ p4m+2 − p2m+2 + 2
≥ 5 6m + 5, m ≥ 0 < p4m+7/2 − p4m+3 − p2m+2/2 + 1
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Some characterizations

Theorem

A weighted {ε1(q + 1) + ε0, ε1; k − 1, q}-minihyper (F , w),
k ≥ 4, with ε1 + ε0 ≤ δ0, is a sum of ε1 lines and ε0 points.
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Higher dimensions: needed results

Theorem

(Hamada and Helleseth) A µ-dimensional subspace intersects
a weighted {

∑k−2
i=0 εivi+1,

∑k−2
i=0 εivi ; k − 1, q}-minihyper,

∑k−2
i=0 εi = δ ≤ q, (ε0, . . . , εk−2) ∈ Eext(k − 1, q), in a weighted

{∑µ
i=0 mivi+1,

∑µ
i=0 mivi ; µ, q}-minihyper, where

∑µ
i=0 mi ≤ δ.

Theorem

Let F be a {∑k−2
i=0 εivi+1,

∑k−2
i=1 εivi ; k − 1, q}-minihyper where

t ≥ 2, q > h, 0 ≤ εi ≤ q − 1,
∑k−2

i=0 εi = h.
Then a plane of PG(k − 1, q) is either contained in F or
intersects F in an {m0 + m1(q + 1), m1; 2, q}-minihyper with
m0 + m1 ≤ h.
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Characterizations using planes

Theorem
A weighted
{ε2(q2 +q +1)+ ε1(q +1)+ ε0, ε2(q +1)+ ε1; k −1, q}-minihyper
(F , w), with ε2 + ε1 + ε0 ≤ δ0, is a sum of ε2 planes, ε1 lines, and
ε0 points.

Theorem

A weighted {∑t
i=0 εivi+1,

∑t
i=1 εivi ; k − 1, q}-minihyper, with

∑t
i=0 εi ≤ δ0, is the sum of εt t-dimensional subspaces, εt−1

(t − 1)-dimensional subspaces,. . . ,ε1 lines and ε0 points.
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Linear Codes . . .

Theorem

A union of εk−2 (k − 2)-dimensional spaces, εk−3

(k − 3)-dimensional spaces, . . ., ε1 lines, and ε0 points, which
all are pairwise disjoint, exists in PG(k −1, q), if and only if there
exists a linear [vk − ∑k−2

i=0 εivi+1, k , qk−1 − ∑k−2
i=0 εiq i ]-code

meeting the Griesmer bound.
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