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Linear codes

Let C be a linear [n, k ,d ]-code with generator matrix G and
parity check matrix H.

Lemma
A linear [n, k ] code has minimum distance d if and only if every
d − 1 columns of H are linearly independent and there exists d
linearly dependent columns.
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The Singleton bound

Theorem (Singleton bound)

Let C be a q-ary (n,M,d) code. Then M ≤ qn−d+1.

Corollary

Let C be a linear [n, k ,d ]-code. Then k ≤ n − d + 1.

Definition
A linear [n, k ,d ] code C over Fq is an MDS code if it satisfies
k = n − d + 1.

Jan De Beule MDS codes
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Special sets of vectors

Lemma
An MDS code of dimension k and length n is equivalent with a
set S of n vectors of Fr

q with the property that every r vectors of
S form a basis of Fr

q, with r = n − k.
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Definition – Examples

Definition
An arc of a vector space Fr

q is a set S of vectors with the
property that every r vectors of S form a basis of Fr

q.

1 Let {e1, . . . ,er} be a basis of Fr
q. Then

{e1, . . . ,er ,e1 + e2 + · · ·+ er} is an arc of size r + 1.
2 Let S = {(1, t , t2, . . . , t r−1)‖t ∈ Fq}∪{(0,0, . . . ,0,1)} ⊂ Fr

q.
Then S is an arc of size q + 1.
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One of the first results

Theorem (Bush 1952)

Let S be an arc of size n of Fr
q, r > q. Then n ≤ r + 1 and if

n = q + 1, then S is equivalent to example (1)

From now on we may assume r ≤ q.

Jan De Beule MDS codes
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The (linear) MDS conjecture

Conjecture

Let r ≤ q. For an arc of size n in Fr
q, n ≤ q + 1 unless r = 3 or

r = q − 1 and q is even, in which case n ≤ q + 1.
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Questions of Segre (1955)

(i) Given m,q, what is the maximal value of l for which an
l-arc exists?

(ii) For which values of r − 1,q, q > r − 1, is each (q + 1)-arc
in PG(r − 1,q) a normal rational curve?

(iii) For a given r − 1,q, q > r , which arcs of PG(r − 1,q) are
extendable to a (q + 1)-arc?

Jan De Beule MDS codes
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Early results

In the following list, q = ph, and we consider an l-arc in
PG(r − 1,q).

Bose (1947): l ≤ q + 1 if p ≥ r = 3.
Segre (1955): a (q + 1)-arc in PG(2,q), q odd, is a conic.
q = 2, r = 3: hyperovals are (q + 2)-arcs.
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more (recent) results

Conjecture is known to be true for all q ≤ 27, for all r ≤ 5
and k ≥ q − 3 and for r = 6,7,q − 4,q − 5, see overview
paper of J. Hirschfeld and L. Storme, pointing to results of
Segre, J.A. Thas, Casse, Glynn, Bruen, Blokhuis, Voloch,
Storme, Hirschfeld and Korchmáros.
many examples of hyperovals, see e.g. Cherowitzo’s
hyperoval page, pointing to examples of Segre, Glynn,
Payne, Cherowitzo, Penttila, Pinneri, Royle and O’Keefe.
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more (recent) results

An example of a (q + 1)-arc in PG(4,9), different from a
normal rational curve, (Glynn):

K = {(1, t , t2 +ηt6, t3, t4) | t ∈ F9, η
4 = −1}∪{(0,0,0,0,1)}

An example of a (q + 1)-arc in PG(3,q), q = 2h,
gcd(r ,h) = 1, different from a normal rational curve,
(Hirschfeld):

K = {(1, t , t2r
, t2r +1) | t ∈ Fq} ∪ {(0,0,0,1)}
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Observations

Lemma
Let S be an arc of size n of Fr

q. Let Y ⊂ S be of size r − 2.
There are exactly t = q + r − 1− n hyperplanes of Fr

q with the
property that H ∩ S = Y.

Corollary

An arc of F3
q has size at most q + 2.

Theorem (Segre)

An arc of F3
q, q odd, has size at most q + 1, in case of equality,

it is equivalent with example (2).
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arcs in PG(2,q)

tangent lines through
p1 = (1,0,0): X1 = aiX2
p2 = (0,1,0): X2 = biX0
p3 = (0,0,1): X0 = ciX1

Lemma (B. Segre)
t∏

i=1

aibici = −1
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Tangent functions

Let S be an arc of size n of Fr
q.

Choose a set A ⊂ S of size r − 2.
Then there are t = q + r − 1− n tangent hyperplanes on A
to S.
Let f i

A be t linear forms on Fr
q such that ker(f i

A) are these t
tangent hyperplanes

Definition
For a subset A ⊂ S of size r − 2, define its tangent function as

FA(x) :=
t∏

i=1

f i
A(x)
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Generalization

Lemma (S. Ball, [1])

Let S be an arc of Fk
q. For a subset D ⊂ S of size k − 3 and

{x , y , z} ⊂ S \ D,

FD∪{x}(y)FD∪{y}(z)FD∪{z}(x) =

(−1)t+1FD∪{x}(z)FD∪{y}(x)FD∪{z}(y)
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Interpolation

Lemma
For a subset E ⊂ Fq of size t + 1 and f ∈ Fq[X ], a polynomial of
degree t,

f (X ) =
∑
e∈E

f (e)
∏

y∈E\{e}

X − y
e − y
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Interpolation

Lemma

For a subset E ⊂ F2
q of size t + 1 with the property that

(u1,u2), (y1, y2) ∈ E implies u2 6= 0, y2 6= 0 and u1
u2
6= y1

y2
and

f ∈ Fq[X1,X2], a homogenous polynomial of degree t,

f (X1,X2) =
∑

(e1,e2)∈E

f (e1,e2)
∏

(y1,y2)∈E\{(e1,e2)}

y2X1 − y1X2

e1y2 − y1e2
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Interpolation

Corollary

For a subset E ⊂ F2
q of size t + 2 with the property that

(u1,u2), (y1, y2) ∈ E implies u2 6= 0, y2 6= 0 and u1
u2
6= y1

y2
and

f ∈ Fq[X1,X2], a homogenous polynomial of degree t,∑
(x1,x2)∈E

f (x1, x2)
∏

y1,y2∈E\{(x1,x2)}

(x1y2 − y1x2)−1 = 0
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Interpolation of tangent functions

Lemma

Let S be an arc of Fk
q. Let A ⊂ S be a subset of size k − 2.

Then for every subset E ⊂ S \ A of size t + 2,∑
x∈E

FA(x)
∏

y∈E\{x}

det(x , y ,A)−1 = 0
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Using the generalization

Lemma

Let S be an arc of Fk
q. For a subset D ⊂ S of size k − 4 and

{x1, x2, x3, z1, z2} ⊂ S \ D, switching x1 and x2, or switching x2
and x3, or switching z1 and z2 in

FD∪{z1,z2}(x1)FD∪{z2,x1}(x2)FD∪{x1,x2}(x3)

FD∪{z2,x1}(z1)FD∪{x1,x2}(z2)

changes the sign by (−1)t+1.
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The Segre product

Let r ∈ {1, . . . , k − 2}.
Let D ⊂ S of size k − 2− r and let A = {x1, . . . , xr+1} and
B = {z1, . . . , zr} be disjoint.

Definition

PD(A,B) :=

FD∪{zr ,...,z1}
(x1)FD∪{zr ,...,z2,x1}

(x2) · · · FD∪{zr ,xr−1...,x1}
(xr )FD∪{xr ,...,x1}

(xr+1)

FD∪{zr ,...,z2,x1}
(z1) · · · FD∪{zr ,xr−1...,x1}

(zr−1)
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Exploiting the lemma of tangents

Lemma
Let D ⊂ S be of size k − 2− r and let A = {x1, . . . , xr+1} or
A = {x1, . . . , xr} and B = {z1, . . . , zr} be disjoint subsets of
S \ D. Switching the order in A (or B) by a transposition
changes the sign of PD(A,B) by (−1)t+1.
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One more notation

For any subset B of an ordered set L, let σ(B,L) be (t + 1)
times the number of transpositions needed to order L so that
the elements of B are the last |B| elements.
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Exploiting the Segre product

Lemma

Let A of size n, L of size r , D of size k − 1− r and Ω of size
t + 1− n be pairwise disjoint subsequences of S. If
n ≤ r ≤ n + p − 1 and r ≤ t + 2, where q = ph, then∑

B⊆L
|B|=n

(−1)σ(B,L)PD∪(L\B)(A,B)
∏

z∈Ω∪B

det(z,A,L \ B,D)−1 =

(−1)(r−n)(nt+n+1)
∑
∆⊆Ω
|∆|=r−n

PD(A∪∆,L)
∏

z∈(Ω\∆)∪L

det(z,A,∆,D)−1.
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Theorem (S. Ball, [1])

If k ≤ p then |S| ≤ q + 1.

Proof.
We may assume k + t ≤ q + 2.
Apply previous lemma with with r = t + 2 = k − 1 and
n = 0 and get ∏

z∈Ω

det(z,L)−1 = 0,

which is a contradiction.
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A generalization

Theorem (S. Ball and JDB, [2])

If q is non-prime and k ≤ 2p − 2, then |S| ≤ q + 1.
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