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Preface

These are the lectures notes of the summer school

Finite Geometry and Friends.

held from 17–21 June 2019 at the Vrije Universiteit Brussel, Belgium. Four young,
yet established researchers will each deliver four hours of lectures on their topics,
supplemented by two hours of exercise sessions. Each of them has written a set
of notes to accompany the lectures.

First up is Aida Abiad from the University of Maastricht, who will introduce
the students to topics in spectral graph theory. The two main topics that will be
treated are eigenvalue interlacing and cospectral graphs. These ideas have found
many applications to finite geometries, which makes a good introduction to this
topic ever so interesting.

Next in line is Nicola Durante from Università degli Studi di Napoli “Federico II”
in Naples, Italy, who will lecture on the the geometry of non-reflexive sesquilin-
ear forms. Amongst the objectives are the classification of geometric objects re-
lated to such forms in small dimension, and to exploit the connection of such
objects with “modern” objects from finite geometry such as hyperovals, spreads,
Fq-linear sets, semifield flocks, and MRD-codes.

Francesco Pavese, from Politecnico di Bari, Italy, will lecture on the actions of
groups on finite projective and polar spaces. He will show that a good under-
standing of these actions and groups can help to construct subsets of points (or
lines or planes or . . . ) with particular properties. These constructions can be use-
ful in a variety of situations, of which we will see a coding theoretical application
and a more geometrical one.

Finally we have Geertrui van de Voorde, from the University of Canterbury in
New Zealand who will introduce us the theory of linear sets. This relatively
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Preface vi

new topic has been very active in the last few decades and a lot of progress has
been made on several problems involving them. A large part of its success and
attractiveness is due to its relation with a wide variety of topics in finite geometry
such as blocking sets, direction problems and hyperovals and arcs. A few of these
will be treated more in depth.

In summary, in these notes you will find a well-rounded and varied menu of
topics presented by four excellent researchers. We hope that they form a helpful
introduction to people who are new to the research fields and can motivate them
to partake in future research.

The organisers,

Jan De Beule
Sam Mattheus
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Preface

The object of these lecture notes is to give an introduction to two eigenvalue
methods and to show some of their applications to combinatorics. The notes
are intended to be used as course notes and should provide material for about 4
hours of lectures and 2 hours of exercises.

Chapter 2 contains an introduction to eigenvalue interlacing, together with an
illustration of how it can be used to obtain new results in graph theory.

Chapter 3 looks at constructions of graphs with the same spectrum (cospectral
graphs), in particular to Godsil-McKay switching. Its highlight is an application
to construct new strongly regular graphs.

There are many topics in spectral graph theory that have not been touched upon
in these notes. It should not be inferred that the topics covered in these notes are
more interesting or relevant than those not covered. I have taken material from a
number of sources all of which will provide further reading and references.

Aida Abiad, Eindhoven, May 2019.
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Chapter 1

Introduction

Spectral graph theory studies the relation between structural properties of the
graph and the eigenvalues of associated matrices. Graphs are often studied by
their adjacency matrix, a square zero-one matrix whose rows and columns are
both indexed in the same order by the vertices of the graph, with a 1 in a given
position if and only if the corresponding vertices are adjacent. In this notes we
will also consider other types of matrices (Laplacian matrix). If we do not specify
the matrix, we assume we are dealing with the adjacency matrix.

The spectrum of a finite graph is by definition the spectrum of the adjacency
matrix, that is, its set of eigenvalues together with their multiplicities. Just as as-
tronomers study stellar spectra to determine the make-up of distant stars, one of
the main goals in graph theory is to deduce the principal properties and struc-
ture of a graph from its graph spectrum (or from a short list of easily computable
invariants). Eigenvalues are closely related to almost all major invariants of a
graph, linking one extremal property to another. For example, we can see from
the spectrum whether the graph is regular, or bipartite. The spectrum contains
a lot of information of the graph, but in general it does not determine the graph
(up to isomorphism). So a central question is:

Given the spectrum of a graph, what can be said about its structure?

Spectral graph theory looks at answering questions of this type.

Sometimes the eigenvalues uniquely determine the graph. If that is the case we
say that the graph is determined by the spectrum (DS for short). On the other
hand, for graphs with a very special structure, such as trees and strongly regular
graphs, it has been proved that they are almost never determined by the spec-
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Part I. Chapter 1. Introduction 8

trum (see [28], [33]). For many graphs, it has been established whether they are
determined by the spectrum or not. However, for many other interesting graphs
the problem is still open.

Two graphs with the same spectrum for some type of matrix are called cospectral
with respect to the corresponding matrix. Cospectral graphs help us understand
“weaknesses” in identifying structures only using the spectrum, and this will be
the main highlight in the second part of these lecture notes.

There exist several algebraic methods to prove theorems in combinatorics. One of
them is eigenvalue interlacing, a tool that gives information about substructures
in graphs . This will be the main highlight of the first part of these lecture notes.

All graphs will be undirected, without loops and multiple edges. We shall denote
by 1 and 0 the all-one and the zero vector, respectively. We denote the all-one
matrix by J , the identity matrix by I and the all-zero matrix by O. For details
and an overview of the results on spectra of graphs, we refer to the book by
Brouwer and Haemers [9].



Chapter 2

Eigenvalue interlacing

In this chapter we introduce an important spectral technique: eigenvalue inter-
lacing.

2.1 Preliminaries

Consider two sequences of real numbers: �1 � · · · � �n and µ1 � · · · � µm with
m < n. The second sequence is said to interlace the first one whenever

�i � µi � �n�m+i for i = 1, . . . ,m.

The interlacing is called tight if there exist an integer k 2 [0,m] such that

�i = µi for 1  i  k and �n�m+i = µi for k + 1  i  m.

If m = n�1, the interlacing inequalities become �1 � µ1 � �2 � µ2 � · · · � µm �
�n, which clarifies the name. Throughout, the �is and the µis will be eigenvalues
of matrices A and B, respectively.

Theorem 2.1.1. [18][Interlacing] Let A be a real symmetric n ⇥ n matrix with eigen-
values �1 � · · · � �n. For some m < n, let S be a real n⇥m matrix with orthonormal
columns, S>S = I . Define B = S>AS and let B have eigenvalues µ1 � · · · � µm with
respective eigenvectors v1, . . . , vm. Then,

9



Part I. Chapter 2. Eigenvalue interlacing 10

(i) the eigenvalues of B interlace those of A, that is,

�i � µi � �n�m+i, i = 1, . . . ,m, (2.1)

(ii) if µi = �i or µi = �n�m+i for some i 2 [1,m], then B has a µi-eigenvector v such
that Sv is a µi-eigenvector of A.

(iii) If for some integer l, µi = �i, for i = 1, . . . , l (or µi = �n�m+i for i = l, . . . ,m)
then Svi is a µi-eigenvector of A for i = 1, . . . , l (respectively i = l, . . . ,m).

(iv) if the interlacing is tight, then SB = AS.

Two interesting particular cases of interlacing are obtained by choosing appro-
priately the matrix S.

If S = [ I O ]>, then B is just a principal submatrix of A and we have:

Corollary 2.1.2. If B is a principal submatrix of a symmetric matrix A, then the eigen-
values of B interlace the eigenvalues of A.

If P = {X1, . . . , Xm} is a partition of the vertex set V , with each Xi 6= ;, we
can take for eB the so-called quotient matrix of A with respect to P . Let A be
partitioned according to P :

A =

2

64
A1,1 · · · A1,m

...
...

Am,1 · · · Am,m

3

75 ,

where Ai,j denotes the submatrix (block) of A formed by rows in Xi and columns
in Xj . The characteristic matrix eS is the n ⇥ m matrix whose jth column is the
characteristic vector of Xj (j = 1, . . . ,m).

Then, the quotient matrix of A with respect to P is the m ⇥ m matrix eB whose
entries are the average row sums of the blocks of A, more precisely:

( eB)i,j =
1

|Ui|
1
>
Ai,j1 =

1

|Ui|
(eS>

AeS)i,j .

The partition is called equitable (or regular) if each block Ai,j of A has constant row
(and column) sum, that is, eS eB = AeS.
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Corollary 2.1.3. Suppose eB is the quotient matrix of a symmetric partitioned matrix A.

(i) The eigenvalues of eB interlace the eigenvalues of A.

(ii) If the interlacing is tight then the partition is regular.

Proof. Take D = diag(|X1|, . . . , |Xm|) = eS> eS, S = eSD�1/2 and B = S>AS. Then,
since B = D1/2 eBD�1/2, B and eB = D�1/2BD1/2 have the same spectrum, and
the eigenvalues of B = S>AS interlace those of A, which proves (i). For (ii) note
that if the interlacing is tight, then SB = AS; hence, eS eB = AeS. ⇤

Note that eB need not to be a symmetric matrix. However, the proof of Corol-
lary 2.1.3 shows that eB is diagonally similar to B, which is symmetric.

Note also that the converse of Corollary 2.1.3.(ii) is not true: a regular partition
does not imply tight interlacing.

2.2 A generalization of Grone’s result

A third particular case of interlacing, which is a mix of both types, was used in
[5] for obtaining lower and upper bounds for the sums of Laplacian eigenvalues
of graphs. This lead to generalizations of a theorem by Grone, as we shall see
below.

Let G be a graph on n vertices, with degrees d1 � d2 � · · · � dn, and Laplacian
matrix L with eigenvalues ✓1 � ✓2 � · · · � ✓n(= 0), it is known that, for 1  m 
n,

mX

i=1

✓i �
mX

i=1

di. (2.2)

This is a consequence of Schur’s theorem [31] stating that the spectrum of any
symmetric, positive definite matrix majorizes its main diagonal. In particular,
note that if m = n we have equality in (2.2), because both terms correspond
to the trace of L. To prove (2.2) by using interlacing, let B be a principal m ⇥m
submatrix of L indexed by the subindeces corresponding to the m higher degrees,
with eigenvalues µ1 � µ2 � · · · � µm. Then,

trB =
mX

i=1

di =
mX

i=1

µi,
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and, by interlacing, ✓n�m+i  µi  ✓i for i = 1, . . . ,m, whence (2.2) follows. Sim-
ilarly, reasoning with the principal submatrix B (of L) indexed by the m vertices
with lower degrees we get:

mX

i=1

✓n�m+i 
mX

i=1

dn�m+i. (2.3)

The next result, which is an improvement of (2.2), is due to Grone [16], who
proved that if G is connected and m < n then,

mX

i=1

✓i �
mX

i=1

di + 1. (2.4)

In [9], Brouwer and Haemers gave two different proofs of (2.4), both using eigen-
value interlacing. In [5], Abiad, Fiol, Haemers and Perarnau extended the ideas
of these two proofs and found a generalization of Grone’s result (2.4), see details
below.

Given a graph G with a vertex subset U ⇢ V , let @U be the vertex-boundary of U ,
that is, the set of vertices in U = V \U with at least one adjacent vertex in U . Also,
let @(U,U) denote the edge-boundary of U , which is the set of edges which connect
vertices in U with vertices in U .

Theorem 2.2.1. [5] Let G be a connected graph on n = |V | vertices, having Laplacian
matrix L with eigenvalues ✓1 � ✓2 � · · · � ✓n(= 0). For any given vertex subset
U = {u1, . . . , um} with 0 < m < n, we have

mX

i=1

✓n�i 
X

u2U
du +

|@(U,U)|
n�m


mX

i=1

✓i. (2.5)

Proof. Consider the partition of the vertex set V into m + 1 parts: Ui = {ui} for
ui 2 U , i = 1, . . . ,m, and Um+1 = U . Then, the corresponding quotient matrix is

B =

2

6664

b1,m+1

LU

...
bm,m+1

bm+1,1 · · · bm+1,m bm+1,m+1

3

7775
,

where LU is the principal submatrix of L, with rows and columns indexed by the
vertices in U , bi,m+1 = (n�m)bm+1,i = �|@(Ui, U)|, and bm+1,m+1 = |@(U,U)|/(n�
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m) (because
P

m+1

i=1
bm+1,i = 0). Let µ1 � µ2 � · · · � µm+1 be the eigenvalues of

B. Since B has row sum 0, we have µm+1 = ✓n = 0. Moreover,
mX

i=1

µi =
m+1X

i=1

µi = trB =
X

u2U
du + bm+1,m+1,

Then, (2.5) follows by applying interlacing, ✓i � µi � ✓n�m�1+i and adding up
for i = 1, 2, . . . ,m. ⇤

If the vertex degrees of G are d1 � d2 � · · · � dn, one can choose conveniently
the m vertices of U (that is, those with higher or lower degrees) to obtain the best
inequalities in (2.5). Namely,

mX

i=1

✓i �
mX

i=1

di +
|@(U,U)|
n�m

, (2.6)

and
mX

i=1

✓n�i 
mX

i=1

dn�i+1 +
|@(U,U)|
n�m

. (2.7)

Note that (2.7), together with (2.3) for m+ 1, yields
mX

i=0

✓n�m+i =
mX

i=1

✓n�i 
mX

i=1

dn�i+1 +min

⇢
dn�m,

|@(U,U)|
n�m

�
. (2.8)

If we have more information on the structure of the graph, one can improve the
above results by either bounding |@(U,U)| or ‘optimizing’ the ratio b = |@(U,U)|/(n�
m). In fact, the right inequality in (2.5) (and, hence, (2.6)) can be improved when
U 6= @U . Simply first delete the vertices (and corresponding edges) of U \ @U ,
and then apply the inequality. Then d1, . . . , dm remain the same and �1, . . . ,�m

do not increase. Thus the following holds:

Theorem 2.2.2. [5] Let G be a connected graph on n = |V | vertices, with Laplacian
eigenvalues ✓1 � ✓2 � · · · � ✓n(= 0). For any given vertex subset U = {u1, . . . , um}
with 0 < m < n, we have

mX

i=1

✓i �
X

u2U
du +

|@(U,U)|
|@U | . (2.9)

Similarly as it was done in (2.6), if one chooses the m vertices of U such that they
are those with maximum degree, then we can write:

mX

i=1

✓i �
mX

i=1

di +
|@(U,U)|
|@U | .

Notice that Grone’s result (2.4) follows as a corollary, since always |@(U,U)| �
|@U |.
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2.3 Some applications of interlacing

Eigenvalue interlacing provides a handy tool for obtaining inequalities and reg-
ularity results concerning the structure of graphs in terms of eigenvalues of a
matrix associated to a graph (often the adjacency and the Laplacian matrix).

In this section we shall see some old and new applications of eigenvalue inter-
lacing to matrices associated to graphs. Bounds are obtained for characteristic
numbers of graphs, such as the independence number, the chromatic number or
the isoperimetric number.

Cliques and cocliques

A clique in a graph is a set of pairwise adjacent vertices. A coclique (or independent
set) in a graph is a set of pairwise nonadjacent vertices. The clique number !(G) is
the size of the largest clique in G. The independence number ↵(G) is the size of the
largest coclique in G.

Let G be a graph on n vertices (undirected, simple and loopless) having an adja-
cency matrix A with eigenvalues �1 � · · · � �n. Both Corollaries 2.1.2 and 2.1.3
lead to a bound for ↵(G).

Theorem 2.3.1. [12]

↵(G)  |{i|�i � 0}| and ↵(G)  |{i|�i  0}|.

Proof. A has a principal submatrix B = O of size ↵ = ↵(G). Corollary 2.1.2 gives
�↵ � µ↵ = 0 and �n�↵+1 � µ1 = 0. ⇤

Theorem 2.3.2. If G is regular, then

↵(G)  n
��n

�1 � �n

and if a coclique C meets this bound, then every vertex not in C is adjacent to precisely
��n vertices of C.

Proof. We apply Corollary 2.1.3. Let k = �1, be the degree of G and put ↵ = ↵(G).
The coclique gives rise to a partition of A with quotient matrix

B =


0 k
k↵

n�↵
k � k↵

n�↵

�
.
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B has eigenvalues µ1 = k (row sum) and µ2 = �k↵/(n � ↵)(tr(B) � k) and so
�n  µ2 gives the required inequality. If equality holds, then µ2 = �n, and since
�1 = µ1, the interlacing is tight and hence the partition is regular. ⇤

The first bound is due to Cvetković [12]. The second bound is an unpublished
result of Hoffman known as the Hoffman bound or ratio bound. There are many
examples where equality holds. For instance, a 4-coclique in the Petersen graph
is tight for both bounds.

The Hoffman bound was generalised to the nonregular case by Haemers [18] as
follows.

Theorem 2.3.3. [18] If G has smallest degree �, then

↵(G)  n
��1�n

�2 � �1�n

.

Proof. Now we let k denote the average degree of the vertices of the coclique.
Then the quotient matrix B is the same as above, except maybe for the entry
(B)2,2.

Interlacing gives

��1�n � �µ1µ2 = � det(B) =
k2↵

n� ↵
� �2↵

n� ↵
,

which yields the required inequality. ⇤

If G is regular of degree k, then � = k = �1 and Theorem 2.3.3 reduces to Hoff-
man’s bound (Theorem 2.3.2).

Chromatic number

The chromatic number of a graph G is the smallest number of colors needed to
color the vertices of so that no two adjacent vrtices share the same color, i.e.,
the smallest value k possible to obtain a k-coloring. A coloring of a graph G is
a partition of its vertices into cocliques (color classes). Therefore, the number of
color classes, and hence the chromatic number �(G) of G, is bounded below by
n/↵(G). Thus upper bounds for ↵(G) give lower bounds for �(G). For instance, if
G is regular, Theorem 2.3.2 implies that �(G) � 1�(�1/�n). This bound, however,
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remains valid for nonregular graphs [18] (but note that it does not follow from
Theorem 2.3.3).

Theorem 2.3.4. [18]

(i) If G is not the empty graph, then �(G) � 1� (�1/�n).

(ii) If �2 > 0, then �(G) � 1� �n��(G)+1/�2.

Proof. Let � = �(G).

(i) Let X1, . . . , X� denote the color classes of G and let u1, . . . , un be an orthonor-
mal set of eigenvectors of S (where ui corresponds to �i). For i = 1, . . . ,�,
let si denote the restriction of u1 to Xi, that is

(si)j =

8
<

:

(u1)j if j 2 Xi

0 otherwise

and put eS = [s1 · · · s�] (if some si = 0, we delete it from eS and proceed
similarly) and D = eS> eS, S = eSD� 1

2 , and B = S>AS. Then B has zero
diagonal (since each color class corresponds to a zero submatrix of A) and
an eigenvalue �1 (d = D� 1

21 is a �1-eigenvector of B). Moreover, interlac-
ing Theorem 2.1.1 gives that the remaining eigenvalues of B are at least �n.
Hence

0 = tr(B) = µ1 + · · ·+ µ� � �1 + (�� 1)�n,

which proves (i), since �n < 0.

(ii) The proof of (ii) is similar, but a little bit more complicated. With s1, . . . , s�
as above, choose a nonzero vector s in

hun��+1, . . . , uni \ hs1, . . . , s�i?.

The two spaces have nontrivial intersection since the dimensions add up to
n and u1 is orthogonal to both. Redefine si to be the restriction of s to Xi,
and let eS, D, S and d be analogous to above. Put A0 = A � (�1 � �2)u1u>1 .
Then the largest eigenvalue of A0 equals �2, but all other eigenvalues of A
are also eigenvalues of A0 with the same eigenvectors. Define B = S>A0S.
Now again B has zero diagonal (since u>

1
S = 0). Moreover, B has smallest

eigenvalue µ�  �n��+1, because

µ�  d>Bd

d>d
=

s>A0s

s>s
 �n��+1.
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So interlacing gives

0 = tr(B) = µ1 + . . .+ µ�  �n��+1 + (�� 1)�2.

Since �2 > 0, (ii) follows.

⇤

The inequality (i) is due to Hoffman [22], and its proof is due to Haemers [18]
and is a customary illustration of interlacing. The condition �2 > 0 of (ii) is
not strong; only the complete multipartite graphs, possibly extended with some
isolated vertices, have �2  0. The inequality (ii) looks a bit awkward, but can
be made more explicit if the smallest eigenvalue �n has large multiplicity mn,
say. Then (ii) yields � � min{1 + mn, 1 � (�n/�2)} (indeed if �  mn, then
�n = �n��+1, hence � � 1� (�n/�2)). For strongly regular graphs with �2 > 0, it
is shown in [17], that the minimum is always taken by 1� (�n/�2), except for the
pentagon. So the next corollary follows.

Corollary 2.3.5. [18] If G is a strongly regular graph, not the pentagon or a complete
multipartite graph, then

� � 1� �n

�2

.

A natural generalization of a regular partition, which makes sense also for non-
regular graphs, is the so-called weight-regular partition. Its definition is based on
giving to each vertex u 2 V a weight which equals the corresponding entry ⌫u of
the Perron eigenvector ⌫. Such weights “regularize” the graph, leading to a kind
of regular partition that can be useful for general graphs. For more details on
weight-regular partitions see [14, 13]. In [1] it was shown that Hoffman’s bound
can be improved for certain classes of graphs by using interlacing and weight-
regular partitions.

Corollary 2.3.6. [1] If G has at least one edge and the vertex partition defined by the �
color classes is not weight-regular, then

�(G) � 2� �1

�n

.

Isoperimetric number

The isoperimetric number i(G) is defined as

i(G) = min
U⇢V

�
|@(U,U)|/|U | : 0 < |U |  n/2

 
.
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For example, the isoperimetric numbers of the complete graph, the path and the
cycle are, respectively, i(Kn) = dn

2
e, i(Pn) = 1/bn

2
c, and i(Cn) = 2/bn

2
c.

Given a graph G on n vertices and Laplacian eigevalues ✓1 � ✓2 � · · · � ✓n(= 0).
For general graphs, Mohar [29] proved the following spectral bounds.

✓n�1

2
 i(G) 

p
✓n�1(2d1 � ✓n�1). (2.10)

Using the eigenvalue inequalities from Theorem 2.2.1, Abiad, Fiol, Haemers and
Perarnau showed the following bound [5], which in some situations is better than
Mohar’s upper bound.

Proposition 2.3.7. [5]

i(G)  min
n
2m<n

mX

i=1

(✓i � di). (2.11)

Proof. Apply (2.6) taking into account that i(G)  |@(U,U)|
|U | when 0 < |U |  n

2
. ⇤

Example 2.3.8. Consider the graph join G of the complete graph Kp with the
empty graph Kq, so n = p+ q. The Laplacian spectrum and the degree sequence
are

{np, pq�1, 01} and {(n� 1)p, pq},

respectively. Equation (2.11) gives i(G)  min{p, dn
2
e}, which is better than Mo-

har’s upper bound (2.10) for all 0  q < n.

2.4 Exercises and open problems

Exercise 2.4.1. Let A be a real symmetric matrix of order n with eigenvalues �1 �
· · ·�n. Let {X1, . . . , Xm} be a partition of the index set for row and columns of A,
and let B be the corresponding quotient matrix, with eigenvalues µ1 � · · · � µm.
Show that if �i = µi for some i, then A has a �i-eigenvector that is constant on
each part Xj .

Exercise 2.4.2. Let B denote the quotient matrix of a symmetric matrix A whose
rows and columns are partitioned according to a partitioning {X1, . . . , Xm}.

(i) Give an example, where the eigenvalues of B are a sub(multi)set of the eigen-
values of A, whilst the partition is not equitable.
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(ii) Give an example where the partition is equitable, whilst the interlacing is not
tight.

Exercise 2.4.3. [4] The k-independence number of a graph is the maximum size of a
set of vertices at pairwise distance greater than k. Generalize Cvetković’s bound
from Theorem 2.3.1 for the k-independence number.

Exercise 2.4.4. [29] Let G be a graph with Laplacian eigenvalues ✓1 � ✓2 � · · · �
✓n(= 0) and isoperimetric number i(G). Show Mohar’s lower bound (2.10), that
is, i(G) � ✓n�1/2.

Exercise 2.4.5. [5] For a given integer k, a k-dominating set in a graph G is a vertex
subset D ✓ V such that every vertex not in D has at least k neighbors in D.
Apply Theorem 2.2.1 to deduce an inequality for the first m largest Laplacian
eigenvalues of a graph G in terms of a k-dominating set of G.

Open problem 2.4.6. Find new examples of tight interlacing for weight-regular
partitions, analogous to Proposition 5.3 (i) from [1], for other graph parameters.
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Chapter 3

Cospectral graphs

Consider the two graphs shown in Figure 3.1.

Figure 3.1: Two cospectral graphs on 5 vertices.

It is easily checked that the corresponding adjacency matrices have spectrum

{21, 03,�21},

where the exponents indicate multiplicities. Two graphs with the same spectrum
for some type of matrix are called cospectral with respect to the corresponding
matrix. This is the first example of nonisomorphic cospectral graphs found by
Collatz and Sinogowitz [11] in 1957. For graphs on less than five vertices, no pair
with cospectral adjacency matrix exists, so any graph with less than five vertices
is determined by its spectrum.

If a graph is not determined by the spectrum, this can be proved by constructing
a nonisomorphic cospectral mate. In this chapter we will see some tools for con-
structing cospectral graphs; the most important one is the switching method of
Godsil and McKay [15]. Godsil-McKay switching is an operation on a graph that
does not change the spectrum of the adjacency matrix (though it was invented to
make cospectral graphs with respect to the adjacency matrix, the idea also works

21
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for the Laplacian matrix). Godsil-McKay switching was generalized by Abiad
and Haemers in [6].

Constructing cospectral graphs is not only important for disproving that a graph
is determined by its spectrum. In several cases such a graph can be important in
its own right. Good examples are the twisted Grassmann graphs, found by Van
Dam and Koolen [35], which form a new family of distance-regular graphs and
which are cospectral with Grassmann graphs.

Consider two graphs G and G0 with adjacency matrices A and A0, respectively.
As it was just mentioned, the graphs G and G0 are called cospectral if A and A0

have the same spectrum.

For a graph G with adjacency matrix A, any matrix of the form M = xI+yJ+zA
with x, y, z 2 R, z 6= 0 is called a generalized adjacency matrix of G. Since we are
interested in the relation between G and the spectrum of M , we can restrict to
generalized adjacency matrices of the form yJ �A without loss of generality. As
we shall see in Theorem 3.0.1, Johnson and Newman [26] proved that if yJ � A
and yJ � A0 are cospectral for two distinct values of y, then they are cospectral
for all y, and hence they are cospectral with respect to all generalized adjacency
matrices. In this case we will call G and G0 R-cospectral. So if yJ �A and yJ �A0

are cospectral for some but not all values of y, they are cospectral for exactly one
value by of y. Then we say that G and G0 are by-cospectral. Thus cospectral graphs
(in the usual sense) are either 0-cospectral or R-cospectral.

For a graph G with adjacency matrix A, the polynomial p(x, y) = det(xI+yJ�A)
will be called the generalized characteristic polynomial of A� yJ , and p(x, 0) = p(x)
is the characteristic polynomial of A.

An orthogonal matrix Q is regular if it has constant row sum, that is, Q1 = r1.

Theorem 3.0.1. [26] If G and G0 are graphs with adjacency matrices A and A0, respec-
tively, then the following are equivalent.
(i) The graphs G and G0 are cospectral, and so are their complements.
(ii) The graphs G and G0 are R-cospectral.
(iii) There exists a regular orthogonal matrix Q, such that Q>

AQ = A0.

Proof. First, we shall prove that if yJ�A and yJ�A0 are cospectral for two distinct
values of y, then they are cospectral for all y, and hence they are cospectral with
respect to all generalized adjacency matrices. Let G and G0 be graphs with gen-
eralized characteristic polynomials p(x, y) and p0(x, y), respectively. Note that for
fixed y, p(x, y) is the characteristic polynomial of A� yJ . Since J has rank 1, the
degree in y of p(x, y) is 1 (this follows from Gaussian elimination in xI + yJ �A),
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so there exist integers a0, . . . , an and b0, . . . , bn such that

p(x, y) =
nX

i=0

(ai + biy)x
i.

It is clear that p(x, y) ⌘ p0(x, y) if and only if G and G0 are R-cospectral, and
G and G0 are by-cospectral if and only if p(x, by) = p0(x, by) for all x 2 R, whilst
p(x, y) 6⌘ p0(x, y) (indeed, if G and G0 are y cospectral for some by but not for all y,
then the corresponding polynomials p(x, y) and p0(x, y) are not identical, whilst
p(x, by) = p0(x, by)). If this is the case, then ai + bybi = a0

i
+ byb0

i
with (ai, bi) 6= (a0

i
, b0

i
)

for some i (0  i  n � 3). This implies by = �(ai � a0
i
)/(bi � b0

i
) is unique

and rational. Thus we proved the equivalence between (i) and (ii). Finally, it
easily follows that G and G0 are R-cospectral if Q is regular, since Q

>
1 = 1 implies

Q
>
(yJ � A)Q = yJ � A0J , so yJ � A and yJ � A0 are cospectral for every y 2 R.

By taking y = 1 we see that R-cospectral graphs have cospectral complements. ⇤

The spectrum of a graph G together with that of its complement will be referred
to as the generalized spectrum of G. We say that a given graph G is determined by its
spectrum (DS for short) if every graph cospectral with G is isomorphic with G. A
graph G is said to be determined by its generalized spectrum (DGS for short) if every
graph R-cospectral with G is isomorphic with G, or equivalently, if every graph
cospectral with G and with complement cospectral to G is isomorphic to G.

Figure 3.2: A pair of R-cospectral graphs.

3.1 Constructing cospectral graphs: GM switching

Several constructions of cospectral graphs are known. Here we focus on a method
introduced by Godsil and McKay [15], which seems to be the most productive
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one. At several points in the rest of these notes we will make use of it, and it will
be referred to simply as GM switching. Godsil and McKay gave the conditions
under which the adjacency spectrum is unchanged by this operation.

Lemma 3.1.1. [15][GM switching] Let G be a graph and let {X1, . . . , X`, Y } be a
partition of the vertex set V (G) of G. Suppose that for every vertex x 2 Y and every
i 2 {1, . . . , `}, x has either 0, 1

2
|Xi| or |Xi| neighbors in Xi. Moreover, suppose that

for all i, j 2 {1, . . . , `} the number of neighbors of an arbitrary vertex of Xi that are
contained in Xj , depends only on i and j and not on the vertex. Make a new graph G0

from G as follows. For each x 2 Y and i 2 {1, . . . , `} such that x has 1

2
|Xi| neighbors

in Xi delete the corresponding 1

2
|Xi| edges and join x instead to the 1

2
|Xi| other vertices

in Xi. Then G and G0 are cospectral (with cospectral complements).

Proof. Let A and A0 be the adjacency matrices of G and G0, respectively (the vertex
ordering is assumed to be in accordance with the partition). Let n be the number
of vertices of G and G0. For i = 1, . . . ,m define the |Vi|⇥ |Vi| matrix Ri =

2

|Vi|J�I ,
and the n ⇥ n block diagonal matrix Q = diag(R1, . . . , Rm, I). Then Q is orthog-
onal and regular, and it follows straightforwardly that Q

>
AQ = A0, and more

generally, that Q>
(A+ yJ)Q = A0 + yJ for every y 2 R. ⇤

The operation that changes G into G0 is called Godsil-McKay switching. Note that
the pair of graphs in Figure 3.2 is related by GM switching (` = 1 and X1 is a
4-coclique), and hence has cospectral complements. The pair of graphs in Fig-
ure 3.1 does not have cospectral complements and hence does not arise by GM
switching.

If ` = 1 and |X1| = 2, then GM switching interchange the two vertices in X1,
so G and G0 are isomorphic, and we call the switching trivial. But if ` = 1 and
|X1| � 4, then GM switching usually produces nonisomorphic graphs [21].

3.2 Some applications of GM switching

Finding switching partitions that make the Godsil-McKay switching work (the
so-called Godsil-McKay switching sets) in a given family of graphs is a nontrivial
problem that has only been solved in some special cases, like for the Johnson
graphs J(n, k) with n/2 � k � 3 [34] and some Kneser graphs K(n, k) [20], which
are both families of graphs belonging to the Johnson association scheme. Some
graphs in the Johnson scheme are determined by its spectrum, like K(2k + 1, k)
[23] (also known as Odd graphs, whose vertices represent the k-element subsets
of a (2k + 1)-element set, where two vertices are adjacent if and only if their
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corresponding subsets are disjoint) and J(n, 2) for n 6= 8 (see for example [36]).
But for most graphs in the Johnson association scheme it is not known if such
Godsil-McKay switching set exists. This provided the initial motivation for [7],
where such a switching set is found for the symplectic graphs over F2.

New strongly regular graphs

A graph (simple, undirected and loopless) of order v is strongly regular with pa-
rameters (n, k,�, µ) whenever it is not complete or edgeless and
(i) each vertex is adjacent to k vertices,
(ii) for each pair of adjacent vertices there are � vertices adjacent to both,
(iii) for each pair of non-adjacent vertices there are µ vertices adjacent to both.
For example, the pentagon is strongly regular with parameters (n, k,�, µ) =
(5, 2, 0, 1).

The theory of strongly regular graphs sits at the core of algebraic combinatorics.
These structures are interesting mathematical objects and their study has impor-
tant applications in coding theory, combinatorics and computer science among
others. Recently, strongly regular graphs have been used to construct the small-
est known counterexamples to Borsuk’s conjecture. Moreover, constructing new
strongly regular graphs may be useful for the graph isomorphism problem, since
distinguishing them is the main challenge.

It is well-known that if a graph G0 has the same spectrum as a strongly regu-
lar graph G, then G0 is also strongly regular with the same parameters as G (see
for example [9]). Therefore Godsil-McKay switching also provides a tool to con-
struct new strongly regular graphs from known ones. However, again there is no
guarantee that the switched graph is nonisomorphic with the original graph. The
necessary conditions for isomorphism after switching shown in [2] do not apply
here, since the graphs are strongly regular and have a lot of structure. Hence
some creativity is needed for proving nonsimorphism after switching. In [7], for
instance, the 2-rank of the graph (the rank of the adjacency matrix over the finite
field F2) is used to prove nonisomorphism after switching.

Recently, many researchers constructed strongly regular graphs with the same
parameters as the collinearity graphs of finite classical polar spaces. This was
triggered by a result of Abiad and Haemers, who used Godsil-McKay switching
[7] to obtain strongly regular graphs with the same parameters as the symplectic
graph Sp(2⌫, 2) for all ⌫ � 3. In particular, it is shown that the 2-rank of the graph
increases after switching. This implies that the switched graph is a new strongly
regular graph with the same parameters as Sp(2⌫, 2).
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Barwick et al. [8] generalized this, also using Godsil–McKay switching, to quadrics
of rank at least 3 over F2. Ihringer [25] generalized the results obtained by switch-
ing to all finite classical polar spaces of rank at least 3 over Fq by using purely
geometrical arguments. More new graphs with the same parameters as Sp(2⌫, 2)
or related graphs were found also in [27], [24] and [3].

In [7], the following results are proven, providing an illustration of the use of
Godsil-McKay switching to obtain new strongly regular graphs.

Let A and A0 be the adjacency matrices of G and G0, respectively, and assume that
the first |S| rows (and columns) of A and A0 correspond to the switching set S and
the last h rows correspond to the vertices outside S with exactly 1

2
|S| neighbors

in S. Then

A0 = A+K (mod 2), where K =

2

4
O O J
O O O
J> O O

3

5 ,

and J is the |S| ⇥ h all-ones matrix. Since 2-rank(K) = 2, the 2-ranks of A and
A0 differ by at most 2. It is well-known that the 2-rank of any adjacency matrix is
even (see [10]), thus we have the following result.

Proposition 3.2.1. [7] Suppose 2-rank(A) = r, then r is even and 2-rank(A0) = r � 2,
r, or r + 2.

Let F2⌫
2

be the 2⌫-dimensional vector space over F2, and let K = I⌫ ⌦ (J2 � I2),
where I⌫ is the identity matrix of order ⌫, and J denotes the all-ones matrix of
order 2. The symplectic graph Sp(2⌫, 2) over F2 is the graph whose vertices are
the nonzero vectors of F2⌫

2
, where two vertices x and y are adjacent whenever

x
>
Ky = 1. Equivalently, x = [x1 . . . x2⌫ ]

>and y = [y1 . . . y2⌫ ]
>are adjacent if

(x1y2 + x2y1) + (x3y4 + x4y3) + · · ·+ (x2⌫�1y2⌫ + x2⌫y2⌫�1) = 1.

For ⌫ � 2, it is known (see for example [30]) that the symplectic graph Sp(2⌫, 2)
is a strongly regular graph with parameters

�
22⌫ � 1, 22⌫�1, 22⌫�2, 22⌫�2

�
,

and eigenvalues 22⌫�1, 2⌫�1, �2⌫�1 with multiplicities 1, 22⌫�1�2⌫�1�1, 22⌫�1+
2⌫�1 � 1, respectively.
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For ⌫ � 3, we define the following vectors in F2⌫
2

:

v1 =

2

666666664

1
0
1
0
1
0
z

3

777777775

, v2 =

2

666666664

1
0
0
1
0
1
z

3

777777775

, v3 =

2

666666664

0
1
1
0
0
1
z

3

777777775

, v4 =

2

666666664

0
1
0
1
1
0
z

3

777777775

,

where z is an arbitrary vector in F2⌫�6

2
.

Proposition 3.2.2. The set S = {v1, v2, v3, v4} is a Godsil-McKay switching set of
Sp(2⌫, 2) for ⌫ � 3.

Proof. Any two vertices from S are nonadjacent, so the subgraph of Sp(2⌫, 2)
induced by S is a coclique, and therefore regular. Consider an arbitrary vertex
x 62 S. Then

x
>
Kv1 + x

>
Kv2 + x

>
Kv3 + x

>
Kv4 = x

>
K(v1 + v2 + v3 + v4) = x

>
K0 = 0.

This implies that the number of edges between x and S is even, and therefore S
is a switching set. ⇤

Let G0 be the graph obtained from G = Sp(2⌫, 2) by switching with respect to S.
We shall now prove that G and G0 are non-isomorphic.

Theorem 3.2.3. For ⌫ � 3, the graph G0 obtained from Sp(2⌫, 2) by switching with
respect to the switching set S given above, is strongly regular with the same parameters
as Sp(2⌫, 2), but with 2-rank equal to 2⌫ + 2.

Proof. Let A be the adjacency matrix of G = Sp(2⌫, 2), and assume that the first
four rows and columns correspond to S. Then 2-rank(A) = 2⌫ and A has 22⌫ � 1
rows. This implies that, over F2, every possible nonzero linear combination of a
basis of the row space of A is a row of A. Therefore the sum (mod 2) of any two
rows of A is again a row of A. Let r1 and r2 be rows of A corresponding to the
vertices v5 = [100000z>]> and v6 = [001000z>]>, respectively. Then r1 starts with
0011 and r2 starts with 0101. It follows that r7 = r5+ r6 is also a row of A starting
with 0110. After switching only the first four entries of r5, r6 and r7 change and
become 1100, 1010 and 1001, respectively. Let r0

i
denote the switched version of

ri (i = 5, 6 or 7). Then v = r0
5
+ r0

6
+ r0

7
= 11110 . . . 0. So v is in the row space of

the switched matrix A0, but it is not a row of A0. So G0 is not isomorphic to G, and
by Theorem 5.3 from [30] and Proposition 3.2.1 the 2-rank of A0 equals 2⌫ + 2. ⇤
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The switching set S given above, is not the only one. There are many more (in-
deed, for any three independent vectors v1, v2 and v3 2 F2⌫

2
, the set {v1, v2, v3, v1+

v2 + v3} is a Godsil-McKay switching set) and many remain a switching set af-
ter switching with respect to S. Therefore we can apply switching several times.
However it is not true in general that a second switching increases the 2-rank
again, and it looks difficult to make a general statement like in the above theo-
rem.

Abiad, Butler and Haemers generalised some results from [7] to strongly regular
graphs coming from certain graphical Hadamard matrices [3].

3.3 Other constructions of cospectral graphs

In [6], Abiad and Haemers presented a new method to construct families of
cospectral graphs that generalizes Godsil-McKay switching. To do so, regular
(constant row sum) orthogonal matrices of level 2 were used. We say that a ma-
trix Q has level l if l is the smallest positive integer such that lQ is an integral ma-
trix. Since A and A0 are symmetric, G and G0 are cospectral precisely when A and
A0 are similar, that is, there exists an orthogonal matrix Q such that A0 = Q

>
AQ.

If Q is a permutation matrix (i.e. Q is regular of level 1) then G and G0 are iso-
morphic. So the next natural step is to study the case when G is nonisomorphic
with G0. If G and G0 are nonisomorphic, and there exist a regular orthogonal
matrix Q of level 2 such that A0 = Q

>
AQ, we call G and G0 semi-isomorphic. Semi-

isomorphic graphs are R-cospectral, which means that the matrices xI + yJ + zA
and xI + yJ + zA0 have the same spectrum for every x, y, z 2 R, z 6= 0, where J
and I are the all-one matrix and the identity matrix, respectively.

Johnson and Newman [26] show that being R-cospectral is equivalent to being
cospectral with cospectral complements, see Theorem 3.0.1 in these notes. It has
been conjectured by Van Dam and Haemers that almost every graph is deter-
mined by its spectrum [32], or equivalently, that the proportion of graphs on n
vertices that are determined by their spectrum goes to 1 as n ! 1. A weaker ver-
sion states that almost every graph is determined by its spectrum together with
that of its complement. Both conjectures are still open, but Wang and Xu [39]
have a number of results that support them. They prove that for almost no graph
there exists a graph semi-isomorphic with it, and in addition they provide exper-
imental evidence showing that a positive fraction of all pairs of nonisomorphic
R-cospectral graphs, are in fact semi-isomorphic. This makes it interesting to in-
vestigate the concept of semi-isomorphism in [6]. By using the classification of
regular orthogonal matrices of level 2 [38], [6] works out the requirements for this
switching operation to work in case Q has one nontrivial indecomposable block
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of size 4, 6, 7, or 8. Size 4 corresponds to Godsil-McKay switching of level 2. The
other cases provide new methods for constructing R-cospectral graphs.

A variation of GM switching is described in [37] by Wang, Qiu and Hu. This
counterpart of the well-known GM switching method for generating cospectral
graphs (with cospectral complements), can be used to construct pairs of non-
isomorphic cospectral graphs that are not obtainable by the original GM switch-
ing method.

Theorem 3.3.1. [37] Let G be a graph whose vertex set is partitioned as C1 [ C2 [D.
Assume that |C1| = |C2| and that C1 [ C2 is an equitable partition of the induced
subgraph on C1 [ C2 (that is, any two vertices in C1 have same number of neighbors in
C1 and in C2, and any two vertices in C2 have same number of neighbors in C2 and in
C1), and that all x 2 D satisfy one of the following:

1. |G(x) \ C1| = |G(x) \ C2|, or

2. G(x) \ (C1 [ C2) 2 {C1, C2}.

Construct a graph G0 from G by modifying the edges between C1 [C2 and D as follows:

G0(x) \ (C1 [ C2) =

8
><

>:

C1 if G(x) \ (C1 [ C2) = C2

C2 if G(x) \ (C1 [ C2) = C1

G(x) \ (C1 [ C2) otherwise

for x 2 D. Then G0 is cospectral with G.

3.4 Exercises and open problems

Exercise 3.4.1. [2] Let �G(x, y) denote the number of common neighbors of two
vertices x and y in G, and let X be a switching set in a graph G (following the
notation of Lemma 3.1.1). Show that the following conditions are sufficient for
two cospectral graphs G and G0 being non-isomorphic.
(i) The multiset of degrees (in G) of the vertices in X changes after switching.
(ii) The multiset ⇤G = {�G(x, y) |x 2 X, y 2 V (G)} changes after switching.
(iii) The vertices of X all have the same degree, and the multiset⇤G = {�G(x, y) |x 2
X, y 2 Y } changes after switching.

Exercise 3.4.2. [20] Let G be the Kneser graph K(m, k) with vertex set
�
X

k

�
, where

|X| = m = 3k � 1 (k � 2). Fix Y ⇢ X with |Y | = k � 1 and consider the subset
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W of vertices of G consisting of the k-subsets of X containing Y . Prove that
W satisfies the conditions for GM switching, and that the switching produces a
graph nonisomorphic to G, provided k � 3.

Open problem 3.4.3. For Godsil-McKay switching to work the graph needs a spe-
cial structure, called a Godsil-McKay switching partition. This switching par-
tition of the vertices of a graph makes it possible to switch some of the edges
such that the spectrum of the adjacency matrix does not change. However, the
presence of this structure does not imply that the graph is not determined by its
spectrum; it may be that after switching the graph is isomorphic with the orig-
inal one. In [2] this phenomenon is investigated by obtaining some elementary
necessary conditions for isomorphism after switching and showing how they can
be used to guarantee nonisomorphism after switching for some graph products.
Investigate whether new analogous sufficient or necessary conditions can be ob-
tained for the switching presented in [37].

Open problem 3.4.4. [19] Study whether being regular with vertex or edge connec-
tivity 1 is characterized by the spectrum.
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Preface

Geometries of reflexive sesquilinear forms of a vector space over a field have
been intensively studied in the last decades since they give rise to the well known
objects in projective spaces called quadrics, symplectic geometries and Hermitian
varieties.

With these notes we study the geometries of non-reflexive sesquilinear forms
of a vector space over a finite field. We will be able to classify the geometric
objects related to such forms in the finite projective line PG(1, qn) and, assuming
the form is degenerate, also in the finite projective plane PG(2, qn) and in the
threedimensional finite projective space PG(3, qn).

We will see that the geometric objects that come out are related to both some
very old geometric constructions of conics and quadrics due to J. Steiner and F.
Seydewitz almost 200 year ago and to very new arguments such as hyperovals,
spreads, Fq-linear sets, semifield flocks, MRD-codes, and more.

Finally everything is known (thanks to the huge work of B. Kestenband), but dif-
ficult to handle with, also in the case of non-degenerate, non-reflexive sesquilin-
ear forms of a vector space of dimension three over a finite field, hence in the
finite projective plane PG(2, qn).
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Chapter 1

Preliminary results

1.1 Finite fields

Definition 1.1.1. Let F be a field. If

c 2 N, ca = 0 8 a 2 F =) c = 0,

then F has characteristic 0 and we write char(F) = 0, otherwise F has positive
characteristic, being the smallest positive integer p such that:

pa = 0 8 a 2 F.

In this case we write char(F) = p.

Let F be a field and let K be a subfield of F. The field F is also called an extension
of the field K.

Definition 1.1.2. A field F with no proper subfields is a prime field.

Examples 1.1.3. The field Q, of rational numbers, and the field Zp, of integers
modulo a prime number p, are examples of prime fields.

There are no other prime fields than Q and Zp.

Definition 1.1.4. Let F be a field. The intersection of all subfields of F is the prime
or fundamental subfield of F.

Proposition 1.1.5. Let F be a field. The prime field of F is either Q or Zp. In the first
case char(F) = 0, in the second case char(F) = p.

39
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Definition 1.1.6. Let F be a field and let K be a subfield of F. Let a be an element
of F \ K. The intersection of all subfields of F containing K and a is denoted by
K(a) and it is called the extension of the field K by adding a.

If the field F is an extension of a field K, then F is a vector space of dimension
[F : K] over K.

Definition 1.1.7. Let p be a prime number, for every h 2 N there is a field of order
q = ph, called the Galois field of order q, that we will denote by Fq. It is unique,
up to isomorphisms, and it is an extension of the field Zp. The prime p is the
characteristic of Fq.

The elements of Fq are characterized to be the q distinct roots of the polynomial
xq � x. The multiplicative group F⇤

q = Fq \ {0} of the field Fq is a cyclic group
and any element generating it is a primitive element of Fq. Let g 2 Zp[x] be an
irreducible polynomial of degree h > 1 over Zp and let a be a root of g in an
extension of Zp. The extension of Zp by adding a is:

Zp(a) = {m0 +m1a+ · · ·+mh�1a
h�1}mj2Zp

and it is a field isomorphic to the Galois field of order q = ph . The followings
hold:

Proposition 1.1.8. Let Fq be a finite field of order q = ph. For every h0|h there is a
subfield Fq0 , of order q0 = ph

0 , of Fq.

Proposition 1.1.9. Let a1, . . . , aq�1 be the elements of F⇤
q = Fq \ {0}. Then:

aq�1 = 1 8a 2 F⇤
q ,

aq = a 8a 2 Fq,

a1 · · · aq�1 = �1.

Proposition 1.1.10. Let Fqn be a finite field of order qn. For every integer m with
0  m < n the map �m : x 2 Fqn �! xq

m 2 Fqn is an automorphism of Fqn with
Fix(�m) = F

q(m,n) .

The map �m of the previous proposition is called the m-th Frobenius’ automorphism
of Fqn over Fq.

Proposition 1.1.11. The group Aut(Fq) of all the automorphisms of Fq, q = ph, is a
cyclic group of order h. It is generated by the first Frobenius’ automorphism of Fq over
Zp.
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Definition 1.1.12. Let F = Fqn be an extension of the field K = Fq, q = ph. For
every a 2 F the trace of a over K is the element

TrF/K(a) = Tr(a) = a+ aq + · · ·+ aq
n�1

.

If K = Fp, then TrF/K is the absolute trace. The norm of a over K is the element

NF/K(a) = N(a) = a · aq · · · aqn�1
= a(q

n�1)/(q�1).

If K = Fp, then NF/K is the absolute norm.

Definition 1.1.13. A reduced polynomial of Fq[x] is either 0 or a polynomial of
degree at most q � 1.

Definition 1.1.14. A skew field F satisfies all the axioms for a field except (possi-
bly) commutativity of multiplication.

Theorem 1.1.15 (J.H.M. Wedderburn [64]). Every finite skew field is a field.

Remark 1.1.16. Let Fq be a finite field of order q = ph, p a prime.

• If q is odd, then q�1

2
elements of F⇤

q are non-squares and q�1

2
elements of F⇤

q

are squares.

• If q is even, then all elements of Fq are squares.

For the proofs of the results in this section see e.g. [70].

1.2 Linear, semilinear and Fq-linear maps

Let V be a vector space over a field F (also called F-vector space) and let H ⇢ V .
In the remaining part we will denote by hHi the subspace spanned by H .

Definition 1.2.1. Let V and W be two finite dimensional vector spaces over a
field F. A linear map f : V �! W satisfies:

f(au+ bv) = af(u) + bf(v) 8a, b 2 F and 8u, v 2 V.

If f is bijective, then it is an isomorphism between V and W . If f is an isomorphism
of V into itself, then f is an automorphism of V . The linear group of V , denoted by
GL(V ), contains all the automorphisms of V .
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If B = (e1, e2, . . . , ed+1) is an ordered basis of V , so that d+1 is the dimension of V
as F-vector space, then v = x1e1 + x2e2 + · · · + xd+1ed+1, and we will denote by
X the column of coordinates (x1, x2, . . . , xd+1)t of v, w.r.t. B. For every automor-
phism f of V , there is a non-singular square matrix Af of order d + 1 such that
X 0 = AfX , where X 0 = (x0

1
, x0

2
, . . . , x0

d+1
)t denotes the column of coordinates of

f(v) w.r.t. B. Let GL(d + 1,F) be the group of non-singular square matrices of
order d+ 1 with elements in F. It is GL(V ) ⇠= GL(d+ 1,F).

Definition 1.2.2. Let V and W be two finite dimensional F-vector spaces and let
� be an automorphism of F. A semilinear map f : V �! W , with � as companion
automorphism, or �-linear map satisfies:

f(au+ bv) = a�f(u) + b�f(v), 8a, b 2 F and 8u, v 2 V.

The Kernel of f is the subspace of V defined as ker(f) = {v 2 V : f(v) = 0}. The
Image of f is the subspace of W defined as Imf = {f(v) : v 2 V }.
If f is a bijective map, then it is a semilinear isomorphism between V and W . If f
is a semilinear isomorphism of V into itself, then f is a semilinear automorphism
of V . The semilinear group of V , denoted by �L(V ), contains all the semilinear
automorphisms of V . It is �L(V ) ⇠= GL(V )oAut(F).

Let � be an automorphism of F and let B be an ordered basis of V . If v 2 V and
X = (x1, x2, . . . , xd+1)t are the coordinates of v, w.r.t B, then we will denote by
v� the vector of V with coordinates X� = (x�

1
, x�

2
, . . . , x�

d+1
)t w.r.t. B.

If f : V �! V is an automorphism of V , then the map

f� : v 2 V �! f(v�) 2 V,

is a �-linear automorphism w.r.t. B. If X and X 0 are the vectors of coordinates of
v and f�(v), w.r.t. B, then it is

X 0 = AfX
�.

Definition 1.2.3. Let V and W be two finite dimensional Fqn-vector spaces. An
Fq-linear map f : V �! W satisfies:

f(au+ bv) = af(u) + bf(v), 8a, b 2 Fq and 8u, v 2 V.

For more details on this section see e.g. [6],[46].

1.3 Desarguesian projective and affine spaces

Let V be a (d+1)-dimensional vector space over a (skew) field F. We will denote
by PG(V ) the set of 1-dimensional subspaces of V , that will be called points of
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PG(V ). We will call lines, planes, m-dimensional projective subspaces, hyperplanes re-
spectively the 2-dimensional, 3-dimensional, (m+1)-dimensional, d-dimensional
subspaces of V seen as set of points of PG(V ). We consider the empty set as a
projective subspace of dimension �1. If H is any subset of points of PG(V ), then
we will denote by hHi the projective subspace spanned by H . Denote by Sj the
set of all subspaces of PG(V ) with dimension j, for every j 2 {�1, 0, 1, . . . , d}.

Definition 1.3.1. The pair (PG(V ), (S�1,S0,S1, . . . ,Sd)) is the d-dimensional pro-
jective space associated to V , also called either the d-dimensional projective space over
F or the d-dimensional Desarguesian projective space. We will often denote just by
PG(V ) the projective space associated to V . We will denote by PG(d,F) the d-
dimensional projective space associated to V = Fd+1 and we will use PG(d, q)
instead of PG(d,Fq). If d = 1, then PG(1,F) is called the projective line over F. If
d = 2, then PG(2,F) is called the projective plane over F.

Definition 1.3.2. If f : V �! W is an isomorphism between two F-vector spaces
V and W , then the bijection

hvi 2 PG(V ) �! hf(v)i 2 PG(W ),

is the projectivity between PG(V ) and PG(W ) induced by f . The projective gen-
eral linear group of PG(V ), denoted by PGL(V ), contains all the projectivities of
PG(V ). If V = Fd+1

q , then PGL(V ) is denoted by PGL(d+ 1, q).

Definition 1.3.3. Let f : V �! W be a linear map with ker(f) 6= {0}. The map

hvi 2 PG(V ) \ ker(f) �! hf(v)i 2 PG(W ),

will be called a degenerate projectivity between PG(V ) and PG(W ).

Definition 1.3.4. Let P1 = hv1i, P2 = hv2i, . . . , Pm = hvmi be points of PG(V ).
They are either linearly dependent, respectively linearly independent if the vectors
v1, v2, . . . , vm are linearly dependent, respectively linearly independent.

Definition 1.3.5. If V has dimension d + 1, then any ordered set of d + 2 points
R = (A1, A2, . . . , Ad+1, A) of PG(V ) such that any d + 1 of them are linearly
independent is a projective frame of PG(V ). The points A1, . . . , Ad+1 are the funda-
mental points and A is the unit point of the frame R.

Definition 1.3.6. Let B = (e1, e2, . . . , ed+1) be an ordered basis of V . The or-
dered set R(B) = (he1i, he2i, . . . , hed+1i, he1 + e2 + · · · + ed+1i) is called the asso-
ciated frame of PG(V ). For every point P = hx1e1 + · · · + xd+1ed+1i the vector
X = (x1, . . . , xd+1)t, defined up to a non-zero scalar multiple, is the vector of the
projective coordinates of P w.r.t. the frame R. In what follows, we will denote by
X = (x1, . . . , xd+1)t, instead of h(x1, . . . , xd+1)ti, a point of PG(d, q). Sometimes,
we will omit the symbol t of transposition, whenever it does not affect what fol-
lows.
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Definition 1.3.7. Let V and W be two F-vector spaces with dimension greater
than two. A bijection g : PG(V ) �! PG(W ) is a collineation if g, together with
g�1, maps lines into lines. If V and W have dimension two, then a collineation is
a map hvi 2 PG(V ) �! hf(v)i 2 PG(W ), induced by a bijective semilinear map
f : V �! W . The collineation group of PG(V ), denoted by P�L(V ), contains all
the collineations of PG(V ). If V = Fd+1

q , then we use P�L(d + 1, q) instead of
P�L(V ). It is P�L(d+ 1, q) ⇠= PGL(d+ 1, q)oAut(Fq).

Theorem 1.3.8. (Fundamental Theorems)

1. Let R and R0 be two projective frames of PG(V ), there is a unique projectivity that
maps R into R0.

2. Let V and W be two F-vector spaces. Every collineation between PG(V ) and
PG(W ) is induced by a semilinear map f : V �! W .

Definition 1.3.9. Projective geometry is the study of properties of subsets of PG(V )
invariant under the group PGL(V ). Incidence geometry in PG(V ) is the study of
properties of subsets of PG(V ) invariant under the group P�L(V ).

Hence we can always fix a frame of PG(V ) in order to study subsets of PG(V ).

Definition 1.3.10. Let f : V �! W be a semilinear map, with ker(f) 6= {0}. The
map

hvi 2 PG(V ) \ ker(f) �! hf(v)i 2 PG(W ),

will be called a degenerate collineation between PG(V ) and PG(W ).

Definition 1.3.11. Let Sm be a subspace of dimension m, 0  m  d � 2, of
PG(d, q) and consider the following geometry:

• the points are the (m+ 1)-dimensional subspaces containing Sm,

• the lines are the (m+ 2)-dimensional subspaces containing Sm.

This geometry, denoted by PG(d, q)/Sm, is called the quotient geometry of PG(d, q)
w.r.t. Sm and it is isomorphic to a PG(d�m� 1, q).

If m = 0 and d > 2, then PG(d, q)/S0 is called the star of lines with centre the point
S0 and in what follows will be also denoted by SS0 . If d = 2, then PG(2, q)/S0 is
called the pencil of lines with centre the point S0 and will be also denoted by PS0 .

If m = d � 2, then PG(d, q)/Sd�2 is called the pencil of hyperplanes with axis Sd�2

and in what follows will be also denoted by PSd�2 .
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Definition 1.3.12. Let PG(d, qn) be the projective geometry of dimension d over
Fqn . Let Sm be a subspace of dimension m of PG(d, qn).

A subgeometry of order q of Sm is the set of points of Sm, say S0
m, whose projective

coordinates, with respect to a fixed frame of Sm, are in Fq.

If S is either a line or a plane of PG(d, qn), then S0 is called respectively an Fq-
subline or an Fq-subplane of S.

If n = 2, then S0
m is a Baer subgeometry of Sm.

Let ⇡1 be a selected hyperplane of the projective space PG(d,F). The points
of AG(d,F) = PG(d,F) \ ⇡1 are the affine points of PG(d,F) w.r.t. ⇡1, and for
every m-dimensional projective subspace Sm of PG(d,F), not contained in ⇡1,
the set Am = Sm \ ⇡1 is an m-dimensional affine subspace of AG(d,F). We will call
lines, planes, hyperplanes, respectively, affine subspaces of dimension 1, 2, d � 1.
We consider the empty set as an affine subspace of dimension �1. The points
of ⇡1 are also called either the improper points or the directions of AG(d,F). Any
affine line A1 = S1 \ ⇡1 has a unique improper point S1 \ ⇡1. For every m > 1,
the subspace of ⇡1 given by Sm \ ⇡1 is the improper subspace of Am = Sm \ ⇡1.
Any two affine subspaces of dimension greater than zero are parallel subspaces
if the improper subspace of one of them contains the improper subspace of the
other one. It is easy to see that if two affine subspaces are parallel subspaces, then
either they have empty intersection or one of them is contained in the other one.

Definition 1.3.13. Let Aj be the family of affine subspaces of AG(d,F), for every
j 2 {�1, 0, 1, . . . , d}. An affine space of dimension d over F or Desarguesian affine
space is the pair

(AG(d,F), (A�1,A0, . . . ,Ad)),

often denoted just by AG(d,F). If F = Fq, then we will use AG(d, q) instead of
AG(d,F). If d = 1, then AG(1,F) is called the affine line over F. If d = 2, then
AG(2,F) is called the affine plane over F

For the proofs of the results in this section see e.g. [3],[8],[30],[33],[46],[49].

1.4 Characterizations of affine and projective spaces

In this section we will give a more general definition of projective and affine
planes. We start with the definition of an incidence structure.
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Definition 1.4.1. Let P be a non-empty set, whose elements are called points, and
let L be a non-empty set, whose elements are called either lines or blocks. Denote
by I an incidence relation between P and L that we will consider symmetric. We
will denote by (P,L, I) an incidence structure.

The incidence relation will be often either ✓ or ◆. In these cases we will omit
I and denote the incidence geometry by (P,L) and either the set L of lines will
be identified with a set of subsets of P , with the incidence being ✓ or the set P
of points will be identified with a set of subsets of L, with the incidence being
◆. Moreover when a point P is incident with a line ` we will use the usual
terminology: the point P is on the line `, the line ` passes through the point
P etc.

Definition 1.4.2. A linear space is an incidence structure (P,L) of points and lines
satisfying the following properties:

• any two distinct points are incident with a unique line,

• every line is incident with at least two distinct points,

• there are at least two distinct lines.

Next the definition of projective plane.

Definition 1.4.3. A projective plane is a linear space (P,L) such that:

• any two distinct lines meet at a unique point,

• every line is incident with at least three distinct points.

Finally, the definition of affine plane.

Definition 1.4.4. An affine plane is a linear space (P,L) such that:

• through any point not on a line ` there is a unique line disjoint from `.

There are examples of both affine and projective planes not isomorphic to AG(2,F)
and to PG(2,F), respectively, for any (skew) field F; they are called non-desarguesian
planes. (see e.g. [8], [50]). In [8],[95],[102] it is proved the following characteriza-
tion theorem for projective spaces:

Theorem 1.4.5. Let (P,L) be a linear space. If the following hold:
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(i) [Veblen-Young axiom] let ` and `0 be two lines meeting at a point P and let A1, A2 2
` \ {P}, B1, B2 2 `0 \ {P}. The lines A1B1 and A2B2 have a common point,

(ii) every line contains at least three distinct points,

then (P,L) is either a Desarguesian projective space PG(d,F), d � 3, for some (skew)
field F or it is a projective plane.

In [69] H. Lenz proved the following characterization theorem for affine spaces:

Theorem 1.4.6. Let (P,L) be a linear space with an equivalence relation, called paral-
lelism, among its lines. If the following hold:

(i) [Playfair axiom] through any point not on a line ` there is a unique line parallel to
`,

(ii) let ` and `0 be two distinct parallel lines, let P,Q 2 ` and let P 0 2 `0. If R 2
PP 0 \ {P}, then the lines RQ and `0 have a common point,

then (P,L) is either a Desarguesian affine space AG(d,F), d � 3, for some (skew) field
F or it is an affine plane.

Definition 1.4.7. Let P = (P,L) either a projective or an affine space. Let m1 <
m2 < · · · < mk be non-negative integers. A set S of points of P is of type
(m1,m2, . . . ,mk)h if for every Sh 2 Sh it is |Sh \ S| = mi for some i 2 {1, . . . , k}
and 8 i 2 {1, . . . , k} there is a subspace Sh 2 Sh s.t. |Sh \ S| = mi. Such a
subspace is called an mi-secant subspace w.r.t. S . If mi = 0, then Sh is also called
an external subspace; if mi = 1, then Sh is also called a tangent subspace.

1.5 The dual space of PG(V )

Let V be a (d + 1)-dimensional vector space over a field F and let V ⇤ be its dual
space, that is the vector space of the linear maps from V to F. If B = (e1, . . . , ed+1)
is an ordered basis of V , then B⇤ = (e⇤

1
, . . . , e⇤

d+1
) defined by e⇤

i
(ej) = �ij is the

dual basis of B. For every v 2 V such that v = a1e1 + · · · + ad+1ed+1, it is
e⇤
i
(v) = ai. The projective space PG(V ⇤) is the dual space of PG(V ) and it will be

also denoted by PG(V )⇤.

Definition 1.5.1. If R = (he1i, . . . , hed+1i, he1 + · · · + ed+1i) is a frame of PG(V ),
then R⇤ = (he⇤

1
i, . . . , he⇤

d+1
i, he⇤

1
+ · · ·+ e⇤

d+1
i) is the dual frame of R.
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Let R be a fixed frame of PG(V ) and let R⇤ be its dual frame. If ⇡a is a hyperplane
of PG(V ), then its points have coordinates, w.r.t. R, satisfying

a1x1 + · · ·+ ad+1xd+1 = 0,

hence ⇡a determines a point ⇡⇤
a of PG(V )⇤ with coordinates (a1, . . . , ad+1)t w.r.t.

R⇤. The map defined by ⇡a 7! ⇡⇤
a sends hyperplanes of PG(V ) into points of

PG(V )⇤. It is an isomorphism between PG(V ) and its dual PG(V )⇤. It gives a
way to identify hyperplanes of PG(V ) with points of PG(V )⇤. Hence, in the re-
maining part, we can think of the dual space PG(V )⇤ also as the projective space
whose points are the hyperplanes of PG(V ) and whose lines are either the pen-
cils of hyperplanes through a common (d � 2)-dimensional projective subspace
of PG(V ) or the (d� 2)-dimensional subspaces themselves with the incidence ◆
instead of ✓. See e.g. [3],[8],[21].

1.6 Sesquilinear forms, correlations and polarities

Definition 1.6.1. Let V be an F-vector space with finite dimension d+1. Let � be
an authomorphism of F. A map

h , i : (v, v0) 2 V ⇥ V �! hv, v0i 2 F,

is either a �-sesquilinear form or a �-semibilinear form on V if it is a linear map
on the first argument and it is a �-linear map on the second argument. That is
8 v, v0, v00 2 V , 8a 2 F it holds:

hv + v0, v00i = hv, v00i+ hv0, v00i,

hv, v0 + v00i = hv, v0i+ hv, v00i,
hav, v0i = ahv, v0i, hv, av0i = a�hv, v0i,

If � is the identity map, then h , i is an usual bilinear form.

If B = (e1, e2, . . . , ed+1) is an ordered basis of V , then for x, y 2 V we have hx, yi =
XtAY �, where A = (hei, eji) is the associated matrix to the �-sesquilinear form
w.r.t. B, X and Y are the columns of coordinates of x, y w.r.t. B. The term sesqui
comes from the Latin and it means one and a half. For every subset S of V define
its left and right orthogonal subspace, w.r.t. h , i to be:

S? := {x 2 V : hx, yi = 0 8y 2 S},

S

?

:= {y 2 V : hx, yi = 0 8x 2 S}.

Both S? and S

?

are subspaces of V .
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Definition 1.6.2. The subspaces V ? and V

?

are called the left and the right radical
of h , i, respectively.

Proposition 1.6.3. For any pair of subspaces S and S0 of a (d+1)-dimensional F-vector
space V it is:

• dimS? = dimS

?

,

• dimS + dimS? = d+ 1 = dimS + dimS

?

,

• S? \ S0? = (S + S0)?, S

?

\ S0

?

= (S + S0)

?

.

Definition 1.6.4. A sesquilinear form is either degenerate or non-degenerate accord-
ing to either V ? = {0} or V ? 6= {0}.

Let h , i be a sesquilinear form on V . A vector u is isotropic if hu, ui = 0. A totally
isotropic subspace S of V satisfies hu, vi = 0, 8 u, v 2 S. A maximum totally isotropic
subspace is a totally isotropic subspace that is not contained in a larger totally
isotropic subspace.

Theorem 1.6.5. Let V be a (d + 1)-dimensional F-vector space. A totally isotropic
subspace, w.r.t. a non-degenerate sesquilinear form has dimension at most bd+1

2
c.

Definition 1.6.6. A (degenerate) duality or (degenerate) correlation of PG(d,F) is a
(degenerate) collineation between PG(d,F) and its dual space PG(d,F)⇤.

Remark 1.6.7. A duality of PG(d,F) can be seen as a bijective map of PG(d,F)
reversing inclusion.

Theorem 1.6.8. Any (possibly degenerate) duality of PG(d,F), d > 1, is induced by a
�-sesquilinear form of the underlying vector space Fd+1 and conversely.

Proof. A (possibly degenerate) duality of PG(d,F), d > 1, is induced by a �-
linear transformation f of Fd+1 into its dual, since it is a (possibly degenerate)
collineation. Define a map h , i : Fd+1 ⇥ Fd+1 �! F in the following way:

hu, vi = f(v)(u),

that is the result of applying the element f(v) of (Fd+1)⇤ to u. It follows that h , i
is a �-sesquilinear form. Indeed it is easy to see that h , i is linear on the first
argument and since

hu, v1 + v1i = f(v1 + v2)(u) = f(v1)(u) + f(v2)(u) = hu, v1i+ hu, v2i,

and
hu, avi = f(av)(u) = a�f(v)(u) = a�hu, vi,
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it is semilinear on the second argument. Moreover h , i is non-degenerate if and
only if f is a bijection.
Conversely, any �-sesquilinear form on V = Fd+1 induces a (possibly degenerate)
duality of PG(d,F) given by

?: P = hui 2 PG(d,F) \ V ? 7! P? = {hvi | hu, vi = 0} 2 PG(d,F)⇤.

⇤
Remark 1.6.9. Every �-sesquilinear form of Fd+1 give rise to the following two
(possibly degenerate) dualities of PG(d,F):

?: P = hui 2 PG(d,F) \ V ? 7! P? = {hvi | hu, vi = 0} 2 PG(d,F)⇤.

and

?

: P = hvi 2 PG(d,F) \ V

?

7! P

?

= {hui | hu, vi = 0} 2 PG(d,F)⇤.

Remark 1.6.10. Sometimes we will call linear a (degenerate) correlation whose as-
sociated form is a bilinear form (� = 1).

Definition 1.6.11. Let h , i be a sesquilinear form of Fd+1. A point P = hvi of
PG(d,F) is called either an isotropic point or an absolute point if hv, vi = 0, i.e. v is
an isotropic vector w.r.t. h , i.

Moreover, given a subspace U of PG(V ), if U ✓ U? or vice versa, then U is called
absolute. If U = U?, then U is called totally isotropic.

A duality of PG(d,F) applied twice gives a collineation of PG(d,F).

Definition 1.6.12. A polarity is a duality whose square is the identity.

Hence, if ? is a polarity, then for every pair of points P and R the following
holds:

P 2 R? () R 2 P?.

Definition 1.6.13. A �-sesquilinear form is reflexive if 8 u, v 2 V it is:

hu, vi = 0 () hv, ui = 0.

Proposition 1.6.14. A duality is a polarity if and only if the induced non-degenerate
sesquilinear form is reflexive.

Proof. Let h , i be a non-degenerate reflexive �-sesquilinear form of Fd+1
q . If u 2

hvi?, then v 2 hui?. Hence the map hui 7! hui? defines a polarity. Conversely
given a polarity ?, if v 2 hui?, then u 2 hvi?. So the induced sesquilinear form
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is reflexive. ⇤

The non-degenerate, reflexive �-sequilinear forms of a (d + 1)-dimensional F-
vector space V have been classified (for a proof see e.g. Theorem 3.6 in [6] or
Theorem 6.3 and Proposition 6.4 in [21]) in the following:

Theorem 1.6.15. Let h , i be a non-degenerate, reflexive �-sesquilinear form of a (d +
1)-dimensional F-vector space. Then, up to a scalar factor, the form h , i is one of the
following:

(i) a symmetric form, i.e.

8 u, v 2 V hu, vi = hv, ui (char(F) = 2 =) 9 v 2 V : hv, vi 6= 0),

(ii) an alternating form, i.e.

8 v 2 V hv, vi = 0 (d is necessarily odd),

(iii) a hermitian form, i.e.

8 u, v 2 V hu, vi = hv, ui� (�2 = 1,� 6= 1).

For the proofs of the results in this section see e.g. [6],[21].

1.7 Quadrics, Hermitian varieties, Symplectic geometries
of PG(d, q)

From the previous section, we have seen that polarities of PG(d,F) are in one to
one correspondence with non-degenerate, reflexive �-sesquilinear forms on Fd+1.
Hence, to every polarity of PG(d,F) there is an associated pair (A,�), with A a
non-singular matrix of order d + 1 and � an automorphism of F. From the last
theorem of the previous section, we have the following:

Corollary 1.7.1. Let (A,�) be a polarity of PG(d, q), one of the following holds:

(i) � = 1, A is a symmetric matrix. The polarity is called an orthogonal polarity. If
q is even, there is a non-absolute point.

(ii) � = 1, A is a skew-symmetric matrix, d is odd. Every point is an absolute point
and the polarity is called a symplectic polarity.
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(iii) �2 = 1, so � : x 7! x
p
q, q is a square, A is a Hermitian matrix. The polarity is

called a Hermitian or unitary polarity.

Recall that a square matrix A is either symmetric if A = At, or skew-symmetric if
A = �At or Hermitian if A = A�

t ,�
2 = 1,� 6= 1. Each of the above polarities of

PG(d, q) determines a set � : XtAX� = 0, as set of absolute points. The three
type of polarities give rise to the following, well known, subsets of PG(d, q):

Definition 1.7.2. If (A,�) is a polarity of PG(d, q), then one of the following holds:

(i) � is called a quadric of PG(d, q) (q odd, orthogonal polarity).
� is a hyperplane of PG(d, q) (q even, orthogonal polarity).

(ii) � is the full pointset of PG(d, q) (d odd, symplectic polarity) and the geom-
etry determined is a symplectic polar space.

(iii) � is a Hermitian variety of PG(d, q) (q a square, �2 = 1,� 6= 1, unitary
polarity).

Remark 1.7.3. If q is even, � = 1 and we have an orthogonal polarity, so A is a
symmetrix matrix, then the set � of its absolute points is a hyperplane. Note that
in many books (but not in the book of P. Dembowski [33]) this kind of polarity is
called a pseudo polarity.

In all the cases of the previous definition, the set � is often called also non-
degenerate since the associated �-sesquilinear form is non-degenerate. All the
above sets have been classified and for each of them it is possible to give a canon-
ical equation.

Theorem 1.7.4. If (A,�) is a polarity of PG(d, q), then let � : XtAX� = 0 be the set
of its absolute points. The following holds:

(i) If � is a quadric, so q is odd, then we have:

1) If d is even, then

� = Q(d, q) : x1x2 + · · ·+ xd�1xd + x2
d+1 = 0, (parabolic quadric).

2) If d is odd, then either

� = Q�(d, q) : x1x2 + · · ·+ ↵x2
d
+ �xdxd+1 + �x2

d+1 = 0, with

↵x2
d
+ �xdxd+1 + �x2

d+1
irreducible polynomial over Fq (elliptic quadric) or

� = Q+(d, q) : x1x2 + · · ·+ xdxd+1 = 0 (hyperbolic quadric).
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If � is a hyperplane, so q is even, then � : x1 = 0.

(ii) If � is a symplectic polar space, then � is the full pointset of PG(d, q), d odd. The
geometry determined will be denoted by W (d, q). A canonical form for the associated
bilinear form is

hx, yi = x1y2 � x2y1 + x1y3 � x3y1 + · · ·+ xdyd+1 � xd+1yd.

(iii) If � is a Hermitian variety, then

� = H(d, q) : x
p
q+1

1
+ x

p
q+1

2
+ · · ·+ x

p
q+1

d+1
= 0.

Remark 1.7.5. Regarding degenerate, reflexive �-sesquilinear forms on V = Fd+1
q ,

it is possible to prove that if dim V ? = r + 1, r � 0, then the set � of absolute
points in PG(d, q) of the associated degenerate correlation is, in all the possible
cases, a cone �(Vr, Qd�1�r) with vertex a subspace Vr, of dimension r, projecting
the set Qd�1�r of absolute points of a polarity in a subspace Sd�1�r, of dimension
d�1� r, skew with Vr. The set Qd�1�r can be either a quadric or the full pointset
of PG(d�1�r, q) (a symplectic geometry) or a Hermitian variety (if q is a square).
If Qd�1�r is the full pointset of PG(d � 1 � r), then d and r must have the same
parity and the cone �(Vr,PG(d� 1� r, q)) is a quotient geometry PG(d, q)/Vr. In
these cases we call the set of the absolute points a degenerate quadric, a degenerate
symplectic geometry or a degenerate Hermitian variety, respectively. The knowledge
of the set of the absolute points of a polarity of Sd�1�r determines also the knowl-
edge of the set of the absolute points of a degenerate, reflexive correlation.

Sometimes we will call non-degenerate quadrics, non-degenerate symplectic ge-
ometries and non-degenerate Hermitian varieties the set of the absolute points
associated to a non-degenerate reflexive �-sesquilinear form. The following propo-
sition characterizes these sets.

Proposition 1.7.6. Let � be either a non-degenerate quadric or a non-degenerate sym-
plectic polar space or a non-degenerate Hermitian variety of PG(d, q) and denote by ?
the associated polarity. For any point Y of �, the set Y ? is a hyperplane meeting � in
a cone �(Y,Qd�2), where Qd�2 is either a non-degenerate quadric or a non-degenerate
symplectic polar space or a non-degenerate Hermitian variety, respectively and vice versa.

We see, from the previous results, that we have missed quadrics in the q even
case. In order to include quadrics for the q even case, another possible definition
of quadric, independent of the characteristic of the field F, is the following:

Definition 1.7.7. Let V be an F-vector space. A (degenerate) quadratic form of V is
a map f : V �! F such that

f(av) = a2f(v) 8a 2 F, v 2 V,
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hu, vi = f(u+ v)� f(u)� f(v) 8u, v 2 V

is a (degenerate) symmetric bilinear form.

Definition 1.7.8. A (degenerate) quadric of PG(V ) is any set Q = {hvi 2 PG(V )|f(v) =
0}, for some (degenerate) quadratic form f on V . A point P = hvi of Q is also
called a singular point, w.r.t. the quadratic form f . A subspace U s.t. all its points
are singular is a totally singular subspace. A maximum totally singular subspace is
a totally singular subspace that is not contained in a larger totally singular sub-
space. The quadrics of a projective plane PG(2,F) are called conics.

Remarks 1.7.9.

1) If char F 6= 2, then Q is a non-degenerate quadric if the associated form h , i is
a non-degenerate symmetric bilinear form. In this case, every (possibly degen-
erate) symmetric bilinear form gives a (possibly degenerate) quadratic form and
vice versa, hence the two definitions of quadrics coincide.

2) If char F = 2, then hx, xi = 0 8 x 2 V and the form h , i cannot be non-
degenerate, unless d is odd.

• If d is odd, then Q is a non-degenerate quadric if the associated form (a sym-
plectic form) is a non-degenerate bilinear form.

• If d is even, then Q is a non-degenerate quadric if f(x) 6= 0 8 x 2 V ?, where
? denotes the degenerate correlation associated to h , i, that is a degenerate
symplectic form with dim V ? = 1.

In what follows we will often omit the term non-degenerate.
Remark 1.7.10. Another possible definition of quadric, equivalent to that in 1.7.8,
is the following. A (possibly degenerate) quadric of PG(V ) is any set of points whose
projective coordinates, w.r.t. a fixed frame R of PG(V ), satisfy a second degree
homogeneous equation in the unknowns xi, i = 1, . . . , d+1. Such an equation can
always be written in the form Q : XtAX = 0, for some (non-skew-symmetric)
matrix A. The bilinear form associated to Q being defined by hu, vi = Xt(A +
At)Y , where X and Y denotes the columns of coordinates of the points hui and
hvi, rispectively, w.r.t. R.

If char(F) 6= 2, then Q is non-degenerate if and only if |A+At| 6= 0.

If char(F) = 2, then we distinguish two cases:

• if d is odd, then Q is non-degenerate if and only if |A+At| 6= 0,
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• if d is even, then Q is non-degenerate if and only if rank(A + At) = d and
N = V ? /2 Q.

The point N appearing in the case char(F) = 2, d even, is called the nucleus of the
quadric Q.
Remark 1.7.11. It is possible to prove that the non-degenerate quadrics of PG(d, q), q
even, can be divided into the same three families as for the q odd case, with the
same canonical equations.

For the proofs of the results in this section see e.g. [49].

1.8 Classical polar spaces

Definition 1.8.1. A partial linear space (P,L) is an incidence structure of points
and lines s.t.:

• any two distinct points are contained in at most one line,

• any line contains at least two points,

• there are at least two distinct lines.

Two points P, P 0 of a partial linear space are collinear points if there is a line con-
taining them, denoted by PP 0, otherwise they are non-collinear points.

Definition 1.8.2. A Polar space is a partial linear space P = (P,L) s.t.:

• for every point P and for every line ` with P /2 `, the set of points of `
collinear with P is either a singleton or the whole line `,

• lines have at least three distinct points,

• through every point there are at least three distinct lines.

A singular subspace of a polar space P is any subset of pairwise collinear points
of P (so a point, a line, etc.). A degenerate polar space has some points that are
collinear with all the points. A polar space P is finite if it has a finite number of
points.

Definition 1.8.3. A generalized quadrangle is a partial linear space P = (P,L) s.t.:
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• for every point P and for every line `, with P /2 `, the set of points of `
collinear with P is a singleton,

• lines have at least three distinct points,

• through every point there are at least three distinct lines.

Hence a generalized quadrangle is a polar space with lines as maximal subspaces.

Let PG(d, q) be the projective space of dimension d over Fq and let f be either a
reflexive, sesquilinear form or a quadratic form on the underlying vector space
Fd+1
q . The points, the lines and the subspaces of the finite classical polar space

associated with this form consist either of the totally isotropic points, lines and
subspaces (when f is a sesquilinear form) or the totally singular points, lines and
subspaces (when f is a quadratic form) with respect to f .

The Witt index of the form f is the largest vector space dimension of the subspaces
contained in the polar space, and it is called the rank of the polar space. A sub-
space of a polar space of maximum dimension is called a generator of the polar
space. Finite classical polar spaces are those summarized in Theorem 1.7.4 plus
the non-degenerate quadrics, q even. They are listed in the table below, where r is
the rank of the polar space and ✓k(q) denotes the number of points of a PG(k, q),
so it is equal to qk + qk�1 + · · ·+ q + 1.

Name Notation Number of points Collineation Group

Symplectic W(2r � 1, q) (qr + 1)✓r�1(q) P�Sp(2r, q)
Hermitian H(2r � 1, q) (qr�1/2 + 1)✓r�1(q) P�U(2r, q)
Hermitian H(2r, q) (qr+1/2 + 1)✓r�1(q) P�U(2r + 1, q)
Hyperbolic Q+(2r � 1, q) (qr�1 + 1)✓r�1(q) P�O+(2r, q)
Parabolic Q(2r, q) (qr + 1)✓r�1(q) P�O(2r + 1, q)
Elliptic Q�(2r + 1, q) (qr+1 + 1)✓r�1(q) P�O�(2r + 2, q)

Table 1.1: Finite classical polar spaces

Remark 1.8.4. There are no other finite polar spaces of rank at least three than
those in the previous table. So every finite polar space of rank at least three is
classical.

Remark 1.8.5. There are examples of non-classical finite generalised quadrangles.
(See e.g. [17],[21],[82]).

For the proof of the results in this section see e.g. [6],[18],[19],[20],[21],[47],[101],[103].
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1.9 Hyperovals of PG(2, 2n)

Definition 1.9.1. In PG(2, q) any set K, of size k, with no three collinear points is
a k-arc of PG(2, q).

It is easy to see that for any k-arc of PG(2, q), if q is odd, then k  q + 1 and if q is
even, then k  q + 2.

Definition 1.9.2. If K is a (q + 1)-arc of PG(2, q), then it is called an oval. If q is
even and K is a (q + 2)-arc of PG(2, q), then it is called a hyperoval.

Every non-degenerate conic of PG(2, q) is an oval and the property of being an
oval characterises non-degenerate conics, for q odd, with the following remark-
able result:

Theorem 1.9.3 (B. Segre [88]). If q is odd, then every oval of PG(2, q) is a non-
degenerate conic.

The situation is different for q even. Indeed, if q is even, then for every non-
degenerate conic �, the tangent lines to �meet at a common point N , the nucleus
of �, with N /2 �. The set �[ {N} is a hyperoval. By removing a point M of �we
have, for q > 4, an oval �[ {N} \ {M} that cannot be a conic since it has q points
in common with �, while two distinct non-degenerate conics can have at most 4
points in common.

Definition 1.9.4. A hyperoval obtained by the union of a non-degenerate conic �
with its nucleus N is called either a regular hyperoval or a hyperconic.

The following theorem, again due to B. Segre, characterizes hyperovals of PG(2, q)
in terms of a class of permutation polynomials of Fq[x].

Theorem 1.9.5 (B. Segre [89]). Let q = 2n, n > 1 and let f 2 Fq[x] satisfying the
following properties:

(i) f is a permutation, reduced polynomial, f(0) = 0, f(1) = 1.

(ii) 8↵ 2 Fq g↵(x) =
f(x+↵)+f(↵)

x
is a permutation polynomial with g↵(0) = 0.

The set ⌦(f) = {(f(t), t, 1)}t2Fq [ {(1, 0, 0), (0, 1, 0)} is a hyperoval of PG(2, q). Vice
versa if ⌦ is a hyperoval of PG(2, q), there are a frame of PG(2, q) and a polynomial
f 2 Fq[x] with properties (i), (ii) s.t. ⌦ = ⌦(f).
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Definition 1.9.6. Polynomials satisfying (i), (ii) of the previous theorem are called
o-polynomials.

The following table summarizes all but two infinite classes of o-polynomials of
Fq, q = 2n, known and the names of the associated hyperovals:

Name o-polynomial Restrictions

regular x2 none
translation x2

m
m > 1, (m,n) = 1

Segre x6 n odd
Glynn I x3�+4 � = 2

n+1
2 , n odd

Glynn II x�+� � = 2
n+1
2 , � = 2r if n = 4r � 1

� = 2
n+1
2 , � = 23r+1 if n = 4r + 1

Payne x1/6 + x3/6 + x5/6 n odd
Cherowitzo x� + x�+2 + x3�+4 n odd

Table 1.2: Infinite classes of hyperovals

There are other two infinite classes of hyperovals:

• Subiaco:

f(x) =
d2(x4 + x) + d2(1 + d+ d2)(x3 + x2)

(x2 + dx+ 1)2
+ x1/2,

T r(1/d) = 1, d2 + d + 1 6= 0 (or equivalently d /2 F4 if n ⌘ 2(mod4)). It
is a unique class of hyperovals if n 6⌘ 2(mod4), two classes of inequivalent
hyperovals if n ⌘ 2(mod4), n > 2.

• Adelaide: Let b 2 Fq such that N(b) = 1, b 6= 1,

f(x) = tr(b)�1tr(bm)(x+1)+(tr(b)�1tr((bx+b
p
q)m)(x+tr(b)

p
x+1)1�m+

p
x,

where tr = trFq/Fp
q

and n is even.

For more on hyperovals see e.g. [22],[23],[24],[25],[26],[45],[80],[81],[87],[88],[89],[91].

1.10 Blocking sets of PG(2, qn)

Let ⇡n be a finite projective plane of order n.
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Definition 1.10.1. Let B be a set of points of ⇡n. The set B is a blocking set if it
does not contain lines and for every line ` of ⇡n it is ` \ B 6= ;. The blocking set
B is minimal if there is no proper subset of B that is again a blocking set.

Proposition 1.10.2. Let B be a blocking set of ⇡n and let ` be a line. Then

|B \ `|  |B|� n.

If |B| = n+ k, then every line meets B in at most k points.

Definition 1.10.3. Let B be a blocking set of ⇡n with |B| = n+k. A line ` meeting
B in exactly k points is a Rédei line. If for a blocking set B there exists a Rédei
line, then B is a Rédei blocking set.

Examples 1.10.4. Let ⇡n be a projective plane of square order n.

• Baer subplanes. A subplane of order
p
n of ⇡n is a minimal Rédei blocking

set of size n+
p
n+1. In the Desarguesian projective plane PG(2, q2) a Baer

subplane is isomorphic to PG(2, q).

• Unitals. A unital of order n of ⇡n is a set of n
p
n + 1 points meeting every

line either in 1 or
p
n + 1 points. It is a minimal blocking set of ⇡n. In the

Desarguesian projective plane PG(2, q2) an important example of unital is
given by the Hermitian curve or classical unital H(2, q2) : xq+1

1
+ xq+1

2
+

xq+1

3
= 0.

In [14] A.A. Bruen characterizes Baer subplanes as blocking sets of minimum size.

Proposition 1.10.5 (A. A. Bruen [14]). If B is a blocking set of ⇡n, then |B| � n +p
n+ 1. Equality holds if and only if n is a square and B is a Baer subplane of ⇡n.

A blocking set is small if it has size at most 3(n+1)

2
. Therefore the Baer subplanes

are examples of small blocking sets. In [15] A.A. Bruen and J.A. Thas characterize
unitals as minimal blocking sets of maximum size.

Proposition 1.10.6 (A.A. Bruen - J.A. Thas [15]). If B is a minimal blocking set of ⇡n,
then |B|  n

p
n+1. Equality holds if and only if n is a square and B is an unital of ⇡n.

For more details on unital see e.g. [7].
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1.11 Spreads of PG(d, q) and field reduction

Definition 1.11.1. Let r be a positive integer. An r-spread of PG(d, q) (resp. of Fn
q )

is a partition of PG(d, q) (resp. of Fn
q \ {0}) in r-dimensional projective subspaces

(resp. vector subspaces minus {0}). Instead of r–spread we can also say spread in
r-dimensional subspaces.

Proposition 1.11.2. An r-spread of PG(d, q) contains exactly

qd+1 � 1

qr+1 � 1

elements. Hence if such a spread exists, then qr+1 � 1 divides qd+1 � 1 i.e. r+ 1 divides
d+ 1.

Example 1.11.3 (Linear spreads). Let d + 1 = (r + 1)(s + 1). Let ↵ be a root of an
irreducible polynomial of degree r + 1 over Fq. Every element x 2 Fqr+1 can be
written as

x = a0 + a1↵+ a2↵
2 + · · ·+ ar↵

r.

Let (x0, x1, . . . , xs) 2 Fs+1

qr+1 and put

xj = xj0 + xj1↵+ · · ·+ xjr↵
r, 8 j = 0, 1, . . . , s.

Let � : Fs+1

qr+1 �! Fd+1
q be the Fq-linear map defined by:

�(x0, x1, . . . , xs) = (x00, x01, . . . , x0r, x10, . . . , x1r, . . . , xs0, . . . , xsr).

If S is an h-dimensional subspace of Fs+1

qr+1 , then �(S) is an h(r + 1)-dimensional
subspace of Fd+1

q . In particular if H is a 1-dimensional subspace, then �(H) is an
(r + 1)-dimensional subspace. The set of all 1-dimensional subspaces of Fs+1

qr+1 ,
minus {0}, is a 1-spread of Fs+1

qr+1 to which there corresponds an (r + 1)-spread of
Fd+1
q . Such a spread is called a linear spread of Fd+1

q .

It follows that:

Proposition 1.11.4. Let r and d be two positive integers. If r + 1 divides d + 1, then
there exists an r-spread F of PG(d, q).

The map � induces a map PG(s, qr+1) �! PG(d, q) known as field reduction. Note
that the points of PG(s, qr+1) are mapped into the linear r-spread of PG(d, q)
and (h � 1)-dimensional projective subspaces of PG(s, qr+1) are mapped into
(h(r + 1)� 1)-dimensional projective subspaces of PG(d, q).
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Definition 1.11.5. A regulus in a projective space PG(rt� 1, q), or (t� 1)-regulus,
is a set R of (t � 1)-dimensional pairwise disjoint subspace, with |R| = q + 1,
s.t. each line meeting three distinct elements of R meets all the elements of
R. If S1, S2, S3 are three pairwise disjoint (t � 1)-dimensional subspaces with
dimhS1, S2, S3i = 2t� 1, then there is a unique regulus containing them, denoted
by R(S1, S2, S3). A regular spread S contains the regulus R(S1, S2, S3) for any
three different elements S1, S2, S3 of S .

For more on spreads and field reduction see e.g. [1],[6],[13],[67],[71],[79],[90].

1.12 Fq-linear sets of PG(d, qn)

Definition 1.12.1. Let ⌦ = PG(r � 1, qn), q = ph, p a prime. A set L is said an
Fq-linear set of ⌦ of rank t if it is defined by the non-zero vectors of an Fq-vector
subspace U of V = Fr

qn of dimension t, that is

L = LU = {huiqn : u 2 U \ {0}}.

Let ⇤ = PG(W,Fqn) be a subspace of ⌦ of dimension s, we say that ⇤ has weight i
with respect to LU if dimFq(W \U) = i. An Fq-linear set LU of ⌦ of rank t is said
scattered if each point of LU has weight 1, with respect to LU .

In [10] it is proved that t  rn/2. In [86] it is proved that LU is a scattered Fq-
linear set of rank t if and only if |LU | = qt�1+ qt�2+ · · ·+ q+1. If L is a scattered
linear set of PG(r � 1, qn) of rank rn/2 it is called a maximum scattered linear set.

If dimFqU = dimFqn
V = r and hUiFqn

= V , then LU
⇠= PG(U,Fq) is a subge-

ometry of ⌦. In such a case each point has weight 1, and hence |LU | = qr�1 +
qr�2 + · · · + q + 1. Let ⌃ = PG(t, q) be a subgeometry of ⌃0 = PG(t, qn) and
suppose that there exists a (t� r)-dimensional subspace ⌦0 of ⌃0 disjoint from ⌃.
Let ⌦ = PG(r � 1, qn) be an (r � 1)-dimensional subspace of ⌃0 disjoint from ⌦0

and let � be the projection of ⌃ from ⌦0 to ⌦ i.e. � = {h⌦0, xi \ ⌦ : x 2 ⌃}. Let
p⌦0,⌦ be the map from ⌃ \⌦0 to ⌦ defined by x 7! h⌦0, xi \⌦. We call ⌦0 the center
and ⌦ the axis of p⌦0,⌦. In [76] the following characterization of Fq-linear sets is
given:

Theorem 1.12.2. If L is a projection of PG(t, q) into ⌦ = PG(r � 1, qn), then L is an
Fq-linear set of ⌦ of rank t + 1 and hLi = ⌦. Conversely, if L is an Fq-linear set of ⌦
of rank t + 1 and hLi = ⌦, then either L is a subgeometry of ⌦ or there are a (t � r)-
dimensional subspace ⌦0 of ⌃0 = PG(t, qn) disjoint from ⌦ and a subgeometry ⌃ of ⌃0

disjoint from ⌦0 such that L = p⌦0,⌦(⌃).
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A family of maximum scattered linear sets to which a geometric structure, called
pseudoregulus, can be associated has been defined in [74].

Definition 1.12.3. Let L = LU be a scattered Fq-linear set of � = PG(2n � 1, qt)
of rank tn, t, n � 2. We say that L is of pseudoregulus type if:

(i) there exist m = q
nt�1

qt�1
pairwise disjoint lines of �, say s1, s2, . . . , sm, such

that wL(si) = t, i.e.|L \ si| = qt�1 + qt�2 + · · ·+ q + 1 8 i = 1, . . . ,m,

(ii) there exist exactly two (n�1)-dimensional subspaces T1 and T2 of � disjoint
from L such that Tj \ si 6= ; 8 i = 1, . . . ,m and j = 1, 2.

We call the set of lines PL = {si : i = 1, . . . ,m} the Fq-pseudoregulus (or simply
the pseudoregulus) of � associated with L and we refer to T1 and T2 as transversal
spaces of PL (or transversal spaces of L). When t = n = 2, these objects already
appeared first in [42], where the term pseudoregulus was introduced for the first
time. See also [36].

In [38] and in [74] the following class of maximum scattered Fq-linear sets of the
projective line � = PG(1, qt) with a structure resembling that of an Fq-linear set
of PG(2n�1, qt), n, t � 2, of pseudoregulus type has been studied. Let P1 = hwiqt
and P2 = hviqt be two distinct points of � and let ⌧ be an automorphism of Fqt

such that Fix(⌧) = Fq. For each ⇢ 2 F⇤
qt

the set W⇢,⌧ = {�w + ⇢�⌧v : � 2 Fqt}, is
an Fq-vector subspace of V = F2

qt
of dimension t and L⇢,⌧ = LW⇢,⌧ is a scattered

Fq-linear set of �.

Definition 1.12.4. In [74] the linear sets L⇢,⌧ have been called of pseudoregulus
type and the points P1 and P2 the transversal points of L⇢,⌧ . If L⇢,⌧ \ L⇢0,⌧ 6= ;,
then L⇢,⌧ = L⇢0,⌧ . Note that L⇢,⌧ = L⇢0,⌧ if and only if N(⇢) = N(⇢0) (where
N denotes the Norm of Fqt over Fq); so P1, P2 and the automorphism ⌧ define
a set of q � 1 mutually disjoint maximum scattered linear sets of pseudoregulus
type admitting the same transversal points. Such maximal scattered linear sets,
together with P1 and P2, cover the pointset of PG(1, qt). All the Fq-linear sets of
pseudoregulus type in � = PG(1, qt), t � 2, are equivalent to the linear set L1,�1

under the action of the collineation group P�L(2, qt).

Remark 1.12.5. We observe that the pseudoregulus is the same as the Norm sur-
face (or sphere) of R.H. Bruck, introduced and studied, in the seventies, by R.H.
Bruck (see [11],[12]) in the setting of circle geometries.

For more on Fq-linear sets in finite projective spaces see e.g. [86].
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1.13 Semifield flocks of a quadratic cone of PG(3, qn)

In this section q will be odd.

Definition 1.13.1. Let K be a quadratic cone of PG(3, qn) with vertex the point
V = (0, 0, 0, 1) and base the conic with equations x1x2 = x2

3
, x4 = 0. A flock F of

K is a partition of the points of the cone, different from the vertex, into qn conics.
The planes containing the conics of the flock F are called the planes of the flock F .

Example 1.13.2. The classical example of a flock is constructed by taking the set of
planes, not through the vertex V , on a fixed line disjoint from the cone.

Definition 1.13.3. Given a flock F of K, the planes of the flock are given by ⇡t :
tx1 � f(t)x2 + g(t)x3 + x4 = 0, for some functions f , g : Fqn �! Fqn . We denote
this flock by F(f, g). If f and g are Fq-linear maps, then the flock is a semifield
flock. We assume that Fq is the maximum subfield of Fqn on which f and g are
linear. In this case Fq is called the kernel of the flock.

Consider the dual space of PG(3, qn). The lines of the cone K become lines of
PG(3, qn) all contained in the plane ⇡ : x4 = 0 corresponding with the vertex of
K. They had the property that no three of them were contained in a plane, so
now they form a dual oval of ⇡. Since q is odd, this dual oval is a dual conic,
i.e., the set of the tangent lines to the a conic C0 : 4x1x2 � x2

3
= 0, x4 = 0. Two

planes ⇡t and ⇡s of the flock F correspond to the points Pt = (t, f(t), g(t), 1) and
Ps = (s, f(s), g(s), 1). Since ⇡t and ⇡s do not intersect on the cone K, the line PsPt

intersects ⇡ in an internal point of C0. If F(f, g) is a semifield flock, then f and g
are Fq-linear maps, so we obtain a set {(t, f(t), g(t), 0)}t2F⇤

qn
of internal points to

C0, that is an Fq-linear set of rank n of internal points to the conic C0. We recall the
known examples of semifield flocks of a quadratic cone of PG(3, qn), q odd.

• Linear. All the planes of the flock share a common line. In this case we can
take the linear functions f(t) = t and g(t) = 0. The set of internal points to
the conic C0 is a single point.

• Kantor-Knuth semifield. Let m be a non-square of Fqn and let � 6= 1 be an
automorphism of Fqn . The functions f(t) = mt�, g(t) = 0 define a semifield
flock called the Kantor-Knuth semifield flock (see e.g. [44],[97]). The planes
of the flock ⇡t : tx1 � mt�x2 + x4 = 0, t 2 Fqn share a common point
(0, 0, 1, 0) but not a common line. The set of internal points to the conic C0

is contained on a secant line ` to C0.

• Cohen-Ganley (q = 3). If m is a non-square in F3n , then the functions f(t) =
m�1t+mt9 and g(t) = t3 give a semifield flock. The planes of the flock are
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⇡t : tx1� (m�1t+mt9)x2+ t3x3+x4 = 0, t 2 F3n . The corresponding set of
internal points to C0 is {(t,m�1t+mt9, t3, 0)}t2F⇤

qn
. See [83].

• Sporadic semifield flock. T. Penttila and B. Williams in [84] proved, with a mix
of theory and computer assistance, that the functions f(t) = t9 g(t) = t27

yield a translation ovoid of Q(4, 35) (see Section 1.15 for the definition). By
using the connection given by J.A. Thas in [98], L. Bader, G. Lunardon and
I. Pinneri in [2] calculated the corresponding semifield flock, sometimes
called a sporadic semifield flock. The planes of the flock are ⇡t : tx1 � t9x2 +
t27x3+x4 = 0, t 2 F35 . The corresponding set of internal points to the conic
C0 is given by {(t, t9, t27, 0)}t2F⇤

35
.

1.14 Plücker coordinates

Let F be a field and let u = (u1, u2, u3, u4), v = (v1, v2, v3, v4) be two independent
vectors of V = F4. The Plücker coordinates of (u, v) are pij = uivj �ujvi for every
i 6= j. Let ⌧ be the map from pairs of linearly independent vectors of V to points
of PG(5,F) defined by

⌧(u, v) = h(p12, p13, p14, p23, p24, p34)i.

Proposition 1.14.1. The map ⌧ is a well defined map from the lines of PG(3,F) into the
points of Q+(5,F).

Remark 1.14.2. The map ⌧ is also called the Klein correspondence and therefore the
quadric Q+(5,F) is also called the Klein quadric of PG(5,F). It gives the following
correspondence between objects of PG(3, q) and Q+(5, q).

PG(3, q) Q+(5, q)

intersecting lines collinear points
skew lines non-collinear points

lines of W(3, q) points of Q(4, q)
star of lines a plane

lines of a plane a plane
pencil of lines in a plane a line

a regulus a non-degenerate conic
a spread an ovoid

a regular spread Q�(3, q)
a symplectic spread an ovoid of Q(4, q)

Table 1.3: Klein correspondence

For the proofs of the results in this section see e.g. [6],[8].
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1.15 Translation ovoids of orthogonal polar spaces

Denote by P either the polar space associated with a non-degenerate quadric of
PG(2n, qt), n � 2, t � 1 or the polar space associated with a non-degenerate
quadric of PG(2n+ 1, qt), n � 1, t � 1.

Definition 1.15.1. An ovoid of P is a set of qtn + 1 points, no two collinear in P.
An ovoid O of P is a translation ovoid with respect to a point P of O if there is a
collineation group of P fixing P linewise (i.e. stabilizing all lines through P ) and
acting sharply transitively on the points of O \ {P}.

Examples of translation ovoids of Q+(3, qt) are the conics contained in it or also
the image of a pseudoregulus of PG(3, qt) under the Klein correspondence. (See
Section 3.4). The ovoids of the Klein quadric Q+(5, qt) correspond to line spreads
of PG(3, qt) and translation ovoids are equivalent to semifield spreads. Hence,
Q+(5, qt) has ovoids and translation ovoids for all values of q. If Q(4, qt) =
H \Q+(5, qt) is a non-degenerate quadric, where H is a hyperplane of PG(5, qt),
then ovoids of Q(4, qt) are equivalent to symplectic spreads of PG(3, qt) and
translation ovoids are equivalent to symplectic semifield spreads of PG(3, qt).
In [75] the following result, regarding translation ovoids of P, has been achieved,
by using a connection between translation ovoids of P and Fq-linear sets.

Theorem 1.15.2. Translation ovoids of P exist if and only if P is one of the following:
Q+(3, qt),Q(4, qt),Q+(5, qt).

Consequently, the most important open problems are related to the existence and
to the classification of translation ovoids of Q(4, qt) and Q+(5, qt). For more re-
sults on (not necessarily translation) ovoids of finite (not necessarily orthogonal)
polar spaces see e.g. [31].

We now recall the known ovoids of Q(4, q). Let Q(4, q) : x1x5+x2x4+x2
3
= 0 and

note that an ovoid containing the point (0, 0, 0, 0, 1) may be written in the form

O(f) = {(0, 0, 0, 0, 1)} [ {(1, x, y, f(x, y),�y2 � xf(x, y)) : x, y 2 Fq}.

The only known ovoids in Q(4, q) are listed in Table 1.4. In the table n is a non-
square of Fq, q = ph, and � 6= 1 is an automorphism of Fq.

All, but last two examples of ovoids in this table, are translation ovoids of Q(4, q).
Let Q(4, qn) : x1x2 � x2

3
+ x4x5 = 0 in PG(4, qn). The correspondence between

semifield flocks and translation ovoids of Q(4, qn) was first explained by J.A. Thas
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Name f(x, y) Restrictions

Elliptic quadric �nx none
Kantor �nx� q odd, h > 1

Penttila-Williams �x9 � y81 p = 3, h = 5
Thas-Payne �nx� (n�1x)1/9 � y1/3 p = 3, h > 2

Ree-Tits slice �x2�+3 � y� p = 3, h > 1, h odd, � =
p
3q

Tits x�+1 + y� p = 2, h > 1, h odd, � =
p
2q

Table 1.4: Known ovoids of Q(4, q)

in [97], and later by G. Lunardon [71] with more details. Let f and g be two Fq-
linear maps such that

F(f, g) = {⇡t : tx1 � f(t)x2 + g(t)x3 + x4 = 0, t 2 Fqn}

is a semifield flock of K with g(t) =
P

i
bitq

i and f(t) =
P

i
citq

i . The correspond-
ing translation ovoid O(f, g) of Q(4, qn) is given by the set of points

{(u, F (u, v), v, 1, v2 � uF (u, v)) : (u, v) 2 F2

qn} [ {(0, 0, 0, 0, 1)},

with F (u, v) =
P

i
(ciu+ biv)1/q

i
.

For the proofs of the results in this section see e.g. [4],[6],[51],[65],[72],[84],[99],[100].

1.16 Spreads of PG(3, qn) and affine set of a spread

In 1965, H. Lüneburg proved that if qn = 22h+1, h � 1, then the set of absolute
lines of a polarity of W(3, qn) is a symplectic spread, now called the Lüneburg
spread of PG(3, qn) (see [78]).
Let ⌃1 be a hyperplane of PG(4, qn) and let Q+(3, qn) be a hyperbolic quadric
of ⌃1. A set A of q2n points of PG(4, qn) \ ⌃1 s.t. the line joining any two of
them is disjoint from Q+(3, qn) is called an affine set of PG(4, qn) \ ⌃1. In what
follows we will denote by ? the polarity of Q+(5, qn). In [68] and also in [75] the
following result has been proved.

Theorem 1.16.1. Let O be an ovoid of Q+(5, qn), let P be a point of O and let ⌦ be
a hyperplane of PG(5, qn) not containing P . The set AP (O) obtained by projecting O
from the point P into ⌦ is an affine set of ⌦ \ P?. Conversely, if A is an affine set of
⌦ \ P?, then the set O = {PR \Q+(5, qn) : R 2 A} is an ovoid of Q+(5, qn).
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If S is a spread of PG(3, qn) and ` is a line of S , then we will denote by A`(S) the
affine set arising from S with respect to `.
If S is a symplectic spread, then A`(S) is a set of q2n points of an affine space
PG(3, qn) \ ⇡1 such that the line joining any two of them is disjoint from a given
non-degenerate conic C of ⇡1.

1.17 The Segre variety

Let PG(l�1, q) and let PG(k�1, q) be two projective spaces over Fq. We give the
following:

Definition 1.17.1. The Segre map

�l�1,k�1 : PG(l � 1, q)⇥ PG(k � 1, q) �! PG(lk � 1, q)

is defined by:

�l,k((x1, . . . , xl), (y1, . . . , yk)) = (x1y1, . . . , x1yk, . . . , xly1, . . . , xlyk).

Im(�l�1,k�1) is the Segre variety Sl�1,k�1. If points of PG(lk � 1, q) have coordi-
nates (x11, x12, . . . , x1k, x21, . . . , x2k, . . . , xl1, . . . , xlk), then the points of the Segre
variety Sl�1k�1 are the points whose corresponding matrix (xij), i = 1, . . . , l,
j = 1, . . . , k has rank 1.

By fixing a point of PG(l�1, q) and varying the point of PG(k�1, q), we obtain a
(k�1)-dimensional subspace on Sl�1k�1. The set of these subspaces is a system of
maximal subspaces of Sl�1k�1. Similarly, by fixing a point of PG(k�1, q) we obtain
an l-dimensional subspace of Sl�1k�1, by varying the point of PG(l � 1, q). The
set of these subspaces form the other system of maximal subspaces of Sl�1k�1. Sub-
spaces of different systems intersect each other in exactly one point, subspaces
of the same system are pairwise disjoint. Moreover each subspace contained in
Sl�1k�1 is contained in an element of one of the two systems.

Proposition 1.17.2. Let ⌃ = PG(r, q) be a subgeometry of PG(r, qn). The image of the
points of ⌃, under the field reduction, is projectively equivalent to the system of (n� 1)-
dimensional subspaces of the Segre variety Sr,n�1.

Definition 1.17.3. Let Sl�1,k�1 be the Segre variety of PG(lk � 1, q), i.e. the set
of points (x11, . . . , x1k, x21, . . . , x2k, . . . , xl1, . . . , xlk) such that the matrix (xij), i =
1, . . . , l, j = 1, . . . , k has rank 1. For every r = 1, . . . ,min{l�1, k�1} the r-th secant
variety to Sl�1,k�1, denoted by ⌦r(Sl�1k�1), is the set of points of PG(lk� 1, q) s.t.
the matrix (xij) has rank r.
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Proposition 1.17.4. Let ⌃ = PG(r, q) be a subgeometry of PG(r, qn). The image of the
points on the r-dimensional subspaces spanned by r + 1 independent points of ⌃, under
the field reduction, is projectively equivalent to the set of points of the r-th secant variety
⌦r(Sr,n�1) to the Segre variety Sr,n�1.

See e.g. [49],[66],[67],[74].

1.18 Maximum rank distance codes

Let Mm,n(Fq), with m  n, be the vector space of all the m ⇥ n matrices with
entries in Fq. The distance between two matrices is the rank of their difference. An
(m ⇥ n, q, s)-rank distance code is a subset X of Mm,n(Fq) such that the minimum
distance between any two of its distinct elements is s. An Fq-linear (m ⇥ n, q, s)-
rank distance code is a subspace of Mm,n(Fq).

It is known (see e.g. [32]) that the size of an (m ⇥ n, q; s)-rank distance code X
satisfies the Singleton-like bound:

|X |  qn(m�s).

When this bound is achieved, X is called an (m ⇥ n, q, s)-maximum rank distance
code, or (m⇥ n, q, s)-MRD code, for short.

In finite geometry (m ⇥ m, q,m)-MRD codes are known as spread sets (see e.g.
[33]) and there are examples for both cases Fq-linear and non-linear.

In [32], P. Delsarte constructed linear MRD codes for all possible values of the
parameters m, n, q and s. These codes were also constructed, independently, by
E. M. Gabidulin in [43] and generalized by E. M. Gabidulin and A. Kshevetskiy
in [63]. These codes are now known as Generalized Gabidulin codes.

In the case n = m, a different construction of Delsarte’s MRD codes was given
by B. N. Cooperstein in [27]. Recently, J. Sheekey in [93] and G. Lunardon, R.
Trombetti and Y. Zhou in [77] provide some new linear MRD codes by using lin-
earized polynomials over Fqn . For more details on the relation between linear
sets and MRD codes see [71]. The first class of non-linear MRD codes have been
constructed by A. Cossidente, G. Marino and F. Pavese [28] and later general-
ized first by N. Durante and A. Siciliano in [41] and finally by G. Donati and N.
Durante in [39].

For more results on MRD codes we refer to the recent preprint [94].



Chapter 2

Cm
F -sets and �-conics in PG(2, qn)

2.1 Steiner’s construction of conics in PG(2,F)

J. Steiner (1796-1863) was a swiss mathematician. He did not learn to read and
write until he was 14 and only went to school at the age of 18, against the wishes
of his parents. He studied at the Universities of Heidelberg and Berlin, support-
ing himself with a very modest income from tutoring. He was an early contribu-
tor to Crelle’s Journal, the first journal devoted entirely to mathematics founded
in 1826. He was appointed to a chair at the University of Berlin in 1834, a posi-
tion he held until his death. He was one of the greatest contributors to projective
geometry. He discovered the Steiner surface which has a double infinity of conic
sections on it. He disliked algebra and analysis and believed that calculations
replace thinking while geometry stimulates thinking.

The usual definition of a conic uses a quadratic form. An alternative definition
of a conic uses an orthogonal polarity and it is due to K.G.C. von Staudt. The
disadvantage of von Staudt’s definition is that it only works when the underlying
field has characteristic different from 2. In 1832, J. Steiner constructed conics by
using projectivities between pencils of lines. His approach is independent of the
characteristic of the underlying field. We recall his construction. In what follows
if A is a point of PG(2,F), then we will denote by PA the pencil of lines with
center A.

Theorem 2.1.1 (J. Steiner [96]). Let R and L be two different points of PG(2,F),F
a field and let � : PR �! PL be a projectivity. The set of points of intersection of
corresponding lines under � is one of the following:

69
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• a degenerate conic, if �(RL) = RL,

• a non-degenerate conic, if �(RL) 6= RL.

Proof. Let R = (1, 0, 0) and L = (0, 0, 1), PR = {`a,b : ax2 + bx3 = 0}(a,b)2PG(1,qn)

and PL = {`0
a,b

: ax1 + bx2 = 0}(a,b)2PG(1,qn). We distinguish two cases:

1) �(RL) 6= RL.

We may suppose w.l.o.g. that:

�(`1,0) = `01,0,�(`0,1) = `00,1 and �(`1,1) = `01,1.

Hence �(`a,b) = `0
a,b

. The set � of points of intersection of corresponding lines
under � is given by the non-trivial solutions of the linear system

⇢
ax2 + bx3 = 0
ax1 + bx2 = 0.

This linear system has non-trivial solutions, in the unknowns a, b, if and only if
x1x3 � x2

2
= 0, that is the equation �.

2) �(RL) = RL.

We may assume w.l.o.g. that

�(`0,1) = `01,0 and �(`1,1) = `01,1.

Hence �(`a,b) = `0
b,a

. The set � of points of intersection of corresponding lines
under � is given by the non-trivial solutions of the linear system

⇢
ax2 + bx3 = 0
bx1 + ax2 = 0.

This linear system has non-trivial solutions in the unknowns a, b if and only if
x2(x1 � x3) = 0, that is the equation of �. ⇤

In Steiner’s construction of conics if we assume that the points R and L coincide
we get the following:

Proposition 2.1.2. Let R be a point of PG(2,F),F a field and let � : PR �! PR be a
projectivity. The set of points of intersection of corresponding lines under � is one of the
following:

• the point R, a line through R, two distinct lines through R,
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• the pencil of lines through R, PR.

Proof. Let R be a point and consider a projectivity � of PR into itself. If � is not
the identity it can have 0, 1, 2 fixed elements giving as set of points of intersection
of corresponding lines under � either just the point R, or a single line through R
or a pair of lines through R. If � = 1, then as set of points of intersection of corre-
sponding lines under � we obtain the full pointset of PG(2,F) and, as geometry,
we get the degenerate symplectic geometry of PG(2,F) having as lines the lines
of PR. ⇤

Remark 2.1.3. In this way, if F is a finite field or any algebraically closed field, then
we get all the possible conics of PG(2,F). If F is R, the field of real numbers, the
only missing conic, up to projectivities, has equation x2

1
+ x2

2
+ x2

3
= 0, that is the

conic giving as locus in PG(2,R) the empty set.

Note that, since we obtained all, but the empty conic, and also the degenerate
symplectic geometry, also the converse is true:

Proposition 2.1.4. Let � be either a non-empty conic or a degenerate symplectic geom-
etry of PG(2,F), F being a field. There are two points R and L of � and a projectivity
� : PR �! PL s.t. � is the set of points of intersection of corresponding lines under �.

In the next section we will generalize Steiner’s construction in a finite projective
plane PG(2, qn) by considering collineations instead of projectivities.

2.2 Cm
F -sets of PG(2, qn)

Let R and L be two distinct points of a projective plane PG(2, qn) over the Galois
field Fqn , q = ph, p a prime number and let PR and PL be the pencils of lines
with vertices R and L, respectively. Let � be the Frobenius automorphism of Fqn

given by � : x 2 Fqn �! xq
m 2 Fqn , with (m,n) = 1, and let � : PL �! PR be a

�-collineation. We give the following

Definition 2.2.1. A Cm

F
-set of PG(2, qn) with vertices R,L is the set of points of

intersection of corresponding lines under �, with �(RL) 6= RL.

In this section we assume throughout that �(RL) 6= RL.

Proposition 2.2.2. A Cm

F
-set with vertices R = (1, 0, 0) and L = (0, 0, 1) has canonical

equation x1x�3 � x�+1

2
= 0.
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Proof. It is PR = {`a,b : ax2 + bx3 = 0}(a,b)2PG(1,qn) and
PL = {`0

a0,b0 : a
0x1 + b0x2 = 0}(a0,b0)2PG(1,qn). We may assume w.l.o.g. that

�(`1,0) = `01,0,�(`0,1) = `00,1 and �(`1,1) = `01,1.

Hence �(`a,b) = `0
a� ,b�

. The set of points of intersection of corresponding lines
under � is given by the non-trivial solutions of the system

⇢
ax2 + bx3 = 0
a�x1 + b�x2 = 0.

This system is equivalent to the linear system in the unknowns a, b
⇢

ax2 + bx3 = 0

ax�
�1

1
+ bx�

�1

2
= 0.

It has non-trivial solutions if and only if x��1

1
x3 � x�

�1
+1

2
= 0, that is the same as

x1x�3 � x�+1

2
= 0, the canonical equation of a Cm

F
-set. ⇤

Every line through R (respectively through L) is a 2-secant line except the line
��1(RL) (respectively the line �(LR)) that is a tangent line, so every Cm

F
-set has

qn+1 points. The point of intersection of the tangent lines at R and at L, is called
the center of the Cm

F
-set.

Proposition 2.2.3. Every line of PG(2, qn) intersects a Cm

F
-set in 0, 1, 2 or q+1 points.

In the last case these points form a subline over Fq.

Proof. Exercise. ⇤

In what follows we will denote by N the norm NFqn/Fq
of elements of Fqn w.r.t.

Fq and for a 2 F⇤
q we will denote by Na = {↵ 2 Fqn : N(↵) = a}.

Proposition 2.2.4. Every Cm

F
-set of PG(2, qn) with vertices R and L is the union of

{R,L} with q � 1 pairwise disjoint subsets, each of which is a scattered Fq-linear set of
rank n.

Proof. Let C be the Cm

F
-set of PG(2, qn) given by

C = {(tqm+1, t, 1) : t 2 GF (qn)} [ {R}.

The set C \{R,L} is the union of the sets Ca = {(tqm+1, t, 1) : t 2 Na}, with a 2 F⇤
q .

All these subsets are projectively equivalent. Indeed, let a be an element of F⇤
q

and let ↵ be an element of Fqn with N(↵) = a. The projectivity induced by the di-
agonal matrix Diag(↵q

m
+1,↵, 1) maps the set C1 into the set Ca. Since (m,n) = 1,
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it follows that N1 = {xqm�1 : x 2 F⇤
qn} and hence C1 = {(xq2m , xqm , x) : x 2 F⇤

qn}.
As |C1| = |N1| = q

n�1

q�1
, we have that C1 is a scattered Fq-linear set of rank n. ⇤

Remark 2.2.5. W.l.o.g. we may assume m  n/2. Indeed if m > n/2, then from
x1x3q

m � x2q
m
+1 = 0 it follows that xq

n�m

1
x3 � x2q

n�m
+1 = 0, that is a Cn�m

F
-set.

Consider � : x 7! xq
m , (m,n) = 1 and �0 : x 7! xq

m0
, (m0, n) = 1.

Proposition 2.2.6. Let C be a Cm

F
-set and let C0 be a Cm

0
F

-set of PG(2, qn). The sets C
and C0 are P�L-equivalent if and only if m0 = m.

Proof. W.l.o.g. we may assume that C and C0 have the same vertices, say R and
L. Denote by � and �0 the collineations between PR and PL generating C and C0

respectively. We may also assume that:

��1(RL) = �0�1(RL) and �(RL) = �0(RL).

Let f be a collineation of PG(2, qn) mapping C to C0. Since R and L are the unique
points of both C and C0 through which do not pass (q + 1)-secant lines, it follows
that f stabilizes the set {R,L}. First assume that f(R) = L. For every line `
in PR we have that f(�(`)) = �0�1(f(`)). As � and �0�1 are collineations with
accompanying automorphisms x 7! xq

m and x 7! xq
n�m0

, respectively, we have
that m = n�m0, and so m = m0 = n

2
hence n = 2,m0 = m = 1.

Next suppose that f(R) = R, f(L) = L. For every line ` 2 PR we have that
f(�(`)) = �0(f(`)), hence m = m0. ⇤

Remarks 2.2.7.

1. Let f be a collineation of PG(2, qn) with accompanying automorphism x 7! xp
i

stabilizing the Cm

F
-set C with equation x1x

q
m

3
� xq

m
+1

2
= 0. From the proof of the

previous proposition we have that f fixes {L,R} and it fixes the center C. First
assume that f fixes pointwise {R,L}. There exist two elements a, b 2 F⇤

qn such
that a = bq

m
+1 and

f(x1, x2, x3) = (axp
i

1
, bxp

i

2
, xp

i

3
),

for some i, 1  i  n�1. Hence if n > 2, then the collineation group G stabilizing
C is the semidirect product of the cyclic linear collineation group H of order qn�1
whose elements are the projectivities

(x1, x2, x3) 7! (ax1, bx2, x3),

where a = bq
m
+1, with the cyclic group K of order nh generated by the collineation

(x1, x2, x3) 7! (xp
1
, xp

2
, xp

3
).
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So G = H oK and |G| = nh(qn � 1).
Next assume that f(L) = R and f(R) = L, hence n = 2. It follows that there exist
a, b 2 F⇤

q2
s.t. a = bq+1 and

f(x1, x2, x3) = (axp
i

3
, bxp

i

2
, xp

i

1
).

Let S be the subset of the following projectivities:

f(x1, x2, x3) = (ax3, bx2, x1).

The collineation group G stabilising a C1

F
-set C of PG(2, q2) is the semidirect prod-

uct of S [H with K. So in this case G = (S [H)oK. It has order 4h(q2 � 1).

2. Let C be a Cm

F
-set of PG(2, qn) with vertices R and L and centre C, generated

by a �-collineation � between PR and PL. Let T be a scattered linear set of pseu-
doregulus type of the pencil PR with transversal lines RL and LC. A compo-
nent of C is the set of points of intersection of the lines of T with corresponding
lines under �. It is easy to see that for a Cm

F
-set C of PG(2, qn) with equation

x1x
q
m

3
� xq

m
+1

2
= 0 the q � 1 components of C are the sets Ca defined in the proof

of the previous proposition. Since C is the union of its q � 1 components with
{R,L} it follows easily that every (q + 1)-secant line to C is a (q + 1)-secant line
to one of its components.

3. Consider the incidence structure (C1,L) where L is the set of (q + 1)-secant
lines to C1. Let us embed ⌦ = PG(2, qn) in ⌃0 = PG(n � 1, qn) and let ⌦0 be
an (n � 4)-dimensional subspace of ⌃0 disjoint from ⌦. Consider a subgeometry
⌃ = PG(n� 1, q) of ⌃0 disjoint from ⌦0. From Theorem 1.12.2 it follows that C1 is
obtained via the projection p⌦0,⌦ from ⌦0 into ⌦ of the set ⌃. As C1 is an Fq-linear
set contained in a set of type (0, 1, 2, q+1)1, we have that C1 is of type (0, 1, q+1)1.
Via the projection p⌦0,⌦ it follows that Veblen-Young’s axiom holds in (C1,L) since
it holds in ⌃. Hence (C1,L) is a projective geometry PG(n� 1, q) s.t. every three
non-collinear points of C1 are also non-collinear points of PG(2, qn).

4. Let C be a Cm

F
-set of PG(2, qn) with vertices R and L and center C and let G

be the projective group stabilizing C. As previously shown, G contains a cyclic
subgroup H of order qn�1. The orbit of a point P , not on the edges of the triangle
RLC, under the group H , is the unique Cm

F
-set of PG(2, qn) with vertices R and

L and center C containing P . Let T be the unique subgroup of H of order q
n�1

q�1
.

The orbit of a point P , not on the edges of the triangle RLC, under the group T ,
is isomorphic to a projective geometry PG(n� 1, q) embedded in PG(2, qn), so a
component Ci of C. The orbit of a point P on the edges of the triangle RLC, but
different from R,L and C, is again isomorphic to a projective geometry PG(n �
1, q), but this time all of its points are on the same side of the triangle as the point
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P . Hence it is an Fq-linear set of pseudoregulus type with transversal points the
two vertices of the triangle on the side containing P .

The definitions, the results and the proofs of this section have been originally
given by G. Donati and N. Durante in [34] and [38].

2.3 Degenerate Cm
F -sets in PG(2, qn)

Let PR and PL be the pencils of lines with vertices two distinct points R and L of
a projective plane PG(2, qn) over the Galois field Fqn , q = ph, p a prime number.
Let � : PR �! PL be a �m-collineation with (m,n) = 1.

Definition 2.3.1. A degenerate Cm

F
-set of PG(2, qn) with vertices R,L is the set of

points of intersection of corresponding lines under �, with �(RL) = RL.

In this section we will often denote by � the authomorphism �m and we assume
throught that �(RL) = RL.

Proposition 2.3.2. A degenerate Cm

F
-set with vertices R = (1, 0, 0) and L = (0, 1, 0)

has canonical equation x3(x1x
��1

3
� x�

2
) = 0.

Proof. It is PR = {`a,b : ax2 + bx3 = 0}(a,b)2PG(1,qn) and
PL = {`0

a,b
: ax1 + bx3 = 0}(a,b0)2PG(1,qn). We may assume w.l.o.g. that

�(`1,0) = `01,0 and �(`1,1) = `01,1.

Hence �(`a,b) = `0
a� ,b�

. The set of points of intersection of corresponding lines
under � is giving by the non-trivial solutions to the system

⇢
ax2 + bx3 = 0
a�x1 + b�x3 = 0.

This system is equivalent of the linear system in the unknowns a, b

⇢
ax2 + bx3 = 0

ax�
�1

1
+ bx�

�1

3
= 0.

It has non-trivial solutions if and only if x2x�
�1

3
� x�

�1

1
x3 = 0, that is if and only

if x3(x1x��1

3
�x�

2
) = 0, the canonical equation of a degenerate Cm

F
-set with vertices

R and L. ⇤
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Every degenerate Cm

F
-set of PG(2, qn) has 2qn + 1 points, qn + 1 of them are the

points of the line RL. We can assume, in the remaining part, that m  n/2 holds.
Indeed, if m > n/2, then from x1x

q
m

3
� x3x

q
m

2
= 0 it follows that xq

n�m

1
x3 �

xq
n�m

3
x2 = 0, that is a degenerate Cn�m

F
-set. Now let m,m0  n/2, with (m,n) =

(m0, n) = 1.

Proposition 2.3.3. Let C be a degenerate Cm

F
-set and let C0 be a degenerate Cm

0
F

-set of
PG(2, qn). The sets C and C0 are P�L-equivalent if and only if m0 = m.

Proof. Let � (resp. �0) be a �-collineation (resp. �0-collineation) defining C (resp.
C0). We may assume that both C and C0 have the same vertices R and L. Observe
that if C is a degenerate Cm

F
-set of PG(2, qn) with vertices R and L defined by

a �-collineation �, then C is also a degenerate Cn�m

F
-set with vertices L and R,

generated by the ��1-collineation ��1.
Let f be a collineation of PG(2, qn) mapping C into C0. Since R and L are the
unique points of both C and C0 not incident with (q + 1)-secant lines, it follows
that f stabilizes the set {R,L}. First assume that f(R) = L. For every line `
through the point R, we have that f(�(`)) = (�0)�1(f(`)). As � and (�0)�1

are collineations with accompanying automorphism � and �0�1, respectively, we
have that m = n�m0, and so m = m0 = n

2
. Since (m,n) = (m0, n) = 1, it follows

that n = 2,m0 = m = 1. Next suppose that f(L) = L, f(R) = R. For every line `
through R we have that f(�(`)) = �0(f(`)), hence � = �0 so m = m0. ⇤

Remark 2.3.4. Let f be a collineation of PG(2, qn) with accompanying automor-
phism x 7! xp

i stabilizing the degenerate Cm

F
-set with equation

x3(x1x
q
m�1

3
� xq

m

2
) = 0.

From the proof of previous proposition, we have that f fixes {R,L}. If f fixes
{R,L} pointwise, then there exist four elements a, b, c, d of Fqn with ac 6= 0, a =
cq

m
, b = dq

m such that

f(x1, x2, x3) = (axp
i

1
+ bxp

i

3
, cxp

i

2
+ dxp

i

3
, xp

i

3
).

Hence the collineation group stabilizing a degenerate Cm

F
-set of PG(2, qn) is the

semidirect product of the linear collineation group H of order qn(qn � 1) whose
elements are the projectivities

(x1, x2, x3) 7! (ax1 + bx3, cx2 + dx3, x3),

where ac 6= 0, a = c�, b = d� with the cyclic group K of order nh generated by
the collineation

(x1, x2, x3) 7! (xp
1
, xp

2
, xp

3
).
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Hence G = H oK and |G| = nhqn(qn � 1).
If f(L) = R and f(R) = L, then n = 2. It follows that there exist four elements
a, b, c, d 2 Fqn with ac 6= 0, c = aq, d = bq such that

f(x1, x2, x3) = (aqxp
i

2
+ bqxp

i

3
, axp

i

1
+ bxp

i

3
, xp

i

3
).

Hence in this case, let S be the set of the following projectivities:

f(x1, x2, x3) = (aqx2 + bqx3, ax1 + bx3, x3).

It follows that the collineation group stabilizing a degenerate C1

F
-set of PG(2, q2)

is the semidirect product of S [ H with K. Hence G = (S [ H) o K and so
|G| = 4hqn(qn � 1) in this case.

Proposition 2.3.5. Every line of PG(2, qn), different from the line RL, intersects a
degenerate Cm

F
-set either in 1, 2 or q + 1 points. In the last case these points form a

subline over Fq.

Proof. Exercise. ⇤

Proposition 2.3.6. Every degenerate Cm

F
-set C of PG(2, qn) with vertices R and L is

the union of the line RL with a scattered Fq-linear set S of rank n+1, such that S \RL
is an Fq-linear set of pseudoregulus type with transversal points R and L and vice versa.

Proof. Let C be a degenerate Cm

F
-set of PG(2, qn) with vertices R and L with equa-

tion x3(x1x
��1

3
� x�

2
) = 0 and let A = C \ RL. We first prove that the union

of the set A with the set of the directions of A on the line RL is a scattered
Fq-linear set of PG(2, qn) of rank n + 1. Let X = (x�, x, 1) and Y = (y�, y, 1)
be any two distinct points of A. The line XY meets the line RL in the point
((y� x)�, y� x, 0), hence the union of the set A with its directions on the line RL
is given by S = {(z�, z, a) : z 2 Fqn , a 2 Fq, (z, a) 6= (0, 0)}.
It is clear that S is an Fq-linear set. Since S has size qn+qn�1+· · ·+q+1, it follows
that it is a scattered Fq-linear set of PG(2, qn) of rank n+1. Embed ⌦ = PG(2, qn)
in ⌃0 = PG(n, qn) and let ⌦0 be an (n � 3)-dimensional subspace of ⌃0 disjoint
from ⌦. Consider a subgeometry ⌃ = PG(n, q) of ⌃0 disjoint from ⌦0. Let H
be the hyperplane of ⌃0 spanned by ⌦0 and the line RL. From Theorem 1.12.2 it
follows that S (resp. A) is obtained via the projection p⌦0,⌦ from ⌦0 into ⌦ of the
set ⌃ (resp. AG(n, q) = ⌃ \ H). As C is a set of type (1, 2, q + 1)1 we have that
A is of type (0, 1, q)1. Consider the incidence structure (A,L) where L is the set
of q-secant lines to A. Via the projection p⌦0,⌦ it follows that axioms in Theorem
1.4.6 are satisfied in (A,L) since they hold in ⌃ \H . So (A,L) is an affine geom-
etry AG(n, q). Since S \ RL = {(z�, z, 0) : z 2 F⇤

qn} it follows that S \ LR is an
Fq-linear set of pseudoregulus type with transversal points R and L.
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Vice versa, let C be the union of the line RL with a scattered Fq-linear set S of rank
n + 1, such that S \ RL is an Fq-linear set of pseudoregulus type with transver-
sal points R and L. We may assume that S \ RL = {(z�m , z, 0) : z 2 F⇤

qn} for
some m 2 {1, . . . , n � 1} with (m,n) = 1 (see [74]) and from the first part of this
proof the set S is the projection of ⌃ from ⌦0 to ⌦. Let  be the collineation of
⌃0 of order n with accompanying automorphism x 7! xq such that ⌃ = Fix( ).
As in [74], we may assume that ⌦0 = hR i

: i 6= 0,mi where L and R = L 
m

are the transversal points of S \ RL. Consider the following collineation with
accompanying automorphism x 7! xq

m

� : ` 2 PR ! h`,⌦0i m \ ⌦ 2 PL.

Since the collineation  fixes the hyperplane h⌦0, RLi, the collineation � maps
the line RL into itself. For every line ` 2 PR with ` different from RL, the hy-
perplane h`,⌦0i meets ⌃ in a unique point P that is also the unique point of ⌃
in h`�,⌦0i hence ` \ `� is the projection of P from ⌦0 to ⌦. It follows that C is a
degenerate Cm

F
-set of ⌦. ⇤

Remarks 2.3.7.

1. From the proof of the previous proposition it follows that every degenerate Cm

F
-

set of PG(2, qn) is the union of the line RL with a set A of qn points isomorphic to
an affine geometry AG(n, q) such that every three non-collinear points of A are
also non-collinear points of PG(2, qn).

2. The set S , defined in the proof of Proposition 2.3.6, is a small minimal Fq-linear
blocking set of Rédei type.

3. Let C be a degenerate Cm

F
-set of PG(2, qn) and let T be the linear collineation

group of order qn stabilizing C, whose elements are the projectivities

(x1, x2, x3) 7! (x1 + a�x3, x2 + ax3, x3) for any a 2 Fqn .

The orbit of a point P , not on the line LR, under the action of T , is an affine ge-
ometry AG(n, q) embedded in PG(2, qn). Hence it is the affine part of C.

4. Let G be the collineation group stabilizing a degenerate Cm

F
-set C of PG(2, qn)

calculated in Remark 2.3.4. Every element of G stabilizes the scattered Fq-linear
set S , contained in C, of rank n + 1 of PG(2, qn) such that S \ LR is an Fq-linear
set of pseudoregulus type and vice versa. Thus the collineation group stabilizing
S coincides with G.
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The definitions, the results and the proofs of this section have been originally
given by G. Donati and N. Durante in [35] and [38].

2.4 Characterizing � : XtAX = 0 in PG(d, qn)

Let � be a proper subset of points of PG(d,F) with equation XtAX = 0. The
matrix A cannot be a skew-symmetric matrix and � is a (possibly degenerate)
quadric and vice versa. Note that the previous holds, independently of the char-
acteristic of the field F, but in case of characteristic 2 there is no relation between
|A| and degeneracy or not of the quadric. Observe also that, not assuming A a
symmetric matrix, also for characteristic of F either odd or 0, this relation is lost
and, a bit surprisingly, also the following holds:

Proposition 2.4.1. If � : XtAX = 0 is a proper subset of points of PG(d,F), with
|A| = 0, then � is a (possibly degenerate) quadric. Vice versa, if � is a non-empty
(possibly degenerate) quadric of PG(d,F), then there exists a matrix A, with |A| = 0,
s.t. � is projectively equivalent to the set of points with equation XtAX = 0.

Proof. Exercise.

Hence in the Desarguesian projective plane PG(2, q), since all conics are non-
empty, we have the following:

Proposition 2.4.2. If � : XtAX = 0, with |A| = 0, is a set of points of PG(2, qn),
then � is either a degenerate symplectic geometry or a (possibly) degenerate conic. Vice
versa if � is either a degenerate symplectic geometry or a (possibly degenerate) conic of
PG(2, qn), then there is a matrix A with |A| = 0 s.t. � is projectively equivalent to the
set of points with equation XtAX = 0.

2.5 Cm
F -sets of PG(2, qn) and sesquilinear forms

In what follows let � : x 7! xq
m , (m,n) = 1. If � is a (possibly degenerate) Cm

F
-set

of PG(2, qn), then � has an equation of the following type XtAX� = 0. Note
also that the canonical equations of both a degenerate Cm

F
-set and a Cm

F
-set of

PG(2, qn) have |A| = 0.

In September 2018 Jozefien D’ haeseleer visited the University of Naples Federico
II for two weeks and I had to look for a research problem to share with her. My
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proposal was to try to answer to the following question.

Problem. Is it true that every set � of points of PG(2, qn) satisfying an equation
XtAX� = 0, with � 6= 1, |A| = 0 and spanning the plane PG(2, qn), is one of the
following:

• a pair of distinct lines,

• a degenerate Hermitian curve (�2 = 1),

• a (possibly degenerate) Cm

F
-set.

At a first look, my proposal seemed (also to me) impossible to be true. We started
to look at all possible cases, a bit a la J.W.P. Hirschfeld w.r.t. conics, and we could
see that, surprisingly, the answer was affermative in a lot of cases. Nevertheless
we left a pair of “more difficult” open cases that did not enable us to answer af-
fermatively to the previous question. Since then, specially preparing these notes,
I decided, at a certain point, to give up with those difficult calculations (follow-
ing J. Steiner’s suggestion) and to try to see the problem from a different point of
view. It was at this stage that degenerate, non-reflexive sesquilinear forms came
in.

In this section we will see that there is a connection between (possibly degen-
erate) Cm

F
-sets and degenerate, non-reflexive sesquilinear forms. As we have

seen in the first chapter (degenerate or not) reflexive sesquilinear forms are clas-
sified and make rise to well studied classical objects in projective spaces. Actu-
ally, the knowledge of non-degenerate, reflexive, sesquilinear forms and hence
non-degenerate quadrics, Hermitian varieties, symplectic geometries is enough
to classify also the degenerate ones. Regarding non-degenerate, non-reflexive
sesquilinear forms of F3

qn they, and their related sets of absolute points in PG(2, qn),
have been classified in ten different papers by B. Kestenband from 1990 to 2014.
We will recall some of B. Kestenband’s result in the next section. Up to our
knowledge nothing is known on degenerate, non-reflexive sesquilinear forms
of V = Fd+1

qn . We will see that degenerate and non-degenerate ones are not re-
lated to each other, opposite to the reflexive case, and the knowledge of one class
does not imply the knowledge of the other class. In this section we will focus on
degenerate, non-reflexive sesquilinear forms.
Remark 2.5.1. Let h , i be a non-reflexive �-sesquilinear form of V = Fd+1

qn . The set
� of its absolute points is the set of points X 2 PG(d, qn) such that X 2 X? (or
equivalently X 2 X

?

). Let u, v 2 V with coordinates X and Y , respectively. If
hu, vi = XtAY �, then � : XtAX� = 0.
Throughout we can assume � 6= 1, since we have seen that if � = 1, then � :
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XtAX = 0 is either a (possibly degenerate) quadric or � is the full point set of
PG(d, qn) and the geometry determined in a (possibly degenerate) symplectic
geometry.

Definition 2.5.2. A �-quadric of PG(d, qn) is the set of the absolute points of a
�-sesquilinear form, � 6= 1, of Fd+1

qn . A �-quadric of PG(2, qn) will be called a
�-conic.

Remark 2.5.3. Let n = 2, m = 1 so that we are in PG(d, q2) and � : x 7! xq.
Let � : XtAX� = 0 be the set of absolute points of a (degenerate) reflexive �-
sesquilinear form. In this case the set � is a (degenerate) Hermitian variety of
PG(d, q2). We have included (degenerate) Hermitian varieties in our definition
in order to have no exceptions everywhere. Indeed, we will see that (degener-
ate) Hermitian varieties appear as intersection of �-quadrics of PG(d, q2) with
subspaces.

We can now start with the study of �-quadrics. First we determine the set � in
PG(1, qn). In the proof of the next proposition it is V = F2

qn .

Proposition 2.5.4. Let � be a �-quadric of PG(1, qn). Then it is one the following:

• the empty set, a point, two points,

• an Fq-subline.

Proof. Let � : XtAX� = 0. We divide two cases:

Case 1. |A| = 0.
In this case rank(A) = 1. Hence we have that dim V ? = dim V

?

= 1. First
assume that V ? 6= V

?

. We may assume, w.l.o.g., that V ? is the point L = (0, 1)
and V

?

is the point R = (1, 0) in PG(1, qn). This gives � : x1x2� = 0, hence
� = {L,R}. Next V ? = V

?

and we may assume that it is the point R = (1, 0) in
PG(1, qn). Hence � : x2�+1 = 0 so that � = {R}.

Case 2. |A| 6= 0.
In this case � : ax1�+1 + bx1x2� + cx2x1� + dx2�+1 = 0. If � 6= ; we may assume
that |�| > 2 and hence that (1, 0), (0, 1), (1, 1) 2 � giving a = d = 0, c = �b
and hence � : x1x2(x1��1 � x2��1) = 0. This implies that � = PG(1, q). Finally,
assume � = ;. Hence certainly ad 6= 0 in the equation of �. Put b = c = 0, a = 1,
it follows that � : x1�+1 + dx2�+1 = 0. We distinguish several cases.

• If q is odd, then let �d be a non-square in Fqn . It follows that � has no points
in PG(1, qn) since x�+1 = �d has no solutions in Fqn .
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• If q is even and n is even, then let r = (qn � 1, qm + 1) and let d be an
element of Fqn such that d

qn�1
r 6= 1. Again � has no points in PG(1, qn)

since x�+1 = d has no solutions in Fqn .

• if q is even and n is odd, then let a = 1, c = 0, so that the equation of �
becomes x1�+1 + bx1x2� + dx2�+1 = 0. There exist values of b and d such
that � has no points in PG(1, qn), since there exist values of b and d such
that x�+1 + bx+ d = 0 has no solutions in Fqn . (See e.g. [9],[48]).

⇤

Remarks 2.5.5.

1. Observe that in case n = 2 and �2 = 1, then a �-quadric of PG(1, q2) is a Baer
subline PG(1, q) and also a Hermitian variety H(1, q).

2. Observe that if h , i is non-degenerate sesquilinear form of F2
qn , then there are

two induced maps

?: Y 2 PG(1, qn) 7! YtAX
� = 0 2 PG(1, qn)

and ?
: Y 2 PG(1, qn) 7! XtAY

� = 0 2 PG(1, qn).

Both are collineations of PG(1, qn). The set � coincides with the set of fixed points
of both ? and

?

.

3. From the last theorem it follows that the number of solutions in Fqn of equations
of the following type:

ax�+1 + bx� + cx+ d = 0

is: 0, 1, 2, q + 1.

Before studying �-quadrics in PG(2, qn) we determine the possible intersection
configurations of a subspace of PG(d, qn) and a �-quadric.

Proposition 2.5.6. Let � be a �-quadric of PG(d, qn). Every subspace S of PG(d, qn)
intersects � either a �-quadric of S or it is contained in �.

Proof. Let � : XtAX� = 0 be a �-quadric of PG(d, qn) and let S be a subspace of
PG(d, qn) of dimension h, 0  h  d � 1. By choosing an appropriate frame of
PG(d, qn) we can always assume that S : xh+2 = · · · = xd+1 = 0. Let A0 be the
submatrix of A obtained by deleting the last d � h rows and columns; if A0 6= 0,
then S \ � is a �-quadric of S, otherwise S ⇢ �. ⇤
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Proposition 2.5.7. Let � : XtAX� = 0, |A| = 0, be a �-conic of PG(2, qn) with an
associated degenerate �-sesquilinear form. Then � is one of the following:

• a cone with vertex a point R projecting a �-quadric on a line not on R (hence either
the point R or a line, or two lines, or q + 1 lines through R),

• a (possibly degenerate) Cm

F
-set.

Proof. Since h , i is degenerate, we have that |A| = 0. We divide several cases.

• First assume rk(A) = 2 and V ? 6= V

?

.
In this case V ? and V

?

are one-dimensional subspaces of V , so points
of PG(2, qn). Since V ? 6= V

?

we may assume w.l.o.g. that the point
R = (1, 0, 0) is the right radical and the point L = (0, 0, 1) is the left radical.
It follows that

A =

0

@
0 a b
0 c d
0 0 0

1

A

and
� : XtAX

� = (ax1 + cx2)x
�

2 + (bx1 + dx2)x
�

3 = 0.

The sesquilinear form induces two degenerate correlations in PG(2, qn) given
by:

?: Y 2 PG(2, qn) \ L 7! YtAX
� = 0 2 PG(2, qn)⇤

and ?

: Y 2 PG(2, qn) \R 7! XtAY
� = 0 2 PG(2, qn)⇤.

The second map

?

sends points into lines through the point L and points
collinear with R are mapped into the same line through L. Hence, it induces
a collineation � between the pencil of lines through R

PR = {`↵,� : (↵,�) 2 PG(1, qn)}, where

`↵,� :

8
<

:

x1 = �
x2 = µ↵
x3 = µ�

, (�, µ) 2 PG(1, qn)

and the pencil of lines through L

PR = {`0
↵0,�0 : (↵0,�0) 2 PG(1, qn)}, where `0

↵0,�0 : ↵0x1 + �0x2 = 0
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given by �(`↵,�) = `0
↵0,�0 , where

(↵0,�0)t = A0(↵,�)�t

and A0 is the matrix

A0 =

✓
a b
c d

◆
.

Note that |A0| 6= 0 since rank(A) = 2. Of course � is the set of points of
intersection of corresponding lines under the collineation � and hence it
is either a degenerate Cm

F
-set or a Cm

F
-set according to �(RL) = RL or

�(RL) 6= RL.

• Next we assume rank(A) = 2 and V ? = V

?

.
In this case we may assume w.l.o.g. that R = L = (1, 0, 0) is both the left
and right radical of h , i. For the set � : XtAX� = 0 we have

A =

0

@
0 0 0
0 a b
0 c d

1

A

so
� : (ax2 + bx3)x

�

2 + (cx2 + dx3)x
�

3 = 0.

Note that in this case the degenerate collineation

?

induces a collineation
� of PR and again � is the set of points of intersection of corresponding
lines under �. It follows that � is the set of points of a cone with vertex R
over either the empty set, or a point, or two points, or q + 1 points of an
Fq-subline of a line not through the point R.

• Finally, rank(A) = 1.
In this case dim V ? = dim V

?

= 2, so in PG(2, qn) the left and right radical
are given by two lines ` and r. First assume ` 6= r, so we may put ` : x1 = 0,
r : x3 = 0, then � : x1x�3 = 0, that is the union of the two lines r and
`. Finally, assume that ` = r, e.g. ` = r : x3 = 0, then � has equation
x3�+1 = 0, hence it is the line `.

⇤
Remarks 2.5.8.

1. Note that we can now answer to the question posed in the previous Problem.
Beside (possibly degenerate) Cm

F
-sets, a pair of distinct lines and a degenerate

Hermitian curve (if n is even and �2 = 1), there is a unique another possible set
of points of PG(2, qn) with equation XtAX� = 0, � 6= 1, generating the plane and
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it is a cone with vertex a point V projecting an Fq-subline on a line not through V
(that is a degenerate Hermitian curve if n is even and �2 = 1).

2. With the previous proposition we have also completely determined the possible
sets of absolute points of PG(2, qn) of a degenerate, non-reflexive sesquilinear
form of F3

qn .

3. Observe that we have said nothing on absolute points of a non-degenerate,
non-reflexive �-sesquilinear form of F3

qn . See last section of this chapter.

4. We observe that conics of PG(2, q) can be obtained also from degenerate non-
reflexive bilinear forms exactly in the same way we obtained �-conics. If q is
even, we can obtain a non-degenerate conic in two ways:

• as set of absolute points of a degenerate, non-reflexive bilinear form (this is
equivalent to the Steiner’s construction with �(RL) 6= RL),

• as the affine part, plus the point L, of the set of absolute points of a degener-
ate �-sesquilinear form, with � : x 7! x2 (i.e. the affine part, plus the point
L, of a degenerate C1

F
-set of PG(2, 2n)).

2.6 Exercises

In this and in the following sections we will determine some of the possible
applications for a (degenerate) Cm

F
-sets of PG(2, qn). In what follows let C0 :

4x1x2 � x2
3
= 0 be a conic of PG(2, qn).

1. Give a proof of Proposition 2.2.3.

2. Give a proof of Proposition 2.3.5.

3. Prove that the union of the affine part of a degenerate Cm

F
-set of PG(2, 2n)

with its vertices is either a regular hyperoval or a translation hyperoval
according to m = 1 or (m,n) = 1,m > 1.

4. Prove that the internal points to the conic C0 of PG(2, qn), q odd, correspond-
ing to the Kantor-Knuth flock form a maximum scattered linear set of a line
` secant to C0 with ` \ C0 as trasversal points.

5. Determine a Cm

F
-set � of PG(2, 3n) such that both components of � give a

set of internal points to the conic C0 of PG(2, 3n) corresponding to a Ganley
flock.
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6. Does there exist a Cm

F
-set of PG(2, 35) such that one of its components is

projectively equivalent to the set of internal points to the conic C0 corre-
sponding to the sporadic flock? If such a Cm

F
-set exists, is it true that also in

this case both components correspond to the sporadic flock?

7. Give a simple proof that the Ganley flock and the sporadic flock are not
isomorphic.

Open Problem: Let F be a semifield flock of a quadratic cone of PG(3, qn), q odd and
let I(F) be its corresponding set of internal points to the conic C0 of PG(2, qn). Is it true
that if I(F) spans PG(2, qn), then I(F) is a component of a Cm

F
-set?

2.7 Intersection of two scattered Fq-linear sets of rank n+1
in PG(2, qn)

In this section we study the possible intersection configurations of a degenerate
Cm

F
-set, say C, with a degenerate Cm

0
F

-set, say C0, both of PG(2, qn) without the
restriction (n,m) = (n,m0) = 1 and with m � m0. We assume that both C and
C0 have the same vertices R and L. In the meantime we also study the possible
intersection configurations of two scattered Fq-linear sets of rank n+ 1 such that
both meet RL in an Fq-linear set of pseudoregulus type with transversal points
R and L.

Proposition 2.7.1. Let C be a degenerate Cm

F
-set of PG(2, qn) defined by the collineation

� and let C0 be a degenerate Cm
0

F
-set of PG(2, qn) defined by the collineation �0. If both

C and C0 have the same vertices R and L and C 6= C0, then C \ C0 \ RL is one of the
following:

i) the empty set;

ii) one point;

iii) a degenerate Cn�m+m
0

F
-set of a subgeometry PG(2, qt) of PG(2, qn) minus the

line RL, where t = (n, n�m+m0), m 6= m0.

Proof. If P is a point of C \ C0 \ RL, then (RP )� = (RP )�
0 hence the points of

C \C0 \RL are in one-to-one correspondence with the lines of PR \ {RL} fixed by
the collineation ��1 � �0 with accompanying automorphism ⌧ : x 7! xq

n�m+m0
.

The set of fixed lines of ��1 � �0, different from RL, is one of the following: the
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empty set, a line, a subpencil of PR coordinatized over the subfield Fix(⌧) =
GF(qt), where t = (n, n � m + m0). In this last case, by considering � and �0

restricted to the subpencil Fix(��1 � �0), we have that C \ C0 is a degenerate
Cn�m+m

0

F
-set of a subgeometry PG(2, qt) of PG(2, qn). Observe that if m = m0,

then ⌧ is the identity, ��1 � �0 is a projectivity and so case iii) cannot occur. ⇤

Next we study the intersections of two scattered Fq-linear sets. We note that the
intersection problem for two Fq-linear sets generalizes the intersection problem
for two subgeometries. Very little is known on the intersection of two Fq-linear
sets (see [66], [85]) while the intersection problem for two subgeometries was
completely solved in [37].

Proposition 2.7.2. Let S and S 0 be two scattered Fq-linear sets of rank n+1 of PG(2, qn)
such that both meet the line RL in an Fq-linear set of pseudoregulus type with transversal
points R and L. If S 6= S 0, then S \ S 0 is one of the following:

• the empty set;

• one point;

• a degenerate Cn�m+m
0

F
-set of a subgeometry PG(2, qt) of PG(2, qn) minus the

line RL, where t = (n, n�m+m0), m 6= m0;

• the Fq-linear set of pseudoregulus type S \RL with transversal points R and L;

• the union of a point with the set S \RL;

• the union of a degenerate Cn�m+m
0

F
-set of a subgeometry PG(2, qt) of PG(2, qn)

minus the line RL, where t = (n, n�m+m0), m 6= m0 with the set S \RL.

Proof. Exercise (Hint: use the previous proposition). ⇤

2.8 Cm
F -sets and non-linear MRD-codes

MRD-codes have been another application of Cm

F
-sets of PG(2, qn). The first class

of non-linear MRD-codes, different from spread sets, have been constructed by
A. Cossidente, G. Marino and F. Pavese in [28]. They use C1

F
-sets of PG(2, q3) in

order to construct non-linear (3⇥ 3, q, 1)-MRD codes

Starting with a C1

F
-set C of PG(2, q3) in [28], they construct a set E of q3+1 points

that is an exterior set to the component C1 of C. By using field reduction from
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PG(2, q3) to PG(8, q) = PG(M3,3(q)), there corresponds to C1 ⇠= PG(2, q) the
Segre variety S1,1, that is the matrices with rank 1 and there corresponds to E an
exterior set to the Segre variety S1,1 of PG(8, q) and hence a set of q6 matrices s.t.
the difference between any two has rank at least two, i.e. a (3⇥3, q, 2)-MRD code.
In this section, it is shown that, starting from a Cm

F
-set of PG(2, qn), infinite fami-

lies of non-linear (3⇥ n, q, 2)-MRD codes can be constructed.
Let R = (1, 0, 0) and L = (0, 0, 1) be two points of PG(2, qn) with n � 3 and let C
be the Cm

F
-set with vertices R and L given by

C = {Pt = (tq
m
+1, t, 1) : t 2 Fqn} [ {R}.

It follows that

C =
[

a2F⇤
q

⇡a [ {R,L},

with ⇡a = {Pt : t 2 Na} and Na = {x 2 Fqn : N(x) = a}. For every a 2 F⇤
q ,

consider the partition of the points of the line RL, different from R and L, into
subsets Ja = {(�t, 0, 1) : t 2 Na} and let ⇡0

1
⇠= PG(2, q) be a subgeometry of ⇡1.

Theorem 2.8.1. For every subset T of F⇤
q containing 1, the set

X = (C \
S

a2T⇡a) [
S

a2TJa

is an exterior set with respect to ⇡0
1
.

Proof. The lines RP and LP , with P 2 C \ (
S

a2T⇡a [ {R,L}), meeting C exactly
in two points, are external lines w.r.t. ⇡0

1
.

Similarly, for every P 2 ⇡b and P 0 2 ⇡b0 with b, b0 2 F⇤
q \ T the line PP 0 is external

to ⇡0
1
.

Finally, for every point P 2 ⇡b with b 2 F⇤
q \ T and P 0 2 Ja with a 2 T , the line

PP 0 is external to ⇡0
1
.

Indeed suppose, by way of contradiction, that the line PP 0 meets ⇡0
1

in a point S
with coordinates (xq2m , xqm , x). Let P = (↵q

m
+1,↵, 1) with N(↵) = b and let P 0 =

(�t, 0, 1) with N(t) = a. By calculating the determinant of the matrix M whose
rows are the coordinates of the points S, P, P 0, we have that |M | = �tM1+↵M q

m

1
,

where M1 is the cofactor of the element m3,1 of M . Since S, P are distinct points,
so M1 6= 0, hence |M | = 0 if and only if t = ↵M q

m�1

1
, that is a contradiction since

N(↵) = b while N(t) = a with a 6= b. ⇤

From the previous theorem we have the following result.

Corollary 2.8.2. For all n � 3, q > 2, the vectors ⇢v 2 M3,n(q), ⇢ 2 F⇤
q , whose

corresponding points are in X , plus the zero vector, give a (3⇥ n, q, 2) non-linear MRD
code.
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Remark 2.8.3. These codes have been generalized, first in the case of square ma-
trices, by using bilinear forms and the cyclic representation of PG(n � 1, qn) by
N. Durante and A. Siciliano [41] to non-linear (n ⇥ n, q, n � 1) MRD codes and
later by G. Donati and N. Durante with �-normal rational curves, a generaliza-
tion of normal rational curves in PG(d, qn) [39] to non-linear ((d + 1) ⇥ n, q, d)
MRD codes, where d  n� 1.

2.9 Kestenband �-conics of PG(2, qn)

Regarding absolute points in PG(2, qn) of a non-degenerate, non-reflexive �-
sequilinear form, � 6= 1, of F3

qn we mention here that these sets have been com-
pletely determined by the huge work of B.C. Kestenband. There are lots of
different classes of such sets. Actually B.C. Kestenband has classified the non-
degenerate correlations of finite Desarguesian planes in general. The interested
reader can find all of them in 11 different papers by B.C. Kestenband from 1990
to 2014 covering 400 pages of mathematics.
(See [52], [53], [54], [55], [56], [57], [58], [59], [60], [61], [62]).
In what follows we will use the following definition.

Definition 2.9.1. A Kestenband �-conic is the set of absolute points of a non-degenerate,
non-reflexive �-sesquilinear form, � 6= 1, of F3

qn .

Remark 2.9.2. Let � be a Kestenband �-conic of PG(2, qn). The associated form is
a non-degenerate sesquilinear form h , i, hence � cannot contain lines. It follows
that � has equation XtAX� = 0, for some non-singular matrix A. Hence |�\ `| 2
{0, 1, 2, q+1}, for every line `. The sesquilinear form has both left and right radical
equal to {0}, hence it cannot be obtained by considering a collineation between
pencils of lines in PG(2, qn), opposite to all the previously studied degenerate or
not �-conics.

Let � be a Kestenband �-conic of PG(2, q2n+1), then it is:

• |�| 2 {q2n+1 + aqn+1 + 1}, where a 2 {�1, 0, 1}.

Let � be a Kestenband �-conic of PG(2, q2n), then it is:

• If n is odd, then |�| 2 {q2n � qn+1 + 1, q2n + qn + 1, q2n + 1}.

• If n is even, then |�| 2 {q2n + qn+1 + 1, q2n � qn + 1, q2n + 1}.
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A remarkable example of Kestenband �-conic is given by the set � of points of
PG(2, qn) satisfying the following equation:

x�+1

1
+ x�+1

2
+ x�+1

3
= 0

It has qn+1 points and it intersects the subplane PG(2, q) in the conic with equa-
tion:

x21 + x22 + x23 = 0.

If n is even, then � intersects also the subplane PG(2, q2) in the non-degenerate
Hermitian curve with equation

xq+1

1
+ xq+1

2
+ xq+1

3
= 0.

.



Chapter 3

�-quadrics of PG(3, qn)

3.1 Seydewitz’s and Steiner’s constructions of quadrics in
PG(3,F)

In this section we recall the constructions of F. Seydewitz and J. Steiner of quadrics
of PG(3,F), F a field. We start with F. Seydewitz’s construction. In what follows
if P is a point of PG(3,F) we will denote with SP the star of lines with center P
and with S⇤

P
the star of planes with center P .

Theorem 3.1.1 (F. Seydewitz [92]). Let R and L be two distinct points of PG(3,F) and
let � : SR �! S⇤

L
be a projectivity. The set � of points of intersection of corresponding

elements under � is one of the following:

• If �(RL) is a plane through the line RL, then � is either a quadratic cone or a
hyperbolic quadric Q+(3,F),

• If�(RL) is a plane not through the line RL, then � is a non-empty, non-degenerate
quadric i.e. either an elliptic quadric Q�(3,F) or an hyperbolic quadric Q+(3,F).

Proof. Exercise.

Next consider J. Steiner’s construction. In what follows if s is a line of PG(3,F)
we will denote by Ps the pencil of planes through s.

Theorem 3.1.2 (J. Steiner [96]). Let r and ` be two skew lines of PG(3,F). Let � :
Pr �! P` be a projectivity. The set of points of intersection of corresponding planes
under � is a hyperbolic quadric Q+(3,F) of PG(3,F).

91
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Proof. Exercise.

Proposition 3.1.3. In PG(2,F) the set of absolute points of a linear correlation satisfies
an equation XtAX = 0, for some matrix A. Therefore it is one of the followings:

• the empty set (e.g. F = R)

• a point, a line, two lines,

• a non-degenerate conic,

• a degenerate symplectic geometry PR, for some point R.

Proof. It follows immediately from Proposition 2.19. ⇤.

In F. Seydewitz’s construction if we assume the points R and L coincide, then we
get the following:

Proposition 3.1.4. Let R be a point of PG(3,F). Let � : SR �! S⇤
R

be a projectiv-
ity. The set � of points of intersection of corresponding elements under � is one of the
following:

• the point R (e.g. F = R),

• a line through R, a plane through R, two distinct planes through R,

• a quadratic cone.

• a degenerate symplectic geometry Pr, for some line r thorugh R.

Proof. The set of points of intersection of corresponding elements under � is a
cone with vertex the point R projecting the set of absolute points of a linear cor-
relation in a plane ⇡ not through the point R. Hence the assertion follows from
previous proposition. ⇤

In J. Steiner’s construction if the lines r and ` either intersect in a point V or
coincide, then we get the following:

Proposition 3.1.5. Let r and ` be two lines s.t. r \ ` = {V }. Let � : Pr �! P` be a
projectivity. The set of points of intersection of corresponding planes under � is one of
the following:

• a pair of distinct planes,



Part II. Chapter 3. �-quadrics of PG(3, qn) 93

• a quadratic cone,

Proposition 3.1.6. Let � : Pr �! Pr be a projectivity. The set of points of intersection
of corresponding planes under � is one of the following:

• the line r,

• a plane, a pair of distinct planes,

• the degenerate symplectic geometry Pr.

Remark 3.1.7. With Seydewitz’s construction in PG(3,F) we get all possible quadrics
of PG(3,F) and a degenerate symplectic geometry Pr, for some line r, if F is any
algebraically closed field or a finite field If F = R is the field of real numbers,
then the only missing quadric, up to projectivities, is the quadric with equation
x2
1
+ x2

2
+ x2

3
+ x2

4
= 0, that gives as set of points in PG(3,F), the empty set. With

Steiner’s construcion in PG(3,F) we miss also the elliptic quadric.

Note that also the converse holds:

Proposition 3.1.8. Let � be either a, non-empty, quadric or a degenerate symplectic
geometry of PG(3,F), F being a field. There exists two point R and L of � and a projec-
tivity � : SR �! S⇤

L
s.t. � is the set of points of intersection of corresponding elements

under �.

3.2 Non-degenerate �-quadrics in PG(d, qn)

For the remaining part of this chapter we can assume � 6= 1. Let V = Fd+1

qn , let h, i
be a degenerate �-sesquilinear form with associated (degenerate) correlations ?,?

and let � : XtAX� = 0 be the set of absolute points w.r.t h, i, hence a �-quadric.
We will denote by L = V ? and R = V

?

, the left and right radicals, respectively,
seen as subspaces of PG(d, qn). Before giving the definition of a �-quadric, we
prove the following:

Proposition 3.2.1. Let � : XtAX� = 0 be a �-quadric of PG(d, qn) and let L = V ?.
For every point Y 2 L, the set Y

?

\ � is union of lines through Y .

Proof. Let Y be a point of L, then YtA = 0. Consider the intersection of the set
Y

?

: XtAY � = 0 with �. Let Z be a point of Y

?

, the line Y Z has equations:
X = �Y + µZ, (�, µ) 2 PG(1, qn), hence Y

?

: XtAY � = 0 is determined by the
solutions in (�, µ) of the following equation:

YtAY
���+1 + YtAZ

��µ� + ZtAY
���µ+ ZtAZ

�µ�+1 = 0. (3.1)
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In the previous equation it is YtAY � = 0, since Y 2 �, ZtAY � = 0, since Z 2 Y

?

,
YtAZ� = 0, since Y 2 L. Hence the Equation 3.1 becomes ZtAZ�µ�+1 = 0, it
follows that the solutions in (�, µ) of the Equation 3.1 can be either all the possi-
ble (�, µ) 2 PG(1, qn), if Z 2 �, and in this case the line Y Z is contained in � or
µ = 0, that is (�, 0), � 2 Fqn and in this case the line Y Z intersects � exactly in the
point Y . ⇤

Inspired by the characterization of non-degenerate quadrics, non-degenerate sym-
plectic polar spaces and non-degenerate Hermitian varieties of PG(d, qn) (see
Proposition 1.7.6), we give the following definitions:

Definition 3.2.2. We define a non-degenerate �-quadric of PG(d, qn) by induction
on the dimension d of the projective space. Let � be a �-quadric of PG(d, qn),
denote by L and R the left and right radicals of the associated sesquilinear form.

i) � is a non-degenerate �-quadric of PG(1, qn) if |�| 2 {0, 2, q + 1}.

ii) � is a non-degenerate �-conic of PG(2, qn), if it satisfies the following properties:

• L \R = ;,

• the tangent line L

?

to � intersects � exactly at the point L.

iii) � is non-degenerate �-quadric of PG(d, qn), d � 3, if it satisfies the following
properties:

• L \R = ;,

• 8 Y 2 L, the set Y

?

\ � is a cone �(Y,Q), where Q is a non-degenerate
�-quadric in a subspace S, of dimension d� 2, not through Y .

Remark 3.2.3. Because of the previous definition we can divide �-conics in two
families:

• the degenerate �-conics: a cone with vertex a point V projecting either the
empty set or a point or two points or q+1 points on a line ` not through the
point V , and also the degenerate Cm

F
-sets,

• the non-degenerate �-conics: the Kestenband �-conics and the Cm

F
-sets.

In the remaining part of this chapter we will determine the canonical equations
and some properties for the �-quadrics of PG(3, qn) whose associated non-reflexive



Part II. Chapter 3. �-quadrics of PG(3, qn) 95

sesquilinear form of F4
qn is degenerate; hence if � denotes such a �-quadric it will

have equation XtAX� = 0 with A a singular matrix. We consider three separate
cases according to rank(A) 2 {1, 2, 3}.

3.3 �-quadrics of rank 3 in PG(3, qn)

Let � : XtAX� = 0 be a �-quadric of PG(3, qn). In this section we assume
throughout that rank(A) = 3. Therefore the radicals V ? and V

?

are one-dimensional
vector subspace spaces of V , so they are points of PG(3, qn). We distinguish sev-
eral cases:

1) V ? 6= V

?

.
We may assume w.l.o.g. that the point R = (1, 0, 0, 0) is the right radical and the
point L = (0, 0, 0, 1) is the left radical. It follows that

A =

0

BB@

0 a12 a13 a14
0 a22 a23 a24
0 a32 a33 a34
0 0 0 0

1

CCA

and

� : (a12x1+a22x2+a32x3)x
�

2+(a13x1+a23x2+a33x3)x
�

3+(a14x1+a24x2+a34x3)x
�

4 = 0.

The sesquilinear form induces a degenerate collineation

?

: Y 2 PG(3, qn) \R 7! XtAY
� = 0 2 PG(3, qn)⇤

that maps points into planes through the point L. Points that are on a common
line through R are mapped into the same plane through L. Therefore

?

induces
a collineation � : SR �! S⇤

L
. Let

SR = {`↵,�,� : (↵,�, �) 2 PG(2, qn)},where

`↵,�,� :

8
>><

>>:

x1 = �
x2 = µ↵
x3 = µ�
x4 = µ�

, (�, µ) 2 PG(1, qn)

and

S⇤
L = {⇡↵0,�0,�0 : (↵0,�0, �0) 2 PG(2, qn)},where ⇡↵0,�0,�0 : ↵0x1 + �0x2 + �0x3 = 0.
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The collineation � is given by �(`↵,�,�) = ⇡↵0,�0,�0 , with

(↵0,�0, �0)t = A0(↵,�, �)�t ,

where A0 is the matrix obtained by A by deleting the last row and the first column.
Note that |A0| 6= 0 since rank(A) = 3. It is easy to see that � is the set of points of
intersection of corresponding elements under the collineation �.
Let Y = (y1, y2, y3, y4) be a point of � \ {R}, then the tangent plane ⇡Y to � at the
point Y is the plane ⇡Y = Y

?

with equation XtAY � = 0. It follows that, for every
point Y of � \ {R} the plane ⇡Y contains the point L = (0, 0, 0, 1). The tangent
plane ⇡L = L

?

to � at the point L is the plane with equation XtAL� = 0, that is:

⇡L : a14x1 + a24x2 + a34x3 = 0.

We again distinguish some cases.

• First assume that ⇡L contains the line RL.
It follows that, w.l.o.g., we may put ⇡L : x3 = 0. Then a14 = a24 = 0 and we
can put a34 = 1 obtaining

� : (a12x1 + a22x2 + a32x3)x
�

2 + (a13x1 + a23x2 + a33x3)x
�

3 + x3x
�

4 = 0.

With this assumption, the collineation � maps the line LR into the plane
⇡L. Consider now the pencil PR,⇡L of lines through R in ⇡L. We distinguish
two cases.

i) � maps the lines of PR,⇡L into the planes through the line RL.
In this case, we can assume that � maps the line x3 = x4 = 0 into the plane
x2 = 0 and the line x2 = x4 = 0 into the plane x1 = 0 obtaining

� : ax1x
�

3 + bx�+1

2
+ x3x

�

4 = 0.

We can assume that � contains the points (0, 1,�1, 1) and (1, 0, 1 � 1) ob-
taining a = b = 1 and hence a canonical equation in this case is given by

� : x1x
�

3 + x�+1

2
+ x3x

�

4 = 0.

Note that in this case � is the set of points studied in [40], where � has been
called a �-cone. In this paper we call this set a degenerate parabolic �-quadric
with collinear vertex points R and L.
In [40] it has been proved that the following holds:

Theorem 3.3.1. Let � be a degenerate parabolic �-quadric � of PG(3, qn) with
collinear vertex points R and L. Then |�| = q2n + qn + 1, RL is the unique line
contained in � and ⇡L is the unique plane that meets � exactly in RL.
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ii) � does not map the lines of PR,⇡L into the planes through the line RL.
In this case, there exists a plane ⇡ containing RL such that the lines of the
pencil PR,⇡ are mapped, under � into the planes through RL. Hence there
is a unique line through R (beside RL) contained in �. In this case we may
assume that � maps the line x3 = x4 = 0 into the plane x1 = 0 and the line
x2 = x4 = 0 into the plane x2 = 0. Hence:

� : ax1x
�

2 + bx2x
�

3 + x3x
�

4 = 0.

Assuming that � contains the points (0, 1, 1,�1) and (1, 1,�1, 0) we get a =
b = 1 and hence a canonical equation in this case is given by

� : x1x
�

2 + x2x
�

3 + x3x
�

4 = 0.

We will call this set a hyperbolic �-quadric with collinear vertex points R and
L.

Theorem 3.3.2. Let � be a hyperbolic �-quadric of PG(3, qn) with collinear vertex
points R and L. Then |�| = (qn + 1)2 and � contains exactly three lines: the line
RL, a unique other line through R and a unique other line through L.

• ⇡L does not contain the lines RL (or equivalently that � does not map the
line RL into a plane through the line RL).
W.l.o.g. we may put ⇡L : x1 = 0. In this case there is a plane through R
(not containing L), say ⇡R, such that the pencil of lines through R in ⇡R is
mapped, under �, into the pencil of planes through RL. We may assume
that ⇡R : x4 = 0. Hence � maps the lines `↵,�,0 into the planes ⇡0,�0,�0 so
we may assume that � maps the line `1,0,0 into the plane ⇡0,1,0 and the line
`0,1,0 into the plane ⇡0,0,1. Hence the points of � satisfy the equation

ax�+1

2
� bx�+1

3
+ x1x

�

4 = 0.

Assuming, w.l.o.g., that the point (1, 1, 0,�1) belongs to � we obtain a = 1.
The number of lines through R contained in � depends on the number of
solutions of the equation x�+1 = b and hence it is either 0, 1, 2 or q + 1
depending upon q even or odd and n even or odd. We distinguish several
case:

– If q is even and n is even, then there are either 0 or 1 or q + 1 solutions
giving either 0 or 1 or q + 1 lines through R (and hence through L)
contained in �.

– If q is even and n is odd, then there is a unique solution of the equation
giving one line through R and one line through L contained in �.

– If q is odd and n is even, then there are either 0 or q + 1 solutions of
the equation giving either 0 or q + 1 lines through R (and through L)
contained in �.
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– If q is odd and n is odd, then there are either 0 or 2 solutions of the
equation giving either 0 or 2 lines through R (and through L) con-
tained in �.

In these cases we will call the set � either an elliptic or a parabolic or a hyper-
bolic or a (q + 1)-hyperbolic �-quadric with vertex points R and L according
to the number of lines through R contained in � is either 0 or 1 or 2 or q+1.
If q is even and n is even put r = (qn � 1, qm + 1).

Theorem 3.3.3. Let � be an elliptic �-quadric of PG(3, qn) with vertex points
R and L. Then � has canonical equation x�+1

2
� bx�+1

3
+ x1x�4 = 0, with b a

non-square if q is odd and b(q
n�1)/r 6= 1 if q is even and n is even. |�| = q2n + 1

and � contains no line.

Theorem 3.3.4. Let � be a parabolic �-quadric of PG(3, qn) with vertex points R
and L. Then q is even and � has canonical equation x�+1

2
� bx�+1

3
+ x1x�4 = 0,

where the equation x�+1 = b has a unique solution. Moreover |�| = q2n + qn + 1
and � contains a unique line through R and a unique line through L.

Theorem 3.3.5. Let � be a hyperbolic �-quadric of PG(3, qn) with vertex points R
and L. Then q and n are odd and � has canonical equation x�+1

2
�bx�+1

3
+x1x�4 =

0, where x�+1 = b has exactly two solutions. Moreover |�| = q2n + 2qn + 1 and
� contains exactly two lines through R and exactly two lines through L.

Theorem 3.3.6. Let � be a (q+1)-hyperbolic �-quadric of PG(3, qn) with vertex
points R and L. Then n is even and � has canonical equiation x�+1

2
� bx�+1

3
+

x1x�4 = 0, x�+1 = b has exactly q+1 solutions. Moreover |�| = q2n+(q+1)qn+1
and � contains exactly q + 1 lines through R and exactly q + 1 lines through L.

2) V ? = V

?

.
We may assume w.l.o.g. that the point R = L = (1, 0, 0, 0) is both the left radical
and the right radical. It follows that, in this case, � is a cone with vertex the point
R. Since the matrix A has rank three with first column and first row equal to 0,
by choosing a plane not through the point R, e.g. ⇡ : x1 = 0, we get that the
set � \ ⇡ is a �-conic of the plane ⇡ with associated matrix of rank 3. Hence it
is a Kestenband �-conic of ⇡. It follows that � is a cone with vertex the point R
projecting a Kestenband �-conic in a plane not through R. In particular if n = 2
and �2 = 1, then � is a Hermitian cone with vertex the point R.

3.4 �-quadrics of rank 2 in PG(3, qn)

In this section a �-quadric � of PG(3, qn) will have equation XtAX� = 0 with
rank(A) = 2. It follows that the left and right radicals are two lines r and ` of
PG(3, qn). We distinguish three cases.
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1) r \ ` = ;.
We may assume w.l.o.g. that r : x3 = x4 = 0 and ` : x1 = x2 = 0. Then:

� : (a13x1 + a23x2)x
�

3 + (a14x1 + a24x2)x
�

4 = 0,

that is the set of points of PG(3, qn) of intersection of corresponding planes under
a collineation � : Pr �! P`, where

Pr = {⇡a,b : ax3+bx4 = 0}{(a,b)2PG(1,qn)},P` = {⇡0
a,b

: ax1+bx2 = 0}{(a,b)2PG(1,qn)}.

The set � contains the qn+1 lines of a pseudoregulus with transversal lines r and
`. We call this set a �-quadric of pseudoregulus type with skew vertex lines r and `.
Note that if n = 2, �2 = 1, �-quadrics of pseudoregulus type with skew vertex
line have been introduced and studied in [36] where they were called QF -sets.
Let r : x1 = 0, x2 = 0, ` : x3 = 0, x4 = 0 and let � : Pr �! Ps be a collineation
with accompanying authomorphism � : x 7! xq

m , with (m,n) = 1.
Suppose that :

�(⇡1,0) = ⇡0
1,0,�(⇡0,1) = ⇡0

0,1,�(⇡1,1) = ⇡0
1,1,

then �(⇡a,b) = ⇡0
a� ,b�

.
Hence the set Q of points of intersection of corresponding planes under � is given
by the points whose homogeneous coordinates are solutions of the linear system

⇢
ax3 + bx4 = 0
a�x1 + b�x2 = 0,

where (a, b) 2 PG(1, qn). This system is equivalent to the linear system

⇢
ax3 + bx4 = 0

ax�
�1

1
+ bx�

�1

2
= 0.

A point P = (x1, x2, x3, x4) belongs to Q if and only if the previous linear system
in the unknowns a and b has non-trivial solutions, hence if and only if x��1

1
x4 �

x�
�1

2
x3 = 0, that is the same as x1x�4 � x2x�3 = 0, that can be seen as a canonical

equation of a �-quadric of pseudoregulus type with skew vertex lines. Let c 2 F⇤
q

and let � 2 F⇤
qn be such that N(�) = c. Put

Qc = {(�x�, �y�, x, y)}(x,y)2PG(1,qn).

The set Qc is a maximum scattered linear set of rank 2n of PG(3, qn) of pseu-
doregulus type with transversal lines r and `. Hence the set Q is the union of the
skew lines r, ` and the q � 1 linear sets of pseudoregulus type Qc, c 2 F⇤

qn .

The following hold.
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Proposition 3.4.1. let � be a �-quadric of pseudoregulus type of PG(3, qn) with skew
transversal lines r and `. The only lines contained in � are r, ` and the qn+1 lines of the
pseudoregulus associated to �.

Proposition 3.4.2. Let a, b and c be three pairwise skew lines and let ` and s be two skew
lines meeting a, b and c. There is a unique �-quadric of pseudoregulus type of PG(3, qn)
with skew vertex lines r and ` containing a, b and c.

Proposition 3.4.3. Let � be a �-quadric of pseudoregulus type of PG(3, qn) with skew
vertex lines r and `. The set � is mapped, via the Klein correspondence, to the union of a
translation ovoid of a hyperbolic quadric Q+(3, qn) with two points R and S.

Proof. Let r : x1 = x2 = 0 and ` : x3 = x4 = 0 and � be the �-quadric with
vertex lines ` and r with equation x�

1
x4 � x�

2
x3 = 0. The lines of the associated

pseudoregulus are spanned by the points (0, 0,↵,�) and (c↵�, c��, 0, 0), (↵,�) 2
PG(1, qn), c 2 F⇤

q . Via the Klein correspondence the lines of the pseudoregulus
are mapped to the set of points {(0,↵�+1,↵��,↵��,��+1, 0)}{(↵,�)2PG(1,qn)}, i.e.
the set of points of the ovoid

O = {(0,↵�+1,↵�,↵, 1, 0)} [ {P1 = (0, 0, 0, 0, 1, 0)}

of the hyperbolic quadric Q+(3, q) with equations x1 = x6 = 0, x2x5 � x3x4 = 0
contained in the Klein quadric with equation x1x6 � x2x5 + x3x4 = 0. The two
vertex lines r and ` are mapped, via the Klein correspondence, to the two points
(0, 0, 0, 0, 0, 1) and (1, 0, 0, 0, 0, 0) on the line x2 = x3 = x4 = x5 = 0 that is the
polar lines w.r.t. the three dimensional subspace with equations x1 = x6 = 0
containing the ovoid O under the polarity defined by the Klein quadric.
The ovoid O is a translation ovoid w.r.t. the point P1 of the hyperbolic quadric
Q+(3, q) since the group of projectivities of PG(5, qn) induced by the matrices

0

BBBBBB@

1 0 0 0 0 0
0 1 0 0 0 0
0 b 1 0 0 0
0 b� 0 1 0 0
0 b�+1 b� b 1 0
0 0 0 0 0 1

1

CCCCCCA

b 2 Fqn , stabilizes P1 and acts sharply transitively on the points of O \ {P1}. ⇤

2) r\` = V is a point. We may assume w.l.o.g. that r : x3 = x4 = 0, ` : x2 = x3 = 0.
In this case the �-quadric � is a cone with vertex a point V = r \ ` projecting a
(degenerate or not) Cm

F
-set in a plane not through V . Indeed let ⇡ be a plane

not through the point V and let R = r \ ⇡, L = ` \ ⇡. It follows that � \ ⇡ is
a set of points of ⇡ generated by a collineation between the pencils of lines of ⇡
with center the points R and L induced by the collineation between the pencil of
planes Pr and P` that is associated to �.
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3) r = `.
We may assume w.l.o.g. that r = ` : x3 = x4 = 0. In this case the �-quadric is
a cone with vertex the line r over a �-quadric of a line skew with r. That is � is
either just the line r or a plane through r or a pair of distinct planes through r or
q + 1 planes through r forming an Fq-subpencil of planes through r.

3.5 �-quadrics of rank 1 in PG(3, qn)

In this section the �-quadric � has equation XtAX� = 0 with rank(A) = 1. Hence
dimV ? = dim V

?

= 3 so left and righ-radicals in PG(3, qn) are planes. We
distinguish two cases:

• V ? 6= V

?

.
We may assume that r : x4 = 0 is the right-radical and ` : x1 = 0 is the
left-radical. Hence � : x1x�4 = 0, that is the union of two different planes.

• V ? = V

?

.
We may assume r = ` : x4 = 0 is both the left- and right- radical. Hence
� : x�+1

4
= 0, that it is a plane of PG(3, qn).

3.6 �-quadrics of PG(3, qn) with |A| = 0

In this section we summarize the results obtained in the previous sections of this
chapter.

Proposition 3.6.1. Let � : XtAX� = 0 be a �-quadric of PG(3, qn), whose associated
sesquilinear form is degenerate, then � is one of the following:

• a cone with vertex a line v projecting a �-quadric of a line ` skew with v (hence
either just the line v or one, two or q + 1 planes through v),

• a cone with vertex a point V projecting either a a Kestenband �-conic or a (possibly
degenerate) Cm

F
-set of a plane ⇡, with V /2 ⇡,

• a degenerate either parabolic or hyperbolic �-quadric with two collinear vertex
points R and L,

• a non-degenerate either elliptic or parabolic or hyperbolic or (q + 1)-hyperbolic
�-quadric with two vertex points R and L,
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• a non-degenerate �-quadric with two skew vertex lines (i.e. a �-quadric of pseu-
doregulus type).

Remark 3.6.2. Note that if n = 2 and �2 = 1, then �-quadrics of PG(3, q2) in the
first and second point of the list in the previous proposition are respectively a
cone with vertex a line projecting an Fq-subline and a cone with vertex a point
projecting a Hermitian curve.

Let � : x 7! xq
m , �0 : x 7! xq

m0
, (m,n) = (m0, n) = 1,m,m0  n/2.

Proposition 3.6.3. Let � : XtAX� = 0 be a �-quadric and let �0 : XtA0X�
0 be a �0-

quadric of PG(3, qn). Then � and �0 are projectively equivalent if and only if m = m0

and �, �0 are of the same type.

3.7 �-quadrics of rank 4 of PG(3, qn)

Remark 3.7.1. Opposite to the case of PG(2, qn), nothing is known for the sets of
absolute points in PG(3, qn) of a non-degenerate, non-reflexive sesquilinear form
of F4

qn . Of course the set of points with equation

� : x�+1

1
+ x�+1

2
+ x�+1

3
+ x�+1

4
= 0

is a remarkable example of such a set giving as intersection in a subgeometry
PG(3, q) the quadric with equation

x21 + x22 + x23 + x24 = 0

and, if n is even as intersection in a subgeometry PG(3, q2) the non-degenerate
Hermitian curve with equation

xq+1

1
+ xq+1

2
+ xq+1

3
+ xq+1

4
= 0

.

3.8 Degenerate �-quadrics and Lüneburg spread of PG(3, 2n).

The affine set arising from the Lüneburg spread has been studied by A. Cossi-
dente, G. Marino and O. Polverino in [29], where the following result has been
obtained:
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Theorem 3.8.1. The affine set A of the Lüneburg spread of PG(3, 22h+1), is the union
22h+1-arcs, each of them can be completed to a translation hyperoval. The directions of A
on ⇡1 are the complement of a regular hyperoval.

With the following theorem we observe that the affine set of a Lüneburg spread
of PG(3, 22h+1) is the affine part of a degenerate elliptic �-quadric of PG(3, 22h+1)
with two vertex points.

Theorem 3.8.2. Let � be a degenerate parabolic �-quadric of PG(3, 2n) with collinear
vertex points R and L. The lines joining any two points of � \ RL are disjoint from a
translation hyperoval O1 of the plane ⇡L, projectively equivalent to the set {(0, t, t��2

, 1) :
t 2 F2n} [ {R,L}.
If n = 2h + 1 and � is the automorphism of F2n given by � : x 7! x2

h , then O1 is
a regular hyperoval. Hence the set � \ RL is the affine set of the Lüneburg spread of
PG(3, qn).

Proof. Let � be a degenerate parabolic �-quadric with collinear vertex points R =
(0, 0, 1, 0) and L = (0, 1, 0, 0) with equation

x4
�+1 + x1x

�

2 � x3x1
� = 0.

It follows that the plane ⇡RL has equation x1 = 0. The set A = K\⇡RL is given by
A = {(1, x, x� + y�+1, y) : x, y 2 Fqn}. Arguing as in Proposition 5.2 in [29], we
obtain that the set of directions determined by A into the plane ⇡RL covers all the
points of ⇡RL except to the points of a hyperoval C given by C = {(0, x, x��2

, 1) :

x 2 F⇤
qn}. Note that if q = 22h+1 and � : x 7! x2

h , then the hyperoval C is a
hyperconic. The assertion follows (see Section 3.8). ⇤

3.9 Problems

• Is there any other interesting subset S of PG(3, qn) s.t. S is either a �-
quadric or a remarkable subset of a �-quadric?

• Is there any interesting subset S of PG(d, qn), d � 4, s.t. S is either a �-
quadric or a remarkable subset of a �-quadric?

[Hint: There is at least another examples in the these notes.]
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[78] H. Lüneburg: Die Suzukigruppen und ihre Geometrien. Springer-Verlag Berlin-
New York (1965).

[79] F. Mazzocca, Note di Geometria Combinatoria, 2013.

[80] C.M. O’Keefe, T. Penttila, A new hyperoval in PG(2, 32). J. Geom., 44 (1–2), (1992)
117–139.



Part II. References 109

[81] S.E. Payne, A new infinite family of generalized quadrangles. Congressus Numeran-
tium 49: (1985) 115–128.

[82] S.E. Payne, J.A. Thas, Finite generalized quadrangles. Research Notes in Mathematics,
110. Pitman (Advanced Publishing Program), Boston, MA, 1984.

[83] S.E. Payne, An essay on skew translation generalized quadrangles. Geom. Dedicata
32 (1989) 93–118.

[84] T. Penttila, B. Williams, Ovoids of parabolic spaces. Geom. Dedicata 82 (2000) 1–19.

[85] V. Pepe, On the agebraic variety Vr,t. Finite Fields and Their Applications 17 (2011)
343–349.

[86] O. Polverino, Linear sets in finite projective spaces. Discrete Math. 310, (2010) 3096-
3107.

[87] B. Qvist, Some remarks concerning curves of the second degree in a finite plane.
Ann. Acad. Sci. Fennicae. Ser. A. I. Math.-Phys., (134): 27, (1952).

[88] B. Segre, Ovals in a finite projective plane. Canadian Journal of Mathematics, 7 (10):
(1995) 414–416.

[89] B. Segre, Ovali e curve � nei piani di Galois di caratteristica due. Atti Accad. Naz.
Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8), 1962.

[90] B. Segre, Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane. Ann.
Mat. Pura Appl. 64, (1964) 1-76.

[91] B. Segre, U. Bartocci, Ovali ed altre curve nei piani di Galois di caratteristica due.
Acta Arithmetica, 18: (1971) 423–449.
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Preface

These lecture notes provide an introduction to the fascinating interplay between
the theory of finite groups and their representations and the study of substruc-
tures of finite projective spaces. We will mainly be concerned with the investiga-
tion of certain subgroups of projectivities and the geometric objects that are left
invariant by them.

In Chapter 1 the basic concepts and the geometric tools are outlined.

In Chapter 2, q–analogs of constant weight codes in the Johnson space are consid-
ered. The interest in these codes, known as constant–dimension subspace codes, has
been increased in the last few years as a consequence of their new application in
error–correction for random network coding. In this context, the main problem is
to determine the largest possible size of constant–dimension codes with a given
minimum distance. Here, we deal with the smallest open case; from a geometric
point of view, it asks for the maximum number of planes in PG(5, q) mutually
intersecting in at most one point.

In Chapter 3, we discuss symmetric tactical decompositions and Cameron–Liebler line
classes of PG(3, q). These objects arose from the study of collineation groups of
PG(3, q) having equally many orbits on points and lines of PG(3, q). The current
status of research in this area is described.

115
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Chapter 1

Basic concepts

In this section, we collect the definitions of the objects of study for the conve-
nience of the reader, along with several standard results. Most of them will be
stated without proof and we refer to [13, 19, 20, 21, 22, 26, 36] for more details.

1.1 Groups acting on sets

Let G be a finite group and let X be a non–empty set. An action of G on X is a
function

F : G⇥ X �! X ,

where we write F (g, x) = g(x) or F (g, x) = xg, satisfying:

1) For all g1, g2 2 G and x 2 X , g1(g2(x)) = (g1g2)(x) or equivalently (xg2)g1 =
xg1g2

2) For all x 2 X , 1(x) = x or equivalently x1 = x.

When the action F is understood, then the set X is said to be a G–set or G–
invariant. It is also said that G acts on X . Let X be a G–set and let Y ✓ X . For an
element g 2 G, define

Yg = {yg | y 2 Y}.

Note that if G acts on X , then the map

F : (g,Y) 2 G⇥ 2|X | 7�! Yg 2 2|X |

117
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canonically defines an action of G on the set of all subsets of X .

The stabilizer of Y in G is the subgroup of G given by {g 2 G | Yg = Y}. It is
denoted with StabG(Y) or GY . The pointwise stabilizer of Y in G is the subgroup
of G given by {g 2 G | yg = y, for all y 2 Y}.

The orbit of Y under G or the G–orbit of Y is the set {Yg | for all g 2 G} and it is
denoted with YG or OrbG(Y). Thus YG ✓ X .

Let Y1,Y2 ✓ X and consider the following relation:

Y1 ⇠ Y2 if and only if Y2 = Yg

1
, for some g 2 G.

It can be seen that ⇠ is an equivalence relation and hence two G–orbits are either
disjoint or identical.

Theorem 1.1.1 (Orbit–Stabilizer Theorem). Let X be a G–set and let Y ✓ X . Then
|G| = |GY ||YG|.

Proof. It is enough to prove that |YG| = |G : GY |. Indeed, we claim that

µ : Yg 2 YG 7�! gGY 2 G/GY

is a bijection between the elements of YG and the left cosets of GY in G. To see
this fact let Z1,Z2 2 YG. Then there exist two elements g1, g2 2 G such that
Z1 = Yg

1
and Z2 = Yg2 . Note that Z1 = Z2 if and only if Yg1 = Yg2 if and only if

Y = (Yg2)g
�1
1 = Yg

�1
1 g2 if and only if g�1

1
g2 2 GY if and only if g2 2 g1GY if and

only if g1GY = g2GY . Therefore µ is an injective map. On the other hand, it is
easily seen that µ is surjective. ⇤

If G acts on X and xG = X for some x 2 X , then we say that G acts transitively on
X or that G is transitive on X .

1.2 Tactical configurations

Let V be a non–empty set of points and let B be a set of (equal size, proper) subsets
of V , called blocks. The triple (V,B,2) is called an incidence structure.

Definition 1.2.1. An incidence structure such that every block is incident with a
constant number of points and every point is incident with a constant number of
blocks is said to be a tactical configuration.
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Let S = (V,B) be a tactical configuration such that |V| = v, |B| = b, every block
is incident with k points and every point is incident with r blocks. A standard
double counting argument on couples (P, `), where P 2 V , ` 2 B and P 2 ` gives

vr = bk.

An automorphism of S is a bijection on the points and the blocks of S which pre-
serves incidence, i.e., the bijection ↵ is an automorphism of S if for any point
P 2 V and any block ` 2 B, P 2 ` implies ↵(P ) 2 ↵(`). The set of all automor-
phisms of S forms a group, denoted with Aut(S) and called automorphisms group
of S . Clearly every subgroup of Aut(S) acts on V .

A tactical decomposition of an incidence structure S is a partition of V into disjoint
point sets V1, . . . ,Vm (called the point classes), together with a partition of B into
disjoint block sets B1, . . . ,Bn (block classes), such that for any i, j, the incidence
structure (Vi,Bj ,2) is a tactical configuration. In other words: for any point class
Vi and any block class Bj , the number of points of Vi on a block of Bj depends
only on i, j, and can hence be denoted by kij ; dually, the number of blocks of Bj

through a point of Vi depends only on i, j, and can hence be denoted by rij . It
follows that

virij = bjkij ,

where |Vi| = vi and |Bj | = bj .

Definition 1.2.2. A tactical decomposition is said to be symmetric if it has the same
number of point as block classes, that is if n = m.

Lemma 1.2.3. Let S = (V,B) be an incidence structure and let G be a group acting on
V . Then the point–orbits and block–orbits of G form a tactical decomposition of S .

Proof. Let V1, . . . ,Vm and B1, . . . ,Bn be the point–orbits and block–orbits under
the action of G, respectively. Let P be a point of Vi and assume that there are x
blocks of Bj through P . Let Q be any other point of Vi. Since Vi = PG, there
exists g 2 G such that Q = P g. Note that `1, . . . , `x are the blocks of Bj incident
with P if and only if `g

1
, . . . , `gx are the blocks of Bj incident with Q. Similarly, if

` is a block of Bj , ` is incident with y points of Vi and r = `g is any other block
of Bj , then P1, . . . , Py are the points of Vi incident with ` if and only if P g

1
, . . . , P g

y

are the points of Vi incident with r. ⇤

1.2.1 Block’s lemma

Definition 1.2.4. An incidence structure (V,B) such that every two distinct points
of V are both incident with exactly � blocks of B is called 2 � (v, k,�) design or
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simply 2–design.

Counting in two ways the triples (Q, `;P ), where Q 2 V \ {P} and P,Q 2 ` 2 B,
for a fixed P 2 V , we obtain

(v � 1)� = r(k � 1). (1.1)

In particular, a 2–design is a tactical configuration. Moreover v > k implies that
r > �.

Suppose that V = {P1, . . . , Pv} and B = {`1, . . . , `b}, then the v by b matrix A =
(aij), where

aij =

(
1 if Pi 2 `j

0 if Pi /2 `j

is an incidence matrix of S .

Lemma 1.2.5. If A is the incidence matrix of a 2–design, then det(A) 6= 0.

Proof. First of all observe that rank(AAt) = v. Indeed, aisasj = 1 if and only if the
points Pi and Pj are both incident with the block `s. Hence,

bX

s=1

aisasj =

(
� if i 6= j

r if i = j
and AAt = (r � �)I + �J ,

where J denotes all one matrix. Then subtract the first column of AAt from every
other column and in the so obtained matrix add to the first row every other row.
This gives

det(AAt) = det

0

BBB@

r + (v � 1)� 0 . . . 0
�
...
�

(r � �)I

1

CCCA
= (r + (v � 1)�)(r � �)v�1.

Taking into account (1.1), it follows that det(AAt) = rk(r � �)v�1 6= 0 and
rank(AAt) = v. Since v = rank(AAt)  rank(A)  v the result follows. ⇤

Corollary 1.2.6 (Fisher’s Inequality). If S is a 2� (v, k,�) designs, then b � v.

Proof. From the proof of Lemma 1.2.5, we have that v = rank(AAt)  rank(A) 
b. ⇤

Let S = (V,B) be a 2–design and let V1, . . . ,Vm, B1, . . . ,Bn be a tactical decom-
position of S . Consider the m by n matrices K = (kij) and R = (rij).
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Theorem 1.2.7 (Block’s Lemma). Let S = (V,B) be a 2–design and let V1, . . . ,Vm,
B1, . . . ,Bn be a tactical decomposition of S . Then 0  n�m  b� v.

Proof. We claim that rank(K) � m. Note that rij is the sum of the entries in
any column of the submatrix of A whose rows correspond to the points of Pi

and whose columns correspond to the blocks of Bj . Since rank(A) = v, the v
rows of A are linearly independent. Hence the m point classes are such that their
union is represented by the linearly independent set of rows of A. It follows
that the m rows of K must be linearly independent, otherwise it is possible to
see that a dependence relation among them would give rise to a dependence
relation among the rows of A. Therefore rank(K) � m. On the other rank(K) 
min{m,n} and hence 0  n�m. By using a dual argument it can be shown that
rank(K) � n� b+ v and hence n�m  b� v. ⇤

Corollary 1.2.8. rank(K) = rank(R) = m.

1.3 Finite Projective Spaces

Let q be a power of a prime, n a positive integer and let GF(q) denote the finite
field with q elements. The n–dimensional projective space over GF(q), which we
will denote by PG(n, q) or by PG(V) is defined as the (n+1)–dimensional vector
space V = V(n+1, q) over GF(q), modulo non–zero scalar equivalence of vectors;
that is, we regard two (n + 1)–tuples x = (x1, . . . , xn+1) and y = (y1, . . . , yn+1)
to be equal if there exists a non–zero scalar � 2 GF(q) such that x = �y. The
elements of PG(n, q) are called points; these correspond to the one–dimensional
subspaces of V. In general, a k–dimensional projective subspace of PG(n, q) (k–
space for short) is defined to be the set of equivalence classes corresponding to a
(k + 1)–dimensional subspace of V. In order to avoid confusion we will take the
word “dimension” and the symbol “dim” to mean vector space dimension except
when otherwise stated. A 1–space of PG(n, q) is called a line, a 2–space a plane,
a 3–space a solid and an (n � 1)–space, a hyperplane. The number of k–spaces in
PG(n, q) equals


n+ 1

k + 1

�

q

=
kY

i=0

qn+1 � qi

qk+1 � qi
.

A collineation of PG(n, q) is a bijection on the points of the space which preserves
incidence, i.e., the bijection ↵ is a collineation of PG(n, q) if for any two subspaces
S, S0 of PG(n, q), S ✓ S0 implies ↵(S) ✓ ↵(S0). The set of all collineations of
PG(n, q) forms a group, denoted by P�L(n+1, q) and called automorphisms group
of PG(n, q). From the definition of PG(n, q), one can see that any non–singular
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linear transformation of V induces a collineation of PG(n, q), called projectivity.
Note that two linear transformations induce the same projectivity if and only if
they differ by multiplication by a scalar matrix. The set of all projectivities of
PG(n, q) form the projective linear group PGL(n+ 1, q), where

PGL(n+ 1, q) = GL(n+ 1, q)/{�I | � 2 GF(q) \ {0}}.

Here and elsewhere, I represents the identity transformation. Hence PGL(n +
1, q) is a subgroup of P�L(n+ 1, q) and

|PGL(n+ 1, q)| = q
n(n+1)

2

n+1Y

i=2

(qi � 1).

Also, any automorphism of GF(q) induces a collineation of PG(n, q). The Funda-
mental Theorem of Projective Geometry asserts that P�L(n + 1, q) is the semidirect
product PGL(n+1, q)oAut(GF(q)) induced by the natural action of Aut(GF(q))
on PGL(n + 1,GF(q)). In other words, it states that any collineation of PG(n, q)
is induced by a semi–linear transformation of V. We will be mainly concerned
with projectivities of finite projective space; we shall find it helpful to work
with the elements of PGL(n+1, q) as matrices in GL(n+1, q) and the points of
PG(n, q) as column vectors, with matrices acting on the left.

1.4 Finite Classical Polar Spaces

A map ⇢ sending the points of PG(n, q) to the hyperplanes of PG(n, q) is called a
correlation if for any two subspaces S, S0 of PG(n, q), S ✓ S0 implies ⇢(S0) ✓ ⇢(S).
If the map ⇢ has order two, then it is called a polarity. If � is an automorphism of
GF(q), a �–sesquilinear form on V is a map

� : V ⇥V �! GF(q)

such that

i) �(x+ y, z) = �(x, z) + �(y, z),

ii) �(x,y + z) = �(x,y) + �(x, z),

iii) �(ax, by) = a�(b)�(x,y),

for all x,y, z 2 V and for all a, b 2 GF(q). If � = 1, then � is said to be bilinear.
The �–sesquilinear form � is non–degenerate if �(x,y) = 0, for all y 2 V implies
that x = 0 and similarly if �(x,y) = 0, for all x 2 V implies that y = 0 .
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Any non–degenerate �–sesquilinear form gives rise to a correlation ⇢ of PG(n, q)
by the rule

⇢(S) = {y 2 PG(n, q) | �(x,y) = 0 for all x 2 S},

where S is a subspace of PG(n, q). The subspace ⇢(S) will also be denoted by
S⇢. Also, the Fundamental Theorem of Projective Geometry implies that any cor-
relation of PG(n, q) is induced by a semi–linear transformation of V. Let g be a
semi–linear transformation of V. Then g can be identified by a linear transforma-
tion f and a field automorphism �. Define the function

� : (x,y) 2 V ⇥ V 7�! xg(y)t = xf(�(y))t 2 GF(q),

where t denotes transposition. Then it can be seen that � is a �–sesquilinear form.
Therefore correlations and non–degenerate �–sesquilinear forms are equivalent.
Let � be a non–degenerate �–sesquilinear form of V and let ⇢ be the related cor-
relation of PG(n, q). A subspace S of PG(n, q) is said to be totally isotropic with
respect to � if S ✓ ⇢(S).

A �–sesquilinear form � is said to be reflexive if �(x,y) = 0 implies �(y,x) =
0, for all x,y 2 V. Moreover, � is reflexive if and only if the corresponding
correlation is a polarity. If � is a non–degenerate reflexive �–sesquilinear form of
V, then � falls in one of the following types:

i) Alternating. In this case � = 1 and �(x,x) = 0, for all x 2 V.

ii) Symmetric. In this case � = 1 and �(x,y) = �(y,x), for all x,y 2 V.

iii) Hermitian. In this case �2 = 1, � 6= 1 and �(x,y) = �(�(x,y)), for all
x,y 2 V.

Note that if q is even, then any alternating form is also symmetric, but not con-
versely. Let � be a non–degenerate reflexive �–sesquilinear form. Then according
to the condition on �, we distinguish different types of polarity:

For q odd, we have three types of polarities.

1) If � is an alternating form and n is odd, the polarity is called symplectic
polarity.

2) If � is a symmetric form, the polarity is called orthogonal polarity.
3) If � is a Hermitian form, the polarity is called unitary polarity.

For q even, there also exist three types of polarities.

1) If � is an alternating form and n is odd, the polarity is called symplectic
polarity.
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2) If � is a symmetric and not alternating form, the polarity is called
pseudo–polarity.

3) If � is a Hermitian form, the polarity is called unitary polarity.

A quadratic form on V is a function

Q : V �! GF(q)

such that

i) Q(ax) = a2Q(x) for all x 2 V, a 2 GF(q),

ii) �(x,y) = Q(x+ y)�Q(x)�Q(y) is a bilinear form.

In this case � is called the polar form of Q. The quadratic form Q is non–degenerate
if its polar form � has the property that �(x,y) = Q(x) = 0 for all y 2 V implies
x = 0. When q is odd, then each of Q and � determines the other and � is a
symmetric bilinear form. If q is even, then � is an alternating bilinear form, but Q
cannot be recovered from �. Indeed, in this case, many different quadratic forms
correspond to the same bilinear form. Let Q be a non–degenerate quadratic form
of V. A subspace S of PG(n, q) is said to be totally singular with respect to Q if
Q(x) = 0 for all x 2 S.

Definition 1.4.1. Let � (resp. Q) be a non–degenerate reflexive �–sesquilinear
form (resp. non–degenerate quadratic form) of the vector space V. In PG(V),
the set of totally isotropic subspaces with respect to � (resp. totally singular sub-
spaces with respect to Q) is called a finite classical polar space, namely P .

In particular P is said to be symplectic, orthogonal, hermitian or pseudo–symplectic
according as the form is alternating, quadratic, hermitian or symmetric and not
alternating, respectively. Let f be a linear transformation of V and let ↵ be the
projectivity of PG(n, q) induced by f . Then ↵ is said to be a similarity of P if
�(f(x), f(y)) = ��(x,y), or Q(f(x)) = �Q(x), for all x,y 2 V. The set of
similarities of P forms a group that is the stabilizer of P in PGL(n + 1, q). Let q
and n be not both even; observe that if ? denotes the polarity associated with P
and S is a subspace of PG(n, q), then

�
S?�↵ = (S↵)?.

A projective subspace of maximal dimension contained in P is called a generator
of P and one can prove that all generators of P have the same projective dimen-
sion. An orthogonal polar space is also called a (non–degenerate) quadric. Up to a
change of the coordinate system the finite classical polar spaces can be described
as follows:
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• The elliptic quadric Q�(2n + 1, q), n � 1, with group of similarities denoted
by PGO�(2n + 2, q) and formed by the points of PG(2n + 1, q) satisfying
the equation X1X2 + . . . + X2n�1X2n + f(X2n+1X2n+2) = 0, where f is a
homogeneous irreducible polynomial of degree two over GF(q).

• The parabolic quadric Q(2n, q), n � 1, with group of similarities denoted
by PGO(2n + 1, q) and formed by the points of PG(2n, q) satisfying the
equation X1X2 + . . .+X2n�1X2n +X2

2n+1
= 0.

• The hyperbolic quadric Q+(2n + 1, q), n � 0, with group of similarities de-
noted by PGO+(2n+ 2, q) and formed by the points of PG(2n+ 1, q) satis-
fying the equation X1X2 + . . .+X2n�1X2n +X2n+1X2n+2 = 0.

• The symplectic polar space W(2n + 1, q), n � 0, with group of similarities
denoted by PSp(2n + 2, q) and formed by the subspaces of PG(2n, q) that
are totally isotropic with respect to the alternating form �(x,y) = x1y2 �
x2y1 + . . .+ x2n+1y2n+2 � x2n+2y2n+1.

• The hermitian polar space H(n, q2), n � 1, with group of similarities denoted
by PGU(n+1, q2) and formed by the points of PG(n, q2) satisfying the equa-
tion Xq+1

1
+ . . .+Xq+1

n+1
= 0.

We remark that the projective linear group of the ambient projective space acts
transitively on each of the polar space described above.

1.4.1 Q(2, q)

A parabolic quadric Q(2, q) of PG(2, q) is also known as a (non–degenerate) conic,
see [20, Section 7.2]. It consists of q + 1 points of PG(2, q) no three on a line. The
stabilizer of a conic in PGL(3, q), that is denoted by PGO(3, q), has order q3 � q.
Therefore, from the Orbit–Stabilizer Theorem it follows that there are

|PGL(3, q)|
|PGO(3, q)| =

q3(q2 � 1)(q3 � 1)

q(q2 � 1)
= q5 � q2

conics in PG(2, q). Let Q(2, q) be the conic of PG(2, q) given by

X2

2 �X1X3 = 0.

Then a projectivity of PGO(3, q), the stabilizer of Q(2, q) in PGL(3, q), is associ-
ated with a matrix 0

@
a2 2ac c2

ab ad+ bc cd
b2 2bd d2

1

A
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for some a, b, c, d 2 GF(q) with ad � bc 6= 0. In particular PGO(3, q) ' PGL(2, q)
and the isomorphism is given by

✓
a b
c d

◆
 !

0

@
a2 2ac c2

ab ad+ bc cd
b2 2bd d2

1

A ,

with a, b, c, d 2 GF(q), ad� bc 6= 0.

1.4.2 Q+(3, q)

A regulus of PG(3, q) is the set of lines intersecting three skew lines and has size
q + 1.

Lemma 1.4.2. Two distinct reguli of PG(3, q) have at most two lines in common.

Proof. Use the Klein correspondence , see 1.5. ⇤

A hyperbolic quadric Q+(3, q) of PG(3, q) consists of (q + 1)2 points of PG(3, q)
and 2(q + 1) lines that are the union of two reguli R1, R2. Through a point of
Q+(3, q) there pass two lines belonging to different reguli. A plane ⇡ of PG(3, q) is
either secant to Q+(3, q) and ⇡\Q+(3, q) is a non–degenerate conic or it is tangent
to Q+(3, q) and meets Q+(3, q) in a degenerate conic consisting of two distinct
lines. The stabilizer of Q+(3, q) in PGL(4, q) is denoted by PGO+(4, q), has order
2(q3� q)2 and has a subgroup of index two isomorphic to PGL(2, q)⇥PGL(2, q).
Therefore, from the Orbit–Stabilizer Theorem it follows that there are

|PGL(4, q)|
|PGO+(4, q)|

=
q6(q2 � 1)(q3 � 1)(q4 � 1)

2q2(q2 � 1)2
=

q4(q2 + 1)(q3 � 1)

2

hyperbolic quadrics in PG(3, q). See [21, p. 23] for more details on Q+(3, q). Let
Q+(3, q) be the hyperbolic quadric of PG(3, q) given by

X1X4 �X2X3 = 0.

If Pi = (xi, yi) 2 PG(1, q), 1  i  2, then P1 ⌦ P2 = (x1, y1) ⌦ (x2, y2) =
(x1x2, x1y2, y1x2, y1y2) is a point of Q+(3, q) and

Q+(3, q) = {P1 ⌦ P2 | P1, P2 2 PG(1, q)}.

A projectivity of PGL(2, q)⇥PGL(2, q), the subgroup of index two of PGO+(4, q),
is associated with a matrix

M ⌦M 0 =

✓
a b
c d

◆
⌦
✓
a0 b0

c0 d0

◆
=

0

BB@

aa0 ab0 ba0 bb0

ac0 ad0 bc0 bd0

ca0 cb0 da0 db0

cc0 cd0 dc0 dd0

1

CCA , (1.2)
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where a, b, c, d, a0, b0, c0, d0 2 GF(q), with ad � bc 6= 0 and a0d0 � b0c0 6= 0. In
particular the group PGL(2, q) ⇥ PGL(2, q) fixes both reguli R1 and R2. The
group PGO+(4, q) can be described as the subgroup of PGL(4, q) generated by
PGL(2, q)⇥PGL(2, q) and the involution ⌧ , where ⌧ is associated with the matrix

0

BB@

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

1

CCA ,

interchanges the reguli R1 and R2. More precisely

PGO+(4, q) = (PGL(2, q)⇥ PGL(2, q))o ⌧.

Lemma 1.4.3.

|Stab
PGO

+
(4,q)

(P )| =
(
2q2(q � 1)2 if P 2 Q+(3, q)

2(q3 � q) if P /2 Q+(3, q)

Proof. Let ⇠ be the projectivity of PGL(2, q)⇥PGL(2, q) associated with the matrix
M ⌦M 0 as indicated in (1.2).

Let P = (1, 0, 0, 0) 2 Q+(3, q). Then P ⇠ = P if and only if ac0 = ca0 = cc0 =
0. First of all observe that both a and a0 are not zero. Indeed, if a = 0, then
necessarily c 6= 0, otherwise ad� bc = 0, a contradiction. Hence, since ca0 = cc0 =
0, we would obtain a0 = c0 = 0 and then a0d0 � b0c0 = 0, a contradiction. Similarly
it can be seen that a0 6= 0. Therefore we have that c = c0 = 0. Note that every
projectivity associated with

✓
a b
0 d

◆
⌦

✓
a0 b0

0 d0

◆
, a, b, d, a0, b0, d0 2 GF(q), ad 6= 0, a0d0 6= 0,

fixes P . Finally note that ⌧ stabilizes P as well.

Let P = (0, 1,�1, 0) 2 PG(3, q) \ Q+(3, q). Then P ⇠ = P if and only if ab0 � ba0 =
cd0 � dc0 = 0 and ad0 � bc0 = da0 � cb0 if and only if

✓
a b
c d

◆✓
d0 �b0
�c0 a0

◆
= M det(M 0)M 0�1 = �I,

where � = ad0�bc0 = da0�cb0. First of all note that � 6= 0, otherwise det(M) = 0, a
contradiction. Hence, we have that M 0 = det(M

0
)

�
M . Since µM ⌦M = M ⌦µM =

µ(M ⌦M), for all µ 2 GF(q) \ {0}, it follows that ⇠ is induced by M ⌦M . On the
other hand either ⌧ or the projectivity associated with M ⌦M stabilizes the point
P . ⇤
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As a consequence we have the following result.

Corollary 1.4.4. The group PGO+(4, q) acts transitively on the points of Q+(3, q) and
on the points of PG(3, q) \ Q+(3, q).

1.4.3 W(3, q)

The set of all totally isotropic points and totally isotropic lines (i.e., generators)
with respect to a (non–degenerate) symplectic polarity of PG(3, q) forms the sym-
plectic polar space W(3, q). It consists of all the points of PG(3, q) and of (q +
1)(q2 + 1) generators. Through every point P 2 PG(3, q) there pass q + 1 gener-
ators and these lines are coplanar. The plane containing these lines is the polar
plane of P with respect to the symplectic polarity defining W(3, q). The lines in
common to two distinct symplectic polar spaces of PG(3, q) form a so called lin-
ear congruence of PG(3, q), see [21, Section 15.2]. There are three types of linear
congruences:

• the elliptic congruence consisting of q2 + 1 pairwise disjoint lines of PG(3, q)
forming a Desarguesian spread.

• the hyperbolic congruence consisting of the (q + 1)2 lines of PG(3, q) meeting
two skew lines, that are the axes of the congruence.

• the parabolic congruence consisting of the q2 + q + 1 lines of W(3, q) meeting
a distinguished line of W(3, q), called the axis of the congruence.

Lemma 1.4.5. Let L be a hyperbolic, parabolic or elliptic congruence, then every point
of PG(3, q) (not on the axis or axes of L) is contained in a unique line of L.

Proof. It is enough to show that through every point of PG(3, q) there pass at least
a line of L. Let W1 and W2 be two distinct symplectic polar spaces of PG(3, q)
such that W1 \W2 = L and let ?1, ?2 be the symplectic polarities defining W1,
W2, respectively. If P is a point of PG(3, q), then either P?1 6= P?2 and ` =
P?1 \ P?2 is a line belonging to both W1, W2 (hence P 2 ` 2 L), or P?1 = P?2

and the q + 1 lines through P contained in P?1 belong to L. ⇤

Lemma 1.4.6. Let L be a hyperbolic, parabolic or elliptic congruence and let R1,R2 be
two distinct reguli belonging to L, i.e. R1,R2 ✓ L. Let Qi be the hyperbolic quadric
of PG(3, q) containing the regulus Ri, 1  i  2. Then Q1 \ Q2 does not contain a
non–degenerate conic.
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Proof. Assume by contradiction that Q1 \ Q2 contains a non–degenerate conic,
say C. We consider several cases.

Let L be an elliptic congruence.

In this case through a point P of C there pass exactly a line of R1, say `1, and a line
of R2, say `2. Since R1,R2 belong to L, we have that both, `1 and `2 are lines of
L. From Lemma 1.4.5, we conclude that necessarily `1 = `2 and hence R1 = R2.
This is a contradiction, since two distinct reguli share at most two lines.

Let L be a parabolic congruence having as axis the line r.

Each of the lines of both R1 and R2 intersects r in a point and hence r is a line of
the opposite regulus of both R1 and R2. In particular r \ C is a point. Let P be a
point of C \ r. By repeating the previous argument, we get that the reguli R1 and
R2 have in common at least q lines. Therefore if q � 3, R1 = R2, a contradiction.

Let L be a hyperbolic congruence having as axes the lines r1, r2.

Each of the lines of both R1 and R2 intersects both r1, r2 in a point and hence
r1, r2 are lines of the opposite regulus of both R1 and R2. In particular ri \ C is
a point, 1  i  2. Let P be a point of C \ (r1 [ r2). By repeating the previous
argument, we get that the reguli R1 and R2 have in common at least q � 1 lines.
Therefore if q � 4, R1 = R2, a contradiction. Some computations show that the
result holds true in the remaining cases. ⇤

1.5 The Klein Quadric

In this section we focus our attention on a specific polar space with rather remark-
able properties, see [21, Chapter 15]. This is Q+(5, q), the hyperbolic orthogonal
space of PG(5, q), also known as the Klein quadric. Generators of Q+(5, q) are
planes and the points of Q+(5, q) are in one–to–one correspondence with lines of
PG(3, q) as we briefly explain in the next few lines. Let x = (x1, x2, x3, x4),y =
(y1, y2, y3, y4) be two distinct points of PG(3, q) and let ` be the line of PG(3, q)
joining x and y. For a line ` joining the points x and y, define the Plücker coordi-
nates of ` as

pij = det

✓
xi xj
yi yj

◆
= xiyj � xjyi, i < j,
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Up to scalar multiples the Plücker coordinates (p12, p13, p14, p23, p24, p34) do not de-
pend on the choice of the two distinct points x and y on ` and therefore to the
line ` there corresponds a point (p12, p13, p14, p23, p24, p34) of PG(5, q). Further-
more, all such points satisfy the equation

p12p34 � p13p24 + p14p23 = 0

and therefore lie on the hyperbolic quadric Q+(5, q) given by

X1X6 �X2X5 +X3X4 = 0.

Since each of the points of Q+(5, q) occurs as the Plücker coordinates of some
line of PG(3, q), we have a bijection  from the lines of PG(3, q) to the points of
Q+(5, q), called the Klein correspondence. Let ? be the polarity of PG(5, q) associ-
ated with Q+(5, q).

Under the correspondence :

- the plane pencils of lines are mapped to the lines of Q+(5, q);

- the set of all lines on a point or all lines in a plane is sent to the set of all
points on a generator of Q+(5, q). This gives a natural partition of the planes
of Q+(5, q) into two classes, called Latin planes and Greek planes respectively;

- the lines of a regulus R of a PG(3, q) are sent to the points of a non–degenerate
conic (R) of Q+(5, q). In particular the plane h(R)i, containing the conic
(R), meets the quadric Q+(5, q) exactly in (R);

- the two reguli of a hyperbolic quadric Q+(3, q) are sent to two non–degenerate
conics of Q+(5, q) lying on two planes � and �?, respectively;

- the lines of W(3, q) are mapped to the points of a parabolic quadric Q(4, q) ⇢
Q+(5, q);

- the lines of an elliptic congruence are mapped to the points of an elliptic
quadric Q�(3, q) ⇢ Q+(5, q);

- the lines of a hyperbolic congruence are mapped to the points of a hyper-
bolic quadric Q+(3, q) ⇢ Q+(5, q);

- the lines of a parabolic congruence are mapped to the points of a quadratic
cone of Q+(5, q) having as vertex a point and as base a conic Q(2, q).



Chapter 2

Subspace codes

2.1 Introduction

Coding Theory studies techniques to correct errors arising during communica-
tions through noisy channels. Its distinguishing features are using discrete sig-
nals, which allows the description of signals in terms of abstract symbols and
introducing the artificial redundancy, which gives the possibility to correct er-
rors. Coding Theory uses a wide range of mathematical tools, from simple binary
arithmetic to modern algebraic geometry, [28].

Let ⇤ be an alphabet of q elements. Let n be a positive integer and let ⇤n be the set
of all n–tuples over ⇤. Assume that ⇤n is a metric space, i.e., there exists a function

d : ⇤n ⇥ ⇤n �! Z,

called distance, such that 8x,y, z 2 ⇤n,

i) d(x,y) � 0, d(x,y) = 0() x = y,

ii) d(x,y) = d(y,x),

iii) d(x, z)  d(x,y) + d(y, z).

A code C of (⇤n, d) of size |C| = M is defined as any set of M elements of ⇤n.
The elements of C are called the codewords. The minimum distance of a code C,
denoted by d(C), is the smallest of the distances between distinct codewords:
d(C) = min{d(x,y) | x,y 2 C,x 6= y}. The main problem in Coding Theory is to

131
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construct codes with given cardinality and having maximal pairwise distance as
large as possible.

A network can be considered as a directed multigraph which consists of differ-
ent nodes. In particular the source nodes transmit messages to the sink nodes
through a channel of intermediate nodes. In contrast to traditional ways to oper-
ate a network that tries to avoid collisions of data streams as much as possible,
a different approach, that allow the use of random mixing of data streams at in-
termediate nodes, has been proposed [1]. This approach, called linear network
coding, aims to optimize the throughput by doing linear combinations on the in-
termediate nodes. In [27] the authors consider a channel that takes in a vector
space and puts out another vector space, possibly with erasures, i.e. deletion
of vectors from the transmitted space, or errors, i.e. addition of vectors to the
transmitted space. Also, they define a suitable metric and show how to construct
codes that correct combinations of errors and erasures for this channel. In what
follows we give an overview of such a metric space. Let p be a prime, let q = ph

any prime power and let V be an n–dimensional vector space over GF(q), the
finite field with q elements. The set of all subspaces of V or subspaces of the
projective space PG(n � 1, q), forms a metric space with respect to the subspace
distance, defined by

d(U,U 0) = dim(U + U 0)� dim(U \ U 0).

Lemma 2.1.1. (PG(n, q), d) is a metric space.

Proof. Let U,U 0, U 00 be projective subspaces of PG(n� 1, q). Then it is easily seen
that

i) d(U,U 0) � 0, d(U,U 0) = 0() U = U 0,

ii) d(U,U 0) = d(U 0, U),

Finally note that

d(U,U 00)� d(U,U 0)� d(U 0, U 00) = dim(U) + dim(U 00)� 2 dim(U \ U 00)

� dim(U)� dim(U 0) + 2 dim(U \ U 0)� dim(U 0)� dim(U 00) + 2 dim(U 0 \ U 00) =

2
�
dim(U \ U 0) + dim(U 0 \ U 00)� dim(U \ U 00)� dim(U 0)

�
=

2
�
dim(U \ U 0 \ U 00) + dim((U \ U 0) + (U 0 \ U 00))� dim(U \ U 00)� dim(U 0)

�

 0.

Indeed,
(U \ U 0) + (U 0 \ U 00) ✓ U 0, U \ U 0 \ U 00 ✓ U \ U 00.
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Hence

dim((U \ U 0) + (U 0 \ U 00))  dim(U 0), dim(U \ U 0 \ U 00)  dim(U \ U 00).

⇤

Remark 2.1.2. The metric space (PG(n�1, q), d) can be considered as a q–analogue
of the well–known Hamming space (PG(n� 1, 2), dH). Here, if x,y are points of
PG(n�1, 2), dH(x,y) denotes the number of coordinates in which x and y differ.
In particular, if PG(n� 1, 2) is identified with the set of subsets of {1, . . . , n}, we
have that dH(x,y) = |x [ y|� |x \ y|, 8x,y 2 PG(n� 1, 2).

We will consider codes in the space PG(n � 1, q) endowed with the above de-
fined subspace distance. In particular, we will restrict our attention to constant–
dimension codes.

Definition 2.1.3. A constant–dimension code (or CDC) in (PG(n� 1, q), d) is a code
of which each codeword has the same dimension. A constant–dimension code C
consisting of (k � 1)–spaces, 2  k  n � 2, such that |C| = M and 8U,U 0 2 C,
U 6= U 0, d(U,U 0) = dim(U + U 0) � dim(U \ U 0) = 2(k � dim(U \ U 0)) � 2� is
denoted by (n,M, 2�; k)q–code.

From a combinatorial point of view an (n,M, 2�; k)q constant–dimension sub-
space code, � > 1, is a collection C of (k � 1)–spaces of PG(n � 1, q) such that
|C| = M and every (k � �)–space of PG(n � 1, q) is contained in at most one
member of C. Equivalently, an (n,M, 2�; k)q constant–dimension subspace code,
� > 1, is a collection C of (k�1)–spaces of PG(n�1, q) such that |C| = M and dis-
tinct members of C pairwise meet in at most a (k���1)–space of PG(n�1, q). (If
� = 1, then every (k� 1)–space can be considered as a member of an (n,M, 2; k)q
constant–dimension code.)

The maximum number of codewords in an (n,M, 2�; k)q–code is denoted by
Aq(n, 2�, k).

As in classical coding theory, in the context of subspace coding theory, the main
problem asks for the determination of the largest sizes of codes for a given di-
mension n and minimum distance and of course the classification of the corre-
sponding optimal codes.

Let C be a constant–dimension code and let ? be a non–degenerate polarity of
PG(n� 1, q). Define C? = {U? | U 2 C}.

Lemma 2.1.4. If C is an (n,M, 2�, k)q constant–dimension code, then C? is an (n,M, 2�, n�
k)q constant–dimension code.
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Proof. Let A,A0 2 C?, A 6= A0, and let U,U 0 2 C such that A = U?, A0 = U 0?.
Then d(A,A0) = d(U?, U 0?) = dim(U? + U 0?) � dim(U? \ U 0?) = dim((U \
U 0)?) � dim((U + U 0)?) = (n � dim(U \ U 0)) � (n � dim(U + U 0)) = dim(U +
U 0)� dim(U \ U 0) = d(U,U 0). ⇤

Corollary 2.1.5. Aq(n, 2�, k) = Aq(n, 2�, n� k).

Definition 2.1.6. A partial (k � 1)–spread S of PG(n � 1, q) is a set of pairwise
disjoint (k � 1)–spaces of PG(n � 1, q) for which any point of PG(n � 1, q) is
contained in at most one member of S . If every point of PG(n� 1, q) is contained
in a member of S , then S is called a (k � 1)–spread.

Spreads and partial spreads are basic concepts which were very well studied
in finite geometry. If � = k, then an (n,M, 2k, k)q constant–dimension code is
nothing else than a (partial) (k � 1)–spread of PG(n � 1, q). Hence Aq(n, 2k, k)
coincides with the size of the largest (partial) (k � 1)–spread of PG(n� 1, q). We
recall some of the most significative known results regarding spreads and partial
spreads in a finite projective space [24].

Theorem 2.1.7 ([33]). A (k � 1)–spread of PG(n � 1, q) exists if and only if n ⌘ 0
(mod k).

Theorem 2.1.8 ([4]). If 1 ⌘ n (mod k) and k � 2, then the largest partial (k � 1)–
spread of PG(n� 1, q) has size q

n�q
k
(q�1)�1

qk�1
.

Theorem 2.1.9 ([30]). Let r ⌘ n (mod k). If k > (qr � 1)/(q � 1), then the largest
partial (k � 1)–spread of PG(n� 1, q) has size q

n�q
k
(q

r�1)�1

qk�1
.

Note that from Theorem 2.1.8, the maximum size of a partial line–spread of
PG(2m, q) equals q

2m+1�q
3
+q

2�1

q2�1
= q2m�1 + q2m�3 + . . . + q5 + q3 + 1. As a con-

sequence of the previous results, we obtain the exact values of the corresponding
Aq(n, 2k, k). In particular:

• Aq(4, 4, 2) = q2 + 1,

• Aq(5, 4, 2) = Aq(5, 4, 3) = q3 + 1,

• Aq(6, 4, 2) = Aq(6, 4, 4) = q4 + q2 + 1,

• Aq(6, 6, 3) = q3 + 1.
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2.2 Planes of PG(5, q) pairwise intersecting in at most a
point

The smallest open case for which the main problem of subspace coding theory
has not yet an exact answer arises when n = 6, k = 3 and � = 2. It asks for the
maximum size M that a (6,M, 4; 3)q constant–dimension code may have. Equiva-
lently it asks for the maximum number of planes of PG(5, q) pairwise intersecting
in at most a point. The following result provides un upper bound on Aq(6, 4, 3).

Lemma 2.2.1. Aq(6, 4, 3)  (q3 + 1)2.

Proof. Let C be the largest set of planes of PG(5, q) such that two distinct planes
of C meet in at most a point. Let P be a point of PG(5, q), let xP be the number
of planes of C through P and let ⇧ be a hyperplane of PG(5, q) not containing P .
Every plane ⇡i of C containing P meets ⇧ in a line, say `i, 1  i  xP . Note that,
if i 6= j, then |`i \ `j | = 0, otherwise ⇡i and ⇡j would share the line joining P and
`i \ `j , a contradiction. Hence `i, 1  i  xP is a partial 1–spread of ⇧ and, from
Theorem 2.1.8, we have that xP  q3 + 1. A standard double counting argument
on couples (P,⇡), where P is a point of PG(5, q), ⇡ is a plane of C and P 2 ⇡,
gives:

|C|(q2 + q + 1)  (q5 + q4 + q3 + q2 + q + 1)(q3 + 1).

The result follows. ⇤

In the remaining part of this section we will give a constructive lower bound on
Aq(6, 4, 3), see [8], [9]. We need the following definition, see also 4.1.

Definition 2.2.2. A projective bundle B of PG(2, q) is a collection of q2 + q + 1
non–degenerate conics of PG(2, q) such that two distinct conics of B intersect in
exactly one point.

Proposition 2.2.3. The incidence structure whose points are the points of PG(2, q) and
whose lines are the conics of a projective bundle B of PG(2, q) is a projective plane.

Proof. Any two distinct points are on at most a conic of B, otherwise we would
have two distinct conics of B sharing two points, a contradiction. Also, every
conic of B determines q(q + 1)/2 couples of distinct points and hence there are
q(q+1)(q2+ q+1)/2 couples of distinct points of PG(2, q) such that each of them
is on a conic of B. On the other hand, there are q(q + 1)(q2 + q + 1)/2 couples of
distinct points in PG(2, q) and hence any two distinct points of PG(2, q) lie on a
conic of B. By definition two distinct conics of B meet in exactly a point and it is
easily seen that there are four points, no three of them on a conic of B. Hence the
result follows from [25, p. 77]. ⇤
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Lemma 2.2.4. Let C and C0 be two distinct conics of B such that C \ C0 = P . Then, the
tangent lines t and t0 to C and C0 at P , respectively, must be distinct.

Proof. Assume by contradiction that t and t0 coincide. Through P there are q + 1
conics of B covering all the points of ⇡. Each of the q � 1 conics of B through P
and distinct from C and C0 meets t in at most one further point other than P . This
means that on t there should be at least one uncovered point, a contradiction. ⇤

Let PG(3, q) be the three–dimensional projective space over GF(q), equipped
with homogeneous projective coordinates (X1, X2, X3, X4). Let ⇡ be a plane of
PG(3, q) and let B be a projective bundle of ⇡. Let G be the stabilizer of ⇡ in
PGL(4, q). Then G is a group isomorphic to q3 : GL(3, q). For instance, if ⇡ has
equation X4 = 0, then the elements of G are associated with the following matri-
ces: 0

BB@
A

a
b
c

0 0 0 1

1

CCA ,

where a, b, c 2 GF(q) and A 2 GL(3, q).

Lemma 2.2.5. The group G has two orbits on hyperbolic quadrics of PG(3, q), according
as ⇡ is a tangent or a secant plane.

Proof. Let Q+(3, q) be a hyperbolic quadric of PG(3, q) and let ? the polarity of
PG(3, q) associated with Q+(3, q). Let GQ+ be the stabilizer of Q+(3, q) in G.
Then GQ+ is the stabilizer of ⇡ in PGO+(4, q), which in turn coincides with the
stabilizer of P in PGO+(4, q), where P = ⇡?. Therefore, either P 2 Q+(3, q),
the plane ⇡ is tangent to Q+(3, q) at P and |GQ+ | = |GP | = 2q2(q � 1)2, or P /2
Q+(3, q), the plane ⇡ is secant to Q+(3, q) and |GQ+ | = |GP | = 2(q3�q). From the
Orbit–Stabilizer Theorem, it follows that under the action of G, there are q4(q +
1)(q3 � 1)/2 hyperbolic quadrics such that ⇡ is tangent and q5(q � 1)(q3 � 1)/2
hyperbolic quadrics such that ⇡ is secant. On the other hand, q4(q+1)(q3�1)/2+
q5(q�1)(q3�1)/2 = q4(q2+1)(q3�1)/2, which is the total number of hyperbolic
quadrics of PG(3, q). ⇤

Lemma 2.2.6. Let C be a non–degenerate conic of ⇡. Then there are q3(q � 1)/2 hyper-
bolic quadrics of PG(3, q) meeting ⇡ in C and they are permuted in a single orbit by the
group GC .

Proof. The number of non–degenerate conics of ⇡ equals q5 � q2 and they are
permuted in a single orbit by the group G. Hence, GC the stabilizer in G of a
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non–degenerate conic C of ⇡ has order q3(q3 � q)(q � 1). Let Q+(3, q) be a hy-
perbolic quadric of PG(3, q) such that Q+(3, q) \ ⇡ = C and let ? the polarity
of PG(3, q) associated with Q+(3, q). The stabilizer of Q+(3, q) in the group GC
is the stabilizer of ⇡ in PGO+(4, q), which in turn coincides with the stabilizer
of P in PGO+(4, q), where P = ⇡?. Therefore it has order 2(q3 � q). From
the Orbit–Stabilizer Theorem, we have that, under the action of GC , the num-
ber of hyperbolic quadrics through the conic C is q3(q � 1)/2. Finally, note that
(q5 � q2)q3(q � 1)/2 is the number of hyperbolic quadrics of PG(3, q) such that ⇡
is secant. ⇤

Let H be the set of all hyperbolic quadrics of PG(3, q) meeting ⇡ in a conic of B.
Taking into account Lemma 2.2.6 and the fact that |B| = q2 + q + 1, we have that
|H| = q3(q � 1)(q2 + q + 1)/2 = (q6 � q3)/2.

Let  be the Klein map between the lines of PG(3, q) and the points of a hyper-
bolic quadric Q+(5, q) of PG(5, q). Let ? be the polarity of PG(5, q) associated
with Q+(5, q). The lines of the plane ⇡ are mapped by  to the points of a Greek
plane, say ↵, of Q+(5, q). The lines of a regulus R of a Q+(3, q) are sent by  to the
points of a non–degenerate conic (R) of Q+(5, q). In particular the plane h(R)i,
containing the conic (R), meets the quadric Q+(5, q) exactly in (R). Therefore,
by applying the Klein map to the q6 � q3 reguli of the quadrics of H, we get a set
of q6 � q3 non–degenerate conics of Q+(5, q). Each of these conics is contained in
a plane. Let X be the set consisting of these q6 � q3 planes of PG(5, q).

X = {h(R)i | R is a regulus of a quadric of H}.

Lemma 2.2.7. If Q1,Q2 2 H are not on the same conic of B, i.e., Qi \ ⇡ = Ci, Ci 2 B,
1  i  2, C1 6= C2. Then

i) |Q1 \Q2| � |C1 \ C2| � 1,

ii) Q1,Q2 can share at most one line in a regulus.

Proof. Assume that a regulus of Q1 shares two lines with a regulus of Q2, then
|C1 \ C2| � 2, a contradiction. On the other hand, |Q1 \Q2| � |C1 \ C2| � 1. ⇤

Lemma 2.2.8. If � 2 X , then |� \ ↵| = 0.

Proof. It is enough to observe that no line contained in a hyperbolic quadric of H
lies on ⇡. ⇤

Proposition 2.2.9. X consists of q6 � q3 planes mutually intersecting in at most one
point.
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Proof. Let �1 and �2 be two distinct planes of X and let R1 and R2 be the two
reguli of quadrics of H such that (Ri) = �i \Q+(5, q), 1  i  2. Let Qi be the
hyperbolic quadric of H containing the regulus Ri, 1  i  2. Assume by contra-
diction that �1\�2 is a line, say `. Then �1 and �2 generate a 3–space, say ⌃. First
of all observe that ⌃ \ Q+(5, q) cannot contain a plane � of Q+(5, q), otherwise
� \ �1 would be a line contained in the non–degenerate conic �1 \ Q+(5, q), a
contradiction. Therefore ⌃ meets Q+(5, q) in either a hyperbolic quadric, or an
elliptic quadric, or a quadratic cone.

We may assume that Q1 6= Q2. Indeed, if Q1 = Q2, then R1 is the opposite
regulus of R2 and hence �2 = �?

1
. In this case �1 and �2 generate a 4–space if q is

even and the whole 5–space if q is odd, a contradiction.

If Q1 and Q2 were on the same conic of B, i.e., Q1 \ ⇡ = Q2 \ ⇡, then Q1 \ Q2

would contain a non–degenerate conic, contradicting Lemma 1.4.6.

Assume that Q1 and Q2 are not on the same conic of B, i.e., Qi \ ⇡ = Ci, Ci 2 B,
1  i  2, C1 6= C2. We consider several cases.

⌃ \Q+(5, q) is a hyperbolic quadric

In this case R1,R2 belong to a hyperbolic congruence and �?
1
\ �?

2
= ⌃? is a

line that is secant to Q+(5, q). Hence the opposite regulus of R1 would share two
lines with the opposite regulus of R2, contradicting Lemma 2.2.7 ii).

⌃ \Q+(5, q) is a quadratic cone

In this case R1,R2 belong to a parabolic congruence with axis r. Each of the lines
of both R1 and R2 intersects r in a point and hence r is a line of the opposite
regulus of both R1 and R2. In particular r ✓ Q1 \Q2 and r \ ⇡ ✓ C1 \ C2. Thus
r \ ⇡ = C1 \ C2 = P . Let `i be the line of Ri through the point P , 1  i  2. Recall
that in a parabolic congruence with axis r there are q + 1 planes on r and each
of them contains (apart from r) other q lines of the congruence forming a pencil
with center on r. This means that r, `1 and `2 are contained in a plane ⇠. Note
that ⇠ is tangent to both Q1 and Q2 at P . Therefore ⇠ \ ⇡ is a line that is tangent
to both C1 and C2 at the point P , contradicting Lemma 2.2.4.

⌃ \Q+(5, q) is an elliptic quadric

In this case R1,R2 belong to an elliptic congruence L (i.e., a regular spread of
PG(3, q)). If ` is secant to Q+(5, q), then the reguli R1 and R2 should share two
lines, contradicting Lemma 2.2.7 ii). If ` is external to Q+(5, q), then R1 and R2
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are disjoint reguli of L. Then |Q1 \ Q2| = 0, contradicting Lemma 2.2.7 i). If
` is tangent to Q+(5, q), then �?

1
\ �?

2
= ⌃? that is a line external to Q+(5, q)

and, since h�?
1
,�?

2
i = `?, the 3–space they generate meets Q+(5, q) in a quadratic

cone. This case has already been considered and the proof is now complete. ⇤

Note that the set X is left invariant by a group of order q6(q � 1)(q2 � 1)(q3 � 1)
isomorphic to G. Let Y be the set of q3 + q2 + q Greek planes of Q+(5, q) distinct
from ↵.

Proposition 2.2.10. X [ Y is a set of q6 + q2 + q planes mutually intersecting in at
most one point.

Proof. If � 2 X , then � \ Q+(5, q) is a non–degenerate conic. Let ⇠ 2 Y . Then
|� \ ⇠|  1. Indeed, otherwise � \ ⇠ should be a line contained in � \Q+(5, q), a
contradiction. On the other hand, if ⇠1, ⇠2 2 Y , ⇠1 6= ⇠2, then |⇠1 \ ⇠2| = 1, since
any two Greek planes share exactly a point. ⇤

Proposition 2.2.11. There exists a family Z of q2+ q+1 planes meeting ↵ in a line and
mutually intersecting in one point.

Proof. Through a line ` of Q+(5, q) there are q � 1 planes of PG(5, q) meeting
Q+(5, q) exactly in `. Let T` be the set consisting of these q � 1 planes. Varying
the line ` over the plane ↵ and choosing one of the planes in T`, for every line of
↵, we get a family Z of q2 + q + 1 planes. Let ⇠1 2 T`1 and ⇠2 2 T`2 be planes of
PG(5, q) meeting ↵ in the lines `1 and `2, respectively, with `1 6= `2. Assume by
contradiction that the planes ⇠1 and ⇠2 share a line. Then they generate a projec-
tive 3–space containing ↵ and therefore another plane ↵0 contained in Q+(5, q). In
particular ↵0 is a Latin plane. This means that ↵0 meets ⇠1, ⇠2 in a line contained
in Q+(5, q) and distinct from `1 and `2, respectively, contradicting the fact that
⇠i \Q+(5, q) = `i, 1  i  2. ⇤

Proposition 2.2.12. X [Y[Z is a set of q6+2q2+2q+1 planes mutually intersecting
in at most one point.

Proof. Let ⌘ 2 X , � 2 Y and ⇠ 2 Z . We need to show that ⌘ \ ⇠ cannot be a line
and � \ ⇠ cannot be a line.

Assume, by contradiction, that ⌘\ ⇠ is a line, say `. If ` = ⇠\↵ then ` is contained
in Q+(5, q) and ` = ⌘ \ ⇠ \ Q+(5, q). In this case the non–degenerate conic ⌘ \
Q+(5, q) contains the line `, a contradiction. If ` 6= ⇠ \ ↵, then ` is a line tangent
to Q+(5, q) at a point P 2 ↵. Hence, in this case the non–degenerate conic ⌘ \
Q+(5, q) contains the point P 2 ↵, contradicting Lemma 2.2.8.
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Assume, by contradiction, that ⇠ \ � is a line, say r. Then r should be contained
in Q+(5, q). But the unique line of ⇠ contained in Q+(5, q) is the line ⇠ \↵. Hence
r = ⇠ \↵ = ⇠ \ �. In particular r = � \↵ and the two Greek planes, ↵ and � have
the line r in common, a contradiction. ⇤

We can summarize the previous results in the following theorem.

Theorem 2.2.13. Any projective bundle of PG(2, q) gives rise to a (6, q6 + 2q2 + 2q +
1, 4; 3)q constant–dimension subspace code.

Corollary 2.2.14. Aq(6, 4, 3) � q6 + 2q2 + 2q + 1.

The exact value of Aq(6, 4, 3) is known only when q = 2: the maximum number
of planes of PG(5, 2) pairwise intersecting in at most a point is 77. In particu-
lar in [23], with the aid of a computer, it has been shown that there are 5 non–
isomorphic examples of (6, 77, 4; 3)2 constant–dimension codes. The code arising
from Proposition 2.2.12 falls in one of these 5 classes and it is optimal when q = 2.
Open Problems 2.2.15. 1) Improve the lower and upper bounds on Aq(6, 4, 3).

2) Determine the exact value of Aq(6, 4, 3) for small q.



Chapter 3

Cameron–Liebler line classes of
PG(3, q)

Here we are concerned with Cameron–Liebler line classes of PG(3, q), see [6, 7].

3.1 Tactical decompositions of PG(3, q)

Let S be the 2–design whose points are the points of PG(3, q) and whose blocks
are the lines of PG(3, q). Let G be a collineation group of PG(3, q), i.e., G 
P�L(4, q). From Lemma 1.2.3, the orbits of G on points and lines of PG(3, q) form
a tactical decomposition V1, . . . ,Vm, B1, . . . ,Bn of S . To avoid obvious cases we
suppose 1 < m < (q + 1)(q2 + 1) and 1 < n < (q2 + 1)(q2 + q + 1). Assume that
there are kij points of Vi on a block of Bj and rij blocks of Bj through a point of
Vi, where 1  i  m and 1  j  n. Recall that

virij = bjkij , (3.1)

where |Vi| = vi and |Bj | = bj , 1  i  m and 1  j  n.

Definition 3.1.1. The m by n matrix K = (kij) is called block tactical decomposition
matrix and the m by n matrix R = (rij) is called point tactical decomposition matrix.

Observe that
mX

i=1

kij = q + 1, for all 1  j  n and
nX

j=1

rij = q2 + q + 1, for all 1  i  m.

141
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Hence
JK = (q + 1)J and RJ = (q2 + q + 1)J , (3.2)

where J denotes the all one matrix. Moreover rank(K) = rank(R) = m.

From Block’s Lemma (Lemma 1.2.7) n � m, i.e., the group G has at least as many
orbits on lines as on points.

Assume that the group G as equally many orbits on lines and points of PG(3, q).
Then the tactical decomposition induced by G is symmetric, that is n = m.

The following are trivial examples of subgroups of P�L(4, q) with equally many
orbits on lines and points of PG(3, q).
Examples 3.1.2. Let P be a point of PG(3, q) and let ⇡ be a plane of PG(3, q) with
P /2 ⇡.

1. If G = StabP�L(4,q)(P ). Then G has two orbits on points of PG(3, q), namely
P and PG(3, q) \ {P}, and two orbits on lines of PG(3, q), namely those
containing P and the complement.

2. If G = StabP�L(4,q)(⇡). Then G has two orbits on points of PG(3, q), namely
⇡ and PG(3, q) \ {⇡}, and two orbits on lines of PG(3, q), namely those
contained in ⇡ and the complement.

3. If G = StabP�L(4,q)({P,⇡}). Then G has three orbits on points of PG(3, q),
namely P , ⇡ and PG(3, q) \ ({P} [ ⇡), and three orbits on lines of PG(3, q),
namely those through P , those contained in ⇡ and their complement.

Let A and B be the following n by n diagonal matrices

A = diag(v1, . . . , vn), B = diag(b1, . . . , bn).

From equations (3.1), we have that

AR = KB. (3.3)

Theorem 3.1.3. A line class Bi of a symmetric tactical decomposition of PG(3, q) has
the following properties:

i)
|Bi| = bi = xi(q

2 + q + 1).

ii)

|{` 2 Bi : |` \m| = 1}| =
(
xi(q + 1) if m /2 Bi

xi(q + 1) + q2 � 1 if m 2 Bi

.
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Proof. Let Q be a fixed point of Vj and let us count the triples (P, `;Q), where
P 2 Vi and P,Q 2 ` 2 Bt. Since through Q there pass rjt lines of Bt and each of
these lines contains kit points of Vi, we have that there are kitrjt of such triples.
Hence for a fixed Q 2 Vj the following relation holds true:

nX

t=1

kitrjt =
nX

t=1

|{(P, `;Q) | P 2 Vi, P,Q 2 ` 2 Bt}| =

=

(
vi if i 6= j

vi � 1 + q2 + q + 1 if i = j
.

Therefore
�
KRt

�
ij
=

nX

t=1

kitrjt =

(
vi if i 6= j

vi + q2 + q if i = j
,

or, equivalently,
KRt = (q2 + q)I +AJ .

In particular taking into account (3.2), (3.3),

KRtK = (q2 + q)IK +AJK = (q2 + q)K + (q + 1)AJ =

= (q2 + q)K +
q + 1

q2 + q + 1
ARJ = (q2 + q)K +

q + 1

q2 + q + 1
KBJ .

Since n = m, the matrix K is invertible (see Corollary 1.2.8) and the previous
equation becomes

RtK = (q2 + q)I +
q + 1

q2 + q + 1
BJ . (3.4)

Since gcd(q + 1, q2 + q + 1) = 1, a first consequence of (3.4) is that

|Bi| = bi = xi(q
2 + q + 1), 1  i  n,

which proves i).

Moreover
�
RtK

�
ij
=

nX

t=1

rtiktj =

(
(q+1)bi

q2+q+1
if i 6= j

(q+1)b1

q2+q+1
+ q2 + q if i = j

.

Let m be a fixed line of Bj and let us count the triples (`, P ;m), where ` 2 Bi and
P 2 ` \m,P 2 Vt. Since in m there are ktj points of Vt and through each of these
points there pass rti lines of Bi, we have that there are rtiktj of such triples. Hence
if i 6= j, then

P
n

t=1
rtiktj counts how many lines of Bi meet a given line of Bj . If

i = j then
P

n

t=1
rtiktj � (q + 1) counts how many lines of Bi meet a given line of

Bi in a point. ⇤

Theorem 3.2 motivates the following definition.



Part III. Chapter 3. Cameron–Liebler line classes of PG(3, q) 144

Definition 3.1.4. A line set L of PG(3, q) is said to be a Cameron–Liebler line class
of PG(3, q) with parameter x if

|{` : ` 2 L, |` \m| > 0}| =
(
x(q + 1) m /2 L
x(q + 1) + q2 m 2 L

.

The complement of a Cameron–Liebler line class with parameter x is a Cameron–
Liebler line class with parameter q2+1�x and the union of two disjoint Cameron–
Liebler line classes with parameters x and y, respectively, is a Cameron–Liebler
line class with parameter x + y. From Examples 3.1.2 there are trivial examples
of symmetric tactical decompositions of PG(3, q) with two or three point and
line classes. Hence there are trivial examples of Cameron–Liebler line classes of
PG(3, q) with parameter 1, 2, q2, q2 � 1.

Remark 3.1.5. It can be seen that a Cameron–Liebler line class with parameter
x = 1 consists of either the set of lines through a point or of the set of lines in a
plane. A Cameron–Liebler line class with parameter x = 2 is the union of the two
previous examples, if the point is not in the plane [7].

Proposition 3.1.6. A Cameron–Liebler line class of PG(3, q) with parameter 2 is not a
line class of a symmetric tactical decomposition of PG(3, q).

Proof. Let P be a point of PG(3, q) and let ⇡ be a plane of PG(3, q) with P /2 ⇡.
Let L be the line set consisting of the lines through P or contained in ⇡. Then
|L| = 2(q2+q+1). Moreover a line ` of PG(3, q) is incident either with 2(q+1)+q2

lines of L or with 2(q + 1) lines of L according as ` 2 L or does not. Therefore L
is a Cameron–Liebler line class of PG(3, q) with parameter 2.

Observe that L cannot arise as a line class of a symmetric tactical decomposi-
tion T of PG(3, q). Otherwise, since P is the unique point of PG(3, q) such that
through P there pass q2 + q + 1 lines of L, then {P} has to form a point class
of T . On the other hand, a line ` of L contains either one point of {P} or none,
according as P 2 ` or P /2 `. Therefore L cannot be a line class of T . ⇤

In [6], the authors stated the following conjectures.

Conjecture 3.1.7. A collineation group of PG(3, q), which has the same number of
point and line orbits either is line transitive, or it is listed in Examples 3.1.2.

Conjecture 3.1.8. Let T be a symmetric tactical decomposition of PG(3, q). Then
T is one of those listed in Examples 3.1.2.

Conjecture 3.1.9. Let L be a Cameron–Liebler line classes of PG(3, q). Then L is
one of those arising from Examples 3.1.2.
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Conjecture 3.1.10 (Weaker Conjecture). In a symmetric tactical decomposition of
PG(3, q) either one of the point classes consists of one point or one of the point
classes is a hyperplane.

Recently Conjecture 3.1.7 has been proved [2], and [7].

Theorem 3.1.11. A collineation group G of PG(d, q) having equally many orbits on
points and lines either

i) stabilizes a hyperplane ⇡ and acts line–transitively on it; or (dually)

ii) fixes a point P and acts line–transitively on the quotient space; or

iii) is line–transitive. In this case three possibilities occur:

a) G contains PSL(d+ 1, q);
b) G = A7  PGL(4, 2),
c) G is the normalizer in PGL(5, 2) of a Singer cyclic group of PG(4, 2).

Remark 3.1.12. Let S be the 2–design whose points are the points of PG(2, q) and
whose blocks are the lines of PG(2, q). Then v = b = q2 + q + 1 and hence
n = m. Therefore in this case any tactical decomposition of S is symmetric. On
the other hand, if S is the 2–design whose points are the points of PG(s, q) and
whose blocks are the lines of PG(s, q), s � 3, and ⌃ is an s0–space of PG(s, q),
s0 � 2, then a symmetric tactical decomposition of S induces a symmetric tactical
decomposition of ⌃.

In [12], the authors provided the first counterexample to Conjecture 3.1.8, see
Remark 3.2.10. Also Conjecture 3.1.9 has been disproved (see Section 3.2), while
Conjecture 3.1.10 is still open.

We conclude this section with the following results on symmetric tactical decom-
positions of PG(3, q) having two or three classes [34] [35].

Theorem 3.1.13. Let T be a symmetric tactical decomposition of PG(3, q) with two
classes. Then either T is one of those listed in Examples 3.1.2 or q is an odd square and
one of the two point classes of T has size either

1 + (q2 + q + 1)(q �pq)� q
p
q

2
or

1 + (q2 + q + 1)(q �pq) + q
p
q

2
.

Theorem 3.1.14. Let T be a symmetric tactical decomposition of PG(3, q) with three
classes such that one point class and one line class consist of all the points and lines of a
plane ⇡. Then either T is one of those listed in Examples 3.1.2 or q is an odd square and
one of the two point classes of T distinct from ⇡ has size

q3 �pq3

2
.
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Using the same techniques the following result on symmetric tactical decompo-
sition of PG(3, q) with four classes can be shown.

Theorem 3.1.15. Let T be a symmetric tactical decomposition of PG(3, q) with four
classes such that one point class and one line class consist of all the points and lines of a
plane ⇡ and one point class and one line class of a point P /2 ⇡ and all the lines through
P . Then q is an odd square and one of the two point classes of T distinct from ⇡ and {P}
has size

q3 � 1

2
.

Open Problems 3.1.16. 1) Prove or disprove the Weaker Conjecture 3.1.10.

2) Provide an upper bound on the number of classes that a symmetric tactical
decomposition may have.

3) Construct new non–trivial symmetric tactical decompositions of PG(3, q).

4) The existence of a structure as indicated in Theorem 3.1.13 would disprove
the Weaker Conjecture. Prove or disprove that a non–trivial symmetric tac-
tical decomposition of PG(3, q) with two classes as indicated in Theorem
3.1.13 exists.

5) Prove or disprove that a non–trivial symmetric tactical decomposition of
PG(3, q) with three classes as indicated in Theorem 3.1.14 exists.

6) Classify the symmetric tactical decomposition of PG(3, q) with four classes
as indicated in Theorem 3.1.15.

7) Investigate symmetric tactical decompositions in other structures, such as
generalized quadrangles and polar spaces.

8) Classify the symmetric tactical decompositions of PG(3, q) for small q.

3.2 Cameron–Liebler line classes of PG(3, q)

Let L be a Cameron–Liebler line class of PG(3, q). The numbers

|{` 2 L : ` ⇢ ⇡}|,⇡ a plane, or |{` 2 L : P 2 `}|, P a point

are the characters of L with respect to line–sets in planes or line–stars of PG(3, q).

Lemma 3.2.1. Let L be a Cameron–Liebler line class of PG(3, q) and let ? be a polarity
of PG(3, q). Then L? = {`? | ` 2 L} is a Cameron–Liebler line class with the same
characters of L.
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Proof. The result easily follows from the fact that two lines `, `0 of PG(3, q) are
incident if and only if `?, `0? are incident. Moreover, since the lines through a
point are mapped by ? to the lines in a plane, it follows that the characters of L
with respect to line–sets in planes are the characters of L? with respect to line–
stars of PG(3, q) and viceversa. ⇤

Definition 3.2.2. Two Cameron–Liebler line classes L,L0 of PG(3, q) are said to
be equivalent or isomorphic if there exists a collineation ↵ of PG(3, q) such that
L↵ = L0 or L↵ = L0?.

Note that isomorphic Cameron–Liebler line classes have the same characters.
The next result mentions some of the characterizations of a Cameron–Liebler line
class of PG(3, q) which have been proved by several authors, see [6, 31].

Theorem 3.2.3. The following properties are equivalent:

• L is a Cameron–Liebler line class of PG(3, q) with parameter x.

• |R \ L| = |Ro \ L| for every regulus R and its opposite Ro.

• |L \ S| = x for every line–spread S .

• |L \ S| = x for every regular line–spread S .

Non–existence results have been proved in [29], [17].

Theorem 3.2.4. Let L be a Cameron–Liebler line class of PG(3, q) with parameter x,
then

• either x  2 or x >
⇣

3

q
q

2
� 2

3

⌘
q;

• the following modular equation has to be satisfied:
✓
x

2

◆
+ c(c� x) ⌘ 0 (mod q + 1),

where c is a character of L.

3.2.1 The Bruen–Drudge’s example

Let q be odd. An elliptic quadric Q�(3, q) of PG(3, q) with orthogonal polarity
? consists of q2 + 1 points no three on a line. Each point of Q�(3, q) lies on q2

secants to Q�(3, q), and on q+1 tangent lines. The lines that are tangent to a point
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P 2 Q�(3, q) are contained in the plane P? and pass through P . A plane ⇡ = P?

of PG(3, q) is either secant to Q�(3, q) and ⇡ \Q�(3, q) is a non–degenerate conic
(in this case P /2 ⇡) or it is tangent to Q�(3, q) and meets Q�(3, q) in the point P .
The stabilizer of Q�(3, q) in PGL(4, q) is denoted by PGO�(4, q) and has order
2(q6 � q2). The group PGO�(4, q) and has a subgroup of index two isomorphic
to PGL(2, q2), which in turn contains a subgroup of index two isomorphic to
PSL(2, q2).

In [5] Bruen and Drudge found an infinite family of Cameron–Liebler line classes
with parameter x = (q2 + 1)/2, q odd. Bruen–Drudge’s example admits a group
isomorphic to PSL(2, q2), stabilizing an elliptic quadric Q�(3, q) of PG(3, q), as
an automorphism group.

Let Q+(3, q2) be the hyperbolic quadric of PG(3, q2) having equation X1X4 �
X2X3 = 0. Recall that if Pi = (xi, yi) 2 PG(1, q2), 1  i  2, then P1 ⌦ P2 =
(x1, y1)⌦ (x2, y2) = (x1x2, x1y2, y1x2, y1y2) is a point of Q+(3, q2) and

Q+(3, q2) = {P1 ⌦ P2 | P1, P2 2 PG(1, q2)}.

Consider the following subset of points of Q+(3, q)

E = {P ⌦ P q | P 2 PG(1, q2)} =

= {(xq+1, xyq, xqy, yq+1) | x, y 2 GF(q2), (x, y) 6= (0, 0)} =

= {(1, z, zq, zq+1) | z 2 GF(q2)} [ {(0, 0, 0, 1)}.

Then E ⇢ ⌃ = {(u, z, zq, v) | u, v 2 GF(q), z 2 GF(q2), (u, v, z) 6= (0, 0, 0)}.

Proposition 3.2.5. E is an elliptic quadric Q�(3, q) of the Baer subgeometry ⌃ '
PG(3, q).

Proof. Let ↵ 2 GF(q) such that X2 + ↵ = 0 is irreducible over GF(q). Let i 2
GF(q2) such that i2 + ↵ = 0. Since i(iq + i) = iq+1 + i2 = iq+1 � ↵ 2 GF(q),
then necessarily iq + i = 0. Let GF(q2) = GF(q)[i]. Hence if z 2 GF(q2), then
z = a + ib, zq = a � ib and zq+1 = a2 + ↵b2, where a, b 2 GF(q). Let ' be the
projectivity of PG(3, q2) associated with the matrix

0

BB@

0 1/2i �1/2i 0
0 1/2 1/2 0
0 0 0 1
1 0 0 0

1

CCA

If P = (u, z, zq, v) and z = a+ ib, then P' = (b, a, v, u). Therefore

⌃' = {(b, a, v, u) | a, b, u, v 2 GF(q), (b, a, v, u) 6= (0, 0, 0, 0)} = PG(3, q)
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and
E' = {(b, a, a2 + ↵b2, 1) | a, b 2 GF(q2)} [ {(0, 0, 1, 0)},

that is the elliptic quadric Q�(3, q) of PG(3, q) satisfying ↵X2
1
+X2

2
�X3X4 = 0.

⇤

Let G be the subgroup of index two of PGO�(4, q), stabilizing E . It is easily seen
that a projectivity of G is associated with a matrix

M ⌦M q =

✓
a b
c d

◆
⌦
✓
aq bq

cq dq

◆
=

0

BB@

aq+1 abq baq bq+1

acq adq bcq bdq

caq cbq daq dbq

cq+1 cdq dcq dq+1

1

CCA , (3.5)

where a, b, c, d 2 GF(q2), with ad� bc 6= 0.

Let K the subgroup of index two of G whose elements are associated with a
matrix M ⌦M q, where M 2 SL(2, q2), i.e., det(M) = 1. Then |K| = (q6 � q2)/2.

Proposition 3.2.6. The group K has three orbits on points of ⌃: the points of E and
other two orbits Os and On of size q2(q2 + 1)/2.

Proof. Let ⇠ be the projectivity of K ' PSL(2, q2) associated with the matrix M ⌦
M q as indicated in (3.5), where det(M) = 1.

Let U1 = (1, 0, 0, 0) 2 Q�(3, q). Then U ⇠

1
= U1 if and only if c = 0. Indeed, every

projectivity associated with
✓
a b
0 d

◆
⌦
✓
aq bq

0 dq

◆
, a, b, d 2 GF(q), ad = 1, i.e. d = a�1

fixes U1. Since the couples (a, b) and (�a,�b) determine the same projectivity ⇠,
we have that |StabK(U1)| = q2(q2 � 1)/2. Hence |UK

1
| = q2 + 1 = |E|.

Let v 2 GF(q) \ {0} and let P = (1, 0, 0, v) 2 PG(3, q) \ Q�(3, q). Then P ⇠ = P if
and only if acq + vbdq = 0 and aq+1 + vbq+1 = v�1cq+1 + dq+1 if and only if

✓
a b
c d

◆✓
aq cq

vbq vdq

◆
=

✓
� 0
0 �v

◆
,

where � = aq+1 + vbq+1. Taking the determinants in the previous equation we
get � = ±1. Then we have that

✓
a b
c d

◆
=

✓
�dq ��

v
cq

��vbq �aq

◆
,
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that is equivalent to c = �vbq, d = �aq. Hence ⇠ is induced by M ⌦M q, where
either

M =

✓
a b
�vbq aq

◆
, a, b 2 GF(q2), aq+1 � vbq+1 = 1,

or

M =

✓
a b
vbq �aq

◆
, a, b 2 GF(q2), aq+1 + vbq+1 = �1.

Since the couples (a, b) and (�a,�b) determine the same projectivity ⇠, it follows
that ⇠ can be chosen in q3 � q ways. Hence |StabK(P )| = q(q2 � 1) and |PK | =
(q3 + q)/2. ⇤

Remark 3.2.7. If P = (1, 0, 0, v) 2 PG(3, q) \ Q�(3, q), v 2 GF(q) \ {0}, then
P ⇠ = (aq+1+vbq+1, acq+vbdq, caq+vdbq, cq+1+vdq+1). Let Q be the quadratic form
associated to E , note that Q(P ⇠) is a square or a non–square in GF(q) according
as Q(P ) is a square or a non–square in GF(q).

The two orbits Os, On correspond to points of PG(3, q) such that the evaluation
of the quadratic form associated to E is a square or a non–square in GF(q), re-
spectively.

Proposition 3.2.8. i) The group K has four orbits on lines of ⌃: two orbits, say L1

and L2, both of size (q + 1)(q2 + 1)/2, consisting of lines tangent to E and two
orbits, say L3 and L4, both of size q2(q2 + 1)/2 consisting of lines secant and
external to E , respectively.

ii) A line of L1 (L2) contains q points of Os (On), a secant line to E contains (q�1)/2
points of Os and (q�1)/2 points of On and an external line to E contains (q+1)/2
points of Os and (q + 1)/2 points of On.

Proof. Let ` be a line of ⌃ and let ⇠ be the projectivity of K ' PSL(2, q2) associated
with the matrix M ⌦M q as indicated in (3.5), where det(M) = 1.

If ` is given by zX3 � zqX2 = 0, for some z 2 GF(q2) \ {0}, then ` is tangent to
E at the point U1 = (1, 0, 0, 0). Varying u 2 GF(q), T = (u, z, zq, 0) is a point of `
distinct from U1. In order to fix `, the projectivity ⇠ has to fix ` \ E = U1. Hence
c = 0 and a = 1/d. Straightforward calculations show that T ⇠ belongs to ` if
and only if d2 = d2q, that is d2 2 GF(q) \ {0}. There are 2(q � 1) elements d in
GF(q2) \ {0} such that d2 2 GF(q) \ {0}. However if d has this property also �d
has this property but they determine the same projectivity ⇠. On the other hand
b can be chosen arbitrarily in GF(q2) and ⇠ is induced by

✓
1/d b
0 d

◆
⌦
✓
1/dq bq

0 dq

◆
, b, d 2 GF(q), d2 2 GF(q) \ {0}.



Part III. Chapter 3. Cameron–Liebler line classes of PG(3, q) 151

Therefore |StabK(`)| = q2(q � 1) and |`K | = (q + 1)(q2 + 1)/2. Note that Q(T ) =
�zq+1 and hence T 2 Os or T 2 On according as �zq+1 is a square or a non–
square in GF(q). Then either ` contains q points of Os or q points of On.

Let ` be the secant line to E given by X2 = X3 = 0. Here ` \ E = {U1 =
(1, 0, 0, 0), U4 = (0, 0, 0, 1)}. Varying u, v 2 GF(q), (u, v) 6= (0, 0), the point
T = (u, 0, 0, v) belongs to `. Some calculations show that T ⇠ belongs to ` if and
only if uacq + vbdq = 0. Then two possibilities arise: either c = 0, which implies
b = 0, a, d 6= 0, a = 1/d, or c 6= 0 and then a = d = 0, b 6= 0, b = �1/c. In the
former case ⇠ is induced by

✓
1/d 0
0 d

◆
⌦

✓
1/dq 0
0 dq

◆
, d 2 GF(q2) \ {0}.

Note that d and�d determine the same projectivity and hence there are (q2�1)/2
projectivities arising in this way. In the latter case ⇠ is induced by

✓
0 �1/c
c 0

◆
⌦

✓
0 �1/cq
cq 0

◆
, c 2 GF(q2) \ {0}.

Again c and �c determine the same projectivity and hence there are (q2 � 1)/2
projectivities arising in this way. Hence |StabK(`)| = q2�1 and |`K | = q2(q2+1)/2
that is the total number of secant lines to E . On the other hand `? is a line external
to E and hence K has a unique orbit on external lines to E as well. Finally observe
that if T 2 ` \ E , then Q(T ) = uv 2 GF(q) \ {0}. Therefore {Q(T ) | T 2 ` \ E} =
GF(q) \ {0} and ` contains (q � 1)/2 points of both Os and On. ⇤

The block–tactical decomposition matrix for this orbit decomposition is

K =

2

664

L1 L2 L3 L4

E 1 1 2 0
On q 0 q�1

2

q+1

2

Os 0 q q�1

2

q+1

2

3

775 , (3.6)

and hence the point–tactical decomposition matrix is

R =

2

6664

L1 L2 L3 L4

E q+1

2

q+1

2
q2 0

On q + 1 0 q(q�1)

2

q(q+1)

2

Os 0 q + 1 q(q�1)

2

q(q+1)

2

3

7775
. (3.7)

From the orbit–decompositions above it is an easy matter to prove that gluing to-
gether one set among L1, L2 and one set among L3, L4, an example of Cameron–
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Liebler line class is obtained. This is the Cameron–Liebler line class constructed
in [5].

Theorem 3.2.9. Gluing together one set among L1, L2 and one set among L3, L4, a
Cameron–Liebler line class of PG(3, q) is obtained.

Proof. Consider the line–set L1[L3. The other cases are similar. From the first and
third column of the matrix 3.6, a line of L1 in incident with one point of E and q
points of On, whereas a line of L3 shares 2 points with E and (q�1)/2 points with
both Os and On. On the other hand, from the first and third column of the matrix
3.7 there are (q+1)/2 lines of L1 though a point of E and q+1 lines of L1 through
a point of On, while there are q2 lines of L3 through a point of E and q(q � 1)/2
lines of L3 through a point of On or of Os. Hence there are (q� 1)/2+ q2+1 lines
of L1 meeting a given line of L1 and q2 + q2(q � 1)/2 lines of L3 incident with a
given line of L1. Analogously there are 2(q + 1)/2 + (q � 1)/2(q + 1) lines of L1

incident with a given line of L3 and 2(q2 � 1) + 2(q � 1)/2 (q(q � 1)/2� 1) + 1
lines of L3 meeting a given line of L3. Therefore there are

q + 1 +
q2 � 1

2
+ 2(q2 � 1) +

q(q � 1)2

2
� (q � 1) + 1 =

= q2 +
q + 1

2
+ q2 +

q2(q � 1)

2
=

(q + 1)(q2 + 1)

2
+ q2

lines of L1 [ L3 incident with a line of L1 [ L3.

Similarly, from the second and fourth column of the matrix 3.6 a line of L2 in
incident with one point of E and q points of Os, whereas a line of L4 shares (q +
1)/2 points with both Os and On. Hence there are (q + 1)/2 lines of L1 meeting a
given line of L2 and q2 + q2(q � 1)/2 lines of L3 incident with a given line of L2.
Analogously there are (q+1)/2(q+1) lines of L1 incident with a given line of L4

and 2(q + 1)/2q(q � 1)/2 lines of L3 meeting a given line of L4. Therefore there
are

q + 1

2
(q + 1) +

q(q2 � 1)

2
= q + 1 + q2 +

q2(q � 1)

2
=

(q + 1)(q2 + 1)

2

lines of L1 [ L3 incident with a line of L2 [ L4 ⇤

3.2.2 The known examples of Cameron–Liebler line classes of PG(3, q)

Up to date, the following infinite families of Cameron–Liebler line classes with
parameter x are known.
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1) The Bruen–Drudge’s family [5], admitting the group K ' PSL(2, q2) stabi-
lizing an elliptic quadric Q�(3, q) of PG(3, q), q odd.

In particular, if Li = L2[L4, then Li has the following three characters with
respect to line–sets in planes of PG(3, q):

q2 + q

2
� q,

q2 + q

2
+ 1, q2 +

q + 1

2
,

and
q + 1

2
,
q2 + q

2
,
q2 + q

2
+ q + 1,

with respect to line–stars of PG(3, q).

2) The first family derived from Bruen–Drudge [8], [16], admitting the stabi-
lizer K 0 of a point of Q�(3, q) in K, q � 5 odd.

Consider a point R of Q�(3, q) and let ⇢ be the tangent plane to Q�(3, q)
at the point R. Let Lii be the line–set of PG(3, q) obtained from Li, by
replacing the q2 lines of L4 contained in ⇢ with the q2 lines of L3 passing
through R. Then Lii is again a Cameron–Liebler line class with parameter
(q2 + 1)/2. In particular, Lii has the following five characters with respect
to line–sets in planes of PG(3, q):

q + 1

2
,
q2 + q

2
� (q + 1),

q2 + q

2
,
q2 + q

2
+ q + 1, q2 +

q � 1

2
,

and
q + 3

2
,
q2 + q

2
� q,

q2 + q

2
+ 1,

q2 + q

2
+ q + 2, q2 +

q + 1

2
,

with respect to line–stars of PG(3, q). It turns out that, if q > 3, these charac-
ters are distinct from those of a Bruen–Drudge Cameron–Liebler line class.

3) The second family derived from Bruen–Drudge [10], say Liii, admitting a
subgroup of K 0 of order q2(q + 1), q � 7 odd.

Here the existence of a pencil of elliptic quadrics fixed by a subgroup of K 0

of order q2(q + 1) plays a crucial role and the derivation is similar to the
previous example with a more restrictive selection of tangent lines to the
elliptic quadrics of the pencil. The characters of the Cameron–Liebler line
class Liii with respect to line–sets in planes of PG(3, q) form a subset of:

⇢
q2 +

q + 1

2
, q2 � 3(q + 1)

2
,
q2 + q

2
+ 2q + 3,

q2 + q

2
+ q + 2,

q2 + q

2
+ 1,

q2 + q

2
� q,

q2 + q

2
� 2q � 1,

q2 + q

2
� 2(q + 1)

�
,
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and with respect to line–stars of PG(3, q) form a subset of:
⇢
q + 1

2
,
5(q + 1)

2
,
q2 + q

2
� 2(q + 1),

q2 + q

2
� (q + 1),

q2 + q

2
,
q2 + q

2
+ q + 1,

q2 + q

2
+ 2(q + 1),

q2 + q

2
+ 3(q + 1)

�
.

4) The third family derived from Bruen–Drudge [11], say Liv, admitting an
automorphism group isomorphic to PGL(2, q), q ⌘ 1 (mod 4), q � 9 odd.
The characters of Liv, with respect to line–stars of PG(3, q) are:

q + 1

2
,
q2 + q

2
� 2(q + 1),

q2 + q

2
� (q + 1),

q2 + q

2
,
q2 + q

2
+ q + 1, q2 � q + 3

2
,

whereas the characters of Liv, with respect to line–sets in planes of PG(3, q)
are:

3q + 5

2
,
q2 + q

2
� q,

q2 + q

2
+ 1,

q2 + q

2
+ q + 2,

q2 + q

2
+ 2q + 3, q2 +

q + 1

2
.

5) The “cyclic” family [12], [14], admitting a group of order 3(q � 1)(q2 + q +
1)/2, q ⌘ 5 or 9 (mod 12).

Infinite families of Cameron–Liebler line classes with parameter (q2 � 1)/2
were found for q ⌘ 5 or 9 (mod 12) in [12], [14]. By construction, for a line
class X of such a family there is a fixed plane ⇧ and a fixed point z 62 ⇧ such
that X never contains the lines Y of the plane ⇧ and the lines Z through the
point z. Therefore, X [Y and X [Z are both examples of Cameron–Liebler
line classes with parameter (q2 + 1)/2 and X [ Y [Z is a Cameron–Liebler
line class with parameter (q2+3)/2. In particular the examples X [Y , X [Z
and X [ Y [ Z admit q2 + q + 1 as a character.

It should be noted that there are other sporadic constructions of Cameron–Liebler
line classes of PG(3, q):

• a Cameron–Liebler line class of PG(3, 4) with parameter 7 [18];

• a Cameron–Liebler line class of PG(3, 5) with parameter 10, [17];

• Cameron–Liebler line class of PG(3, q) with parameter (q+1)
2

3
, q ⌘ 2 (mod 3),

q < 150, [32].

Finally, Cameron–Liebler line classes have been classified in PG(3, q), q = 2, 3, 4, 5,
see [15].
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Remark 3.2.10. In [12], the authors studied the action of a group G of order (q �
1)(q2 + q + 1)/4 fixing a plane ⇧ and a point z /2 ⇧. If q ⌘ 5 or 9 (mod 12), the
group G in its action on lines stabilizes a partition into four disjoint Cameron–
Liebler line classes consisting of Y the line set of ⇧, Z the lines through z, L1 and
L2 both having parameter (q2�1)/2; in its action on points of PG(3, q)\ ({z}[⇧)
the group G has 4 orbits. Moreover, if q ⌘ 9 (mod 12), i.e. q = 32h, then through
a point of PG(3, q) \ ({z}[⇧) there pass either (q+1)(q�pq) or (q+1)(q+

p
q)

lines of L1. Hence there exists a non–trivial tactical decomposition of PG(3, q)
with four point and line classes.
Open Problems 3.2.11. 1) Construct new examples of Cameron–Liebler line classes.

2) Determine new values of x for which a Cameron–Liebler line class of PG(3, q)
with parameter x cannot exist.
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Chapter 4

Appendix

4.1 The known bundles of PG(2, q)

The pencil of quadrics of PG(n, q) generated by two quadrics with equations F =
0 and F 0 = 0, respectively, is the set of quadrics defined by �F + µF 0, where
�, µ 2 GF(q), (�, µ) 6= (0, 0). A linear system of quadrics of PG(n, q) is a collection
B of quadrics of PG(n, q) such that the pencil generated by two quadrics of B is
contained in B.

A cyclic group of PGL(3, q) permuting points (lines) of PG(2, q) in a single orbit
is called a Singer cyclic group of PGL(3, q). A generator of a Singer cyclic group is
called a Singer cycle. See [20].

A projective bundle of PG(2, q) is a family of q2 + q + 1 non–degenerate conics of
PG(2, q) mutually intersecting in a point. In other words, the conics in a pro-
jective bundle play the role of lines in PG(2, q), i.e., it is a model of projective
plane (see Proposition 2.2.3). Let ⇡ be the projective plane PG(2, q). Embed ⇡
into ⇧ = PG(2, q3), and let ⌧ be the period 3 collineation of ⇧ fixing pointwise ⇡.
Let us fix a triangle � of vertices P , P ⌧ , P ⌧

2 in ⇧. Up to date, the known types of
projective bundles are as follows:

1. circumscribed bundle consisting of all conics of ⇡ that extended over GF(q3)
contain the vertices of �. This exists for all q;

2. inscribed bundle consisting of all conics of ⇡ that extended over GF(q3) are
tangent to the three sides of �. This exists for all odd q;

157
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3. self–polar bundle consisting of all conics of ⇡ that extended over GF(q3) ad-
mit � as a self–polar triangle. This exists for all odd q.

Since the triangle � is fixed by a Singer cyclic group of PGL(3, q), we may con-
clude that all these projective bundles are invariant under a Singer cyclic group
of PGL(3, q). The first and third types are linear systems of conics, whereas the
inscribed bundle is not a linear system. For more details on projective bundles,
see [3] and references therein.

4.2 The circumscribed bundle of PG(2, q)

In this section we describe in more details the circumscribed bundle of PG(2, q).
Let ⇡ be a subplane isomorphic to PG(2, q). Embed ⇡ into ⇧ = PG(2, q3), and let
⌧ be the period 3 collineation of ⇧ fixing pointwise ⇡.

Let G be the group of collineations of ⇧ stabilizing ⇡. The group G has three
orbits on points of ⇧:

• O1 consisting of the q2 + q + 1 points of ⇡;

• O2 consisting of the q(q2 � 1)(q2 + q + 1) points of ⇧ \ ⇡ lying on the lines
of ⇧ arising from sublines of ⇡;

• O3 consisting of the q3(q2 � 1)(q � 1) points of their complement.

Hence line set of ⇧ is partitioned into three G–orbits corresponding to sublines
of ⇡, lines meeting ⇡ in a point and lines external to ⇡. Observe that ⌧  G fixes
pointwise O1 and induces a partition of both O2 and O3 into subsets of points of
size three. Each of these subsets has three collinear points or a triangle according
as it is contained in O2 or in O3, respectively.

Lemma 4.2.1. [20, Corollary 7.5] In a Desarguesian projective plane there exists a
unique non–degenerate conic containing five points, no three of them are on a line.

Lemma 4.2.2. Let C̄ be a non–degenerate conic of ⇧. Then C̄ \ ⇡ is a non–degenerate
conic of ⇡ if and only if C̄ is fixed by ⌧ .

Proof. Let C̄ be a non–degenerate conic of ⇧ and let C = C̄ \ ⇡. If C is a non–
degenerate conic of ⇡ and q � 4, then ⌧ has to fix C̄, otherwise C ✓ C̄⌧ \ C̄ and
|C| � 5, contradicting Lemma 4.2.1. Some computations show that the result
holds true also if q = 2, 3.
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Viceversa, let ⇡ = PG(2, q). Then ⌧ is the collineation of order 3 of ⇧ given by

X 0
1 = Xq

1
, X 0

2 = Xq

2
, X 0

3 = Xq

3
.

If C̄ is given by
3X

i,j=1,ij

aijXiXj = 0,

where aij 2 GF(q3). Moreover C̄⌧ is given by

3X

i,j=1,ij

aq
ij
XiXj = 0.

Since C̄ = C̄⌧ , we have that there exists � 2 GF(q3) \ {0} such that aij = �aq
ij

, for
all i, j. Of course there exists at one among the aij which is not zero. Thus we
may assume that such an aij equals 1 and hence � = 1 and aij 2 GF(q), for all
i, j. This means that C̄ \ PG(2, q) = C is a conic of PG(2, q). ⇤

Let � = {U1, U2, U3} be a triangle consisting of points of O3 left invariant by ⌧ .
Assume that U ⌧

1
= U2, U ⌧

2
= U3 and U ⌧

3
= U1. Note that a line ` joining two

points of � has the property that ` \ `⌧ 2 � and hence has to be disjoint from
⇡, otherwise ` \ `⌧ 2 ⇡, a contradiction. Therefore, if P, T are two distinct points
of ⇡, then {U1, U2, U3, P, T} is a set of five points of ⇧ no three of them on a line.
From Lemma 4.2.1 there is a unique conic C̄ of ⇧ containing these five points. We
claim that C̄ is fixed by ⌧ . Indeed, assume by contradiction that C̄⌧ 6= C̄, then
{U1, U2, U3, P, T} ✓ C̄⌧ \ C̄, contradicting Lemma 4.2.1.

For any two distinct points P, T of ⇡ consider the conic of ⇧ containing {U1, U2, U3, P, T}.
Hence there are �

q
2
+q+1

2

�
�
q+1

2

� = q2 + q + 1

conics of ⇧ arising in this way. From Lemma 4.2.2, each of these q2 + q+ 1 conics
of ⇧ meets ⇡ in a non–degenerate conic of ⇡. Let B denote the q2 + q + 1 conics
of ⇡ so obtained. For a fixed point P 2 ⇡, let us count in two ways the couples
(T, C) where C is a conic of B such that P 2 C and T is a point of ⇡ \{P} such that
T 2 C; then

q2 + q = qr,

where x denotes the number of conics of B through P . Hence r = q + 1. As a
consequence two distinct conics of B meet in exactly one point, i.e., B is a bundle
of PG(2, q).
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In terms of coordinates, in PG(2, q3) let ⇡ be the set consisting of the points
(x, xq, xq

2
), where x 2 GF(q3) \ {0}. If ! is a primitive element of GF(q3), then

the projectivity of PG(2, q3) associated with the matrix
0

@
1 1 1

! !q !q
2

!2 !2q !2q
2

1

A

maps ⇡ to the canonical subplane of PG(2, q3). Hence ⇡ is a subplane of PG(2, q3)
isomorphic to PG(2, q). Let ⌧ be the collineation of order 3 of PG(2, q3) given by

X 0
1 = Xq

3
, X 0

2 = Xq

1
, X 0

3 = Xq

2
.

It is easily seen that a point P of PG(2, q3) is fixed by ⌧ if and only if P be-
longs to ⇡. Let � denote the h⌧i–orbit triangle consisting of U1 = (1, 0, 0), U2 =
(0, 1, 0), U3 = (0, 0, 1).

Let a 2 GF(q3) \ {0} and let Qa be the non–degenerate conic of PG(2, q3) given
by

aX1X2 + aqX1X3 + aq
2
X2X3 = 0.

Straightforward computations show that Qa is fixed by ⌧ and that � ⇢ Qa, for
all a 2 GF(q3) \ {0}. Therefore

B = {Qa | a 2 GF(q3) \ {0}}

is the circumscribed bundle of ⇡.
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Preface

These lectures notes serve as an introduction to the theory of linear sets. Since
their formal introduction almost 20 years ago, a large amount of material has
been published either using linear sets or about linear sets themselves. The ex-
cellent survey on linear sets and their applications by O. Polverino [60] deserves
a special mention here.

Most of these papers deal with the applications of linear sets to a variety of geo-
metrical problems. Depending on the problem, a different point of view on linear
sets may be used. In an attempt to unify these different approaches, these lecture
notes mostly focus on the different definitions, points of view and notations that
are in use. We hope that this helps students and researchers to feel more at ease
when encountering linear sets. The material in these notes are only partly new.
The majority has been taken from various sources, in particular [17, 18, 19, 45]. Of
course, there is much more that can be said and done. Even though they provide
(way) too much material to be covered in this summer school, these lecture notes
are in no way complete!

In the first section, the concept of field reduction will be introduced. We will see
how this way to think about Desarguesian spreads fits in with the more classical
approach using indicator sets. In Section 2, we come to the definition of a linear
set and navigate between different equivalent views, from a purely geometric one
to a more algebraic one. In Section 3, we will continue down the algebraic path
and link linear sets with linearised polynomials and the direction problem. In
Section 4, we will see some applications of linear sets to blocking sets, hyperovals
and KM-arcs.

The last section contains some open research problems for which all the necessary
background is covered in these lecture notes. It would be great if the lectures are
an incentive for participants to tackle some of these problems – I would love to

167
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see some of them solved in the near future!

Geertrui Van de Voorde, Christchurch, May 2019



Chapter 1

Field reduction and Desarguesian
spreads

1.1 Some basics of (finite) fields

Let q = ph, p prime, h � 1. Up to isomorphism, there is a unique finite field of
order q, denoted by Fq (or GF(q)). This field can be constructed as follows:

Fq
⇠= Zp[X]/(f(X)),

where f is a monic irreducible polynomial of degree h.

Example 1.1.1. We can construct F16 = F24 as

Z2[X]/(X4 +X + 1).

Hence, the elements are cosets of polynomials and can be represented by their
coset leaders

0, 1, X,X + 1, X2, X2 + 1, X2 +X,X2 +X + 1,

X3, X3+1, X3+X,X3+X+1, X3+X2, X3+X2+1, X3+X2+X,X3+X2+X+1.

Addition of two elements of F16 is executed in Z2[X], e.g.

(X3 +X2 +X) + (X + 1) = X3 +X2 + 1.

Obviously, the symbol X may now be replaced by any other symbol. We see that
F16 forms a 4-dimensional vector space over Z2.

169
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Let ! be a root of the polynomial X4 +X + 1, then we have that

!0 = 1,!1 = !,!2 = !2,!3 = !3,!4 = ! + 1,!5 = !2 + !,

!6 = !3 + !2,!7 = !3 + ! + 1,!8 = !2 + 1,!9 = !3 + !,!10 = !2 + ! + 1,

!11 = !3 + !2 + !,!12 = !3 + !2 + ! + 1,!13 = !3 + !2 + 1,!14 = !3 + 1,

We see that all elements of F⇤
16

are obtained by the first 15 powers of the element
! (!15 = 1). The elements of F⇤

16
thus form a cyclic group, generated by !. Such

an element ! is called a primitive element.

The behaviour seen in the previous example extends to general finite fields. The
main properties are stated in the following result.
Result 1.1.2. Let q = ph, p prime.

1. Fp
⇠= Zp

2. pa = 0 for all a 2 Fq, where pa = a+ a+ . . .+ a| {z }
p times

3. The q � 1 non-zero elements of Fq satisfy

xq�1 = 1.

4. The multiplicative group of Fq is cyclic. Thus Fq contains an element !,
(called a primitive element or generator of Fq), such that

!,!2, . . . ,!q�1

are the q � 1 non-zero elements of Fq.
5. Every automorphism of Fq is of the form x 7! xp

r for some 0  r  h � 1.
In particular,

(a+ b)p = ap + bp.

6. For each divisor r of h, Fph has a unique subfield of order pr. Furthermore,
these are the only subfields of Fph .

We have seen that F16 is 4-dimensional over its prime field Z2 (the prime field of
a field is the intersection of all its subfields). But it is not hard to see that a finite
field is a vector space over all its subfields. More precisely, we have the following
result.
Result 1.1.3. The field Fqt is a t-dimensional vector space over Fq. Moreover, there
exists an element � 2 Fqt such that

S = {�,�q,�q
2
, . . . ,�q

t�1}

forms a basis for Fqt over Fq. Such an element � is called a normal element and
the set S is called a normal basis of Fqt over Fq.
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Exercise 1.1.4. Let F4 = {0, 1,↵,↵+ 1}.

(i) Show that ↵2 = ↵+ 1.

(ii) Construct F24 as F4[X]/(X2 + 1) (write down the elements).

(iii) Find a normal basis for F16 over F4.

(iv) Find a normal basis for F16 over F2.

1.2 Field reduction

Consider the r-dimensional vector space over the finite field Fq0 . This vector
space is usually denoted by Fr

q0
and consists of all vectors of length r with entries

in Fq0 . The projective space PG(r � 1, q0) can be obtained as the quotient space

(Fr

q0
)⇤/ ⇠

where (x0, . . . , xr�1) ⇠ (y0, . . . , yr�1) if and only if

(x0, . . . , xr�1) = ↵(y0, . . . , yr�1)

for some ↵ 2 F⇤
q0

.

A k-dimensional subspace of Fr
q0

corresponds to a (projective) subspace of PG(r�
1, q0) which has dimension (k � 1). Projective subspaces of dimension 0,1, and 2
are called points, lines and planes respectively. A projective subspace of dimension
(r � 2) is called a hyperplane.

We see that a point P of PG(r � 1, q0) corresponds to a 1-dimensional subspace
of Fr

q0
, consisting of a set of vectors

Sv := {↵v | ↵ 2 Fq0}.

We will often denote this as P = hviq0 , indicating that P is defined by the vector
v, and that all Fq0 multiples of v give rise to the same point in PG(r � 1, q0).

We will now take the field Fqt for Fq0 . We will consider Fr

qt
as a vector space V

over Fq, which can more formally be done as in the following lemma.
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Lemma 1.2.1. Let V be the set of vectors of Fr

qt
. Consider the usual addition on V but

define scalar multiplication of vectors in V only with elements of Fq. Then V is a vector
space over Fq of dimension rt. Moreover, the set of vectors in Sv forms a t-dimensional
subspace of V .

Proof. Since (Fr

qt
,+) is an abelian group, so is V,+. The axioms for associativity

of scalar multiplication, distributivity of scalar sums and distributivity of vector
sums follow directly from the fact that Fr

qt
is a vector space over Fqt and these

operations are internal in Fq (restricting the scalars to elements of Fq doesn’t affect
these properties). Finally, since 1 is contained in the subfield Fq, we have an
identity element for the scalar multiplication in Fq. It follows that V is an Fq-
vector space. Since it contains (qt)r = qrt elements, V is rt-dimensional over
Fq.

The vectors in Sv are the vectors in V of the form ↵v, ↵ 2 Fqt . Let ↵1v and ↵2v
be elements of Sv , then for all �1,�2 2 Fq, we have that �1(↵1v) + �2(↵2v) =
(�1↵1 + �2↵2)v 2 Sv. We conclude that Sv is a subspace of V (over Fq). Since Sv

contains qt vectors, it is has dimension t. ⇤

Let P be a point in PG(V ) = PG(r � 1, qt) then

P = (x1, . . . , xr)qt = hviqt

where v 2 V . The notation (x1, . . . , xr)qt , or hviqt explicitely indicates that all
Fqt-multiples of the vector v = (x1, . . . , xr) of V define the same projective point,
i.e.

(x1, . . . , xr)qt = hviqt = h↵viqt ,

for ↵ 2 Fqt . In the above case, V is an Fqt-vector space of dimension r. We have
just seen that V is an Fq-vector space of dimension rt, denote this vector space by
W . We have that PG(W ) = PG(rt � 1, q). A vector v in V is also a vector in W ,
so we can consider v as coordinates for a point in PG(W ). We find points with
coordinates

Q = hviq,

where v 2W . Note that in PG(W ), points are only defined up to an Fq-multiple.
So while P = hviqt = h↵viqt , the points hviq and h↵viq of PG(W ) are different.
Remark 1.2.2. The set {h↵viq|↵ 2 F⇤

qt
} is precisely the (t�1)-dimensional space in

PG(W ) defined by Sv.

In this way, we see that with every point of PG(r�1, qt), there is a (t�1)-subspace
of PG(W ) assiciated. This is the idea behind field reduction. We formalise this idea
introducing the field reduction map.
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Definition 1.2.3. The field reduction map Fr,t,q is a map from the points of PG(r�
1, qt) to (certain) subspaces of PG(rt� 1, q) defined as:

Fr,t,q : PG(r � 1, qt)! PG(rt� 1, q) : hviqt 7! {h↵viq|↵ 2 F⇤
qt
}. (1.1)

Lemma 1.2.4. Let P be the point set of PG(r � 1, qt). The following properties hold.
(i) The field reduction map Fr,t,q is injective.
(ii) Any two distinct elements of Fr,t,q(P) are disjoint.
(iii) Each point in PG(rt� 1, q) is contained in an element of Fr,t,q(P).
(iv) |Fr,t,q(P)| = (qrt � 1)/(qt � 1).

Proof. (i)-(ii) Suppose that hviqt 7! {h↵v1iq|↵ 2 F⇤
qt
} and hviqt 7! {h↵v2iq|↵ 2

F⇤
qt
}, have at least one point in common. Then we find ↵,� 2 F⇤

qt
and � 2 F⇤

q such
that ↵v1 = ��v2. It follows that v1 and v2 are Fqt-multiples of each other, and
hence, that hv1iqn = hv2iqn . This shows that Fr,t,q is injective and that any two
distinct elements of Fr,t,q(P) are disjoint.
(iii) Let Q = hviq be a point of PG(rt � 1, q), then hviq = h1.viq is contained in
Fr,t,q(hviqn).
(iv) The number of points in P is (qrt � 1)/(qt � 1).

⇤

This field reduction map extends naturally to a map defined on sets of points or
subspaces, so we may e.g. write Fr,t,q(⇡) when ⇡ is a subspace of PG(r � 1, qt).

Exercise 1.2.5. If ⇡ is a (k�1)-dimensional subspace of PG(r�1, qt), then Fr,t,q(⇡)
is a subspace of dimension kt�1, spanned by the images under Fr,t,q of the points
of ⇡.

1.3 Desarguesian spreads

1.3.1 Construction via field reduction

A (t � 1)-spread in PG(n � 1, q) is a set of (t � 1)-spaces, partitioning the set of
points in PG(n � 1, q). Two spreads S1 and S2 in PG(n � 1, q) are equivalent (or
P�L-equivalent) if there exists a collineation of PG(n � 1, q) mapping one to the
other. The following theorem of Segre gives a necessary and sufficient condition
for the existence of a (t�1)-spread in PG(n�1, q). We can use the field reduction
map for the construction.
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Theorem 1.3.1. [64] There exists a (t�1)-spread in PG(n�1, q) if and only if t divides
n.

Proof. If there exists a (t� 1)-spread in PG(n� 1, q), it is clear that the number of
points in a (t� 1)-space, q

t�1

q�1
has to divide the number of points in PG(n� 1, q),

q
n�1

q�1
. From this, it follows that t has to divide n. Conversely, suppose n = rt. Put

Dr,t,q := Fr,t,q(P) (1.2)

where Fr,t,q is defined as in (1.1) and P denotes the set of points of PG(r � 1, qt).
Then Lemma 1.2.4 implies that Dr,t,q is a (t� 1)-spread of PG(rt� 1, q). ⇤

A spread S in PG(n� 1, q) is called Desarguesian if there exist natural numbers r
and t such that n = rt and S is equivalent to Dr,t,q.

1.3.2 Construction via indicator spaces

1.3.3 Subgeometries

Recall that a (k � 1)-dimensional subspace U of PG(n � 1, q), corresponds to a k-
dimensional vector space over Fq and is isomorphic to a projective space PG(k�
1, q). A (k� 1)-dimensional subgeometry B on the other hand is isomorphic to a
projective space PG(k�1, q0) for some subfield Fq0 of Fq. We define a subgeometry
B by the set of points of a projective space PG(k � 1, q) whose coordinates with
respect to some fixed frame take values from a subfield Fq0 of Fq. In this case
the subspaces of B correspond to the intersections of subspaces of PG(n � 1, q)
with B. We also say that B is a subgeometry over Fq0 or of order q0. For instance,
for k = n, we take in a projective space PG(n � 1, q) the set of points B that
have coordinates in a subfield Fq0 of Fq, together with all the intersections of
subspaces of PG(n� 1, q) with B. In this way we obtain a subgeometry over Fq0

(canonical with respect to the frame to which these coordinates are defined). This
subgeometry is isomorphic to a projective space PG(n � 1, q0). If q = q2

0
, then B

is usually called a Baer subgeometry.

1.3.4 Desarguesian spreads and subgeometries

By [64] a (t � 1)-spread in PG(n � 1, q), where t is a divisor of n, can be also
constructed as follows. Embed PG(rt � 1, q) as a subgeometry of PG(rt � 1, qt)
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in the canonical way, i.e. by restricting the coordinates to Fq. Let � be the auto-
morphic collineation of PG(rt�1, qt) induced by the field automorphism x! xq

of Fqt , i.e., � : (x0, x1, . . . , xrt�1) 7! (xq
0
, xq

1
, . . . , xq

rt�1
). Then � fixes PG(rt � 1, q)

pointwise and one can prove that a subspace of PG(rt � 1, qt) of dimension d
is fixed by � if and only if it intersects the subgeometry PG(rt � 1, q) in a sub-
space of dimension d and that there exists an (r � 1)-space ⇡ skew to the sub-
geometry PG(rt � 1, q) (see [15]). Let P be a point of ⇡ and let L(P ) denote
the (t � 1)-dimensional subspace generated by the conjugates of P , i.e., L(P ) =

hP, P �, . . . , P �
t�1i. Then L(P ) is fixed by � and hence it intersects PG(rt � 1, q)

in a (t � 1)-dimensional subspace over Fq. Repeating this for every point of ⇡,
one obtains a set S of (t � 1)-spaces of the subgeometry PG(rt � 1, q) forming a
spread. This spread is equivalent to Dr,t,q.
Exercise 1.3.2. Consider the case PG(3, q2): Let � be the automorphic collineation
of PG(3, q2) induced by the field automorphism x! xq of Fq2 , i.e.,

� : (x0, x1, x2, x3) 7! (xq
0
, xq

1
, xq

2
, xq

3
).

Let ⌃ be the set of points fixed by �. Then ⌃ is a subgeometry ⇠= PG(3, q). Note
that � is an involution.

(i) Show that if a line L is disjoint from ⌃, then L� is disjoint from ⌃ and
disjoint from L.

(ii) Let P be a point of L. Show that the line PP � meets ⌃ in a line of ⌃ (that is,
in q + 1 collinear points).

(iii) Show that the lines obtained as PP � \ ⌃, where P ranges over L, are dis-
joint.

(iv) Show that the lines obtained as PP � \ ⌃, where P ranges over L, form a
spread of ⌃.

1.3.5 Regular and normal spreads

A regulus in a projective space, or (t� 1)-regulus if we want to specify the dimen-
sion of the elements, is a set R of q+1 two by two disjoint (t� 1)-spaces with the
property that each line meeting three elements of R meets all elements of R.
Exercise 1.3.3. Show that three disjoint lines l1, l2, l3 in PG(3, q) determine a
unique regulus. Show that the set of lines meeting l1, l2 and l3 determine a regu-
lus as well. The latter regulus is called the opposite regulus.

The property of the previous exercise can be shown to hold in general: if S1, S2, S3

are mutually disjoint (t�1)-subspaces with dimhS1, S2, S3i = 2t�1, then there is
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a unique regulus R(S1, S2, S3) containing S1, S2, S3. A spread S is called regular
if the regulus R(S1, S2, S3) is contained in S for each three different elements
S1, S2, S3 of S .
Exercise 1.3.4. Let t = 2, r = 3. Use coordinates introduced in the previous
section for the Desarguesian line spread D in PG(3, q) using field reduction. Let
L1, L2 and L3 be lines of D. If M is a line meeting L1, L2, L3 in points P1 =
hv1iq, P2 = hv2iq, P3 = hv3iq respectively, then show that the unique transversal
line to the regulus R through the point h↵0v1iq meets L2 and L3 in h↵0v2iq and
h↵0v3iq. Write down the coordinates for the lines L4, . . . , Lq+1 2 D of the regulus
R through L1, L2, L3 and deduce that D is regular.

It is not too hard to show that a general Desarguesian spread is regular. The fol-
lowing shows that the converse is true as well (provided that a regulus contains
more than just 3 lines).

Theorem 1.3.5. [14] If q > 2, a (t� 1)-spread of PG(2t� 1, q) is Desarguesian if and
only if it is regular.

Exercise 1.3.6. The spread constructed in Exercise 1.3.2 is regular (and hence, De-
sarguesian).

Note that a Desarguesian spread satisfies the property that each subspace spanned
by spread elements is partitioned by spread elements (Exercise 1.2.5). Spreads
satisfying this property are called normal or geometric. Clearly, a (t� 1)-spread in
PG(2t� 1, q) is always normal.

Theorem 1.3.7. [4] A (t � 1)-spread S in PG(rt � 1, q), with r > 2, is normal if and
only if S is Desarguesian.

For a survey and self-contained proofs of these characterisations of Desarguesian
spreads, we refer to [2].

1.4 André/Bruck-Bose

To explain why the spread Dr,t,q is called ‘Desarguesian’, we need to consider
the following incidence structure constructed from a spread. Let S be a (t � 1)-
spread in PG(2t � 1, q). Embed PG(2t � 1, q) as a hyperplane H in PG(2t, q).
Consider the following incidence structure P(S) = (P,L, I), where I is symmetric
containment:

P : points of PG(rt, q) \H and elements of S



Part IV. Chapter 1. Field reduction and Desarguesian spreads 177

L: t-spaces of PG(rt, q) intersecting H exactly in an element of S and H itself.

Exercise 1.4.1. Show that P(S) is a projective plane, i.e., every two points deter-
mine a unique line and every two lines meet in a unique point.

The projective plane constructed above is a translation plane of order qt, and in
this construction is known as the André/Bruck-Bose construction. The spread S is
Desarguesian if and only if P(S) is the Desarguesian projective plane.

Exercise 1.4.2. (Hall plane) The Hall plane of order q2, q � 3 can be constructed
as follows. Let D be the Desarguesian line spread of PG(3, q) and let R be a
regulus contained in D. Replace the lines of R in D by the lines of its opposite
regulus and call D0 the set of points obtained in that way. Show that D0 is a non-
Desarguesian spread. The projective plane defined by the André/Bruck-Bose
construction starting with the spread D0 is the Hall plane (see e.g. [32]).

1.4.1 Coordinates for André/Bruck-Bose

Consider ⇧ = PG(2, qt) where points have coordinates (x, y, z)qt , x, y, z 2 Fqt .
Let `1 be the line with equation z = 0. The affine points of ⇧ are the points, not
on `1. These can all be represented in a unique way by coordinates of the form
(x0, y0, 1)qt .

Consider F2t+1
q , the (2t + 1)-dimensional vector space over Fq. Think of F2t+1

q as
S � T � U , where S and T are t-dimensional vector spaces over Fq and U is 1-
dimensional. Every vector v 2 F2t+1

q can be written in a unique way as (v1, v2, v3),
where v = v1 + v2 + v3 and v1 2 S, v2 2 T, v3 2 U .

Identify, as before, S and T with Fqt . Then we can represent every vector v as
(v1, v2, v3), where v1, v2 2 Fqt and v3 2 Fq. Since S�T �U is (2t+1)-dimensional
over Fq, PG(S�T �U) = PG(2t, q) and every point of PG(2t, q) has coordinates
of the form (v1, v2, v3)q, where v1, v2 2 Fqt and v3 2 Fq.

Exercise 1.4.3. (see also [63]) Show the following:

(i) The set of points of the form (v1, v2, 0)q v1, v2 2 Fqt forms a hyperplane H1
of PG(S � T � U).

(ii) The map � that takes the affine point (x, y, 1)qt of ⇧ to (x, y, 1)q is a bijection
between the affine points of ⇧ and the affine points of PG(2t, q) (these are
the points not on H1).
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(iii) The map �0 that takes a point (x, y, 0)qt of ⇧ to {(↵x,↵y, 0)q|↵ 2 F⇤
qt
} is a

bijection between the points of `1 and spread elements of a Desarguesian
spread in PG(2t� 1, q).

(iv) The maps � and �0 determine the André/Bruck-Bose embedding of PG(2, qt)
in PG(2t, q). Show that it can also be obtained as the intersection of the im-
ages under the field reduction map with a fixed 2t-space of PG(3t� 1, q).

1.5 Desarguesian spreads and the Segre variety

We have seen in the previous subsection that applying the field reduction map
Fr,t,q to all points of a projective space yields a Desarguesian spread Dr,t,q. If we
apply the field reduction map Fr,t,q to all points of a subgeometry PG(r� 1, q) of
PG(r � 1, qt), then we obtain a subset of Dr,t,q that forms one of the systems of a
Segre variety Sr�1,t�1.

Definition 1.5.1. The Segre map �l,k : PG(l, q)⇥PG(k, q)! PG((l+1)(k+1)�1, q)
is defined by

�l,k((x0, . . . , xl), (y0, . . . , yk)) := (x0y0, . . . , x0yk, . . . , xly0, . . . , xlyk).

The image of the Segre map �l,k is called the Segre variety Sl,k.

If we give the points of PG((l + 1)(k + 1)� 1, q) coordinates in the form

(x00, x01, . . . , x0k;x10, . . . , x1k; . . . ;xl0, . . . , xlk),

then it is clear that the points of the Segre variety Sl,k are exactly the points that
have coordinates such that the matrix (xij), 0  i  l, 0  j  k, has rank 1 (see
also [31, Theorem 25.5.7]).

By fixing a point in PG(l, q) and varying the point of PG(k, q), we obtain a k-
dimensional space on Sl,k. For every point of PG(l, q) such a space exists, and
the set of these subspaces, which are clearly disjoint, is called a system (of maximal
subspaces). Similarly, by fixing a point in PG(k, q), we obtain an l-dimensional
space on Sl,k by varying the point of PG(l, q); the set of these subspaces is again
called a system (of maximal subspaces). Subspaces of different systems intersect
each other in exactly one point, while subspaces within the same system intersect
each other trivially. Moreover, each subspace lying on the variety Sl,k is contained
in an element of one of these two systems.

Theorem 1.5.2. (see e.g. [45, Theorem 2.6]) If P⌃ is the set of points of the canonical
subgeometry ⌃ ⇠= PG(r�1, q) of PG(r�1, qt) of order q, then Fr,t,q(P⌃) is projectively
equivalent to a maximal system of (t� 1)-spaces of a Segre variety Sr�1,t�1.
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Corollary 1.5.3. The system of (t�1)-spaces of a Segre variety Sk�1,t�1 in PG(rt�1, q),
k  r, is projectively equivalent to a subset of Dr,t,q, whereas the system of (r�1)-spaces
of a Segre variety Sr�1,u�1 in PG(rt� 1, q), u  t, is projectively equivalent to a subset
of Dt,r,q.
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Chapter 2

Linear sets

Linear sets generalise the concept of subgeometries in a projective space. They
have many applications in finite geometry; linear sets have been intensively used
in recent years in order to classify, construct or characterise various geometric
structures, e.g. blocking sets (see Chapter 4), but also translation ovoids, KM-
arcs, semifields, MRD codes,... For a further discussion of some of these applica-
tions, we refer to the survey of O. Polverino [60].

2.1 Definition

To obtain a linear set in a projective space, some kind of reverse field reduction
is used. The field reduction map takes as input a subspace of PG(r � 1, qt) and
returns a subspace of PG(rt � 1, q). Or in other words from an Fqt-subspace
we obtain an Fq-subspace. A linear set, on the other hand, is defined by an Fq-
subspace and returns, not a subspace, but a subset of a projective Fqt-linear space,
i.e. a subset of some PG(r � 1, qt).

More precisely, let V = Fr

qt
. A set L of points in PG(V ) is called an Fq-linear set (of

rank k) if there exists a subset U of V that forms a (k-dimensional) Fq-subspace of
V , such that L = LU , where

LU = {huiqt : u 2 U \ {0}}.

The notation LU is used to indicate the underlying subspace U . Obviously, if we
say that the subset U forms an Fq-subspace of V , then we mean a subspace of the
rt-dimensional space that is obtained by considering V as vector space over Fq.
We make no distinction between the Fq-vector subspace U and the subset U .

181
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2.1.1 A geometric point of view

Recall that the field reduction map Fr,t,q gives us a one-to-one correspondence
between the points of PG(r � 1, qt) and the elements of a Desarguesian spread
Dr,t,q. This will gives us a geometric interpretation of a linear set:

Theorem 2.1.1. If LU is an Fq-linear set of rank k in PG(r � 1, qt), then there exists
a (k � 1)-dimensional subspace ⇡ in PG(rt� 1, q) such that the points of L correspond
to the elements of Dr,t,q that have a non-empty intersection with ⇡. Vice versa, the set of
spread elements of Dr,t,q that have a non-emtpty intersection with a (k� 1)-dimensional
subspace of PG(rt� 1, q) correspond to the points of an Fq-linear set.

Proof. Let LU = {huiqt : u 2 U \{0}}, where U is a subset of V = Fr

qt
that forms a

k-dimensional Fq-subspace. Let P = hu1iqt be a point of LU , then P corresponds
to the spread element h↵u1iq which contains the point hu1i. Let ⇡ be the point set
of PG(rt � 1, q) consisting of the points {huiq : u 2 U \ {0}}, then ⇡ forms an
Fq-subspace since U is an Fq-vector space. The dimension of ⇡ is clearly (k � 1),
and we have just seen that every spread element corresponding to a point of LU

contains at least one point of ⇡.

Vice versa, consider a (k � 1)-dimensinal subspace µ in PG(rt � 1, q), then µ =
{huiq : u 2 V \ {0}} for some k-dimensional vector space V . As above, we see
that LV is the Fq-linear set consisting of the points corresponding to the spread
elements intersecting µ non-trivially. ⇤

Remark 2.1.2. The notation B(⇡), where ⇡ is the projective space corresponding to
U is frequently used to denote either the point set LU or the set of spread elements
intersecting the subspace ⇡.
Exercise 2.1.3. Use this geometric point of view to determine the different possi-
bilities for the size of a linear set of rank 1, 2, 3 in PG(1, qt), t � 3. Show that an
Fq-linear set of rank k > t in PG(1, qt) is the set of all points of PG(1, qt)

If P is a point of B(⇡) in PG(r�1, qt), where ⇡ is a subspace of PG(rt�1, q), then
we define the weight of P as wt(P ) := dim(Fr,t,q(P ) \ ⇡) + 1. This makes a point
to have weight 1 if its corresponding spread element intersects ⇡ in a point. It is
clear that a point of an Fq-linear set of rank k in PG(r � 1, qt) can have weight at
most min{k, t}.
Exercise 2.1.4. If ⇡ = hUiq, then we have seen that LU = B(⇡). Show that the
weight of a point P = hviqt in LU is the vector dimension of the Fq vector space
U \ Sv, where SV = {h↵viqt |↵ 2 F⇤

qt
}.

Exercise 2.1.5. (see also [60, Proposition 2.2]) Let LU be a linear set of rank k > 0
and denote by xi the number of points of weight i, with m = min{k, t}, then the



Part IV. Chapter 2. Linear sets 183

following relations hold:
(i) |LU | = x1 + x2 + · · ·+ xm
(ii) x1 + (q + 1)x2 +

q
3�1

q�1
x3 + · · ·+ q

m�1

q�1
xm = q

k�1

q�1

(iii) |LU |  q
k�1

q�1

(iv) |LU | ⌘ 1mod q.

2.1.2 Scattered linear sets

If ⇡ intersects the elements of D in at most a point, i.e. the size of B(⇡) is maximal,
or equivalently every point of B⇡) has weight one, then we say that ⇡ is scattered
with respect to D; in this case B(⇡) is called a scattered linear set. The notion of
scattered linear sets was introduced in [10], where the following bound on the
rank of a scattered linear set was obtained.

Theorem 2.1.6. [10, Theorem 4.3] A scattered Fq-linear set in PG(r � 1, qt) has rank
 rt/2.

Scattered linear sets that meet this bound are called maximum scattered.

Example 2.1.7. The set
S = {(x, xq)|x 2 F⇤

qt
}

is a maximum scattered linear set in PG(1, qt). Since Fqt is a t-dimensional Fq-
vector space, the set S is an Fq-linear set of rank t. To determine the number of
points in S we notice that the points (x, xq), x 2 Fqt and (y, yq), y 2 Fqt are the
same if and only if x = �y and xq = �yq for some �inF⇤

qt
. This happens if and

only if (x
y
)q�1 = 1 and hence if and only if x and y are Fq-multiples. This shows

that S has q
t�1

q�1
points, and hence, that S is scattered. Since t = rt/2 for r = 2, S

is maximum scattered.

Maximum scattered linear sets are related to interesting geometric objects such
as two-weight codes, two-intersection sets, strongly regular graphs, pseudoreg-
uli and hyperovals (see [37], [54], [41], [19]). For a survey dedicated to these
applications, see [40].

2.1.3 Different subspaces determining the same linear set

It is clear that, if U = U 0, then LU = LU 0 . However, it is not because LU = LU 0

that U = U 0. It is not even necessary that both subspaces U and U 0 have the same
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dimension as seen in the folowing example. This means that the rank of a linear
set is not defined if the underlying vector space is not specified!
Example 2.1.8. Consider the point set S = {(1, x)q4 |x 2 Fq2}[{(0, 1)q4} in PG(1, q4).
This point set S is an Fq2-subline of PG(1, q4). We can rewrite this set as

S = {(x, y)q4 |x, y 2 Fq2 , (x, y) 6= (0, 0)} = {huiq4 |u 2 U⇤},

where U = F2

q2
. Since U is a vector space of dimension 4, S = LU is a linear

set of rank 4, and hence, is defined by the spread elements of the Desarguesian
3-spread in PG(7, q) obtained by field reduction intersecting the 3-dimensional
subspace ⇡ = hUiq. Note that S has q2 + 1 elements, and all spread elements
intersecting hUiq, intersect it in a line: h↵uiq \ hUiq, where u 2 U contains the
q + 1 points h�uiq, where � 2 Fq2 . Now consider a plane µ = hV i contained in ⇡,
then V is a 3-dimensional vector space. As every element of LU = B(⇡) intersects
⇡ in a line, it also intersects µ. We see that LU = LV , but LU is a linear set of rank
4 and LV is a linear set of rank 3.
Exercise 2.1.9. Every Fq-linear set LU can be written as an Fq-linear set LU 0 that
contains at least one point of weight one.

We might be tempted to think that if LU = LV for U and V subspaces of the
same dimension, we have that U = V . This is not true, as seen in the following
exercise.
Exercise 2.1.10. Let D be the Desarguesian (t � 1)-spread of PG(rt � 1, q). Let
B(⇡) be a linear set of rank k + 1, where ⇡ is a k-dimensional space. Show that,
for every point R in PG(rt�1, q), contained in a spread element meeting ⇡, there
is a k-dimensional space ⇡0, through R, such that B(⇡) = B(⇡0).

The previous exercise give rise to an important question: how many different
subspaces ⇡0 of dimension (k � 1) are there through a fixed point R such that
B(⇡0) = B(⇡)? If B(⇡) is a regulus, this means ⇡ is a line, then it is clear that
through every point of an element of B(⇡), there is exactly one line ⇡0 such that
B(⇡0) = B(⇡), because through every point of a regulus, there exists a unique
transversal line to this regulus. But the answer to this question is not always
equal to one! In [16], a linear called is called simple, if the answer to this question is
one. Some cases of this problem are well understood, but in general, this question
remains open (see e.g. [16],[74]).

2.2 Linear sets and projections of subgeometries

It is clear from the definition (or from the link with Segre varieties described in
Section 1.5) that a subgeometry is a linear set, but a linear set is not necessarily
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a subgeometry. However, the following theorem by Lunardon and Polverino
shows that every linear set is a projection of a subgeometry. For the particular
case of linear blocking sets, this was proven in [58], for the case of scattered linear
sets, but not using this terminology, it was shown already in 1981 in [48].

Let ⌃ = PG(k � 1, q) be a subgeometry of ⌃⇤ = PG(k � 1, qt) and suppose
there exists an (k � r � 1)-dimensional subspace ⌦⇤ of ⌃⇤ disjoint from ⌃. Let
⌦ = PG(r � 1, qt) be an (r � 1)-dimensional subspace of ⌃⇤ disjoint from ⌦⇤.
Let p⌦⇤,⌦ denote the projection map defined by x 7! h⌦⇤, xi \ ⌦ for each point
x 2 ⌃⇤ \ ⌦⇤. The point set � = p⌦⇤,⌦(⌃), i.e., the image of ⌃ under the projection
map p⌦⇤,⌦ is simply called the projection of ⌃ from ⌦⇤ into ⌦.

Theorem 2.2.1. [53, Theorem 1 and 2] If � is a projection of PG(k � 1, q) into ⌦ =
PG(r� 1, qt) with k � r, then � is an Fq-linear set of rank k and h�i = ⌦. Conversely,
if L is an Fq-linear set of ⌦ of rank k and hLi = ⌦ = PG(r � 1, qt), then either L
is a canonical subgeometry of ⌦ or there are a (k � r � 1)-dimensional subspace ⌦⇤ of
⌃⇤ = PG(k � 1, qt) disjoint from ⌦ and a canonical subgeometry ⌃ of ⌃⇤ disjoint from
⌦⇤ such that L = p⌦⇤,⌦(⌃).

Sketch of the proof: We will first recover the easy direction: if � is a projection of
PG(k � 1, q) into ⌦ = PG(r � 1, qt) with k � r, then � is an Fq-linear set of rank
k and h�i = ⌦.

The canonical subgeometry ⌃ = PG(k � 1, q) of PG(k � 1, qt) is the linear set
LU = {huiqt |u 2 U}, where U = Fk

q . Consider U as an Fq-vector space and let
⇡ = hUiq be the corresponding (k�1)-dimensional subspace of PG(rt�1, q). The
(k� r� 1)-dimensional subspace ⌦⇤ corresponds to a ((k� r)t� 1)-dimensional
subspace µ⇤ of PG(rt � 1, q) and ⌦ = PG(r � 1, qt) corresponds to a (rt � 1)-
dimensional subspace µ⇤. Both µ and µ⇤ are spanned by spread elements of D,
the Desarguesian spread. The points of � are obtained as the projection of the
points of ⌃ from ⌦⇤ onto ⌦. It now follows that they correspond to the spread
elements intersecting the subspace µ \ hµ⇤,⇡i.

The proof of the other direction of the previous theorem is based on the following
observation: if a linear set LU of rank k spans an r � 1-dimensional projective
space ⌦, then we can filter a Fq-basis for U , say a1, . . . , ak to an Fqt basis for
the vector space defining ⌦. Suppose that ak�r+1, . . . , ak are an Fqt-independent.
Let b1, . . . , bk�r be Fqt-independent, then they define a (k � r � 1)-dimensional
projective space ⌦⇤. Now let vi = ai + bi for 1  i  k � r and vj = aj for
k � r + 1  j  k. Then it is not too hard to show that the set of points hviiqt
forms a (k�1)-dimensional subgeometry ⌃ and the projection of ⌃ from ⌦⇤ onto
⌦ is precisely LU . ⇤
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When we apply field reduction to the spaces ⌦⇤,⌃⇤ and ⌃ of Theorem 2.2.1 and
use Theorem 1.5.2, we obtain the following geometric characterisation of the
spread elements defining a linear set.

Corollary 2.2.2. The set B(⇡) of elements of Dr,t,q, where ⇡ is a (k � 1)-dimensional
space in ⌦ = PG(rt� 1, q) is the projection of one of the two systems of a Segre variety
Sk�1,t�1 from a (kt� rt� 1)-dimensional space ⌦⇤ skew from Sk�1,t�1 and ⌦ and vice
versa.

Remark 2.2.3. In the previous corollary, we have seen that B(⇡) is a projection of
a Segre variety (this projection is not necessarily injective). Projections of Segre
varieties are studied by Zanella in [80], where he shows that every embedded
product space is the injective projection of a Segre variety. In [43], the authors
investigate the embedding of the product space PG(n � 1, q) ⇥ PG(n � 1, q) in
PG(2n�1, q) and show that B(W ), where W is a scattered subspace of rank n is an
embedding of the product space PG(n�1, q)⇥PG(n�1, q). This embedding is of
course covered by two systems of (n� 1)-dimensional subspaces. However, they
prove that B(W ) contains n systems of (n�1)-dimensional subspaces, and hence
for n > 2, contrary to what one might expect, there exist systems of maximum
subspaces which are not the image of maximum subspaces of the Segre variety.



Chapter 3

Linear sets and directions
determined by a point set

3.1 Directions determined by a point set

Consider PG(2, q) with the line `1 : x = 0 as line at infinity. The affine points
of PG(2, q) are the points, not on `1. An affine point of PG(2, q) has unique
coordinates of the form (1, xi, yi) for some xi, yi 2 Fq. The set of directions de-
termined by an affine point set A = {(1, xi, yi) | 1  i  n} in PG(2, q) is the
set {(0, xi � xj , yi � yj) | 1  i 6= j  n}. The study of the number of directions
determined by an affine point set goes back to Rédei and many results, e.g., on
blocking sets are going back to these techniques. In this section, we will see that
a similar approach is useful for the study of linear sets as well.

The following theorem essentially determines the number of directions deter-
mined by a map defined on a finite field. The graph of a function f defined on Fq

is the point set {(x, f(x))|x 2 Fq} in the affine plane AG(2, q). This can be though
of as the point set {(1, x, f(x)|x 2 Fq} in PG(2, q).

Theorem 3.1.1 ([3]). Let f : Fq ! Fq be a function. Let N be the number of directions
determined by f . Let s = pe be maximal such that any line with a direction determined
by f that is incident with a point of the graph of f is incident with a multiple of s points
of the graph of f . Then one of the following holds:

(i) s = 1 and q+3

2
 N  q + 1;

(ii) Fs is a subfield of Fq and q

s
+ 1  N  q�1

s�1
;

(iii) s = q and N = 1.
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Moreover, if s > 2, then the graph of f is Fs-linear.

Theorem 3.1.1 completed two unresolved cases from [9, Theorem 1.1].
Remark 3.1.2. The previous theorem says that if s > 2, the point set of the graph
is Fs-linear, by which the author meant that f is an Fs-linear map. In [67], the
citation of the same theorem says ‘U is a Fpe-linear subspace’.

A set of the form A = {(1, x, f(x)) | x 2 V }, where f is an Fq-linear map and V
is an Fq-vector subspace of Fqt , is called an affine Fq-linear set in [23]. We will see
later that an affine linear set will be the affine part of an Fq-linear set of PG(2, qt)
as defined by us.

In this subsection, we explore the connections between directions determined by
an Fq-linear map and Fq-linear sets. We will restrict ourselves to linear sets on a
line and in a plane. However, most of what follows can be easily generalised to
linear sets in higher dimensions.

3.2 Fq-linear maps of Fqt, linearised polynomials and lin-
ear sets

3.2.1 Linearised polynomials

Recall that an Fq-linear f : V !W (where V and W are vector spaces over some
extension field of Fq) is a map satisfying the following properties for u1, u2 2 V
and � 2 Fq

f(u1 + u2) = f(u1) + f(u2)

f(�u) = �f(u)

A linearised polynomial (or q-polynomial) on Fqt of q-degree r is a polynomial of the
form L(x) where

L(x) = a0x+ a1x
q + a2x

q
2
+ . . .+ an�1x

q
r
,

where ai 2 Fqt .
Exercise 3.2.1. Show that the following hold:

(i) L is an Fq-linear map.
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(ii) Every Fq-linear map on Fqt can uniquely be represented by a linearised
polynomial of q-degree at most t� 1.

(iii) The roots of a linearised polynomial form an Fq-vector space.

The vice versa part of Exercise 3.2.1(iii) also holds: every Fq-subspace of Fqt can
be represented as the roots of a linearised polynomial:

Theorem 3.2.2. [47, Theorem 3.52] Let V be a Fq-vector subspace of Fqt of dimension
k. Then the polynomial vanishing on the elements of V is a linearised polynomial, i.e.

Y

�2V
(X � �) = Xq

k
+ ↵1X

q
k�1

+ ↵2X
q
k�2

+ . . .+ ↵kX ,

for some ↵i 2 Fqt .

This information will be useful in the next subsection when we derive the shape
of a Rédei polynomial of a linear set.

Exercise 3.2.3. The trace map of Fqt is the map x ! Tr(x) = x + xq + . . . + xq
t�1 .

The rank of a polynomial is its rank as an Fq-linear map. Show that all linearised
polynomials of rank 1 are of the form x ! ↵Tr(�x) for some ↵,� 2 F⇤

qt
(see also

[47, Theorem 2.24]).
Exercise 3.2.4. (Gabidulin codes) It is clear that the set of all linearised polynomi-
als on Fqt forms a vector space with usual addition and scalar multiplication with
scalars in Fqt . Let k  t� 1. Show that the set

Gk = {a0x+ a1x
q + a2x

q
2
+ . . .+ ak�1x

q
k�1 |ai 2 Fqt}

is an Fqt-vector space such that for all f 6= g 2 Gk,

rank(f � g) � t� k + 1.

This set of polynomials forms a rank metric code such that each non-zero codeword
has rank at least t�k+1. The number of codewords is (qt)k (why?) which ensures
that this codes meets the Singleton-like bound and hence is an MRD (maximum rank
distance) code. See e.g. [65]
Remark 3.2.5. 1. One of the main nice properties of linearised polynomials is

that they allow a multiplication operation which is internal: the symbolic
product of linearised polynomials. This is defined as their composition and
denoted by �. More precisely, let F (x) and G(x) be two Fq-linearised poly-
nomials, then

(F �G)(x) := F (G(x)) modxq
t � x.

Unlike the ordinary product of two linearised polynomials, the composi-
tion of two linearised polynomials is again a linearised polynomial. The
symbolic product of two Fq-polynomials will correspond precisely to the
composition of their corresponding linear maps.
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2. We know that every Fq-linear map of Fqt (where we see Fqt as an Fq-vector
space of dimension n) corresponds to an (n ⇥ n)-matrix. To make an ex-
plicit correspondence between linearised polynomials and matrices, we can
introduce the Dickson matrix: the linearised polynomial

L(x) = a0x+ a1x
q + a2x

q
2
+ . . .+ at�1x

q
t�1

then corresponds to the matrix

0

BB@

a0 a1 a2 . . . at�1

aq
t�1

aq
0

aq
1

. . . aq
t�2

. . .

aq
t�1

1
aq

t�1

2
aq

t�1

3
. . . aq

t�1

0

1

CCA

The rank of the linearised polynomial coincides with the rank of the asso-
ciated Dickson matrix. For more information, see [47, 56], and [79] for a
recent treatment.

3.2.2 Linear sets and linearised polynomials

We now show that we can represent every linear set in PG(1, qt) through an Fq-
linear map. Many of the below ideas work for linear sets in arbitrary dimension
as well. Note that the only Fq-linear set of rank k > t in PG(1, qt) is the set of all
points of PG(1, qt) (see Exercise 2.1.3). For this reason, we restrict ourselves to
Fq-linear sets of rank k  t. The following lemma’s are taken from [18].

Lemma 3.2.6. Let LU be an Fq-linear set of rank k in PG(1, qt), k  n, not containing
the point (0, 1), then L = {(x, f(x))|x 2 V ⇤} for some vector subspace V of dimension
k and some Fq-linear map f : V ! Fqt .

Proof. We have that LU = {huiqt | u 2 U⇤}, where U is a subspace of dimension
k of F2t

q . We consider F2t
q as F2

qt
and see that every element of U can be written as

(↵i,�i) for some ↵i,�i in Fqt , i = 1, . . . , qk. Put �i = f(↵i). Suppose to the con-
trary that ↵i0 = ↵j0 for some i0 6= j0. The elements (↵i0 , f(↵i0)) and (↵j0 , f(↵j0))
are distinct elements of U , so if ↵i0 = ↵j0 , then f(↵i0) 6= f(↵j0). As U is a vector
subspace, it follows that (↵i0 , f(↵i0)) � (↵j0 , f(↵j0)) = (0, f(↵i0) � f(↵j0) is an
element of U . But LU is skew from the point (0, 1), a contradiction. We conclude
that V = {↵i | 1  i  qk} has size qk.

Since U is an Fq subspace, we have that for all 1  i  qk, and �, µ 2 Fq that
�(↵i, f(↵i)) + µ(↵j , f(↵j)) = (�↵i + µ↵j ,�f(↵i) + µf(↵j)) has to be a vector of
U . Hence, both the set V = {↵i | 1  i  qk} as the map f are closed under
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Fq-linear combinations. It follows that V = {↵i | 1  i  qk} is an Fq-subspace of
dimension k and that f is an Fq-linear map.

⇤

Lemma 3.2.7. The number of points of L = {(x, f(x))|x 2 V ⇤}, where V is a vector
subspace of Fqt and f : V ! Fqt is an Fq-linear map, is equal to the number of directions
determined by the affine pointset A = {(1, x, f(x)) | x 2 V }.

Proof. The number of points of {(x, f(x))|x 2 V ⇤} = {(1, f(x)/x)|x 2 V ⇤} is
clearly equal to the size of the set W = {f(x)/x|x 2 V ⇤}. The points (1, x1, f(x1))
and (1, x2, f(x2)) determine the direction (0, x1�x2, f(x1)�f(x2)). Since f is Fq-
linear and V is a subspace, (0, x1�x2, f(x1)�f(x2)) is the direction (0, 1, f(x3)/x3),
with x3 = x1 � x2. This implies that every direction determined by A is an el-
ement of the set {(0, 1, w) | w 2 W}. Vice versa, take a point (0, 1, w0), with
w0 2 W , then w0 = f(x0)/x0 for some x0 2 V ⇤. Then (1, 0, 0) and (1, x0, f(x0))
are points of A that determine the direction (0, 1, w0). This proves that the num-
ber of directions determined by A is equal to the size of W . ⇤

3.3 The Rédei polynomial of a linear set

3.3.1 Rédei polynomials

Let S = {(1, xi, yi) | 1  i  |S|} be a set of affine points in PG(2, qt). Define the
Rédei polynomial of S as follows:

R(X,Y ) =

|S|Y

i=1

(X � xiY + yi).

As usual (see e.g. [9, 23]), we can consider the expansion of R(X,Y ) using el-
ementary symmetric polynomials. Let �i(Y ) be the i-th elementary symmetric
polynomial of the set {�xiY + yi|1  i  |S|}, then

R(X,Y ) = X |S| +

|S|X

i=1

�i(Y )X |S|�i.

Note that deg �i(Y )  i. Substituting the variable Y in R(X,Y ) by slopes will
provide particular information on the shape of the Rédei polynomial. In the lan-
guage of direction problems, the next Lemma deals with substitution of a deter-
mined slope.
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Lemma 3.3.1. Let P = (x0, f(x0)) be a point of weight j in LU = {(x, f(x)) | x 2
V ⇤}, then R(X, y0) with y0 = f(x0)/x0 is of the form

R(X, y0) =
q
k�jY

i=1

(X � ↵i)
q
j
,

for distinct ↵i 2 Fqt .

Proof. Let P = (x0, f(x0)) be a point of weight j in LU = {(x, f(x))|x 2 V ⇤}.
By definition, P has weight j in LU if there are qj elements ⇤ 2 Fqt such that
(⇤x,⇤f(x)) is contained in U = {(x, f(x))|x 2 V }. This implies that

f(⇤x0) = ⇤f(x0) (3.1)

has qj solutions for ⇤.

Let x1 2 V and let A = {(1, x, f(x)) | x 2 V }. For any ⇤ 2 Fqt , the point
(1, x1 + ⇤x0, f(x1) + ⇤f(x0)) 2 A () f(x1 + ⇤x0) = f(x1) + ⇤f(x0) and
x1 + ⇤x0 2 V . The condition x1 + ⇤x0 2 V is equivalent with ⇤x0 2 V , and so
the condition f(x1 +⇤x0) = f(x1) +⇤f(x0) is equivalent with f(⇤x0) = ⇤f(x0).

Hence, the number of points of A on the line through (1, x1, f(x1) and (0, x0, f(x0))
equals precisely the number of solutions of Equation 3.1 (and ⇤ = 0 corresponds
with the point (1, x1, f(x1))).

By definition, R(X, y0) =
Q

x2V (X�xy0+f(x)). Now X�xy0+f(x) = X�x1y0+
f(x1) if and only if the points (1, x, f(x)), (1, x1, f(x1)), and (0, 1, y0) are collinear.
Hence, the factor (X � x1y0 + f(x1)) appears exactly qj times in R(X, y0). ⇤

Remark 3.3.2. We can also deduce Lemma 3.3.1 from a more geometrical point
of view. Let LU = B(⇡), where ⇡ is a (k � 1)-space in PG(2t � 1, q), embed
PG(2t � 1, q) as the subspace consisting of all points of the form h(0, y, z)iq in
PG(3t�1, q) and consider LU as a subset of PG(2, qt), contained in the line X0 = 0
(at infinity). Let µ be the subspace spanned by the point h(1, 0, 0)iq of PG(3t�1, q)
and ⇡. Then B(µ) \ B(⇡) consists of the qk points of {(1, x, f(x)) | x 2 V }). If P =
(0, x0, f(x0)), x0 2 V ⇤ is a point of weight j in LU = B(⇡), this means the spread
element S (of the Desarguesian (t� 1)-spead S) corresponding to P meets ⇡, and
hence also µ, in a (j � 1)-dimensional space. Every line through P in PG(2, qt)
containing a point (1, x0, f(x0)) of {(1, x, f(x)) | x 2 V } corresponds to a (2t�1)-
dimensional subspace of PG(3t�1, q), spanned by spread elements of S , meeting
µ in a subspace ⌫ of dimension j. As ⇡ is a hyperplane of µ, and P = B(⇡ \ ⌫)
this means that the line B(⌫) contains exactly qj points of {(1, x, f(x)) | x 2 V }.
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Hence every line on a point of weight j of LU that contains a point of A, contains
exactly qj points of A. From the definition of the Rédei polynomial R(X,Y ), this
is saying exactly that every root of R(X, y0) has multiplicity exactly qj , if y0 is a
slope corresponding with a point of weight j of LU , in other words, every factor
of R(X, y0) has multiplicity qj .

We are now ready to deduce the shape of the Rédei polynomial of the set A =
{(1, x, f(x)) | x 2 U}.

Lemma 3.3.3. If A = {(1, x, f(x)) | x 2 V }, where V is an Fq-vector subspace of Fqt

of dimension k and f : V ! Fqt is an Fq-linear map, then the Rédei polynomial of A is
of the following shape:

R(X,Y ) = Xq
k
+�qk�qk�1(Y )Xq

k�1
+�qk�qk�2(Y )Xq

k�2
+. . .+�qk�1(Y )X . (3.2)

Proof. First consider an element y0 /2 DA, where DA is the set of directions deter-
mined by A. Then the set Vy0 = {�xy0 + f(x)|x 2 V } is an Fq-vector subspace of
Fqt of dimension k. Hence, by Theorem 3.2.2,

R(X, y0) =
Y

�2Vy0

(X � �) = Xq
k
+ ↵1X

q
k�1

+ ↵2X
q
k�2

+ . . .+ ↵kX ,

with ↵i 2 Fqt . Then consider an element y1 2 DA. By Lemma 3.3.1, we know
that if (1, y1) is a point of weight j1, then R(X, y1) contains qk�j1 distinct factors,
each of degree qj1 . As before, the set Vy1 = {�xy1 + f(x)|x 2 V } is an Fq-
vector subspace of Fqt , but the number of elements in Vy1 is qk�j1 , and hence, the
dimension of Vy1 is k � j1. We now obtain that

R(X, y1) =
Y

�02Vy1

(X��0)q
j
= (Xq

k�j1+↵0
1X

q
k�j1�1

+↵0
2X

q
k�j1�2

+. . .+↵0
k�j1�1X)q

j1 ,

We conclude that for all y 2 Fqt , �i(y) = 0 if i 62 {qk � qj |j = 0 . . . k � 1}. Since
deg �i(Y )  i, each of the polynomials �i(Y ), i 62 {qk�qj |j = 0 . . . k�1} has more
roots than its degree, and so is identically zero. Also note that since (1, 0, 0) 2 A,
0 2 {�xiY + yi|1  i  |A|}, hence �qk(Y ) is identically zero. So R(X,Y ) has the
shape of (3.2).

⇤

We see that if R(X,Y ) is the Rédei polynomial associated with {(1, x, f(x)) | x 2
V } then for every y 2 Fqt , the map R(X, y) is a linearised polynomial.
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3.4 A lower bound on the size of a linear set

In the paper [18], a lower bound on the size of a linear set was derived by using
the previous observations, together with some of the machinery of [23]. It is
explained there that we can write

Xq
t �X = R(X,Y )Q(X,Y )�H(X,Y )�X . (3.3)

for some polynomial H and deduce the following lemma:

Lemma 3.4.1. Let R(X,Y ) be the Rédei polynomial of the point set A = {(1, x, f(x)) |
x 2 V }, and H(X,Y ) the polynomial defined in Equation 3.3. Then the number of
points in LU = {(x, f(x)) | x 2 V ⇤} is at least degX H(X,Y ).

Theorem 3.4.2. [18, Theorem 3.7] Let LU = {(x, f(x)) | x 2 V ⇤}, where V has
dimension k, be an Fq-linear set in PG(1, qt) of rank k which contains at least one point
of weight one, then the size of LU is at least qk�1 + 1.

Proof. With R(X,Y ) the Rédei-polynomial of A = {(1, x, f(x)) | x 2 V ⇤}, and
H(X,Y ) defined as in (3.3), by Lemma 3.4.1, we know that the number of points
in LU is at least degX H(X,Y ). Let P = (x0, f(x0)) be a point of weight one in
LU . By Lemma 3.3.1, R(X, y0) with y0 = f(x0)/x0 splits in factors of degree q,
and since R(X, y0) has degree qk, there are qk�1 different factors, each of the form
(X � ↵i)q for some ↵i 2 Fqt , i = 1, . . . , qk�1. Since X � ↵i divides Xq

t � X ,
it divides H(X, y) � X as well. As we have found at least qk�1 different linear
factors dividing H(X, y)�X , this implies that degX H(X,Y ) is at least qk�1. We
conclude that the number of points in LU is at least qk�1, and hence, by Exercise
2.1.5, at least qk�1 + 1. ⇤

In Theorem 3.4.2, we find that the number of points in an Fq-linear set of rank
k in PG(1, qt), containing a point of weight one, is at least qk�1 + 1. This lower
bound is sharp.
Exercise 3.4.3. Let 2  k  t. Show that there exists an Fq-linear set of rank k in
PG(1, qt) with qk�1 + 1 elements.
Remark 3.4.4. An example of a set B(⇡) for Exercise 3.4.3 can be obtained using
coordinates as follows: take ↵0 = 1,↵1, . . . ,↵t�k to be Fq-linearly independent
elements of Fqt , let V be the vector space of Fqt defined by Tr(↵ix) = 0, for
i = 1, . . . , t� k and put LU = {(x,Tr(x)) | x 2 V ⇤}.

However, not every Fq-linear set of size qk�1 + 1 arises in this way. For example,
in PG(1, q4), it is possible to find two non-equivalent Fq-linear sets of rank 4,
each containing q3 + 1 points (see Example B1 and C12 of [12]). The example of
Proposition 3.4.3 arises as B(⇡), where ⇡ is a 3-space meeting one element of the
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Desarguesian 3-spread S of PG(7, q) in a plane, and q3 other elements in a point.
The other example arises as B(⇡) where ⇡ meets q + 1 elements of a regulus of S
in a line and q3 � q others in a point.
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Chapter 4

Linear blocking sets, translation
hyperovals and translation
KM-arcs

4.1 Blocking sets

4.1.1 Introduction

Blocking sets are well-studied objects in finite geometry. Their theory goes back
to the 1950’s [62]. For a survey of planar blocking sets, see e.g. the set of lecture
notes of Aart Blokhuis for the Socrates intensive course [8]. The more recent [11]
provides a survey focussing on the higher-dimensional case. More background
info can also be found in [75].

A blocking set in PG(n, q) with respect to k-spaces is a set B of points such that
every k-dimensional space in PG(n, q) contains at least one point of B. If we are
considering blocking sets with respect to hyperplanes, we simply say that B is a
blocking set. A minimal blocking set B (w.r.t. k-spaces) is a blocking set such that
no proper subset of B is a blocking set (w.r.t. k-spaces). A small blocking set in
PG(n, q) with respect to k-spaces is a blocking set of size smaller then 3(qn�k +
1)/2. A blocking set B in PG(n, q) with respect to k-spaces is of Rédei-type if there
is a hyperplane containing |B|� qn�k points.

Linear blocking sets with respect to (k�1)-spaces in PG(n�1, qt) were introduced
by Lunardon [50]: he argues that an Fq-linear set of rank nt� kt+ 1 is a blocking

197
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set with respect to (k � 1)-spaces.
Exercise 4.1.1. Show that an Fq-linear set of rank nt� kt+1 defines a blocking set
respect to (k � 1)-spaces in PG(n� 1, qt).

Polito and Polverino [58] showed that one can construct minimal linear blocking
sets in PG(2, pt), p prime, t � 4 that are not of Rédei-type. This contradicted a
widespread belief (and even conjecture) saying that a small minimal blocking set
in PG(2, qt) would necessarily be of Rédei-type.
Remark 4.1.2. This false conjecture however has some truth hidden in it: it was
shown in [67] that a small minimal blocking set of Rédei-type with respect to k-
spaces is a linear set. Care should be taken when using this result, as the authors
essentially prove that the affine part of the Rédei-type blocking set is an affine
linear set. This however implies that the set itself is linear as well.
Exercise 4.1.3. Let B be a minimal blocking set of Rédei-type in PG(2, q) of size at
most 2q, and let `1 be its Rédei-line (i.e., the line containing |B|�q points). Show
that B consists of the q affine points, together with their determined directions.
Vice versa, show that a point set of size q together with its determined directions
define a minimal blocking set of Rédei-type, provided that not all directions are
determined.

Theorem 4.1.4. Let f be an Fq-linear map on Fqt . The set

B = {(1, x, f(x))|x 2 Fqt} [ {(0, x, f(x))}

in PG(2, qt) is a minimal blocking set of Rédei-type. Moreover, the set B is an Fq-linear
set of rank t+ 1.

Proof. The set B consists of qt affine points, together with their directions. Since
f(x)/x takes on at most q

t�1

q�1
different values, not all directions are determined.

Hence, by Exercise 4.1.3, B is a minimal blocking set of Rédei-type. Let PG(2, qt) =
PG(V ), where V = W1 �W2 �W3. We see that he point set U = {(�, x, f(x))|� 2
Fq, x 2 Fqt} is an Fq-subspace of V of dimension t + 1. Furthermore, the point
with coordinates (�, x, f(x)) in PG(2, qt), � 6= 0 is the point (1, x/�, f(x)/�) =
(1, x0, f(x0)) since � 2 Fq and f is Fq-linear. This implies that the points in B are
precisely the points of LU , so B is an Fq-linear set of rank t + 1. (Note that this
again shows (by 4.1.1) that B is a blocking set.)

⇤

Soon after it was proven that there are small minimal linear blocking sets that are
not of Rédei-type, people conjectured that all small minimal blocking sets should
be linear sets. This conjecture was stated formally by Sziklai in 2008 [71]. Up to
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our knowledge, this is the complete list of cases in which the linearity conjecture
for blocking sets in PG(n, ps), p prime w.r.t. k-spaces has been proven.

• s = 1 (for n = 2, see [7]; for n > 2, k = n� 1, see [29]; for n > 2, k 6= n� 1,
see [70])

• s = 2 (for n = 2, see [69]; for n > 2, k = n� 1, see [68]; for n > 2, k 6= n� 1,
see [78])

• s = 3 (for n = 2, see [59]; for n > 2, k = n� 1, see [68]; for n > 2, k 6= n� 1,
see [44, 28])

• k = n� 1 and B is of Rédei-type (for n = 2, see [3, 9]; for n > 2, see [67])

• k = n� 1 and dimhBi = s� 1 (see [72])

• k = n� 1 and dimhBi = s (see [70]).

It is shown in [76] that, loosely speaking, if the linearity conjecture holds in
PG(2, ps), then it also holds for blocking sets with respect to k-spaces in PG(n, ps),
provided that p is large enough.

4.1.2 The size of an Fq-linear (blocking) set in PG(2, qt)

The results of Theorem 3.4.2 can be used to derive a lower bound on the num-
ber of points in a linear sets in a plane. However, we have to impose a certain
hypothesis, namely that there exists a (q + 1)-secant to the set. Note that this
hypothesis implies that the linear set is not contained in a line.

Theorem 4.1.5. [18, Theorem 4.1] Let L be an Fq-linear set of rank k > 2 in PG(2, qt)
such that there is at least one line of PG(2, qt) meeting L in exactly q + 1 points, then L
contains at least qk�1 + qk�2 + 1 points.

The bound in Theorem 4.1.5 is sharp:
Exercise 4.1.6. Let 3  k  n. Show that there exists an Fq-linear set S of rank k
in PG(2, qt) with qk�1 + qk�2 + 1 elements such that there is a line meeting S in
exactly q + 1 points.

Recall that it is conjectured (see [71, Conjecture 3.1]) that all small minimal block-
ing sets in PG(2, qt) are Fp-linear sets where q is a power of the prime p. In the
same paper, the author conjectures the following:
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Conjecture 4.1.7. [71, p.1170] Let p be a prime. If Fpe is the “maximum field of
linearity” then a non-trivial blocking set in PG(2, ps), with s = en, has at least
(pe)n + (pe)n�1 + 1 points.

The notion “maximum field of linearity” is used by Sziklai to indicate the follow-
ing: the maximum field of linearity of a blocking set in PG(2, ps) is Fpe if and
only if every line meets the blocking set in 1 mod pe points, but not every line
meets in 1 mod pe+1 points. The fact that e is a divisor of t, and hence, that there
is a subfield Fpe of Fps follows from his work on blocking sets, but it does not
necessarily hold for linear sets in general (see [18, Remark 12]).
Remark 4.1.8. Theorem 4.1.5 shows that an Fq-linear set of rank k that contains a
(q+1)-secant, contains at least qk�1+ qk�2+1 points. It is clear if an Fq-linear set
contains a (q+1)-secant, then the maximum field of linearity is indeed Fq. In [71,
Corollary 5.2], the author also shows the converse for blocking sets with respect
to k-spaces in PG(r � 1, qt): if the maximum field of linearity is Fpe , then there
are (many) (pe + 1)-secants to the set. This observation shows that assuming
that there is (q + 1)-secant in the case of an Fq-linear blocking set in PG(2, qt),
is equivalent to assuming that the maximum field of linearity is Fq. So we see
that if the linearity conjecture for blocking sets holds, then Theorem 4.1.5 proves
Conjecture 4.1.7.

4.2 Translation hyperovals and KM-arcs

4.2.1 KM-arcs

Point sets in PG(2, q), the Desarguesian projective plane of over the finite field
Fq of order q, that have few different intersections sizes with lines have been a
research subject throughout the last decades. A point set § of type (i1, . . . , im) in
PG(2, q) is a point set such that for every line in PG(2, q) the intersection size `\§
equals ij for some j and such that each value ij occurs as intersection size for
some line. In [55] point sets of type (0, 2, q/2) of size 3q

2
were studied. This led to

the following generalisation by Korchmáros and Mazzocca in [36].

Definition 4.2.1. A KM-arc of type s in PG(2, q) is a point set of type (0, 2, t) with
size q + s. A line containing i of its points is called an i-secant.

Originally these KM-arcs were called (q+s)-arcs of type (0, 2, s) [36] or ‘(q+s, s)-
arcs of type (0, 2, s)’ [25] but in honour of Korchmáros and Mazzocca we denote
them by KM-arcs. The following results were obtained in [25] and [36].

Theorem 4.2.2. [25, Theorem 2.5],[36, Proposition 2.1].
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If A is a KM-arc of type t in PG(2, q), 2 < s < q, then

• q is even;

• s is a divisor of q;

• there are q

s
+ 1 different s-secants to A, and they are concurrent.

If A is a KM-arc of type s, then the point contained in all s-secants to A is called
the s-nucleus of A.

Definition 4.2.3. A point set § in PG(2, q) is a called a translation set with respect
to the line ` if the group of elations with axis ` fixing § acts transitively on the
points of § \ `; the line ` is called the translation line. If a KM-arc is a translation
set, then it is called a translation KM-arc.

Theorem 4.2.4 ([36, Proposition 6.2]). If § ⇢ PG(2, q) is a translation KM-arc of type
s with respect to the line `, then ` is a s-secant to §.

Definition 4.2.5. An i-club in PG(1, qt) is an Fq-linear set such that there is exactly
one point of weight i (called the head of the i-club) and all other points have
weight one.

Exercise 4.2.6. Determine the number of points in an i-club of rank k in PG(1, qt).
Show that {(x,Tr(x))|x 2 Fqt} is a (t� 1)-club of rank t in PG(1, qt).

The next two results show that i-clubs of rank h in PG(1, 2h) and KM-arcs of type
2i are equivalent objects.

Let D be the Desarguesian (h � 1)-spread in PG(3h � 1, 2) corresponding to
PG(2, 2h), let `1 be the line at infinity of PG(2, 2h) and let H be the (2h � 1)-
space such that B(H) = `1. The points of PG(2, 2h) that are not on `1 are the
affine points.

Theorem 4.2.7. [17, Theorem 2.1] Let µ be an (h� 1)-space in PG(2h� 1, 2) such that
B(µ) is an i-club C of rank h with head N in `1, and let ⇢ 2 D be the spread element
such that B(⇢) = N . Let ⇡ be an h-space meeting H exactly in µ. Then the point set
B(⇡) \ C together with the points of `1 \ C forms a translation KM-arc of type 2i in
PG(2, 2h) with axis `1 and with 2i-nucleus N .

Proof. We denote (B(⇡) \ C) [ (`1 \ C) by A. As ⇡ is an h-space that meets H ,
which is spanned by spread elements, in an (h� 1)-space, a spread element that
meets ⇡\µ non-trivially, meets it in a point. Consequently, A has 2h affine points.
The size of C = B(µ) is 2h�1 + · · · + 2i + 1, which implies that A contains (2h +
1)� (2h�1 + · · ·+ 2i + 1) = 2i points of `1. So in total, A has 2h + 2i points.



Part IV. Chapter 4. Linear blocking sets, translation hyperovals and translation KM-arcs 202

Let ` be a line in PG(2, 2h) different from `1, and let L be the (2h � 1)-space in
PG(3h� 1, 2) such that ` = B(L). If L \H = ⇢, then L contains the (i� 1)-space
µ\⇢. Since L contains no other points of H than the points of ⇢, either L\⇡ is an
i-space, or else L\⇡ equals the (i�1)-space µ\⇢. In the former case |A\ `| = 2i,
in the latter case ` contains no points of A.

If L\H is a spread element different from ⇢, then L meets µ in a point or L\µ = ;.
In the former case ` has no point in common with `1 \C, and L meets meet ⇡ in a
line or a point, so ` \ (B(⇡) \ C) equals 0 or 2. In the latter case ` has one point in
common with `1 \ C, and L meets meet ⇡ in a point by the Grassmann identity,
so |`\ (B(⇡) \ C)| equals 1. Consequently, all lines meet A in 0, 2 or 2i points, and
all lines that meet it in 2i points, pass through N ; A is a KM-arc of type 2i with
2i-nucleus N .

We now prove that A is a translation KM-arc with axis `1. Let P1 and P2 be two
points of A \ `1, and let Q1, Q2 2 (⇡ \ µ) be the points such that B(Q1) = P1

and B(Q2) = P2. We consider the elation � in the (2h)-space hH,⇡i with axis
H , that maps Q1 on Q2. This elation induces an elation � of PG(2, 2h) with axis
B(H) = `1. Note that ⇡ is fixed by �, and hence B(⇡) is fixed by �. So A is fixed
by �. Since Q�

1
= Q2, P �

1
= P2. ⇤

Theorem 4.2.8. [17, Theorem 2.2] Every translation KM-arc of type 2i in PG(2, 2h)
can be constructed as in Theorem 4.2.7.

Proof. From [36, Proposition 6.3], we know that if A is a translation KM-arc of
type t in PG(2, q), q = 2h with translation line Z = 0, and (0, 1, 0) as t-nucleus,
then the affine points of A can be written as (f(t), t, 1) where f(z) =

P
h�1

i=0
↵iz2

i

with ↵i 2 F2.

Now let {!,!2,!2
2
, . . . ,!2

h�1} be a normal basis for F2h over F2 and consider
field reduction with respect to this basis, i.e. we let the vector (u, v, w) of F3

2h

correspond to the vector (u0, . . . , uh�1; v0, . . . , vh�1;w0, . . . , wh�1) of F3h
2

, where
u =

P
h�1

i=0
ui!2

i , v =
P

h�1

i=0
vi!2

i and w =
P

h�1

i=0
wi!2

i .

Write 1 =
P

h�1

i=0
ai!2

i , and let k 2 {0, . . . , h � 1} be an index for which ak = 1.
Let t 2 F2h =

P
h�1

i=0
ti!2

i , then t2
j
=

P
h�1

i=0
th�j+i!2

i , where the indices are taken
modulo h. We see that f(t) =

P
h�1

j=0
(
P

h�1

i=0
↵jth�i+j!2

i
), again with the indices

taken modulo h.

This implies that every point (f(t), t, 1), t 2 F2h is defined by a vector of F23h cor-
responding to a point of PG(3h�1, 2) that belongs to the h-dimensional subspace
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⇡ defined by the 2h� 1 equations:

Xi =
h�1X

j=i

↵jXh�i+j +
i�1X

j=0

↵jX2h�i+j , i 2 {0, . . . , h� 1}

X2h+j = ajX2h+k, j 2 {0, . . . , h� 1}, j 6= k.

The intersection of ⇡ with the (2h � 1)-space H corresponding to the line z = 0,
defined by X2h = X2h+1 = . . . = X3h�1 = 0 satisfies one extra equation, namely
X2h+k = 0, hence, ⇡ meets H in an (h� 1)-dimensional space µ.

Since f is an F2-linear map, the set of directions determined by the set {(f(t), t, 1) |
t 2 F2h} equals {(f(z), z, 0)|z 2 F2h}.

If A is a KM-arc with affine part A0 then it is clear that the set of points of the KM-
arc of type 2i on the line at infinity is exactly the set of non-determined directions
by A0. The size of this set is 2i, which shows that the set A0 determines 2h�2i+1
directions and that |B(µ)| = 2h � 2i + 1. Since we know that the point (0, 1, 0)
lies on all 2i-secants to the affine part of A, determined by B(⇡) \B(µ), we obtain
that the spread element corresponding to (0, 1, 0) meets µ in an (i � 1)-space.
Consequently, all other spread elements that meet µ, meet it in a point, and B(µ)
is an i-club. ⇤

4.2.2 Translation hyperovals and scattered linear sets of pseudoregu-
lus type

The construction of Theorem 4.2.7 also works for i = 1. In this case, we start
with a 1-club in PG(1, 2h), i.e. a scattered linear set. The obtained KM -arc is an arc
of type 2, which means that it is simply a hyperoval, and since it is a translation
set, we obtain a translation hyperoval. The correspondence between translation
hyperovals and scattered linear sets was already established in [27, Theorem 2]. It
is well-known that every translation hyperoval in PG(2, q) is PGL-equivalent to
a point set {(1, t, t2i)|t 2 Fq} [ {(0, 1, 0), (0, 0, 1)}, where q = 2h and gcd(i, h) = 1,
see [30, Theorem 8.5.4].

Remark 4.2.9. In [5], the authors use maximum scattered F2-linear sets in PG(r �
1, 2t) to construct translation caps in even order projective spaces, based on the
same idea. The caps constructed in this way come close to the theoretical lowed
bound of the size of a cap making them extremely interesting objects.

Let S be a scattered Fq-linear set of PG(2k� 1, qt) of rank kt, t, k � 2. We say that
S is of pseudoregulus type if
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1. there exist m = q
kt�1

qt�1
pairwise disjoint lines of PG(2k�1, qt), say s1, s2, . . . , sm,

such that

|S \ si| =
qt � 1

q � 1
8i = 1, . . . ,m,

2. there exist exactly two (k�1)-dimensional subspaces T1 and T2 of PG(2k�
1, qt) disjoint from S such that Tj \ si 6= ; for each i = 1, . . . ,m and j = 1, 2.

The set of lines si, i = 1, . . .m is called the pseudoregulus of PG(2k � 1, qt) asso-
ciated with the linear set S and we refer to T1 and T2 as transversal spaces to this
pseudoregulus. Since a maximum scattered linear set spans the whole space, we
find that the transversal spaces are disjoint. For more information we refer to
[52].

Theorem 4.2.10 ([52, Theorem 3.12]). Each Fq-linear set of PG(2k � 1, qt) of pseu-
doregulus type is of the form L⇢,f with

L⇢,f = {(u, ⇢f(u))qt |u 2 U0}

with ⇢ 2 F⇤
qt

, U0, U1 the k-dimensional vector spaces corresponding to the transversal
spaces T0, T1 and with f : U0 ! U1 an invertible semilinear map, with companion
automorphism � 2 Aut(Fqt), Fix(�) = Fq.

Exercise 4.2.11. Find the transversal spaces T0 and T1 of L⇢,f as given in the pre-
vious result and find the lines meeting L⇢,f in exactly q

t�1

q�1
points.

Recently, in [19], the André/Bruck-Bose representation of translation hyperovals
was studied and the following theorem was shown (this extends the work of [6]).

Theorem 4.2.12. [19] Let Q be a set of qk affine points in PG(2k, q), q = 2h, h � 4,
k � 2, determining a set D of qk � 1 directions in the hyperplane at infinity H1 =
PG(2k � 1, q). Suppose that every line has 0, 1, 3 or q � 1 points in common with the
point set D. Then

(1) D is an F2-linear set of pseudoregulus type.

(2) There exists a Desarguesian spread S in H1 such that, in the André/Bruck-Bose
plane P(S) ⇠= PG(2, qk), with H1 corresponding to the line l1, the points of Q
together with 2 extra points on `1, form a translation hyperoval in PG(2, qk).

Vice versa, via the André/Bruck-Bose construction, the set of affine points of a translation
hyperoval in PG(2, qk), q > 4, k � 2, corresponds to a set Q of qk affine points in
PG(2k, q) whose set of determined directions D is an F2-linear set of pseudoregulus
type. Consequently, every line meets D in 0, 1, 3 or q � 1 points.
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Exercise 4.2.13. Use the representation of a translation hyperoval in PG(2, q) as
{(1, t, t2i)|t 2 Fq} [ {(0, 1, 0), (0, 0, 1)}, where q = 2h and gcd(i, h) = 1 and the co-
ordinates of Exercise 1.4.3 to deduce the vice versa part of the previous theorem.
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Chapter 5

Related research problems

The following research problems are related to the material of this course and
vary in level of difficulty.

Problem 5.0.1. Prove or disprove the linearity conjecture in the plane which states
that every minimal blocking set in PG(2, q) of size smaller than 3(q + 1)/2 is an
Fp-linear set, where q = ph, p prime.

Problem 5.0.2. (Probably somewhat easier than the previous problem.) Show that a min-
imal blocking set cannot have smaller than the size of the smallest linear blocking
set.

Problem 5.0.3. Find a lower bound on the size of an Fq-linear set in PG(2, qt),
without imposing the existence of a (q + 1)-secant.

Problem 5.0.4. Determine a condition for linear sets LU to be simple. (see [16])

Problem 5.0.5. Deduce whether or not the following holds: if an Fq-linear set LU

of rank k has only points of weight at least 2, is it then true that LU is an Fqi-linear
set for some i > 1? (It follows from [9] that this statement is true for Fq-linear sets
of rank t in PG(1, qt).)

Problem 5.0.6. Determine exact conditions on k, h, t under which a k-club of rank
h in PG(1, qt) exists.

Problem 5.0.7. In particular, settle the (non-)existence problem for a 2-club of rank
t in PG(1, 2t) when t > 5. The equivalent non-existence of translation KM-arcs of
type 4 was conjectured by Limbupasiriporn [49], see Section 4.2.

Problem 5.0.8. Let L1, . . . , L qk�1
q�1

be a set of q
k�1

q�1
mutually disjoint lines in PG(2k�

1, q), q even, such that every line meets the point set of these lines in 0, 1, 3 or
q + 1 points. Do the lines of L1, . . . , L qk�1

q�1

define a regulus or a pseudoregulus?

207
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(Compare with Theorem 24 of [46], where this a similar theorem is shown to hold
in PG(3, q3) where q > 2.)
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