PROJECTIVE GEOMETRIC CODES

An Investigation into Small Weight Code Words

Sam Adriaensen - joint work with Lins Denaux, Leo Storme (UGent), Zsuzsa Weiner (Eötvös Lórand)
Finite Geometry \& Friends - June 19 ${ }^{\text {th }} 2019$

VRIJE
UNIVERSITEIT
BRUSSEL

OBJECTIVE

Can we generalize the previous results?

OBJECTIVE

Can we generalize the previous results?
Let $G_{k}(n, q)$ denote the set of k-spaces of $\operatorname{PG}(n, q), q=p^{h}$.

OBJECTIVE

Can we generalize the previous results?
Let $G_{k}(n, q)$ denote the set of k-spaces of $\operatorname{PG}(n, q), q=p^{h}$. We can identify each k-space κ with its characteristic function

$$
\kappa: G_{0}(n, q) \rightarrow \mathbb{F}_{p}: P \mapsto \begin{cases}1 & \text { if } P \in \kappa \\ 0 & \text { otherwise }\end{cases}
$$

OBJECTIVE

Can we generalize the previous results?
Let $G_{k}(n, q)$ denote the set of k-spaces of $\operatorname{PG}(n, q), q=p^{h}$.
We can identify each k-space κ with its characteristic function

$$
\kappa: G_{0}(n, q) \rightarrow \mathbb{F}_{p}: P \mapsto \begin{cases}1 & \text { if } P \in \kappa \\ 0 & \text { otherwise }\end{cases}
$$

Then these characteristic functions generate the code $\mathcal{C}_{k}(n, q)$ in $\mathbb{F}_{p}^{G_{0}(n, q)}$.

OBJECTIVE

Can we generalize the previous results?
Let $G_{k}(n, q)$ denote the set of k-spaces of $\operatorname{PG}(n, q), q=p^{h}$.
We can identify each k-space κ with its characteristic function

$$
\kappa: G_{0}(n, q) \rightarrow \mathbb{F}_{p}: P \mapsto \begin{cases}1 & \text { if } P \in \kappa \\ 0 & \text { otherwise }\end{cases}
$$

Then these characteristic functions generate the code $\mathcal{C}_{k}(n, q)$ in $\mathbb{F}_{p}^{G_{0}(n, q)}$. The previous results are about $\mathcal{C}_{k}(k+1, q)$.

OBJECTIVE

Can we generalize the previous results?
Let $G_{k}(n, q)$ denote the set of k-spaces of $\operatorname{PG}(n, q), q=p^{h}$.
We can identify each k-space κ with its characteristic function

$$
\kappa: G_{0}(n, q) \rightarrow \mathbb{F}_{p}: P \mapsto \begin{cases}1 & \text { if } P \in \kappa \\ 0 & \text { otherwise }\end{cases}
$$

Then these characteristic functions generate the code $\mathcal{C}_{k}(n, q)$ in $\mathbb{F}_{p}^{G_{0}(n, q)}$. The previous results are about $\mathcal{C}_{k}(k+1, q)$.

For $c \in \mathbb{F}_{p}^{G_{0}(n, q)}$ we define

- $\operatorname{supp}(c)=\left\{P \in G_{0}(n, q) \| c(P) \neq 0\right\}$.
- $\mathrm{wt}(\mathrm{c})=|\operatorname{supp}(c)|$.

OBJECTIVE

To prove

Small weight code word are linear combinations of only a few k-spaces.

STRATEGY

$\mathcal{C}_{k}(n, q)$ has two dimensional parameters.

STRATEGY

$\mathcal{C}_{k}(n, q)$ has two dimensional parameters. We could do induction on k and n.

STRATEGY

$\mathcal{C}_{k}(n, q)$ has two dimensional parameters. We could do induction on k and n. Previous result: induction on k (with $n=k+1$).

STRATEGY

$\mathcal{C}_{k}(n, q)$ has two dimensional parameters. We could do induction on k and n. Previous result: induction on k (with $n=k+1$).

Induction base: T. Szőnyi and Zs. Weiner with polynomial method.

STRATEGY

$\mathcal{C}_{k}(n, q)$ has two dimensional parameters. We could do induction on k and n. Previous result: induction on k (with $n=k+1$).

Induction base: T. Szőnyi and Zs. Weiner with polynomial method. Can we also prove it without black magic?

STRATEGY

$\mathcal{C}_{k}(n, q)$ has two dimensional parameters. We could do induction on k and n. Previous result: induction on k (with $n=k+1$).

Induction base: T. Szőnyi and Zs. Weiner with polynomial method. Can we also prove it without black magic?

Yes!

STRATEGY

$\mathcal{C}_{k}(n, q)$ has two dimensional parameters. We could do induction on k and n. Previous result: induction on k (with $n=k+1$).

Induction base: T. Szőnyi and Zs. Weiner with polynomial method. Can we also prove it without black magic?

Yes!
 sort of

HOW DO WE START?

Code words over $\mathbb{F}_{p} \rightarrow$ we obtain $(\bmod p)$ results.

HOW DO WE START?

Code words over $\mathbb{F}_{p} \rightarrow$ we obtain $(\bmod p)$ results. If $q=p$, then we have $(\bmod q)$ results.

HOW DO WE START?

Code words over $\mathbb{F}_{p} \rightarrow$ we obtain $(\bmod p)$ results. If $q=p$, then we have $(\bmod q)$ results.
So let's look at the prime case.

HOW DO WE START?

Code words over $\mathbb{F}_{p} \rightarrow$ we obtain $(\bmod p)$ results. If $q=p$, then we have $(\bmod q)$ results.
So let's look at the prime case.

Theorem (B. Bagchi) \rightarrow purely combinatorial methods!

Take $p \geqslant 5$ prime. Code words $c \in \mathcal{C}_{1}(2, p)$ with $\mathrm{wt}(c)<$ $3 p-3$ are lin. comb. of (at most) two lines.

HOW DO WE START?

Code words over $\mathbb{F}_{p} \rightarrow$ we obtain $(\bmod p)$ results. If $q=p$, then we have $(\bmod q)$ results.
So let's look at the prime case.

Theorem (B. Bagchi) \rightarrow purely combinatorial methods!

Take $p \geqslant 5$ prime. Code words $c \in \mathcal{C}_{1}(2, p)$ with $\mathrm{wt}(c)<$ $3 p-3$ are lin. comb. of (at most) two lines.

Arguments as in Lins' talk give us this:

Theorem

Take $p \geqslant 7$ prime. Code words $c \in \mathcal{C}_{k}(k+1, p)$ with weight below roughly $2.5 p^{k}$ are lin. comb. of (at most) two k-spaces.

SECOND INDUCTION STEP

THE PROJECTION MAP

We go from results of $\mathcal{C}_{k}(k+1, p)$ to results of $\mathcal{C}_{k}(n, p)$. We use the following projection map.

$$
\begin{aligned}
& \operatorname{proj}_{R, \pi}(c): P \mapsto \sum_{Q \in R P} c(Q) . \\
& \text { Then } \\
& \operatorname{proj}_{R, \pi}(c) \in \mathcal{C}_{k}(n-1, p) .
\end{aligned}
$$

Original idea: M. Lavrauw, L. Storme, G. Van de Voorde

SECOND INDUCTION STEP

SECOND INDUCTION STEP

Theorem

Take $p \geqslant 7$ prime. Code words $c \in \mathcal{C}_{k}(n, p)$ with weight below roughly $2.5 p^{k}$ are lin. comb. of (at most) two k-spaces.

SECOND INDUCTION STEP

Theorem

Take $p \geqslant 7$ prime. Code words $c \in \mathcal{C}_{k}(n, p)$ with weight below roughly $2.5 p^{k}$ are lin. comb. of (at most) two k-spaces.

Can we go from $\mathcal{C}_{k}(n, p)$ to $\mathcal{C}_{k}\left(n, q=p^{h}\right)$?

SECOND INDUCTION STEP

Theorem

Take $p \geqslant 7$ prime. Code words $c \in \mathcal{C}_{k}(n, p)$ with weight below roughly $2.5 p^{k}$ are lin. comb. of (at most) two k-spaces.

Can we go from $\mathcal{C}_{k}(n, p)$ to $\mathcal{C}_{k}\left(n, q=p^{h}\right)$?
Yes!

SECOND INDUCTION STEP

Theorem

Take $p \geqslant 7$ prime. Code words $c \in \mathcal{C}_{k}(n, p)$ with weight below roughly $2.5 p^{k}$ are lin. comb. of (at most) two k-spaces.

Can we go from $\mathcal{C}_{k}(n, p)$ to $\mathcal{C}_{k}\left(n, q=p^{h}\right)$?
Yes!
Using field reduction

FIELD REDUCTION

- A point in $\operatorname{PG}(n, q)$ is an $(h-1)$-space in PG $(N=(n+1) h-1, p)$. This gives an $(h-1)$-spread S of PG(N, p)

FIELD REDUCTION

- A point in $\operatorname{PG}(n, q)$ is an $(h-1)$-space in $\operatorname{PG}(N=(n+1) h-1, p)$. This gives an $(h-1)$-spread S of PG(N, p)
- A k-space in $\operatorname{PG}(n, q)$ is a $(K=(k+1) h-1)$-space in PG($N, p)$.

FIELD REDUCTION

- A point in $\operatorname{PG}(n, q)$ is an $(h-1)$-space in $\operatorname{PG}(N=(n+1) h-1, p)$. This gives an $(h-1)$-spread S of PG(N, p)
- A k-space in $\operatorname{PG}(n, q)$ is a $(K=(k+1) h-1)$-space in PG(N, p).
- Take $c \in \mathcal{C}_{k}(n, q)$. We make a code word $C \in \mathcal{C}_{K}(N, p)$:

FIELD REDUCTION

- A point in $\operatorname{PG}(n, q)$ is an $(h-1)$-space in PG $(N=(n+1) h-1, p)$. This gives an $(h-1)$-spread S of PG(N, p)
- A k-space in $\operatorname{PG}(n, q)$ is a $(K=(k+1) h-1)$-space in PG(N, p).
- Take $c \in \mathcal{C}_{k}(n, q)$. We make a code word $C \in \mathcal{C}_{K}(N, p)$:
- A point P in $\operatorname{PG}(N, p)$ lies in an element ι of S.

FIELD REDUCTION

- A point in $\operatorname{PG}(n, q)$ is an $(h-1)$-space in PG $(N=(n+1) h-1, p)$. This gives an $(h-1)$-spread S of PG(N, p)
- A k-space in $\operatorname{PG}(n, q)$ is a $(K=(k+1) h-1)$-space in PG(N, p).
- Take $c \in \mathcal{C}_{k}(n, q)$. We make a code word $C \in \mathcal{C}_{K}(N, p)$:
- A point P in $\operatorname{PG}(N, p)$ lies in an element ι of S.
- ι corresponds to a point I of $\mathrm{PG}(n, q)$.

FIELD REDUCTION

- A point in $\operatorname{PG}(n, q)$ is an $(h-1)$-space in PG $(N=(n+1) h-1, p)$. This gives an $(h-1)$-spread S of PG(N, p)
- A k-space in $\operatorname{PG}(n, q)$ is a $(K=(k+1) h-1)$-space in PG(N, p).
- Take $c \in \mathcal{C}_{k}(n, q)$. We make a code word $C \in \mathcal{C}_{K}(N, p)$:
- A point P in $\operatorname{PG}(N, p)$ lies in an element ι of S.
- ι corresponds to a point $/$ of $\operatorname{PG}(n, q)$.
- Define $C(P)=c(I)$.

FIELD REDUCTION

- A point in $\operatorname{PG}(n, q)$ is an $(h-1)$-space in PG $(N=(n+1) h-1, p)$. This gives an $(h-1)$-spread S of PG(N, p)
- A k-space in $\operatorname{PG}(n, q)$ is a $(K=(k+1) h-1)$-space in PG(N, p).
- Take $c \in \mathcal{C}_{k}(n, q)$. We make a code word $C \in \mathcal{C}_{K}(N, p)$:
- A point P in $\operatorname{PG}(N, p)$ lies in an element ι of S.
- ι corresponds to a point $/$ of $\operatorname{PG}(n, q)$.
- Define $C(P)=c(I)$.
- $C \in \mathcal{C}_{K}(N, p)$.

FIELD REDUCTION

- A point in $\operatorname{PG}(n, q)$ is an $(h-1)$-space in PG $(N=(n+1) h-1, p)$. This gives an $(h-1)$-spread S of PG(N, p)
- A k-space in $\operatorname{PG}(n, q)$ is a $(K=(k+1) h-1)$-space in PG(N, p).
- Take $c \in \mathcal{C}_{k}(n, q)$. We make a code word $C \in \mathcal{C}_{K}(N, p)$:
- A point P in $\operatorname{PG}(N, p)$ lies in an element ι of S.
- ι corresponds to a point l of $\operatorname{PG}(n, q)$.
- Define $C(P)=c(I)$.
- $C \in \mathcal{C}_{K}(N, p)$.
c has small weight

FIELD REDUCTION

- A point in $\operatorname{PG}(n, q)$ is an $(h-1)$-space in PG $(N=(n+1) h-1, p)$. This gives an $(h-1)$-spread S of PG (N, p)
- A k-space in $\operatorname{PG}(n, q)$ is a $(K=(k+1) h-1)$-space in PG(N, p).
- Take $c \in \mathcal{C}_{k}(n, q)$. We make a code word $C \in \mathcal{C}_{K}(N, p)$:
- A point P in $\operatorname{PG}(N, p)$ lies in an element ι of S.
- ι corresponds to a point $/$ of $\operatorname{PG}(n, q)$.
- Define $C(P)=c(I)$.
- $C \in \mathcal{C}_{K}(N, p)$.
c has small weight $\Rightarrow C$ has small weight

FIELD REDUCTION

- A point in $\operatorname{PG}(n, q)$ is an $(h-1)$-space in PG $(N=(n+1) h-1, p)$. This gives an $(h-1)$-spread S of PG(N, p)
- A k-space in $\operatorname{PG}(n, q)$ is a $(K=(k+1) h-1)$-space in PG(N, p).
- Take $c \in \mathcal{C}_{k}(n, q)$. We make a code word $C \in \mathcal{C}_{K}(N, p)$:
- A point P in $\operatorname{PG}(N, p)$ lies in an element ι of S.
- ι corresponds to a point $/$ of $\operatorname{PG}(n, q)$.
- Define $C(P)=c(I)$.
- $C \in \mathcal{C}_{K}(N, p)$.
c has small weight $\Rightarrow C$ has small weight $\Rightarrow C$ is a lin. comb. of two K-spaces

FIELD REDUCTION

- A point in $\operatorname{PG}(n, q)$ is an $(h-1)$-space in PG $(N=(n+1) h-1, p)$. This gives an $(h-1)$-spread S of PG(N, p)
- A k-space in $\operatorname{PG}(n, q)$ is a $(K=(k+1) h-1)$-space in PG(N, p).
- Take $c \in \mathcal{C}_{k}(n, q)$. We make a code word $C \in \mathcal{C}_{K}(N, p)$:
- A point P in $\operatorname{PG}(N, p)$ lies in an element ι of S.
- ι corresponds to a point l of $\operatorname{PG}(n, q)$.
- Define $C(P)=c(I)$.
- $C \in \mathcal{C}_{K}(N, p)$.
c has small weight $\Rightarrow C$ has small weight $\Rightarrow C$ is a lin. comb. of two K-spaces $\Rightarrow c$ is a lin. comb. of two k-spaces.

FIELD REDUCTION

- A point in $\operatorname{PG}(n, q)$ is an $(h-1)$-space in PG $(N=(n+1) h-1, p)$. This gives an $(h-1)$-spread S of PG(N, p)
- A k-space in $\operatorname{PG}(n, q)$ is a $(K=(k+1) h-1)$-space in PG(N, p).
- Take $c \in \mathcal{C}_{k}(n, q)$. We make a code word $C \in \mathcal{C}_{K}(N, p)$:
- A point P in $\operatorname{PG}(N, p)$ lies in an element ι of S.
- ι corresponds to a point l of $\operatorname{PG}(n, q)$.
- Define $C(P)=c(I)$.
- $C \in \mathcal{C}_{K}(N, p)$.
c has small weight $\Rightarrow C$ has small weight $\Rightarrow C$ is a lin. comb. of two K-spaces $\Rightarrow c$ is a lin. comb. of two k-spaces.

THE HULL

We can define $\mathcal{H}_{k}(n, q)=\mathcal{C}_{k}(n, q) \cap\langle\mathbf{1}\rangle^{\perp}$.

We can define $\mathcal{H}_{k}(n, q)=\mathcal{C}_{k}(n, q) \cap\langle\mathbf{1}\rangle^{\perp}$. This decreases the dimension by one.

THE HULL

We can define $\mathcal{H}_{k}(n, q)=\mathcal{C}_{k}(n, q) \cap\langle\mathbf{1}\rangle^{\perp}$. This decreases the dimension by one.

Theorem (E. Assmus, J. Key)
The minimum weight of $\mathcal{H}_{1}(2, q)$ is $2 q$.

THE HULL

We can define $\mathcal{H}_{k}(n, q)=\mathcal{C}_{k}(n, q) \cap\langle\mathbf{1}\rangle^{\perp}$. This decreases the dimension by one.

Theorem (E. Assmus, J. Key)
The minimum weight of $\mathcal{H}_{1}(2, q)$ is $2 q$.

They used algebra beyond the familiar realm of the finite geometer.

THE HULL

We can define $\mathcal{H}_{k}(n, q)=\mathcal{C}_{k}(n, q) \cap\langle\mathbf{1}\rangle^{\perp}$. This decreases the dimension by one.

Theorem (E. Assmus, J. Key)
The minimum weight of $\mathcal{H}_{1}(2, q)$ is $2 q$.

They used algebra beyond the familiar realm of the finite geometer. Can we do without?

THE HULL

We can define $\mathcal{H}_{k}(n, q)=\mathcal{C}_{k}(n, q) \cap\langle\mathbf{1}\rangle^{\perp}$. This decreases the dimension by one.

Theorem (E. Assmus, J. Key)
The minimum weight of $\mathcal{H}_{1}(2, q)$ is $2 q$.

They used algebra beyond the familiar realm of the finite geometer. Can we do without?

Yes!

THE HULL

Lemma (A. Blokhuis, A. Brouwer, H. Wilbrink) \rightarrow combinatorial proof!

Assume that $c \in \mathcal{H}_{1}(2, q)$, and take $P \in \operatorname{supp}(c)$. All points
$Q_{i} \in \operatorname{supp}(c) \backslash\{P\}$, s. t. $\left|P Q_{i} \cap \operatorname{supp}(c)\right|=2$ are collinear.

THE HULL

Lemma (A. Blokhuis, A. Brouwer, H. Wilbrink) \rightarrow combinatorial proof!

Assume that $c \in \mathcal{H}_{1}(2, q)$, and take $P \in \operatorname{supp}(c)$. All points $Q_{i} \in \operatorname{supp}(c) \backslash\{P\}$, s. t. $\left|P Q_{i} \cap \operatorname{supp}(c)\right|=2$ are collinear.

- If $w t(c)<2 q$, then every point in $\operatorname{supp}(c)$ lies on a lot of 2-secants.

THE HULL

Lemma (A. Blokhuis, A. Brouwer, H. Wilbrink) \rightarrow combinatorial proof!

Assume that $c \in \mathcal{H}_{1}(2, q)$, and take $P \in \operatorname{supp}(c)$. All points $Q_{i} \in \operatorname{supp}(c) \backslash\{P\}$, s. t. $\left|P Q_{i} \cap \operatorname{supp}(c)\right|=2$ are collinear.

- If $w t(c)<2 q$, then every point in $\operatorname{supp}(c)$ lies on a lot of 2-secants.
- This yields several collinear points of $\operatorname{supp}(c)$.

THE HULL

Lemma (A. Blokhuis, A. Brouwer, H. Wilbrink) \rightarrow combinatorial proof!

Assume that $c \in \mathcal{H}_{1}(2, q)$, and take $P \in \operatorname{supp}(c)$. All points $Q_{i} \in \operatorname{supp}(c) \backslash\{P\}$, s. t. $\left|P Q_{i} \cap \operatorname{supp}(c)\right|=2$ are collinear.

- If $\mathrm{wt}(c)<2 q$, then every point in $\operatorname{supp}(c)$ lies on a lot of 2-secants.
- This yields several collinear points of supp(c).
- We can keep repeating this argument until we find a line $I \subseteq \operatorname{supp}(c)$. All points of I have the same coefficient in c.

THE HULL

Lemma (A. Blokhuis, A. Brouwer, H. Wilbrink) \rightarrow combinatorial proof!

Assume that $c \in \mathcal{H}_{1}(2, q)$, and take $P \in \operatorname{supp}(c)$. All points $Q_{i} \in \operatorname{supp}(c) \backslash\{P\}$, s. t. $\left|P Q_{i} \cap \operatorname{supp}(c)\right|=2$ are collinear.

- If $\mathrm{wt}(c)<2 q$, then every point in $\operatorname{supp}(c)$ lies on a lot of 2-secants.
- This yields several collinear points of supp(c).
- We can keep repeating this argument until we find a line $I \subseteq \operatorname{supp}(c)$. All points of I have the same coefficient in c.
- It is not hard to go to a contradiction.

THE HULL

Using the previous induction tools we obtain:

Theorem

The minimum weight of $\mathcal{H}_{k}(n, q)$ equals $2 q^{k}$.

GENERALIZATION

Codes of j-spaces and k-spaces:

GENERALIZATION

Codes of j-spaces and k-spaces: Identify every k-space κ with the characteristic function

$$
\kappa: G_{j}(n, q) \rightarrow \mathbb{F}_{p}: \lambda \mapsto \begin{cases}1 & \text { if } \lambda \subset \kappa \\ 0 & \text { otherwise }\end{cases}
$$

GENERALIZATION

Codes of j-spaces and k-spaces: Identify every k-space κ with the characteristic function

$$
\kappa: G_{j}(n, q) \rightarrow \mathbb{F}_{p}: \lambda \mapsto \begin{cases}1 & \text { if } \lambda \subset \kappa \\ 0 & \text { otherwise }\end{cases}
$$

$\mathcal{C}_{j, k}(n, q)$ is the subspace of $\mathbb{F}_{p}^{G_{j}(n, q)}$ generated by these characteristic functions.

GENERALIZATION

Codes of j-spaces and k-spaces: Identify every k-space κ with the characteristic function

$$
\kappa: G_{j}(n, q) \rightarrow \mathbb{F}_{p}: \lambda \mapsto \begin{cases}1 & \text { if } \lambda \subset \kappa \\ 0 & \text { otherwise }\end{cases}
$$

$\mathcal{C}_{j, k}(n, q)$ is the subspace of $\mathbb{F}_{p}^{G_{j}(n, q)}$ generated by these characteristic functions.

Theorem

Small weight code words of $\mathcal{C}_{j, k}(n, q)$ are lin. comb. of (at most) two k-spaces.

THE DUAL CODE

We define the dual code $\mathcal{C}_{j, k}(n, q)^{\perp}$ as the orthogonal complement of $\mathcal{C}_{j, k}(n, q)$.

THE DUAL CODE

We define the dual code $\mathcal{C}_{j, k}(n, q)^{\perp}$ as the orthogonal complement of $\mathcal{C}_{j, k}(n, q)$.

Then $c \in \mathcal{C}_{j, k}(n, q)^{\perp}$ iff

$$
\left(\forall \kappa \in G_{k}(n, q)\right)\left(c \cdot \kappa=\sum_{\lambda \in G_{j}(\kappa)} c(\lambda)=0\right)
$$

THE DUAL CODE

We define the dual code $\mathcal{C}_{j, k}(n, q)^{\perp}$ as the orthogonal complement of $\mathcal{C}_{j, k}(n, q)$.

Then $c \in \mathcal{C}_{j, k}(n, q)^{\perp}$ iff

$$
\left(\forall \kappa \in G_{k}(n, q)\right)\left(c \cdot \kappa=\sum_{\lambda \in G_{j}(\kappa)} c(\lambda)=0\right)
$$

Can we do a similar induction process? We want to generalize results about $\mathcal{C}_{0,1}(2, q)^{\perp}$.

THE DUAL CODE

We define the dual code $\mathcal{C}_{j, k}(n, q)^{\perp}$ as the orthogonal complement of $\mathcal{C}_{j, k}(n, q)$.

Then $c \in \mathcal{C}_{j, k}(n, q)^{\perp}$ iff

$$
\left(\forall \kappa \in G_{k}(n, q)\right)\left(c \cdot \kappa=\sum_{\lambda \in G_{j}(\kappa)} c(\lambda)=0\right)
$$

Can we do a similar induction process? We want to generalize results about $\mathcal{C}_{0,1}(2, q)^{\perp}$.

Problem: The min. weight of $\mathcal{C}_{0,1}(2, q)^{\perp}$ is not known in general.

THE DUAL CODE

We define the dual code $\mathcal{C}_{j, k}(n, q)^{\perp}$ as the orthogonal complement of $\mathcal{C}_{j, k}(n, q)$.

Then $c \in \mathcal{C}_{j, k}(n, q)^{\perp}$ iff

$$
\left(\forall \kappa \in G_{k}(n, q)\right)\left(c \cdot \kappa=\sum_{\lambda \in G_{j}(\kappa)} c(\lambda)=0\right)
$$

Can we do a similar induction process? We want to generalize results about $\mathcal{C}_{0,1}(2, q)^{\perp}$.

Problem: The min. weight of $\mathcal{C}_{0,1}(2, q)^{\perp}$ is not known in general. Lightbulb: It is known for $\mathcal{C}_{0,1}(2, p)^{\perp}, p$ prime!

THE DUAL CODE

We define the dual code $\mathcal{C}_{j, k}(n, q)^{\perp}$ as the orthogonal complement of $\mathcal{C}_{j, k}(n, q)$.

Then $c \in \mathcal{C}_{j, k}(n, q)^{\perp}$ iff

$$
\left(\forall \kappa \in G_{k}(n, q)\right)\left(c \cdot \kappa=\sum_{\lambda \in G_{j}(\kappa)} c(\lambda)=0\right)
$$

Can we do a similar induction process? We want to generalize results about $\mathcal{C}_{0,1}(2, q)^{\perp}$.

Problem: The min. weight of $\mathcal{C}_{0,1}(2, q)^{\perp}$ is not known in general. Lightbulb: It is known for $\mathcal{C}_{0,1}(2, p)^{\perp}, p$ prime! Problem again: \perp reverses inclusion, so we can't use field reduction.

THE DUAL CODE

Bagchi \& Inamdar introduced a pull-back contruction, to go from $\mathcal{C}_{0, k}(n, q)^{\perp}$ to $\mathcal{C}_{j, k+j}(n+j, q)^{\perp}$.

THE DUAL CODE

Bagchi \& Inamdar introduced a pull-back contruction, to go from $\mathcal{C}_{0, k}(n, q)^{\perp}$ to $\mathcal{C}_{j, k+j}(n+j, q)^{\perp}$. It means that all elements of $\operatorname{supp}(c)$ go through a fixed $(j-1)$-space.

THE DUAL CODE

Bagchi \& Inamdar introduced a pull-back contruction, to go from $\mathcal{C}_{0, k}(n, q)^{\perp}$ to $\mathcal{C}_{j, k+j}(n+j, q)^{\perp}$. It means that all elements of $\operatorname{supp}(c)$ go through a fixed $(j-1)$-space.

Conjecture (B. Bagchi, S. P. Inamdar)
All minimum weight code words of $\mathcal{C}_{j, k}(n, q)^{\perp}$ are pullbacks if q is prime.

THE DUAL CODE

Bagchi \& Inamdar introduced a pull-back contruction, to go from $\mathcal{C}_{0, k}(n, q)^{\perp}$ to $\mathcal{C}_{j, k+j}(n+j, q)^{\perp}$. It means that all elements of $\operatorname{supp}(c)$ go through a fixed $(j-1)$-space.

Conjecture (B. Bagchi, S. P. Inamdar)
All minimum weight code words of $\mathcal{C}_{j, k}(n, q)^{\perp}$ are pullbacks if q is prime.

They proved for $j=k-1$.

THE DUAL CODE

Bagchi \& Inamdar introduced a pull-back contruction, to go from $\mathcal{C}_{0, k}(n, q)^{\perp}$ to $\mathcal{C}_{j, k+j}(n+j, q)^{\perp}$. It means that all elements of $\operatorname{supp}(c)$ go through a fixed $(j-1)$-space.

Conjecture (B. Bagchi, S. P. Inamdar)
All minimum weight code words of $\mathcal{C}_{j, k}(n, q)^{\perp}$ are pullbacks if q is prime.

They proved for $j=k-1$.

Theorem

All minimum weight code words of $\mathcal{C}_{j, k}(n, q)^{\perp}$ are pullbacks.

THE DUAL CODE

Bagchi \& Inamdar introduced a pull-back contruction, to go from $\mathcal{C}_{0, k}(n, q)^{\perp}$ to $\mathcal{C}_{j, k+j}(n+j, q)^{\perp}$. It means that all elements of $\operatorname{supp}(c)$ go through a fixed $(j-1)$-space.

Conjecture (B. Bagchi, S. P. Inamdar)
All minimum weight code words of $\mathcal{C}_{j, k}(n, q)^{\perp}$ are pullbacks if q is prime.

They proved for $j=k-1$.

Theorem

All minimum weight code words of $\mathcal{C}_{j, k}(n, q)^{\perp}$ are pullbacks.

The problem reduces to $j=0$.

THE DUAL CODE

FURTHER REDUCTION

Together with previous results (M. Lavrauw, L. Storme, G. Van de Voorde), we can reduce the minimum weight problem to codes of the form $\mathcal{C}_{0,1}(n, q)^{\perp}$.

THE DUAL CODE

FURTHER REDUCTION

Together with previous results (M. Lavrauw, L. Storme, G. Van de Voorde), we can reduce the minimum weight problem to codes of the form $\mathcal{C}_{0,1}(n, q)^{\perp}$.

The minimum weight of $\mathcal{C}_{0,1}(n, q)^{\perp}$ is

- known and characterized for q prime.
- known for q even.

POSSIBILITIES FOR FURTHER RESEARCH

- Reduce the minimum weight problem of the dual code to $\mathcal{C}_{0,1}(2, q){ }^{\perp}$.

POSSIBILITIES FOR FURTHER RESEARCH

- Reduce the minimum weight problem of the dual code to $\mathcal{C}_{0,1}(2, q)^{\perp}$.
- Determine the minimum weight (code words) of $\mathcal{C}_{0,1}(2, q)^{\perp}$. Close upper and lower bounds on the minimum weight are known.

POSSIBILITIES FOR FURTHER RESEARCH

- Reduce the minimum weight problem of the dual code to $\mathcal{C}_{0,1}(2, q){ }^{\perp}$.
- Determine the minimum weight (code words) of $\mathcal{C}_{0,1}(2, q)^{\perp}$. Close upper and lower bounds on the minimum weight are known.
- Determine the dimension in general. This is only known for $j=0$, and, by duality, $k=n-1$.

POSSIBILITIES FOR FURTHER RESEARCH

- Reduce the minimum weight problem of the dual code to $\mathcal{C}_{0,1}(2, q)^{\perp}$.
- Determine the minimum weight (code words) of $\mathcal{C}_{0,1}(2, q)^{\perp}$. Close upper and lower bounds on the minimum weight are known.
- Determine the dimension in general. This is only known for $j=0$, and, by duality, $k=n-1$.
- Examine some generalizations of these codes. I am currently looking at the code generated by j-spaces in a k-space through an i-space.

Thank you for your attention!

