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OBJECTIVE

Can we generalize the previous results?

Let Gk(n,q) denote the set of k-spaces of PG(n,q), q = ph.We can identify each k-space κ with its characteristic function
κ : G0(n,q)→ Fp : P 7→

{1 if P ∈ κ,
0 otherwise.

Then these characteristic functions generate the code Ck(n,q)in FG0(n,q)
p . The previous results are about Ck(k + 1,q).

For c ∈ FG0(n,q)
p we define

I supp(c) = {P ∈ G0(n,q) || c(P) 6= 0}.
I wt(c) = |supp(c)|.
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OBJECTIVE

To prove
Small weight code word are linear combinations of only afew k-spaces.
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STRATEGY

Ck(n,q) has two dimensional parameters.

We could doinduction on k and n. Previous result: induction on k (with
n = k + 1).
Induction base: T. Szőnyi and Zs. Weiner with polynomialmethod. Can we also prove it without black magic?Yes!sort of
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HOW DO WE START?Code words over Fp→ we obtain (mod p) results.

If q = p,then we have (mod q) results.
So let’s look at the prime case.

Theorem (B. Bagchi)→ purely combinatorial methods!
Take p > 5 prime. Code words c ∈ C1(2, p) with wt(c) <3p− 3 are lin. comb. of (at most) two lines.

Arguments as in Lins’ talk give us this:
Theorem
Take p > 7 prime. Code words c ∈ Ck(k + 1, p) withweight below roughly 2.5pk are lin. comb. of (at most) two
k-spaces.
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SECOND INDUCTION STEP
THE PROJECTION MAP

•

•

P

R

•Q

•
••

π

We go from resultsof Ck(k + 1, p) to resultsof Ck(n, p). We use thefollowing projection map.
projR,π(c) : P 7→ ∑

Q∈RP
c(Q).

ThenprojR,π(c) ∈ Ck(n− 1, p).
Originalidea: M. Lavrauw, L.Storme, G. Van de Voorde



7

SECOND INDUCTION STEP



8

SECOND INDUCTION STEP

Theorem
Take p > 7 prime. Code words c ∈ Ck(n, p)with weight be-low roughly 2.5pk are lin. comb. of (atmost) two k-spaces.

Can we go from Ck(n, p) to Ck(n,q = ph)?
Yes!

Using field reduction
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FIELD REDUCTION
I A point in PG(n,q) is an (h− 1)-space inPG(N = (n+ 1)h− 1, p). This gives an (h− 1)-spread S ofPG(N, p)

I A k-space in PG(n,q) is a (K = (k + 1)h− 1)-space inPG(N, p).
I Take c ∈ Ck(n,q). We make a code word C ∈ CK(N, p):
I A point P in PG(N, p) lies in an element ι of S.
I ι corresponds to a point I of PG(n,q).
I Define C(P) = c(I).
I C ∈ CK(N, p).

c has small weight ⇒ C has small weight ⇒ C is a lin. comb.of two K-spaces ⇒ c is a lin. comb. of two k-spaces.
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THE HULL

We can defineHk(n,q) = Ck(n,q) ∩ 〈1〉⊥.

This decreases thedimension by one.
Theorem (E. Assmus, J. Key)
The minimum weight ofH1(2,q) is 2q.

They used algebra beyond the familiar realm of the finitegeometer. Can we do without?
Yes!
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THE HULL

Lemma (A. Blokhuis, A. Brouwer, H. Wilbrink)→ combina-torial proof!
Assume that c ∈ H1(2,q), and takeP ∈ supp(c). All points
Qi ∈ supp(c) \ {P}, s. t. |PQi ∩ supp(c)| = 2 are collinear.

I If wt(c) < 2q, then every point in supp(c) lies on a lot of2-secants.
I This yields several collinear points of supp(c).
I We can keep repeating this argument until we find a line

l ⊆ supp(c). All points of l have the same coefficient in c.
I It is not hard to go to a contradiction.
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THE HULL

Using the previous induction tools we obtain:
Theorem
The minimum weight ofHk(n,q) equals 2qk.
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GENERALIZATION
Codes of j-spaces and k-spaces:

Identify every k-space κ with the characteristic function
κ : Gj(n,q)→ Fp : λ 7→

{1 if λ ⊂ κ,
0 otherwise.

Cj,k(n,q) is the subspace of FGj(n,q)
p generated by thesecharacteristic functions.

Theorem
Small weight code words of Cj,k(n,q) are lin. comb. of (atmost) two k-spaces.
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THE DUAL CODE
We define the dual code Cj,k(n,q)⊥ as the orthogonalcomplement of Cj,k(n,q).

Then c ∈ Cj,k(n,q)⊥ iff
(∀κ ∈ Gk(n,q))(c · κ =

∑
λ∈Gj(κ)

c(λ) = 0)

Can we do a similar induction process? We want to generalizeresults about C0,1(2,q)⊥.
Problem: The min. weight of C0,1(2,q)⊥ is not known in general.
Lightbulb: It is known for C0,1(2, p)⊥, p prime!
Problem again: ⊥ reverses inclusion, so we can’t use fieldreduction.
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THE DUAL CODEBagchi & Inamdar introduced a pull-back contruction, to gofrom C0,k(n,q)⊥ to Cj,k+j(n+ j,q)⊥.

It means that all elements ofsupp(c) go through a fixed (j− 1)-space.
Conjecture (B. Bagchi, S. P. Inamdar)
All minimum weight code words of Cj,k(n,q)⊥ are pull-backs if q is prime.

They proved for j = k − 1.
Theorem
All minimum weight code words of Cj,k(n,q)⊥ are pull-backs.

The problem reduces to j = 0.
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THE DUAL CODE
FURTHER REDUCTION

Together with previous results (M. Lavrauw, L. Storme, G. Vande Voorde), we can reduce the minimum weight problem tocodes of the form C0,1(n,q)⊥.

The minimum weight of C0,1(n,q)⊥ is
I known and characterized for q prime.
I known for q even.
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POSSIBILITIES FOR FURTHER RESEARCH

I Reduce the minimum weight problem of the dual code to
C0,1(2,q)⊥.

I Determine the minimum weight (code words) of
C0,1(2,q)⊥. Close upper and lower bounds on the minimumweight are known.

I Determine the dimension in general. This is only known for
j = 0, and, by duality, k = n− 1.

I Examine some generalizations of these codes. I amcurrently looking at the code generated by j-spaces in a
k-space through an i-space.
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Thank you for your attention!


