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Can we generalize the previous results?
Let G,(n.q) denote the set of k-spaces of PG(n, q), g = p".
We can identify each k-space « with its characteristic function

1 ifPexk,

:Go(n,q) = Fp: P—
#: Go(n.q) P {0 otherwise.

Then these characteristic functions generate the code (1, q)
in FgO(”’q). The previous results are about C(k + 1,q).

For ¢ € F*% we define
> supp(c) = {P € Go(n,q)|[c(P) # 0}.
> wi(c) = [supp(c)|.



OBJECTIVE

To prove

Small weight code word are linear combinations of only a
few k-spaces.
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Code words over F, — we obtain (mod p) results. If g =p,

then we have (mod q) results.
So let’s look at the prime case.

Theorem (B. Bagchi) — purely combinatorial methods!

Take p > 5 prime. Code words ¢ € C;(2,p) with wt(c) <
3p — 3 are lin. comb. of (at most) two lines.

Arguments as in Lins’ talk give us this:

Take p > 7 prime. Code words ¢ € Ci(k + 1,p) with
weight below roughly 2.5p are lin. comb. of (at most) two
k-spaces.




THE PROJECTION MAP We go from results
of Cx(k + 1,p) to results

of Cx(n, p). We use the
following projection map.

projg .(c) : P— > ¢(Q).

Q€eRP

SECOND INDUCTION STEP
R

Then
projRJr(C) € Ck(n - 17p)

Original
idea: M. Lavrauw, L.
Storme, G. Van de Voorde
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Lemma (A. Blokhuis, A. Brouwer, H. Wilbrink) — combina-

torial proof!

Assumethatc € #4(2,q), and take P € supp(c). All points
Q; € supp(c) \ {P}, s. t. |PQ; n'supp(c)| = 2 are collinear.

> If wt(c) < 2q, then every point in supp(c) lies on a lot of
2-secants.

» This yields several collinear points of supp(c).

» We can keep repeating this argument until we find a line
I C supp(c). All points of | have the same coefficient in c.

» Itis not hard to go to a contradiction.
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Using the previous induction tools we obtain:

The minimum weight of #,(n, q) equals 2g*.
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GENERALIZATION

Codes of j-spaces and k-spaces:
Identify every k-space « with the characteristic function

1 ifAC s,

:Gi(n,q) > Fp: A —
. 6i(n.q) P {0 otherwise.

(n-q) generated by these

Cjk(n.q) is the subspace of ]Fg’
characteristic functions.

Small weight code words of Cj(n, ) are lin. comb. of (at
most) two k-spaces.
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complement of Cj(n, q).

Then ¢ € Cix(n, q)* iff

(Vx € Ge(n,q))(c- k=D c(A)=0)

)\EG]‘(E)

Can we do a similar induction process? We want to generalize
results about Cp1(2,q)*.

Problem: The min. weight of Cg 1(2, q)* is not known in general.

Lightbulb: It is known for Co1(2,p)*, p prime!
Problem again: L reverses inclusion, so we can't use field
reduction.
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Bagchi & Inamdar introduced a pull-back contruction, to go
from Co x(n, @)* to0 Cjk1j(n +j,q)*. It means that all elements of
supp(c) go through a fixed (j — 1)-space.

Conjecture (B. Bagchi, S. P. Inamdar)

All minimum weight code words of Cj,k(n,q)l are pull-
backs if g is prime.

They proved forj =k — 1.

All minimum weight code words of Cj,k(n,q)l are pull-
backs.

The problem reduces toj = 0.
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THE DUAL CODE
FURTHER REDUCTION

Together with previous results (M. Lavrauw, L. Storme, G. Van
de Voorde), we can reduce the minimum weight problem to
codes of the form Cy 1(n, q)*.

The minimum weight of Co 1(n, g)* is
» known and characterized for g prime.
» known for g even.
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POSSIBILITIES FOR FURTHER RESEARCH

» Reduce the minimum weight problem of the dual code to
60,1(27 q)l

» Determine the minimum weight (code words) of
Co1(2,q)*. Close upper and lower bounds on the minimum
weight are known.

» Determine the dimension in general. This is only known for
j =0, and, by duality, k =n — 1.

» Examine some generalizations of these codes. | am

currently looking at the code generated by j-spaces in a
k-space through an i-space.
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Thank you for your attention!
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