Finite Geometry and Friends

Small weight code words

 in the code of points and hyperplanes of $\operatorname{PG}(n, q)$Lins Denaux
Joint work with S. Adriaensen, L. Storme and Zs. Weiner
$19^{\text {th }}$ of June 2019

GHENT

 UNIVERSITY
1 Preliminaries

The code $\boldsymbol{C}_{\boldsymbol{n - 1}}(\mathbf{n}, \boldsymbol{q})$
Vector space over \mathbb{F}_{p} spanned by the rows of the incidence matrix of hyperplanes and points in $\mathrm{PG}(n, q)$. Vectors = 'code words'.

Preliminaries

The code $\boldsymbol{C}_{n-1}(\boldsymbol{n}, \boldsymbol{q})$

Vector space over \mathbb{F}_{p} spanned by the rows of the incidence matrix of hyperplanes and points in $\mathrm{PG}(n, q)$. Vectors = 'code words'.

Preliminaries

The code $\boldsymbol{C}_{n-1}(\boldsymbol{n}, \boldsymbol{q})$

Vector space over \mathbb{F}_{p} spanned by the rows of the incidence matrix of hyperplanes and points in $\mathrm{PG}(n, q)$. Vectors = 'code words'.

The code $\boldsymbol{C}_{n-1}(\boldsymbol{n}, \boldsymbol{q})$
Vector space over \mathbb{F}_{p} spanned by the rows of the incidence matrix of hyperplanes and points in $\mathrm{PG}(n, q)$. Vectors = 'code words'.

red + blue $=\left(\begin{array}{llll}0 & 1 & 0 & 01\end{array}\right)=$ A

1 Preliminaries

The code $\boldsymbol{C}_{\boldsymbol{n - 1}}(\mathbf{n}, \mathbf{q})$
Vector space over \mathbb{F}_{p} spanned by the hyperplanes as $0-1$ incidence functions of the point set of $\operatorname{PG}(n, q)$. Functions $=$ 'code words'.

	point
	$\left(\begin{array}{lllllll}1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0\end{array}\right)$

red + blue $=\left(\begin{array}{llll}0 & 1 & 10 & 0\end{array} 11\right)=$

2 Known results in the plane: $\mathrm{C}_{1}(2, \mathrm{q})$

Small weight code words \approx few hyperplanes (= lines)?

2 Known results in the plane: $\mathrm{C}_{1}(\mathbf{2}, \mathbf{q})$

Small weight code words \approx few hyperplanes (= lines)?
Characterised up till wt $(c) \leqslant 4 q-22$ (Szőnyi \& Weiner):

\downarrow

2 Known results in the plane: $\mathrm{C}_{1}(2, \mathbf{q})$

Small weight code words \approx few hyperplanes (= lines)?
Characterised up till wt $(c) \leqslant 4 q-22$ (Szőnyi \& Weiner):

$$
\mathrm{wt}(\mathrm{c})=q+1
$$

...-......... $w t(c) \leqslant \max \{3 q+1,4 q-22\}$

2 Known results in the plane: $\mathrm{C}_{1}(2, \mathbf{q})$

Small weight code words \approx few hyperplanes (= lines)?
Characterised up till wt $(c) \leqslant \mathbf{4 q} \mathbf{- 2 2}$ (Szőnyi \& Weiner):

$$
\begin{aligned}
& \mathrm{wt}(\mathrm{c})=q+1 \\
& \mathbf{w t}(\mathrm{c})=2 q(+1)
\end{aligned}
$$

.............. $w t(c) \leqslant \max \{3 q+1,4 q-22\}$

2 Known results in the plane: $\mathrm{C}_{1}(2, \mathbf{q})$

Small weight code words \approx few hyperplanes (= lines)?
Characterised up till wt $(c) \leqslant 4 q-22$ (Szőnyi \& Weiner):

$$
\begin{aligned}
& \mathrm{wt}(\mathrm{c})=q+1 \\
& \mathrm{wt}(\mathrm{c})=2 q(+1) \\
& \mathrm{wt}(\mathrm{c})=3 q-3
\end{aligned}
$$

$\cdots \cdot-. . .-. . . \quad w t(c) \leqslant \max \{3 q+1,4 q-22\}$

2 Known results in the plane: $\mathrm{C}_{1}(2, q)$

Small weight code words \approx few hyperplanes (= lines)?
Characterised up till wt $(c) \leqslant \mathbf{4 q} \mathbf{- 2 2}$ (Szőnyi \& Weiner):

$$
\begin{aligned}
& \mathrm{wt}(\mathrm{c})=q+1 \\
& \mathrm{wt}(\mathrm{c})=2 q(+1) \\
& \mathrm{wt}(\mathrm{c})=3 q-3 \\
& \mathrm{wt}(\mathrm{c})=3 q-2
\end{aligned}
$$

...-......... $w t(c) \leqslant \max \{3 q+1,4 q-22\}$

2 Known results in the plane: $\mathrm{C}_{1}(2, q)$

Small weight code words \approx few hyperplanes (= lines)?
Characterised up till wt $(c) \leqslant 4 q-22$ (Szőnyi \& Weiner):

$$
\begin{aligned}
& \mathrm{wt}(\mathrm{c})=q+1 \\
& \mathbf{w t}(\mathrm{c})=2 \boldsymbol{q}(+1) \\
& \mathrm{wt}(\mathrm{c})=3 q-3 \\
& \mathbf{w t}(\mathrm{c})=3 q-2
\end{aligned}
$$

...-......... $w t(c) \leqslant \max \{3 q+1,4 q-22\}$

2 Known results in the plane: $\mathrm{C}_{1}(2, \mathbf{q})$

Small weight code words \approx few hyperplanes (= lines)?
Characterised up till wt $(c) \leqslant 4 q-22$ (Szőnyi \& Weiner):

$$
\begin{aligned}
& \mathrm{wt}(\mathrm{c})=q+1 \\
& \mathrm{wt}(\mathrm{c})=2 q(+1) \\
& \mathrm{wt}(\mathrm{c})=3 q-3 \\
& \mathrm{wt}(\mathrm{c})=3 q-2
\end{aligned}
$$

$w t(c)=3 q(\pm 1)$

$\mathrm{wt}(\mathrm{c}) \leqslant \max \{3 q+1,4 q-22\}$

2
 Known results in the plane: $\mathrm{C}_{1}(2, q)$

Small weight code words \approx few hyperplanes (= lines)?
Characterised up till wt $(c) \leqslant 4 q-22$ (Szőnyi \& Whiner):

$$
\begin{aligned}
& \mathrm{wt}(\mathrm{c})=q+1 \\
& \mathrm{wt}(\mathrm{c})=2 q(+1) \\
& \mathrm{wt}(\mathrm{c})=3 q-3 \\
& \mathrm{wt}(\mathrm{c})=3 q-2
\end{aligned}
$$

$w t(c)=3 q(\pm 1)$

$\mathrm{wt}(\mathrm{c}) \leqslant \max \{3 q+1,4 q-22\}$

2 Known results in the plane: $\mathrm{C}_{1}(2, q)$

An 'odd' code word for $\boldsymbol{q}=\boldsymbol{p}$ (Bagchi; De Boeck \& Vandendriessche):

2 Known results in the plane: $\mathrm{C}_{1}(2, \mathbf{q})$

An 'odd' code word for $\boldsymbol{q}=\boldsymbol{p}$ (Bagchi; De Boeck \& Vandendriessche):

Proposition

$\boldsymbol{v}^{\boldsymbol{w} t}(\mathbf{c})=\mathbf{3 q}-\mathbf{3}$, every $(2 / 3)$-secant $\rightarrow \alpha+\beta(+\gamma)=0$.

2 Known results in the plane: $\mathrm{C}_{1}(2, \mathbf{q})$

An 'odd' code word for $\boldsymbol{q}=\boldsymbol{p}$ (Bagchi; De Boeck \& Vandendriessche):

Proposition

> $\mathbf{w t}(\mathbf{c})=\mathbf{3 q}-\mathbf{3}$, every $(2 / 3)$-secant $\rightarrow \alpha+\beta(+\gamma)=0$.
${ }^{\boldsymbol{w}} \mathbf{w t}(\boldsymbol{c})=\mathbf{3 q}-\mathbf{2}$, every $(2 / 3)$-secant $\rightarrow \alpha+\beta(+\gamma) \neq 0$.

2
 Known results in the plane: $\mathrm{C}_{1}(2, q)$

Small weight code words \approx few hyperplanes (= lines)?
Characterised up till wt $(c) \leqslant 4 q-22$ (Szőnyi \& Whiner):

$$
\begin{aligned}
& \mathrm{wt}(\mathrm{c})=q+1 \\
& \mathrm{wt}(\mathrm{c})=2 q(+1) \\
& \mathrm{wt}(\mathrm{c})=3 q-3 \\
& \mathrm{wt}(\mathrm{c})=3 q-2
\end{aligned}
$$

$w t(c)=3 q(\pm 1)$

$\mathrm{wt}(\mathrm{c}) \leqslant \max \{3 q+1,4 q-22\}$

2 Known results in the plane: $\mathrm{C}_{1}(2, q)$

Small weight code words \approx few hyperplanes (= lines)?
Characterised up till wt $(c) \leqslant 4 q-22$ (Szőnyi \& Weiner):

$$
\begin{aligned}
& \mathrm{wt}(\mathrm{c})=q+1 \\
& \mathbf{w t}(\mathrm{c})=2 \boldsymbol{q}(+1) \\
& \mathrm{wt}(\mathrm{c})=3 q-3 \\
& \mathbf{w t}(\mathrm{c})=3 q-2
\end{aligned}
$$

$w t(c)=3 q(\pm 1)$

$\mathrm{wt}(\mathrm{c}) \leqslant \max \{3 q+1,4 q-22\}$

2 Known results in the plane: $\mathrm{C}_{1}(2, \mathbf{q})$

Small weight code words \approx few hyperplanes (= lines)?
Characterised up till wt $(\boldsymbol{c}) \leqslant \mathbf{4 q} \mathbf{- 2 2}$ (Szőnyi \& Weiner):

$$
\begin{aligned}
& \mathbf{w t}(\mathrm{c})=\boldsymbol{q}+1 \\
& \mathbf{w t}(\mathrm{c})=2 \boldsymbol{q}(+1) \\
& \mathbf{w t}(\mathrm{c})=3 \boldsymbol{q}-3 \\
& \mathbf{w t}(\mathrm{c})=3 \boldsymbol{q}-2
\end{aligned}
$$

$$
w t(c)=3 q(\pm 1)
$$

-.--------- $w t(c) \leqslant \max \{3 q+1,4 q-22\}$

2 Known results in the plane: $\mathrm{C}_{1}(\mathbf{2}, \mathbf{q})$

Small weight code words \approx few hyperplanes (= lines)?
Characterised up till wt $(c) \leqslant 4 q-22$ (Szőnyi \& Whiner):

$$
\begin{aligned}
& \mathbf{w t}(\mathbf{c})=\boldsymbol{q}+\mathbf{1} \\
& w t(c)=2 q(+1) \\
& \mathbf{w t}(\mathrm{c})=3 q-3 \\
& \mathbf{w t}(\mathrm{c})=\mathbf{3 q}-\mathbf{2} \\
& w t(c)=3 q(\pm 1) \\
& \text {----------- wt }(c) \leqslant \max \{3 q+1,4 q-22\}
\end{aligned}
$$

2 Known results in the plane: $C_{1}(2, q)$

Small weight code words \approx few hyperplanes (= lines)?
Characterised up till wt $(c) \leqslant 4 q-22$ (Szőnyi \& Weiner):

Part 1

2 Known results in the plane: $\mathrm{C}_{1}(\mathbf{2}, \mathrm{q})$

Small weight code words \approx few hyperplanes (= lines)?
Characterised up till wt $(c) \leqslant 4 q-22$ (Szőnyi \& Weiner):

Part 1

Part 2

We'll focus on this bit

3 Known results in general: $\mathrm{C}_{\mathrm{n}-1}(\mathrm{n}, \mathbf{q})$

3 Known results in general: $\mathrm{C}_{\mathrm{n}-1}(\mathrm{n}, \mathbf{q})$

Smallest weight code words of $C_{n-1}(n, q)$: generally known.

3 Known results in general: $\mathrm{C}_{\mathrm{n}-1}(\mathrm{n}, \mathbf{q})$

Smallest weight code words of $C_{n-1}(n, q)$: generally known. Second smallest weight: recently characterised (Polverino \& Zullo).

3 Known results in general: $\mathrm{C}_{\mathrm{n}-1}(\mathrm{n}, \mathbf{q})$

Smallest weight code words of $C_{n-1}(n, q)$: generally known. Second smallest weight: recently characterised (Polverino \& Zullo).

Our result: classification of next weights

$$
w t(c) \lesssim 4 q^{n-1}-\sqrt{8 q} \cdot q^{n-2}
$$

First result: classification of the third smallest weight

$$
\mathrm{wt}(c)=2 q^{n-1}+\cdots+q+1
$$

for all c with $2 q^{n-1}<w t(c) \lesssim 3 q^{n-1}-6 q^{n-2}$.

4 A quiet moment to think things through

First result: classification of the third smallest weight

$$
\mathrm{wt}(c)=2 q^{n-1}+\cdots+q+1
$$

for all c with $2 q^{n-1}<w t(c) \lesssim 3 q^{n-1}-6 q^{n-2}$.
And further...?

4 A quiet moment to think things through

First result: classification of the third smallest weight

$$
\operatorname{wt}(c)=2 q^{n-1}+\cdots+q+1
$$

for all c with $2 q^{n-1}<w t(c) \lesssim 3 q^{n-1}-6 q^{n-2}$.
And further...?

- 'Weird' code word c in plane π (for $q=p$ prime).

4 A quiet moment to think things through

First result: classification of the third smallest weight

$$
\mathrm{wt}(c)=2 q^{n-1}+\cdots+q+1
$$

for all c with $2 q^{n-1}<w t(c) \lesssim 3 q^{n-1}-6 q^{n-2}$.
And further...?

- 'Weird' code word c in plane π (for $q=p$ prime).
- Chose a disjoint $(n-3)$-space κ.

4 A quiet moment to think things through

First result: classification of the third smallest weight

$$
\mathrm{wt}(c)=2 q^{n-1}+\cdots+q+1
$$

for all c with $2 q^{n-1}<w t(c) \lesssim 3 q^{n-1}-6 q^{n-2}$.
And further...?

- 'Weird' code word c in plane π (for $q=p$ prime).
- Chose a disjoint $(n-3)$-space κ.

If $c=\sum_{i} \alpha_{i} l_{i}$, then $c^{\prime}:=\sum_{i} \alpha_{i}\left\langle l_{i}, \kappa\right\rangle$ is a linear combination of hyperplanes; $w t\left(c^{\prime}\right)=3 p^{n-1}-3 p^{n-2}$.

5 Part 1 of proof: lines are key

5 Part 1 of proof: lines are key

Lemma
All lines intersect $\operatorname{supp}(c)$ in at most 3 or in at least $q-1$ points.

5 Part 1 of proof: lines are key

Lemma
All lines intersect $\operatorname{supp}(c)$ in at most 3 or in at least $q-1$ points.

- Take an \boldsymbol{m}-secant $s .(4 \leqslant m \leqslant q-2)$

5 Part 1 of proof: lines are key

Lemma
All lines intersect $\operatorname{supp}(c)$ in at most 3 or in at least $q-1$ points.

- Take an \boldsymbol{m}-secant $s .(4 \leqslant m \leqslant q-2)$
- All planes through s are uncharacterised.

5 Part 1 of proof: lines are key

Lemma
All lines intersect $\operatorname{supp}(c)$ in at most 3 or in at least $q-1$ points.

- Take an \boldsymbol{m}-secant $s .(4 \leqslant m \leqslant q-2)$
- All planes through s are uncharacterised.

5 Part 1 of proof: lines are key

Lemma
All lines intersect $\operatorname{supp}(c)$ in at most 3 or in at least $q-1$ points.

- Take an \boldsymbol{m}-secant $s .(4 \leqslant m \leqslant q-2)$
- All planes through s are uncharacterised.

5 Part 1 of proof: lines are key

Lemma
All lines intersect $\operatorname{supp}(c)$ in at most 3 or in at least $q-1$ points.

- Take an \boldsymbol{m}-secant $s .(4 \leqslant m \leqslant q-2)$
- All planes through s are uncharacterised.

5 Part 1 of proof: lines are key

Lemma

All lines intersect $\operatorname{supp}(c)$ in at most 3 or in at least $q-1$ points.

- Take an \boldsymbol{m}-secant $s .(4 \leqslant m \leqslant q-2)$
- All planes through s are uncharacterised.
- We get a lower bound on \boldsymbol{m}.

$$
m \geqslant \frac{(4 q-21) \theta_{n-2}-\mathrm{wt}(c)}{\theta_{n-2}-1}
$$

5 Part 1 of proof: lines are key

Lemma

All lines intersect $\operatorname{supp}(c)$ in at most 3 or in at least $q-1$ points.

- Take an \boldsymbol{m}-secant $s .(4 \leqslant m \leqslant q-2)$
- All planes through s are uncharacterised.
- We get a lower bound on \boldsymbol{m}.
- Take a plane through $s(\boldsymbol{M}$ points of $\operatorname{supp}(c))$.

$$
m \geqslant \frac{(4 q-21) \theta_{n-2}-\mathrm{wt}(c)}{\theta_{n-2}-1}
$$

5 Part 1 of proof: lines are key

Lemma

All lines intersect $\operatorname{supp}(c)$ in at most 3 or in at least $q-1$ points.

- Take an \boldsymbol{m}-secant $s .(4 \leqslant m \leqslant q-2)$
- All planes through s are uncharacterised.
- We get a lower bound on \boldsymbol{m}.
- Take a plane through $s(\boldsymbol{M}$ points of $\operatorname{supp}(c))$.
- Many j-secants in plane. $(4 \leqslant j)$

$$
m \geqslant \frac{(4 q-21) \theta_{n-2}-\mathrm{wt}(c)}{\theta_{n-2}-1}
$$

5 Part 1 of proof: lines are key

Lemma

All lines intersect $\operatorname{supp}(c)$ in at most 3 or in at least $q-1$ points.

- Take an \boldsymbol{m}-secant $s .(4 \leqslant m \leqslant q-2)$
- All planes through s are uncharacterised.
- We get a lower bound on \boldsymbol{m}.
- Take a plane through $s(\boldsymbol{M}$ points of $\operatorname{supp}(c))$.
- Many j-secants in plane. $(4 \leqslant j)$

- We get a lower bound on \boldsymbol{M}.

$$
m \geqslant \frac{(4 q-21) \theta_{n-2}-\mathrm{wt}(c)}{\theta_{n-2}-1}
$$

5 Part 1 of proof: lines are key

Lemma

All lines intersect $\operatorname{supp}(c)$ in at most 3 or in at least $q-1$ points.

- Take an \boldsymbol{m}-secant $s .(4 \leqslant m \leqslant q-2)$
- All planes through s are uncharacterised.
- We get a lower bound on \boldsymbol{m}.
- Take a plane through $s(\boldsymbol{M}$ points of $\operatorname{supp}(c))$.
- Many j-secants in plane. $(4 \leqslant j)$

- We get a lower bound on \boldsymbol{M}.

$$
m \geqslant \frac{(4 q-21) \theta_{n-2}-\mathrm{wt}(c)}{\theta_{n-2}-1}
$$

5 Part 1 of proof: lines are key

Lemma

All lines intersect $\operatorname{supp}(c)$ in at most 3 or in at least $q-1$ points.

- Take an \boldsymbol{m}-secant $s .(4 \leqslant m \leqslant q-2)$
- All planes through s are uncharacterised.
- We get a lower bound on \boldsymbol{m}.
- Take a plane through $s(\boldsymbol{M}$ points of $\operatorname{supp}(c))$.
- Many j-secants in plane. $(4 \leqslant j)$

- We get a lower bound on \boldsymbol{M}.

$$
m \geqslant \frac{(4 q-21) \theta_{n-2}-\mathrm{wt}(c)}{\theta_{n-2}-1}
$$

5 Part 1 of proof: lines are key

Lemma

All lines intersect $\operatorname{supp}(c)$ in at most 3 or in at least $q-1$ points.

- Take an \boldsymbol{m}-secant $s .(4 \leqslant m \leqslant q-2)$
- All planes through s are uncharacterised.
- We get a lower bound on \boldsymbol{m}.
- Take a plane through $s(\boldsymbol{M}$ points of $\operatorname{supp}(c))$.
- Many j-secants in plane. $(4 \leqslant j)$

- We get a lower bound on \boldsymbol{M}.

$$
m \geqslant \frac{(4 q-21) \theta_{n-2}-\mathrm{wt}(c)}{\theta_{n-2}-1}
$$

5 Part 1 of proof: lines are key

Lemma

All lines intersect $\operatorname{supp}(c)$ in at most 3 or in at least $q-1$ points.

- Take an \boldsymbol{m}-secant $s .(4 \leqslant m \leqslant q-2)$
- All planes through s are uncharacterised.
- We get a lower bound on \boldsymbol{m}.
- Take a plane through $s(\boldsymbol{M}$ points of $\operatorname{supp}(c))$
- Many j-secants in plane. $(4 \leqslant j)$

- We get a lower bound on \boldsymbol{M}.

$$
m \geqslant \frac{(4 q-21) \theta_{n-2}-\mathrm{wt}(c)}{\theta_{n-2}-1} \quad \mathrm{wt}(c) \geqslant\left(\frac{1}{2} j(j+1)-j\right) \theta_{n-2}+j
$$

5 Part 1 of proof: lines are key

Lemma

All lines intersect $\operatorname{supp}(c)$ in at most 3 or in at least $q-1$ points.

$$
m \geqslant \frac{(4 q-21) \theta_{n-2}-\mathrm{wt}(c)}{\theta_{n-2}-1}
$$

$$
\mathrm{wt}(c) \geqslant\left(\frac{1}{2} j(j+1)-j\right) \theta_{n-2}+j
$$

$5 \quad$ Part 1 of proof: lines are key

Lemma

All lines intersect $\operatorname{supp}(c)$ in at most 3 or in at least $q-1$ points.

$$
\mathrm{wt}(c)>\left(4 q-\sqrt{8 q}-\frac{33}{2}\right) q^{n-2}
$$

$$
m \geqslant \frac{(4 q-21) \theta_{n-2}-\mathrm{wt}(c)}{\theta_{n-2}-1}
$$

$$
\mathrm{wt}(c) \geqslant\left(\frac{1}{2} j(j+1)-j\right) \theta_{n-2}+j
$$

6 Part 2 of proof: classifying planes

To simplify things, we consider a code word $\boldsymbol{c} \in \boldsymbol{C}_{\mathbf{2}}(\mathbf{3}, \boldsymbol{p})$, with

$$
2 q^{2}+q+1<w t(c) \leqslant 4 q^{2}-\sqrt{8} q \sqrt{q}-\frac{33}{2} q
$$

6 Part 2 of proof: classifying planes

To simplify things, we consider a code word $\boldsymbol{c} \in \boldsymbol{C}_{\mathbf{2}}(\mathbf{3}, \boldsymbol{p})$, with

$$
2 q^{2}+q+1<w t(c) \leqslant 4 q^{2}-\sqrt{8} q \sqrt{q}-\frac{33}{2} q
$$

- There exists a 3-secant.

6 Part 2 of proof: classifying planes

To simplify things, we consider a code word $\boldsymbol{c} \in \boldsymbol{C}_{\mathbf{2}} \mathbf{(3 , p}$), with

$$
2 q^{2}+q+1<w t(c) \leqslant 4 q^{2}-\sqrt{8} q \sqrt{q}-\frac{33}{2} q
$$

- There exists a 3-secant.
- The planes containing a 3-secant...

6 Part 2 of proof: classifying planes

To simplify things, we consider a code word $\boldsymbol{c} \in \boldsymbol{C}_{\mathbf{2}}(\mathbf{3}, \boldsymbol{p})$, with

$$
2 q^{2}+q+1<w t(c) \leqslant 4 q^{2}-\sqrt{8} q \sqrt{q}-\frac{33}{2} q
$$

- There exists a 3-secant.
- The planes containing a 3-secant...

* ... are all characterized.

6 Part 2 of proof: classifying planes

To simplify things, we consider a code word $\boldsymbol{c} \in \boldsymbol{C}_{\mathbf{2}}(\mathbf{3}, \boldsymbol{p})$, with

$$
2 q^{2}+q+1<w t(c) \leqslant 4 q^{2}-\sqrt{8} q \sqrt{q}-\frac{33}{2} q
$$

- There exists a 3 -secant.
- The planes containing a 3-secant...

* ... are all characterized.
* ... are all of the same green type, or...

6 Part 2 of proof: classifying planes

To simplify things, we consider a code word $\boldsymbol{c} \in \boldsymbol{C}_{\mathbf{2}}(\mathbf{3}, \boldsymbol{p})$, with

$$
2 q^{2}+q+1<w t(c) \leqslant 4 q^{2}-\sqrt{8} q \sqrt{q}-\frac{33}{2} q
$$

- There exists a 3 -secant.
- The planes containing a 3-secant...

* ... are all characterized.
* ... are all of the same green type, or...
^ ... can be divided into two types:
a green type and another type.

7 Part 2 of proof: stitching planes together

* ... are all characterized.
* ... are all of the same green type, or...
* ... can be divided into two types: a green type and another type.

7 Part 2 of proof: stitching planes together

\star... are all characterized.

* ... are all of the same green type, or...
* ... can be divided into two types: a green type and another type.

7 Part 2 of proof: stitching planes together

\star... are all characterized.

* ... are all of the same green type, or...
* ... can be divided into two types: a green type and another type.

7 Part 2 of proof: stitching planes together

\star... are all characterized.

* ... are all of the same green type, or...
* ... can be divided into two types: a green type and another type.

7 Part 2 of proof: stitching planes together

* ... are all characterized.
* ... are all of the same green type, or...
* ... can be divided into two types: a green type and another type.

7 Part 2 of proof: stitching planes together

* ... are all characterized.
* ... are all of the same green type, or...

夫 ... can be divided into two types: a green type and another type.

7 Part 2 of proof: stitching planes together

夫 ... are all characterized.

* ... are all of the same green type, or...

夫 ... can be divided into two types: a green type and another type.

Our result: all small code words are cones

Our result: all small code words are cones
If:

- Prime power $q>17, q \notin\{25,27,29,31,32,49,121\}$.

8 Results \& further research

Our result: all small code words are cones
If:

- Prime power $q>17, q \notin\{25,27,29,31,32,49,121\}$.
- Code word $c \in C_{n-1}(n, q)$,

$$
\mathrm{wt}(c) \leqslant\left(4 q-\sqrt{8 q}-\frac{33}{2}\right) q^{n-2}
$$

8 Results \& further research

Our result: all small code words are cones
If:

- Prime power $q>17, q \notin\{25,27,29,31,32,49,121\}$.
- Code word $c \in C_{n-1}(n, q)$,

$$
\mathrm{wt}(c) \leqslant\left(4 q-\sqrt{8 q}-\frac{33}{2}\right) q^{n-2}
$$

- Slightly smaller bound if $q \in\{7,11,13,17,29,31,32,121\}$.

8 Results \& further research

Our result: all small code words are cones
If:

- Prime power $q>17, q \notin\{25,27,29,31,32,49,121\}$.
- Code word $c \in C_{n-1}(n, q)$,

$$
\mathrm{wt}(c) \leqslant\left(4 q-\sqrt{8 q}-\frac{33}{2}\right) q^{n-2}
$$

- Slightly smaller bound if $q \in\{7,11,13,17,29,31,32,121\}$.

Then supp (c) correspond to a cone with a ($n-3$)-dimensional vertex and a characterized plane as base.

8 Results \& further research

Our result: all small code words are cones
If:

- Prime power $q>17, q \notin\{25,27,29,31,32,49,121\}$.
- Code word $c \in C_{n-1}(n, q)$,

$$
\mathrm{wt}(c) \leqslant\left(4 q-\sqrt{8 q}-\frac{33}{2}\right) q^{n-2}
$$

- Slightly smaller bound if $q \in\{7,11,13,17,29,31,32,121\}$.

Then $\operatorname{supp}(c)$ correspond to a cone with a ($n-3$)-dimensional vertex and a characterized plane as base.

8 Results \& further research

Our result: all small code words are cones
If:

- Prime power $q>17, q \notin\{25,27,29,31,32,49,121\}$.
- Code word $c \in C_{n-1}(n, q)$,

$$
\mathrm{wt}(c) \leqslant\left(4 q-\sqrt{8 q}-\frac{33}{2}\right) q^{n-2}
$$

- Slightly smaller bound if $q \in\{7,11,13,17,29,31,32,121\}$.

Then $\operatorname{supp}(c)$ correspond to a cone with a ($n-3$)-dimensional vertex and a characterized plane as base.

8 Results \& further research

Szőnyi \& Weiner: the plane ($q=p^{h}, h \geqslant 2, q>27$)

Code words of weight lower than $\frac{(p-1)(p-4)\left(p^{2}+1\right)}{2 p-1}$, when $h=2$,

$$
(\lfloor\sqrt{q}\rfloor+1)(q+1-\lfloor\sqrt{q}\rfloor), \text { when } h>2
$$

correspond to linear combinations of exactly $\left\lceil\frac{\mathrm{wt}(c)}{q+1}\right\rceil$ lines.

8 Results \& further research

Szónyi \& Weiner: the plane $\left(q=p^{h}, h \geqslant 2, q>27\right)$

Code words of weight lower than $\frac{(p-1)(p-4)\left(p^{2}+1\right)}{2 p-1}$, when $h=2$,

$$
(\lfloor\sqrt{q}\rfloor+1)(q+1-\lfloor\sqrt{q}\rfloor), \text { when } h>2 \text {, }
$$

correspond to linear combinations of exactly $\left\lceil\frac{\mathrm{wt}(c)}{q+1}\right\rceil$ lines.

Our result: further classification ($q=p^{h}, h \geqslant 2, q>27$)
Code words up to weight $\left(\left\lfloor\frac{1}{2^{n-1}} \sqrt{q}\right\rfloor-\frac{9}{4}\right) \theta_{n-1}$, when $h=2$,

$$
\left(\left\lfloor\frac{1}{2^{n-2}} \sqrt{q}\right\rfloor-\mathbf{1}\right) \theta_{n-1}, \text { when } h>2
$$

correspond to linear combinations of exactly $\left\lceil\frac{\mathrm{wt}(c)}{\theta_{n-1}}\right\rceil$ hyperplanes.

The code of j - and k-spaces

8 Results \& further research

The code of j - and k-spaces

- Vector space over \mathbb{F}_{p} spanned by k-spaces as $0-1$ incidence functions of the set of j-spaces in $\operatorname{PG}(n, q)$.

8 Results \& further research

The code of j - and k-spaces

- Vector space over \mathbb{F}_{p} spanned by k-spaces as $0-1$ incidence functions of the set of j-spaces in $\operatorname{PG}(n, q)$.
- Only minimum weight is known $\left(\left[\begin{array}{l}k+1 \\ j+1\end{array}\right]_{q}\right)$.

8 Results \& further research

The code of j - and k-spaces

- Vector space over \mathbb{F}_{p} spanned by k-spaces as $0-1$ incidence functions of the set of j-spaces in $\operatorname{PG}(n, q)$.
- Only minimum weight is known $\left(\left[\begin{array}{c}k+1 \\ j+1\end{array}\right]_{q}\right)$.
- Our results: characterised approx. all weights $<3 q^{k-j}\left[\begin{array}{l}k \\ j\end{array}\right]_{q}$.

8 Results \& further research

The code of j - and k-spaces

- Vector space over \mathbb{F}_{p} spanned by k-spaces as $0-1$ incidence functions of the set of j-spaces in $\operatorname{PG}(n, q)$.
- Only minimum weight is known $\left(\left[\begin{array}{c}k+1 \\ j+1\end{array}\right]_{q}\right)$.
- Our results: characterised approx. all weights $<3 q^{k-j}\left[\begin{array}{l}k \\ j\end{array}\right]_{q}$.
- Joint work with S. Adriaensen.

The code of j - and k-spaces

- Vector space over \mathbb{F}_{p} spanned by k-spaces as $0-1$ incidence functions of the set of j-spaces in $\operatorname{PG}(n, q)$.
- Only minimum weight is known $\left(\left[\begin{array}{c}k+1 \\ j+1\end{array}\right]_{q}\right)$.
- Our results: characterised approx. all weights $<3 q^{k-j}\left[\begin{array}{l}k \\ j\end{array}\right]_{q}$.
- Joint work with S. Adriaensen.
'An Investigation into Small Weight Code Words of Projective Geometric Codes'

Sam Adriaensen
Today - 13:50

The code of j - and k-spaces

- Vector space over \mathbb{F}_{p} spanned by k-spaces as $0-1$ incidence functions of the set of j-spaces in $\operatorname{PG}(n, q)$.
- Only minimum weight is known $\left(\left[\begin{array}{c}k+1 \\ j+1\end{array}\right]_{q}\right)$.
- Our results: characterised approx. all weights $<3 q^{k-j}\left[\begin{array}{l}k \\ j\end{array}\right]_{q}$.
- Joint work with S. Adriaensen.
'An Investigation into Small Weight Code Words of Projective Geometric Codes'

Sam Adriaensen
Today - 13:50-... like now

Fin.

Thank you for your attention. Are there any questions?

Thank you for your attention. Are there any questions?

