Translation hyperovals and \mathbb{F}_{2}-linear sets of pseudoregulus type

Jozefien D'haeseleer
(joint work with Geertrui Van de Voorde)
June 2019

UNIVERSITEIT
GENT

(1) Research question

2 The set of directions \mathcal{D} is a linear set

3 The set \mathcal{D} is of pseudoregulus type

4 Hyperoval in the André/Bruck-Bose plane PG $\left(2, q^{k}\right)$
(5) Generalization Barwick and Jackson

Theorem

Consider PG(4, q), q even, $q>2$. Let C be a set of q^{2} affine points, called C-points and consider a set of planes called C-planes which satisfies the following:

- Each C-plane meets C in a q-arc.
- Any two distinct C-points lie in a unique C-plane.
- The affine points, not in C, lie on exactly one C-plane.
- Every plane which meets C in at least three points either meets C in exactly four points or is a C-plane.
Then there exists a regular spread S in $\Sigma_{\infty} s$. t. in the $A B B$ plane $P(S) \equiv \mathrm{PG}\left(2, q^{2}\right)$, the C-points, together with two extra points on I_{∞}, form a translation hyperoval of $\mathrm{PG}\left(2, q^{2}\right)$.

4 Problem

Techniques used in article Barwick and Jackson

They use

- the existence of a design, isomorphic to an affine plane, of which they later need to use the parallel classes.
- the Klein correspondence to represent lines in $\operatorname{PG}(3, q)$ in PG(5, q).
Both techniques cannot be extended to $q^{k}, k>2$.

4 Problem

Techniques used in article Barwick and Jackson

They use

- the existence of a design, isomorphic to an affine plane, of which they later need to use the parallel classes.
- the Klein correspondence to represent lines in $\operatorname{PG}(3, q)$ in PG(5, q).
Both techniques cannot be extended to $q^{k}, k>2$.

5 Main Theorem

Theorem

Let \mathcal{Q} be a set of q^{k} affine points in $\operatorname{PG}(2 k, q), q=2^{h}, h \geq 2$ determining a set \mathcal{D} of $q^{k}-1$ directions in the hyperplane at infinity $H_{\infty}=\mathrm{PG}(2 k-1, q)$. Suppose that every line at infinity has $0,1,3$ or $q-1$ points in common with the point set \mathcal{D}.
Then
(1) \mathcal{D} is an \mathbb{F}_{2}-linear set of pseudoregulus type.
(2) There exists a Desarguesian spread \mathcal{S} in H_{∞} such that in the André/Bruck-Bose plane $\mathcal{P}(\mathcal{S}) \cong \mathrm{PG}\left(2, q^{k}\right)$, the points of \mathcal{Q} together with 2 extra points on ℓ_{∞} form a translation hyperoval in $\mathrm{PG}\left(2, q^{k}\right)$.

1 Research question

2) The set of directions \mathcal{D} is a linear set
(3) The set \mathcal{D} is of pseudoregulus type

4 Hyperoval in the André/Bruck-Bose plane PG(2, $\left.q^{k}\right)$
(5) Generalization Barwick and Jackson

$7 \quad \mathcal{D}$ is a linear set

Lemma

Let $P_{0}, P_{1}, P_{2} \in \mathcal{Q}$ so that $P_{1}^{\prime} P_{2}^{\prime}$ is a 3-secant to \mathcal{D}, then the plane in $\mathrm{PG}(2 k h, 2)$ spanned by $\tilde{P}_{0}, \tilde{P}_{1}$ and \tilde{P}_{2} is contained in $\tilde{\mathcal{Q}}$.

\mathcal{D} is a linear set

Proof by Lemma 3 and induction argument.

1 Research question

2 The set of directions \mathcal{D} is a linear set
(3) The set \mathcal{D} is of pseudoregulus type

4 Hyperoval in the André/Bruck-Bose plane PG(2, $\left.q^{k}\right)$
(5) Generalization Barwick and Jackson

$9 \quad \mathcal{D}$ is linear set of pseudoregulus type

Definition

Let S be a scattered \mathbb{F}_{q}-linear set of $\operatorname{PG}\left(2 k-1,2^{h}\right)$ of rank $k h$, $h, k \geq 2$. We say that S is of pseudoregulus type if

1. there exist $m=\frac{2^{h k}-1}{2^{h}-1}$ pairwise disjoint lines of $\operatorname{PG}\left(2 k-1,2^{h}\right)$, say $s_{1}, s_{2}, \ldots, s_{m}$, such that

$$
\left|S \cap s_{i}\right|=2^{h}-1 \quad \forall i=1, \ldots, m
$$

2. there exist exactly two $(k-1)$-dimensional subspaces T_{1} and T_{2} of $\mathrm{PG}\left(2 k-1,2^{h}\right)$ disjoint from S such that $T_{j} \cap s_{i} \neq \emptyset$ for each $i=1, \ldots, m$ and $j=1,2$.

1 Research question

2 The set of directions \mathcal{D} is a linear set

(3) The set \mathcal{D} is of pseudoregulus type
(4) Hyperoval in the André/Bruck-Bose plane PG(2, $\left.q^{k}\right)$
(5) Generalization Barwick and Jackson

11 Construction of $(k-1)$-spread in H_{∞}

Lemma

There exists a Desarguesian $(k-1)$-spread \mathcal{S} in $\operatorname{PG}(2 k-1, q)$, so that

- $T_{1}, T_{2} \in \mathcal{S}$,
- every other element of \mathcal{S} has one point in common with \mathcal{D}.

12 Hyperoval in PG $\left(2, q^{k}\right)$

Theorem

The set \mathcal{Q}, together with T_{1} and T_{2}, defines a translation hyperoval in $\mathcal{P}(\mathcal{S}) \cong \mathrm{PG}\left(2, q^{k}\right)$.

13 Other direction

The set of affine points of a translation hyperoval in $\mathrm{PG}\left(2, q^{k}\right)$, $q=2^{h}, k \geq 2$.

ABB construction

Set \mathcal{Q} of q^{k} affine points in $\operatorname{PG}(2 k, q)$ whose set of determined directions \mathcal{D} is an \mathbb{F}_{2}-linear set of pseudoregulus type.

1 Research question

2 The set of directions \mathcal{D} is a linear set
(3) The set \mathcal{D} is of pseudoregulus type

4 Hyperoval in the André/Bruck-Bose plane $\operatorname{PG}\left(2, q^{k}\right)$
(5) Generalization Barwick and Jackson

15 Generalization Barwick and Jackson

Theorem

Consider $\operatorname{PG}(2 k, q)$, q even, $q>2$. Let \mathcal{C} be a set of q^{k} affine points, called \mathcal{C}-points and consider a set of planes called \mathcal{C}-planes which satisfies the following:
(A1) Each \mathcal{C}-plane meets \mathcal{C} in a q-arc.
(A2) Any two distinct \mathcal{C}-points lie in a unique \mathcal{C}-plane.
(A3) The affine points that are not in \mathcal{C} lie on exactly one \mathcal{C}-plane.
(A4) Every plane which meets \mathcal{C} in at least 3 points either meets \mathcal{C} in 4 points or is a \mathcal{C}-plane.
Then there exists a Desarguesian spread \mathcal{S} in Σ such that in the Bruck-Bose plane $\mathcal{P}(\mathcal{S}) \cong \mathrm{PG}\left(2, q^{k}\right)$, the \mathcal{C}-points, together with 2 extra points on ℓ_{∞} form a translation hyperoval in $\mathrm{PG}\left(2, q^{k}\right)$.

Thank you very much for your attention.

