Non-existence of some Moore Cayley digraphs

Alexander Gavrilyuk
(Pusan National University),
based on joint work with
Mitsugu Hirasaka
(Pusan National University), Vladislav Kabanov
(Krasovskii Institute of Mathematics and Mechanics)

June 17, 2019

Moore bound

Let Γ be an undirected graph:

- regular of degree k;
- of diameter D;
- on N vertices.

$$
N \leq 1+k+k(k-1)+\ldots+k(k-1)^{D-1}
$$

Moore graphs

Let Γ be an undirected graph:

- regular of degree k;
- of diameter D;
- on N vertices.

Then:

$$
N \leq 1+k+k(k-1)+\ldots+k(k-1)^{D-1}
$$

and if equality attains (Damerell, Bannai\&Ito):

Diameter D	Valency k	Moore graph	Transitivity
1	k	K_{k+1}	$\sqrt{ }$
D	2	$C_{2 D+1}$	$\sqrt{ }$
2	3	Petersen	$\sqrt{ }$
2	7	Hoffman-Singleton	$\sqrt{ }$
2	57	$?$	\times

Digraphs $=$ Mixed graphs $=$ Partially directed graphs

Digraphs may have arcs as well as (undirected) edges:

An analogue of the Moore bound for digraphs can be derived, but its general form is quite complicated. In fact:

Theorem (Nguyen, Miller, Gimbert, 2007)
There are no Moore digraphs with diameter >2.

Digraphs $=$ Mixed graphs $=$ Partially directed graphs

Digraphs may have arcs as well as (undirected) edges:

An analogue of the Moore bound for digraphs can be derived, but its general form is quite complicated. In fact:

Theorem (Nguyen, Miller, Gimbert, 2007)
There are no Moore digraphs with diameter >2.

Digraphs $=$ Mixed graphs $=$ Partially directed graphs

Digraphs may have arcs as well as (undirected) edges:

An analogue of the Moore bound for digraphs can be derived, but its general form is quite complicated. In fact:
Theorem (Nguyen, Miller, Gimbert, 2007)
There are no Moore digraphs with diameter >2.

Digraphs $=$ Mixed graphs $=$ Partially directed graphs

 Digraphs may have arcs as well as (undirected) edges:

An analogue of the Moore bound for digraphs can be derived, but its general form is quite complicated. In fact:

Theorem (Nguyen, Miller, Gimbert, 2007)
There are no Moore digraphs with diameter >2.

Moore digraphs

Theorem (Bosák, 1979)
Let Δ be a Moore digraph of diameter 2 with degrees (r, z). Then the number n of vertices of Δ is

$$
n=(r+z)^{2}+z+1
$$

and exactly one of the following cases occurs:

- $z=1, r=0$ (a directed 3-cycle);
- $z=0, r=2$ (an undirected 5 -cycle);
- there exists an odd positive integer c such that

$$
c \text { divides }(4 z-3)(4 z+5) \text { and } r=\frac{1}{4}\left(c^{2}+3\right)
$$

Admissible values of $r: 1,3,7,13,21$,
For given r : infinitely many admissible values of z.

Moore digraphs

Theorem (Bosák, 1979)
Let Δ be a Moore digraph of diameter 2 with degrees (r, z). Then the number n of vertices of Δ is

$$
n=(r+z)^{2}+z+1
$$

and exactly one of the following cases occurs:

- $z=1, r=0$ (a directed 3-cycle);
- $z=0, r=2$ (an undirected 5-cycle);
- there exists an odd positive integer c such that

$$
c \text { divides }(4 z-3)(4 z+5) \text { and } r=\frac{1}{4}\left(c^{2}+3\right)
$$

Admissible values of $r: 1,3,7,13,21, \ldots$, For given r : infinitely many admissible values of z.

Known Moore digraphs

- $r=1$: only Moore digraphs are the Kautz digraphs.
(Gimbert, 2001)
They are the line graphs of complete digraphs.
> $r>1$: only three examples are known:
- the Bosák graph on 18 vertices, $(r, z)=(3,1)$;

\rightarrow two Jørgensen graphs on 108 vertices, $(r, z)=(3,7)$.

Known Moore digraphs

- $r=1$: only Moore digraphs are the Kautz digraphs.
(Gimbert, 2001)
They are the line graphs of complete digraphs.
- $r>1$: only three examples are known:
- the Bosák graph on 18 vertices, $(r, z)=(3,1)$;

Known Moore digraphs

- $r=1$: only Moore digraphs are the Kautz digraphs.
(Gimbert, 2001)
They are the line graphs of complete digraphs.
- $r>1$: only three examples are known:
- the Bosák graph on 18 vertices, $(r, z)=(3,1)$;

- two Jørgensen graphs on 108 vertices, $(r, z)=(3,7)$.

All three examples are Cayley digraphs.

Cayley digraphs

Given a finite group G and a subset $S \subseteq G \backslash\{1\}$, with $S=S_{1} \cup S_{2}, S_{1}=S_{1}^{-1}$, and $S_{2} \cap S_{2}^{-1}=\emptyset$, the Cayley (di-)graph $\operatorname{Cay}(G, S)$ has:

- the vertex set G;
- an arc $g \longrightarrow g s$ for every $g \in G, s \in S$;
- the undirected degree $r=\left|S_{1}\right|$;
- the directed degree $z=\left|S_{2}\right|$.

for every pair (x, y) of vertices of Δ,
there is a unique trail $x \longrightarrow \ldots \longrightarrow y$ of length at most 2 .
If Δ is a Moore Cayley digraph $\operatorname{Cay}(G, S)$, then:
\square

Cayley digraphs

Given a finite group G and a subset $S \subseteq G \backslash\{1\}$, with $S=S_{1} \cup S_{2}, S_{1}=S_{1}^{-1}$, and $S_{2} \cap S_{2}^{-1}=\emptyset$, the Cayley (di-)graph $\operatorname{Cay}(G, S)$ has:

- the vertex set G;
- an arc $g \longrightarrow g s$ for every $g \in G, s \in S$;
- the undirected degree $r=\left|S_{1}\right|$;
- the directed degree $z=\left|S_{2}\right|$.

Moore digraphs of diameter 2 are defined by the property:
for every pair (x, y) of vertices of Δ, there is a unique trail $x \longrightarrow \ldots \longrightarrow y$ of length at most 2 .

If Δ is a Moore Cayley digraph $\operatorname{Cay}(G, S)$, then:

Cayley digraphs

Given a finite group G and a subset $S \subseteq G \backslash\{1\}$, with $S=S_{1} \cup S_{2}, S_{1}=S_{1}^{-1}$, and $S_{2} \cap S_{2}^{-1}=\emptyset$, the Cayley (di-)graph $\operatorname{Cay}(G, S)$ has:

- the vertex set G;
- an arc $g \longrightarrow g s$ for every $g \in G, s \in S$;
- the undirected degree $r=\left|S_{1}\right|$;
- the directed degree $z=\left|S_{2}\right|$.

Moore digraphs of diameter 2 are defined by the property:
for every pair (x, y) of vertices of Δ, there is a unique trail $x \longrightarrow \ldots \longrightarrow y$ of length at most 2 .

If Δ is a Moore Cayley digraph $\operatorname{Cay}(G, S)$, then:

- for $g \in S$, \nexists a pair $\left(s_{1}, s_{2}\right) \in S \times S$ such that $g=s_{1} s_{2}$;
- for $g \notin S, \exists$! a pair $\left(s_{1}, s_{2}\right) \in S \times S$ such that $g=s_{1} s_{2}$.

Moore Cayley digraphs on at most 486 vertices, 1

n	r	z	Exist	Transitive	Cayley
18	3	1	$!$		Yes
40	3	3	No^{1}		
54	3	4	No^{1}		
84	7	2	No^{1}		
88	3	6	$\boldsymbol{?}$	$\boldsymbol{?}$	No^{2}
108	3	7	≥ 2		Yes^{2}
150	7	5	$\boldsymbol{?}$	$\boldsymbol{?}$	No^{2}
154	3	9	$\boldsymbol{?}$	$\boldsymbol{?}$	No^{2}
180	3	10	$\boldsymbol{?}$	$\boldsymbol{?}$	No^{2}

[1]: López, Miret, Fernández: Non-existence of some mixed Moore graphs of diameter 2 using SAT (2016).
[2]: Erskine: Mixed Moore Cayley graphs (2017).

Moore Cayley digraphs on at most 486 vertices, 2

n	r	z	Exist	Transitive	Cayley
204	7	7	$?$	$?$	No^{2}
238	3	12	$?$	$?$	No^{2}
270	3	13	$?$	$?$	No^{2}
294	13	4	$?$	$?$	No^{2}
300	7	10	$?$	$?$	No^{2}
340	3	15	$?$	$?$	No^{2}
368	13	6	$?$	$?$	No^{2}
374	7	12	$?$	$?$	No^{2}
378	3	16	$?$	$?$	No^{2}
460	3	18	$?$	$?$	No^{2}
486	21	1	$?$	No^{3}	

[3]: Jørgensen: talk in Pilsen (2018).

The adjacency algebra of Δ

The adjacency matrix $\mathrm{A}=\mathrm{A}(\Delta) \in \mathbb{R}^{V \times V}$:

$$
(\mathrm{A})_{x, y}:=\left\{\begin{array}{lc}
1 \quad \text { if } x \rightarrow y \\
0 & \text { otherwise }
\end{array}\right.
$$

As for every pair (x, y) of vertices of Δ, there is a unique trail $x \longrightarrow \ldots \longrightarrow y$ of length at most 2 :

$$
\mathrm{I}+\mathrm{A}+\mathrm{A}^{2}=\mathrm{r}^{\mathrm{I}}+\mathrm{J}, \text { and } \mathrm{JA}=\mathrm{AJ}=k J,
$$

so A is diagonalizable with 3 eigenspaces with eigenvalues $k=r+z$, and $\sigma_{1}, \sigma_{2} \in \mathbb{Z}$, which are expressed in n, r, z.

The projection matrix $\mathrm{E}_{\sigma_{i}}$ onto the (right) σ_{i}-eigenspace:

$$
\mathrm{E}_{\sigma_{i}} \in\langle\mathrm{~A}, \mathrm{I}, \mathrm{~J}\rangle .
$$

The adjacency algebra of Δ

The adjacency matrix $\mathrm{A}=\mathrm{A}(\Delta) \in \mathbb{R}^{V \times V}$:

$$
(\mathrm{A})_{x, y}:=\left\{\begin{array}{lc}
1 & \text { if } x \rightarrow y \\
0 & \text { otherwise }
\end{array}\right.
$$

As for every pair (x, y) of vertices of Δ, there is a unique trail $x \longrightarrow \ldots \longrightarrow y$ of length at most 2 :

$$
\mathrm{I}+\mathrm{A}+\mathrm{A}^{2}=r \mathrm{I}+\mathrm{J}, \quad \text { and } \mathrm{JA}=\mathrm{AJ}=k \mathrm{~J}
$$

so A is diagonalizable with 3 eigenspaces with eigenvalues $k=r+z$, and $\sigma_{1}, \sigma_{2} \in \mathbb{Z}$, which are expressed in n, r, z.
The projection matrix $\mathrm{E}_{\sigma_{i}}$ onto the (right) σ_{i}-eigenspace:

The adjacency algebra of Δ

The adjacency matrix $\mathrm{A}=\mathrm{A}(\Delta) \in \mathbb{R}^{V \times V}$:

$$
(\mathrm{A})_{x, y}:=\left\{\begin{array}{lc}
1 & \text { if } x \rightarrow y \\
0 & \text { otherwise }
\end{array}\right.
$$

As for every pair (x, y) of vertices of Δ, there is a unique trail $x \longrightarrow \ldots \longrightarrow y$ of length at most 2 :

$$
\mathrm{I}+\mathrm{A}+\mathrm{A}^{2}=r \mathbf{I}+\mathrm{J}, \text { and } \mathrm{JA}=\mathrm{AJ}=k \mathrm{~J}
$$

so A is diagonalizable with 3 eigenspaces with eigenvalues $k=r+z$, and $\sigma_{1}, \sigma_{2} \in \mathbb{Z}$, which are expressed in n, r, z. The projection matrix $\mathrm{E}_{\sigma_{i}}$ onto the (right) σ_{i}-eigenspace:

$$
\mathrm{E}_{\sigma_{i}} \in\langle\mathrm{~A}, \mathrm{I}, \mathrm{~J}\rangle
$$

Duval (1988); Jørgensen (2003); Godsil, Hobart, Martin (2007)

The Higman-Benson observation

- $G \leq \operatorname{Aut}(\Delta)$;
- $g \in G: g \mapsto \mathrm{X}_{g}$, a permutation matrix;
$>\mathrm{X}_{g} \mathrm{~A}=\mathrm{AX}_{g}$, and as $\mathrm{E}_{\sigma_{i}} \in\langle\mathrm{~A}, \mathrm{I}, J\rangle \Rightarrow \mathrm{X}_{g} \mathrm{E}_{\sigma_{i}}=\mathrm{E}_{\sigma_{i}} \mathrm{X}_{g}$;
- By using this, one can show that

- On the other hand, since $\mathrm{E}_{\sigma_{i}} \in\langle\mathrm{~A}, \mathrm{I}, \mathrm{J}\rangle$, we have:

- Now:

- G. Higman: a degree 57 Moore graph;
- C. Benson: finite GQs.

The Higman-Benson observation

- $G \leq \operatorname{Aut}(\Delta)$;
- $g \in G: g \mapsto \mathrm{X}_{g}$, a permutation matrix;
$-\mathrm{X}_{g} \mathrm{~A}=\mathrm{AX}_{g}$, and as $\mathrm{E}_{\sigma_{i}} \in\langle\mathrm{~A}, \mathrm{I}, \mathrm{J}\rangle \Rightarrow \mathrm{X}_{g} \mathrm{E}_{\sigma_{i}}=\mathrm{E}_{\sigma_{i}} \mathrm{X}_{g}$;

\rightarrow By using this, one can show that

- On the other hand, since $\mathrm{E}_{\sigma_{i}} \in\langle\mathrm{~A}, \mathrm{I}, \mathrm{J}\rangle$, we have: $\operatorname{Tr}\left(\mathbf{E}_{\sigma_{i}} \mathbf{X}_{q}\right)=\alpha_{i} \operatorname{Tr}\left(\mathbf{A} \mathbf{X}_{q}\right)+\beta_{i} \operatorname{Tr}\left(\mathbf{I} \mathbf{X}_{q}\right)+\gamma_{i} \operatorname{Tr}\left(\mathrm{JX}_{q}\right) \in \mathbb{Z}$

$$
\in \mathbb{Q} \text {, but often } \notin \mathbb{Z} \text {. }
$$

- Now:

- G. Higman: a degree 57 Moore graph;
- C. Benson: finite GQs.

The Higman-Benson observation

- $G \leq \operatorname{Aut}(\Delta)$;
- $g \in G: g \mapsto \mathrm{X}_{g}$, a permutation matrix;
- $\mathrm{X}_{g} \mathrm{~A}=\mathrm{AX}_{g}$, and as $\mathrm{E}_{\sigma_{i}} \in\langle\mathrm{~A}, \mathrm{I}, \mathrm{J}\rangle \Rightarrow \mathrm{X}_{g} \mathrm{E}_{\sigma_{i}}=\mathrm{E}_{\sigma_{i}} \mathrm{X}_{g}$;

- By using this, one can show that

$\operatorname{Tr}\left(\mathrm{E}_{\sigma_{i}} \mathrm{X}_{g}\right) \in \mathbb{Z} ;$

\Rightarrow On the other hand, since $\mathrm{E}_{\sigma_{i}} \in\langle\mathrm{~A}, \mathrm{I}, \mathrm{J}\rangle$, we have: $\operatorname{Tr}\left(\mathbf{E}_{\sigma_{i}} \mathbf{X}_{g}\right)=\alpha_{i} \operatorname{Tr}\left(\mathbf{A} \mathbf{X}_{g}\right)+\beta_{i} \operatorname{Tr}\left(\mathbf{I} \mathbf{X}_{g}\right)+\gamma_{i} \operatorname{Tr}\left(\mathrm{~J} \mathbf{X}_{g}\right) \in \mathbb{Z}$

$$
\in \mathbb{Q} \text {, but often } \notin \mathbb{Z} \text {. }
$$

- G. Higman: a degree 57 Moore graph;
- C. Benson: finite GQs.

The Higman-Benson observation

- $G \leq \operatorname{Aut}(\Delta)$;
- $g \in G: g \mapsto \mathrm{X}_{g}$, a permutation matrix;
$-\mathrm{X}_{g} \mathrm{~A}=\mathrm{AX}_{g}$, and as $\mathrm{E}_{\sigma_{i}} \in\langle\mathrm{~A}, \mathrm{I}, \mathrm{J}\rangle \Rightarrow \mathrm{X}_{g} \mathrm{E}_{\sigma_{i}}=\mathrm{E}_{\sigma_{i}} \mathrm{X}_{g}$;
- By using this, one can show that

$$
\operatorname{Tr}\left(\mathrm{E}_{\sigma_{i}} \mathrm{X}_{g}\right) \in \mathbb{Z}
$$

\Rightarrow On the other hand, since $\mathrm{E}_{\sigma_{i}} \in\langle\mathrm{~A}, \mathrm{I}, \mathrm{J}\rangle$, we have: $\in \mathbb{Q}$, but often $\notin \mathbb{Z}$.

The Higman-Benson observation

- $G \leq \operatorname{Aut}(\Delta)$;
- $g \in G: g \mapsto \mathrm{X}_{g}$, a permutation matrix;
$-\mathrm{X}_{g} \mathrm{~A}=\mathrm{AX}_{g}$, and as $\mathrm{E}_{\sigma_{i}} \in\langle\mathrm{~A}, \mathrm{I}, \mathrm{J}\rangle \Rightarrow \mathrm{X}_{g} \mathrm{E}_{\sigma_{i}}=\mathrm{E}_{\sigma_{i}} \mathrm{X}_{g}$;
- By using this, one can show that

$$
\operatorname{Tr}\left(\mathrm{E}_{\sigma_{i}} \mathrm{X}_{g}\right) \in \mathbb{Z}
$$

- On the other hand, since $\mathrm{E}_{\sigma_{i}} \in\langle\mathrm{~A}, \mathrm{I}, \mathrm{J}\rangle$, we have:

$$
\begin{gathered}
\operatorname{Tr}\left(\mathrm{E}_{\sigma_{i}} \mathrm{X}_{g}\right)=\alpha_{i} \operatorname{Tr}\left(\mathrm{AX}_{g}\right)+\beta_{i} \operatorname{Tr}\left(\mathbf{I X}_{g}\right)+\gamma_{i} \operatorname{Tr}\left(\mathrm{JX}_{g}\right) \in \mathbb{Z} \\
\downarrow \\
\downarrow \\
\downarrow \mathbb{Q}, \text { but often } \notin \mathbb{Z} .
\end{gathered}
$$

The Higman-Benson observation

- $G \leq \operatorname{Aut}(\Delta)$;
- $g \in G: g \mapsto \mathrm{X}_{g}$, a permutation matrix;
$-\mathrm{X}_{g} \mathrm{~A}=\mathrm{AX}_{g}$, and as $\mathrm{E}_{\sigma_{i}} \in\langle\mathrm{~A}, \mathrm{I}, \mathrm{J}\rangle \Rightarrow \mathrm{X}_{g} \mathrm{E}_{\sigma_{i}}=\mathrm{E}_{\sigma_{i}} \mathrm{X}_{g}$;
- By using this, one can show that

$$
\operatorname{Tr}\left(\mathrm{E}_{\sigma_{i}} \mathrm{X}_{g}\right) \in \mathbb{Z}
$$

- On the other hand, since $\mathrm{E}_{\sigma_{i}} \in\langle\mathrm{~A}, \mathrm{I}, \mathrm{J}\rangle$, we have:

$$
\begin{gathered}
\operatorname{Tr}\left(\mathrm{E}_{\sigma_{i}} \mathrm{X}_{g}\right)=\alpha_{i} \operatorname{Tr}\left(\mathrm{AX}_{g}\right)+\beta_{i} \operatorname{Tr}\left(\mathbf{X X}_{g}\right)+\gamma_{i} \operatorname{Tr}\left(\mathrm{JX}_{g}\right) \in \mathbb{Z} \\
\downarrow \\
\downarrow \\
\in \mathbb{Q}, \text { but often } \notin \mathbb{Z} .
\end{gathered}
$$

- Now:

$$
\begin{gathered}
\operatorname{Tr}\left(\mathrm{IX}_{g}\right)=\#\left\{v \in \Delta \mid v=v^{g}\right\} \\
\operatorname{Tr}\left(\mathrm{AX}_{g}\right)=\#\left\{v \in \Delta \mid v \longrightarrow v^{g}\right\} .
\end{gathered}
$$

The Higman-Benson observation

- $G \leq \operatorname{Aut}(\Delta)$;
- $g \in G: g \mapsto \mathrm{X}_{g}$, a permutation matrix;
$-\mathrm{X}_{g} \mathrm{~A}=\mathrm{AX}_{g}$, and as $\mathrm{E}_{\sigma_{i}} \in\langle\mathrm{~A}, \mathrm{I}, \mathrm{J}\rangle \Rightarrow \mathrm{X}_{g} \mathrm{E}_{\sigma_{i}}=\mathrm{E}_{\sigma_{i}} \mathrm{X}_{g}$;
- By using this, one can show that

$$
\operatorname{Tr}\left(\mathrm{E}_{\sigma_{i}} \mathrm{X}_{g}\right) \in \mathbb{Z} ;
$$

- On the other hand, since $\mathrm{E}_{\sigma_{i}} \in\langle\mathrm{~A}, \mathrm{I}, \mathrm{J}\rangle$, we have:

$$
\begin{gathered}
\operatorname{Tr}\left(\mathrm{E}_{\sigma_{i}} \mathrm{X}_{g}\right)=\alpha_{i} \operatorname{Tr}\left(\mathrm{AX}_{g}\right)+\beta_{i} \operatorname{Tr}\left(\mathrm{IX}_{g}\right)+\gamma_{i} \operatorname{Tr}\left(\mathrm{JX} \mathrm{X}_{g}\right) \in \mathbb{Z} \\
\downarrow \\
\downarrow \\
\downarrow \mathbb{Q}, \text { but often } \notin \mathbb{Z} .
\end{gathered}
$$

- Now:

$$
\begin{gathered}
\operatorname{Tr}\left(\mathrm{IX}_{g}\right)=\#\left\{v \in \Delta \mid v=v^{g}\right\} \\
\operatorname{Tr}\left(\mathrm{AX}_{g}\right)=\#\left\{v \in \Delta \mid v \longrightarrow v^{g}\right\} .
\end{gathered}
$$

- G. Higman: a degree 57 Moore graph;
- C. Benson: finite GQs.

Application to Moore Cayley digraphs

- Δ : a Moore Cayley digraph over G with degrees (r, z).

Recall: \exists an odd positive c which divides $(4 z-3)(4 z+5)$, and

$$
r=\frac{1}{4}\left(c^{2}+3\right) .
$$

- $G \leq \operatorname{Aut}(\Delta)$ is a regular subgroup;
- The Higman-Benson observation shows that:

$$
\left(-\frac{1}{c} \operatorname{Tr}\left(\mathrm{AX}_{g}\right)+\frac{c^{2}-4 c+4 z+5}{4 c}\right) \in \mathbb{Z}
$$

for any automorphism $g \in G$, where

- For certain orders $n=|G|$ and $|g|$, this implies that $\operatorname{Tr}\left(\mathrm{AX}_{g}\right)$ is "too large" so that it contradicts:
for every pair (x, y) of vertices of Δ,
there is a unique trail $x \longrightarrow \ldots \longrightarrow y$ of length at most 2 .

Application to Moore Cayley digraphs

- Δ : a Moore Cayley digraph over G with degrees (r, z).

Recall: \exists an odd positive c which divides $(4 z-3)(4 z+5)$, and

$$
r=\frac{1}{4}\left(c^{2}+3\right) .
$$

- $G \leq \operatorname{Aut}(\Delta)$ is a regular subgroup;
- The Higman-Benson observation shows that:

$$
\left(-\frac{1}{c} \operatorname{Tr}\left(\mathrm{AX}_{g}\right)+\frac{c^{2}-4 c+4 z+5}{4 c}\right) \in \mathbb{Z}
$$

for any automorphism $g \in G$, where

$$
\operatorname{Tr}\left(\mathrm{AX}_{g}\right)=\#\left\{v \in \Delta \mid v \longrightarrow v^{g}\right\}
$$

there is a unique trail $x \longrightarrow \ldots \longrightarrow y$ of length at most 2 .

Application to Moore Cayley digraphs

- Δ : a Moore Cayley digraph over G with degrees (r, z).

Recall: \exists an odd positive c which divides $(4 z-3)(4 z+5)$, and

$$
r=\frac{1}{4}\left(c^{2}+3\right) .
$$

- $G \leq \operatorname{Aut}(\Delta)$ is a regular subgroup;
- The Higman-Benson observation shows that:

$$
\left(-\frac{1}{c} \operatorname{Tr}\left(\mathrm{AX}_{g}\right)+\frac{c^{2}-4 c+4 z+5}{4 c}\right) \in \mathbb{Z}
$$

for any automorphism $g \in G$, where

$$
\operatorname{Tr}\left(\mathrm{AX}_{g}\right)=\#\left\{v \in \Delta \mid v \longrightarrow v^{g}\right\} .
$$

- For certain orders $n=|G|$ and $|g|$, this implies that $\operatorname{Tr}\left(\mathrm{AX}_{g}\right)$ is "too large" so that it contradicts:
for every pair (x, y) of vertices of Δ,
there is a unique trail $x \longrightarrow \ldots \longrightarrow y$ of length at most 2 .

Results

n	r	z	Cayley (by Erskine)	Cayley (by Higman)
40	3	3	No	No
54	3	4	No	
84	7	2	No	No
88	3	6	No	No
150	7	5	No	
154	3	9	No	No
180	3	10	No	

Results

n	r	z	Cayley (by Erskine)	Cayley (by Higman)
204	7	7	No	No
238	3	12	No	No
270	3	13	No	
294	13	4	No	
300	7	10	No	
340	3	15	No	No
368	13	6	No	No
374	7	12	No	No
378	3	16	No	
460	3	18	No	No
486	21	1		

It rules out 29 out of 58 feasible parameter sets for $v \leq 2000$.
Although it does not cover all results by Erskine, the proof is computer-free.

Question

n	r	z	Cayley (by Erskine)	Cayley (by Higman)
40	3	3	No	No
54	3	4	No	
84	7	2	No	No
88	3	6	No	No
150	7	5	No	
154	3	9	No	No
180	3	10	No	

$150=3 \times$ Hoffman-Singleton + arcs?

