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Moore bound
Let Γ be an undirected graph:

I regular of degree k;

I of diameter D;

I on N vertices.
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Digraphs = Mixed graphs = Partially directed graphs

Digraphs may have arcs as well as (undirected) edges:

An analogue of the Moore bound for digraphs can be derived,
but its general form is quite complicated. In fact:

Theorem (Nguyen, Miller, Gimbert, 2007)

There are no Moore digraphs with diameter > 2.
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Moore digraphs

Theorem (Bosák, 1979)

Let ∆ be a Moore digraph of diameter 2 with degrees (r, z).
Then the number n of vertices of ∆ is

n = (r + z)2 + z + 1

and exactly one of the following cases occurs:

I z = 1, r = 0 (a directed 3-cycle);

I z = 0, r = 2 (an undirected 5-cycle);

I there exists an odd positive integer c such that

c divides (4z − 3)(4z + 5) and r = 1
4(c2 + 3).

Admissible values of r: 1, 3, 7, 13, 21, . . .,
For given r: infinitely many admissible values of z.
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Known Moore digraphs
I r = 1: only Moore digraphs are the Kautz digraphs.

(Gimbert, 2001)

They are the line graphs of complete digraphs.

I r > 1: only three examples are known:
I the Bosák graph on 18 vertices, (r, z) = (3, 1);

I two Jørgensen graphs on 108 vertices, (r, z) = (3, 7).

All three examples are Cayley digraphs.
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Cayley digraphs

Given a finite group G and a subset S ⊆ G \ {1},
with S = S1 ∪ S2, S1 = S−1

1 , and S2 ∩ S−1
2 = ∅,

the Cayley (di-)graph Cay(G,S) has:

I the vertex set G;

I an arc g −→ gs for every g ∈ G, s ∈ S;

I the undirected degree r = |S1|;
I the directed degree z = |S2|.

Moore digraphs of diameter 2 are defined by the property:

for every pair (x, y) of vertices of ∆,
there is a unique trail x −→ . . . −→ y of length at most 2.

If ∆ is a Moore Cayley digraph Cay(G,S), then:

I for g ∈ S, 6 ∃ a pair (s1, s2) ∈ S × S such that g = s1s2;

I for g 6∈ S, ∃! a pair (s1, s2) ∈ S × S such that g = s1s2.
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Moore Cayley digraphs on at most 486 vertices, 1



Moore Cayley digraphs on at most 486 vertices, 2



The adjacency algebra of ∆

The adjacency matrix A = A(∆) ∈ RV×V :

(A)x,y :=

{
1 if x→ y,

0 otherwise.

As for every pair (x, y) of vertices of ∆, there is a unique trail
x −→ . . . −→ y of length at most 2:

I + A + A2 = rI + J, and JA = AJ = kJ,

so A is diagonalizable with 3 eigenspaces with eigenvalues
k = r + z, and σ1, σ2 ∈ Z, which are expressed in n, r, z.

The projection matrix Eσi onto the (right) σi-eigenspace:

Eσi ∈ 〈A, I, J〉.

Duval (1988); Jørgensen (2003); Godsil, Hobart, Martin (2007)
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The Higman-Benson observation

I G ≤ Aut(∆);

I g ∈ G: g 7→ Xg, a permutation matrix;

I XgA = AXg, and as Eσi ∈ 〈A, I, J〉 ⇒ XgEσi = EσiXg;

I By using this, one can show that

Tr(EσiXg) ∈ Z;

I On the other hand, since Eσi ∈ 〈A, I, J〉, we have:

Tr(EσiXg) = αiTr(AXg) + βiTr(IXg) + γiTr(JXg)∈ Z
↓ ↓ ↓
∈ Q, but often 6∈ Z.

I Now:

Tr(IXg) = #{v ∈ ∆ | v = vg},
Tr(AXg) = #{v ∈ ∆ | v −→ vg}.

I G. Higman: a degree 57 Moore graph;
I C. Benson: finite GQs.
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Application to Moore Cayley digraphs

I ∆: a Moore Cayley digraph over G with degrees (r, z).

Recall: ∃ an odd positive c which divides (4z − 3)(4z + 5), and

r = 1
4 (c2 + 3).

I G ≤ Aut(∆) is a regular subgroup;

I The Higman-Benson observation shows that:(
− 1

cTr(AXg) + c2−4c+4z+5
4c

)
∈ Z

for any automorphism g ∈ G, where

Tr(AXg) = #{v ∈ ∆ | v −→ vg}.
I For certain orders n = |G| and |g|, this implies that

Tr(AXg) is “too large” so that it contradicts:

for every pair (x, y) of vertices of ∆,
there is a unique trail x −→ . . . −→ y of length at most 2.
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Results



Results

Although it does not cover all results by Erskine, the proof is
computer-free.



Question

150 = 3×Hoffman-Singleton + arcs?


