The Independence Number of the Orthogonality Graph

Ferdinand Ihringer

Joint work with: Hajime Tanaka.

Ghent University, Belgium

17 June 2019 Finite Geometry and Friends

Upper Bounds

Even Powers

The Orthogonality Graph

Graph
$$\Gamma$$
: $X = \{-1, 1\}^n$, $x \sim y \Leftrightarrow \langle x, y \rangle = 0$.
Alternative: $X = \{0, 1\}^n$, $x \sim y$ if $d(x, y) = n/2$.

What is $\alpha(\Gamma)$?

- n odd: $\alpha(\Gamma) = 2^n$ (no edges).
- **2** $n \equiv 2 \pmod{4}$: $\alpha(\Gamma) = 2^{n-1}$ (bipartite).

Upper Bounds

Even Powers

The Orthogonality Graph

Graph
$$\Gamma$$
: $X = \{-1, 1\}^n$, $x \sim y \Leftrightarrow \langle x, y \rangle = 0$.
Alternative: $X = \{0, 1\}^n$, $x \sim y$ if $d(x, y) = n/2$.

What is $\alpha(\Gamma)$?

• n odd:
$$\alpha(\Gamma) = 2^n$$
 (no edges).

2
$$n \equiv 2 \pmod{4}$$
: $\alpha(\Gamma) = 2^{n-1}$ (bipartite).

•
$$n \equiv 0 \pmod{4}$$
: Interesting!

Example *n* = 4: 0000, 0001, 1110, 1111.

Exercise: Show that $\alpha(\Gamma) = 4$.

Hint: Use a Hadamard matrix of size 4.

The	Orthogonality	Graph
000		

Even Powers

Independent Sets, Examples

Example *n* = 4: 0000, 0001, 1110, 1111.

What about larger *n*?

The	Orthogonality	Graph
000		

Even Powers

Independent Sets, Examples

Example *n* = 4: 0000, 0001, 1110, 1111.

What about larger n?

Example n = 8:

The	Orthogonality	Graph
000		

Even Powers

Independent Sets, Examples

Example *n* = 4: 0000, 0001, 1110, 1111.

What about larger n?

Example n = 8:

Size: 32. **Exercise:** Show that $\alpha(\Gamma) = 32$.

Hint: Use a Hadamard matrix of size 8.

Question: Classification?

The	Orthogonality	Graph
000		

Even Powers

Independent Sets, General

Example *n* = 4: 0000, 0001, 1110, 1111.

What is the construction behind examples?

Set

$$Y = \{ (c_1, \dots, c_n) \in X : \\ |\{i : 1 \le i \le n - 1, c_i = 1\}| < \frac{1}{4}n \text{ or } \ge \frac{3}{4}n \}.$$

Upper Bounds

Even Powers

Independent Sets, General

Example *n* = 4: 0000, 0001, 1110, 1111.

What is the construction behind examples?

Set

$$Y = \{ (c_1, \dots, c_n) \in X : \\ |\{i : 1 \le i \le n - 1, c_i = 1\}| < \frac{1}{4}n \text{ or } \ge \frac{3}{4}n \}.$$

We have

$$a_n := |Y| = 4 \sum_{i=0}^{n/4-1} {n-1 \choose i}.$$

Hence, $\alpha(\Gamma) \geq a_n$.

Upper Bounds

Even Powers

Conjecture

Recall: $\alpha(\Gamma)$ is at least

$$a_n = 4 \sum_{i=0}^{n/4-1} \binom{n-1}{i}.$$

Conjecture

We have $\alpha(\Gamma) = a_n$.

The	Ortho	gona	lity	Graph
000				

Conjecture

Recall: $\alpha(\Gamma)$ is at least

$$a_n = 4 \sum_{i=0}^{n/4-1} \binom{n-1}{i}.$$

Conjecture

We have $\alpha(\Gamma) = a_n$.

Conjecture due to Frankl (1986/1987),¹ Galliard for $n = 2^{k}$ (2001), Newman (2004).

¹A 1987 paper by Frankl and Rödl contains a reference to a 1986 paper by Frankl together with the claim that there this conjecture is made. The 1986 paper does not contain this conjecture, but an argument for $\alpha(\Gamma) \ge a_n$.

The Orthogonality Graph	Upper Bounds	Even Powers
000	000	0000

Conjecture

We have $\alpha(\Gamma) = a_n$.

Results:

• Frankl (1986): $\alpha(\Gamma) = a_n$ if $n = 4p^k$, p odd prime.

The	Orthogonality	Graph
000		

Conjecture

We have $\alpha(\Gamma) = a_n$.

Results:

- Frankl (1986): $\alpha(\Gamma) = a_n$ if $n = 4p^k$, p odd prime.
- Frankl-Rödl (1987): $\alpha(\Gamma) \leq 1.99^n$.
- De Klerck-Pasechnik (2005): $\alpha(\Gamma) = a_n$ for n = 16.

The	Orthogonality	Graph	
000			

Conjecture

We have $\alpha(\Gamma) = a_n$.

Results:

- Frankl (1986): $\alpha(\Gamma) = a_n$ if $n = 4p^k$, p odd prime.
- Frankl-Rödl (1987): $\alpha(\Gamma) \leq 1.99^n$.
- De Klerck-Pasechnik (2005): $\alpha(\Gamma) = a_n$ for n = 16.
- I-Tanaka (2019, Combinatorica): $\alpha(\Gamma) = a_n$ for $n = 2^k$.
- I-Tanaka + referee (2019): $\alpha(\Gamma) = a_n$ for n = 24.

The	Orthogonality	Graph
000		

Conjecture

We have $\alpha(\Gamma) = a_n$.

Results:

- Frankl (1986): $\alpha(\Gamma) = a_n$ if $n = 4p^k$, p odd prime.
- Frankl-Rödl (1987): $\alpha(\Gamma) \leq 1.99^n$.
- De Klerck-Pasechnik (2005): $\alpha(\Gamma) = a_n$ for n = 16.
- I-Tanaka (2019, Combinatorica): $\alpha(\Gamma) = a_n$ for $n = 2^k$.
- I-Tanaka + referee (2019): $\alpha(\Gamma) = a_n$ for n = 24.

Galliard, Tapp, Wolf et al. (~ 2000): interest for $n = 2^k$ due to **quantum-telepathy games** in **quantum information theory**.

The	Orthogonality	Graph	
000			

Small Cases

How got the small cases solved?

Lemma

Folklore: $\alpha(\Gamma) = a_n$ for n = 4, 8.

Method: Delsarte's linear programming bound.

The	Orthogonality	Graph	
000			

Small Cases

How got the small cases solved?

Lemma

Folklore: $\alpha(\Gamma) = a_n$ for n = 4, 8.

Method: Delsarte's linear programming bound.

Theorem (De Klerck-Pasechnik (2005))

 $\alpha(\Gamma) = a_n$ for n = 16.

Method: Schrijver's semidefinite programming bound.

The	Orthogonality	Graph
000		

Small Cases

How got the small cases solved?

Lemma

Folklore: $\alpha(\Gamma) = a_n$ for n = 4, 8.

Method: Delsarte's linear programming bound.

Theorem (De Klerck-Pasechnik (2005))

 $\alpha(\Gamma) = a_n$ for n = 16.

Method: Schrijver's semidefinite programming bound.

Theorem

 $\alpha(\Gamma) = a_n$ for n = 24.

Method: "2nd level" of Schrijver's SDP bound.

Suggested in I-Tanaka (2019), calculations done by referee.

Upper Bounds

Even Powers

The Proof for $n = 2^k$ (I)

Theorem (I-Tanaka (2019))

$$\alpha(\Gamma) = a_n$$
 for $n = 2^k$.

Proof: As Frankl for $n = 4p^k$, p odd prime, with **one** difference.

Recall:

$$a_n = 4 \sum_{i=0}^{n/4-1} \binom{n-1}{i}.$$

Upper Bounds

Even Powers

The Proof for $n = 2^k$ (I)

Theorem (I-Tanaka (2019))

 $\alpha(\Gamma) = a_n \text{ for } n = 2^k.$

Proof: As Frankl for $n = 4p^k$, p odd prime, with **one** difference.

Recall:

$$a_n = 4 \sum_{i=0}^{n/4-1} \binom{n-1}{i}.$$

First Idea: Reduce the problem to 4 problems on the hypercube on n - 1 coordinates.

Recall *n* = 4 example: 0000, 0001, 1110, 1111.

Not too hard!

Upper Bounds

Even Powers

The Proof for $n = 2^k$ (II)

Theorem (I-Tanaka (2019))

$$\alpha(\Gamma) = a_n \text{ for } n = 2^k$$
.

Recall

$$a_n = 4 \sum_{i=0}^{n/4-1} \binom{n-1}{i}.$$

Observation: Eigenspaces V_0, V_1, \ldots of the orthogonality graph on n-1 coordinates have dimensions:

$$\binom{n-1}{0}, \binom{n-1}{1}, \binom{n-1}{2}, \binom{n-1}{3}, \dots$$

Second Idea: Bound the problem by dimension of eigenspaces.

Upper Bounds

Even Powers

The Proof for $n = 2^k$ (III)

$$\alpha(\Gamma) = a_n$$
 for $n = 2^k$

Second Idea: Bound the problem by dimension of eigenspaces.

Upper Bounds

Even Powers

The Proof for $n = 2^k$ (III)

Theorem (I-Tanaka (2019))

$$\alpha(\Gamma) = a_n$$
 for $n = 2^k$

Second Idea: Bound the problem by dimension of eigenspaces.

In Detail: Show that independent set Y of size 4α corresponds to a subspace of $V_0 + V_1 + \ldots + V_{n/4-1}$ of dimension at least α .

Frankl's Method: Replace distance ξ by $\binom{\xi-1}{n/4-1}$. **Works** for $n = 4p^k$, but not p even.

Upper Bounds

Even Powers

The Proof for $n = 2^k$ (III)

Theorem (I-Tanaka (2019))

 $\alpha(\Gamma) = a_n \text{ for } n = 2^k.$

Second Idea: Bound the problem by dimension of eigenspaces.

In Detail: Show that independent set Y of size 4α corresponds to a subspace of $V_0 + V_1 + \ldots + V_{n/4-1}$ of dimension at least α .

Frankl's Method: Replace distance ξ by $\binom{\xi-1}{n/4-1}$. **Works** for $n = 4p^k$, but not p even.

I-Tanaka: Replace² distance ξ by $\binom{\xi/2-1}{n/4-1}$. Works also for $n = 2^k$.

²This hides intermediate research such as $\frac{1}{16}\xi^3 - \frac{3}{2}\xi^2 + \frac{49}{4}\xi - 33$ for k = 4.

Thank you for your attention!