The Independence Number of the Orthogonality Graph

Ferdinand Ihringer

Joint work with: Hajime Tanaka.

Ghent University, Belgium

17 June 2019
Finite Geometry and Friends

The Orthogonality Graph

Graph $\Gamma: X=\{-1,1\}^{n}, \quad x \sim y \Leftrightarrow\langle x, y\rangle=0$. Alternative: $X=\{0,1\}^{n}, x \sim y$ if $d(x, y)=n / 2$.

What is $\alpha(\Gamma)$?
(1) n odd: $\alpha(\Gamma)=2^{n}$ (no edges).
(2) $n \equiv 2(\bmod 4): \alpha(\Gamma)=2^{n-1}$ (bipartite).

The Orthogonality Graph

Graph $\Gamma: X=\{-1,1\}^{n}, x \sim y \Leftrightarrow\langle x, y\rangle=0$. Alternative: $X=\{0,1\}^{n}, x \sim y$ if $d(x, y)=n / 2$.

What is $\alpha(\Gamma)$?
(1) n odd: $\alpha(\Gamma)=2^{n}$ (no edges).
(2) $n \equiv 2(\bmod 4): \alpha(\Gamma)=2^{n-1}$ (bipartite).
© $n \equiv 0(\bmod 4):$ Interesting!
Example $n=4: 0000,0001,1110,1111$.
Exercise: Show that $\alpha(\Gamma)=4$.
Hint: Use a Hadamard matrix of size 4.

Independent Sets, Examples

Example $n=4: 0000,0001,1110,1111$.

What about larger n ?

Independent Sets, Examples

Example $n=4: 0000,0001,1110,1111$.
What about larger n ?
Example $n=8$:
$00000000,00000010,00000100,00001000,00010000,00100000,01000000,10000000$, $00000001,00000011,00000101,00001001,00010001,00100001,01000001,10000001$, 11111110, 11111100, 11111010, 11110110, 11101110, 11011110, 10111110, 01111110, 11111111, 11111101, 11111011, 11110111, 11101111, 11011111, 10111111, 01111111.

Independent Sets, Examples

Example $n=4: 0000,0001,1110,1111$.
What about larger n ?
Example $n=8$:
$00000000,00000010,00000100,00001000,00010000,00100000,01000000,10000000$, $00000001,00000011,00000101,00001001,00010001,00100001,01000001,10000001$, 11111110, 11111100, 11111010, 11110110, 11101110, 11011110, 10111110, 01111110, 11111111, 11111101, 11111011, 11110111, 11101111, 11011111, 10111111, 01111111.

Size: 32.
Exercise: Show that $\alpha(\Gamma)=32$.
Hint: Use a Hadamard matrix of size 8.
Question: Classification?

Independent Sets, General

Example $n=4: 0000,0001,1110,1111$.
What is the construction behind examples?

Set

$$
\begin{aligned}
Y=\{ & \left(c_{1}, \ldots, c_{n}\right) \in X: \\
& \left.\left|\left\{i: 1 \leq i \leq n-1, c_{i}=1\right\}\right|<\frac{1}{4} n \text { or } \geq \frac{3}{4} n\right\} .
\end{aligned}
$$

Independent Sets, General

Example $n=4: 0000,0001,1110,1111$.
What is the construction behind examples?

Set

$$
\begin{aligned}
Y=\{ & \left(c_{1}, \ldots, c_{n}\right) \in X: \\
& \left.\left|\left\{i: 1 \leq i \leq n-1, c_{i}=1\right\}\right|<\frac{1}{4} n \text { or } \geq \frac{3}{4} n\right\} .
\end{aligned}
$$

We have

$$
a_{n}:=|Y|=4 \sum_{i=0}^{n / 4-1}\binom{n-1}{i} .
$$

Hence, $\alpha(\Gamma) \geq a_{n}$.

Conjecture

Recall: $\alpha(\Gamma)$ is at least

$$
a_{n}=4 \sum_{i=0}^{n / 4-1}\binom{n-1}{i}
$$

Conjecture

We have $\alpha(\Gamma)=a_{n}$.

Conjecture

Recall: $\alpha(\Gamma)$ is at least

$$
a_{n}=4 \sum_{i=0}^{n / 4-1}\binom{n-1}{i}
$$

Conjecture

We have $\alpha(\Gamma)=a_{n}$.
Conjecture due to Frankl (1986/1987), ${ }^{1}$ Galliard for $n=2^{k}$ (2001), Newman (2004).
${ }^{1}$ A 1987 paper by Frankl and Rödl contains a reference to a 1986 paper by Frankl together with the claim that there this conjecture is made. The 1986 paper does not contain this conjecture, but an argument for $\alpha(\Gamma) \geq a_{n}$.

What is known?

Conjecture

We have $\alpha(\Gamma)=a_{n}$.
Results:

- Frankl (1986): $\alpha(\Gamma)=a_{n}$ if $n=4 p^{k}, p$ odd prime.

What is known?

Conjecture

We have $\alpha(\Gamma)=a_{n}$.
Results:

- Frankl (1986): $\alpha(\Gamma)=a_{n}$ if $n=4 p^{k}, p$ odd prime.
- Frankl-Rödl (1987): $\alpha(\Gamma) \leq 1.99^{n}$.
- De Klerck-Pasechnik (2005): $\alpha(\Gamma)=a_{n}$ for $n=16$.

What is known?

Conjecture

We have $\alpha(\Gamma)=a_{n}$.
Results:

- Frankl (1986): $\alpha(\Gamma)=a_{n}$ if $n=4 p^{k}, p$ odd prime.
- Frankl-Rödl (1987): $\alpha(\Gamma) \leq 1.99^{n}$.
- De Klerck-Pasechnik (2005): $\alpha(\Gamma)=a_{n}$ for $n=16$.
- I-Tanaka (2019, Combinatorica): $\alpha(\Gamma)=a_{n}$ for $n=2^{k}$.
- I-Tanaka + referee (2019): $\alpha(\Gamma)=a_{n}$ for $n=24$.

What is known?

Conjecture

We have $\alpha(\Gamma)=a_{n}$.
Results:

- Frankl (1986): $\alpha(\Gamma)=a_{n}$ if $n=4 p^{k}, p$ odd prime.
- Frankl-Rödl (1987): $\alpha(\Gamma) \leq 1.99^{n}$.
- De Klerck-Pasechnik (2005): $\alpha(\Gamma)=a_{n}$ for $n=16$.
- I-Tanaka (2019, Combinatorica): $\alpha(\Gamma)=a_{n}$ for $n=2^{k}$.
- I-Tanaka + referee (2019): $\alpha(\Gamma)=a_{n}$ for $n=24$.

Galliard, Tapp, Wolf et al. (~ 2000): interest for $n=2^{k}$ due to quantum-telepathy games in quantum information theory.

Small Cases

How got the small cases solved?
Lemma
Folklore: $\alpha(\Gamma)=a_{n}$ for $n=4,8$.
Method: Delsarte's linear programming bound.

Small Cases

How got the small cases solved?
Lemma
Folklore: $\alpha(\Gamma)=a_{n}$ for $n=4,8$.
Method: Delsarte's linear programming bound.
Theorem (De Klerck-Pasechnik (2005))
$\alpha(\Gamma)=a_{n}$ for $n=16$.
Method: Schrijver's semidefinite programming bound.

Small Cases

How got the small cases solved?
Lemma
Folklore: $\alpha(\Gamma)=a_{n}$ for $n=4,8$.
Method: Delsarte's linear programming bound.
Theorem (De Klerck-Pasechnik (2005))
$\alpha(\Gamma)=a_{n}$ for $n=16$.
Method: Schrijver's semidefinite programming bound.
Theorem
$\alpha(\Gamma)=a_{n}$ for $n=24$.
Method: "2nd level" of Schrijver's SDP bound.

Suggested in I-Tanaka (2019), calculations done by referee.

The Proof for $n=2^{k}$ (I)

Theorem (I-Tanaka (2019))
$\alpha(\Gamma)=a_{n}$ for $n=2^{k}$.
Proof: As Frankl for $n=4 p^{k}, p$ odd prime, with one difference.

Recall:

$$
a_{n}=4 \sum_{i=0}^{n / 4-1}\binom{n-1}{i}
$$

The Proof for $n=2^{k}$ (I)

Theorem (I-Tanaka (2019))
$\alpha(\Gamma)=a_{n}$ for $n=2^{k}$.
Proof: As Frankl for $n=4 p^{k}, p$ odd prime, with one difference.

Recall:

$$
a_{n}=4 \sum_{i=0}^{n / 4-1}\binom{n-1}{i}
$$

First Idea: Reduce the problem to 4 problems on the hypercube on $n-1$ coordinates.

Recall $n=4$ example: 0000, 0001, 1110, 1111.

Not too hard!

The Proof for $n=2^{k}$ (II)

Theorem (I-Tanaka (2019))
$\alpha(\Gamma)=a_{n}$ for $n=2^{k}$.
Recall

$$
a_{n}=4 \sum_{i=0}^{n / 4-1}\binom{n-1}{i}
$$

Observation: Eigenspaces V_{0}, V_{1}, \ldots of the orthogonality graph on $n-1$ coordinates have dimensions:

$$
\binom{n-1}{0},\binom{n-1}{1},\binom{n-1}{2},\binom{n-1}{3}, \ldots
$$

Second Idea: Bound the problem by dimension of eigenspaces.

The Proof for $n=2^{k}$ (III)

Theorem (I-Tanaka (2019))
$\alpha(\Gamma)=a_{n}$ for $n=2^{k}$.
Second Idea: Bound the problem by dimension of eigenspaces.

The Proof for $n=2^{k}$ (III)

Theorem (I-Tanaka (2019))
$\alpha(\Gamma)=a_{n}$ for $n=2^{k}$.
Second Idea: Bound the problem by dimension of eigenspaces.
In Detail: Show that independent set Y of size 4α corresponds to a subspace of $V_{0}+V_{1}+\ldots+V_{n / 4-1}$ of dimension at least α.

Frankl's Method: Replace distance ξ by $\binom{\xi-1}{n / 4-1}$.
Works for $n=4 p^{k}$, but not p even.

The Proof for $n=2^{k}$ (III)

Theorem (I-Tanaka (2019))
$\alpha(\Gamma)=a_{n}$ for $n=2^{k}$.
Second Idea: Bound the problem by dimension of eigenspaces.
In Detail: Show that independent set Y of size 4α corresponds to a subspace of $V_{0}+V_{1}+\ldots+V_{n / 4-1}$ of dimension at least α.

Frankl's Method: Replace distance ξ by $\binom{\xi-1}{n / 4-1}$.
Works for $n=4 p^{k}$, but not p even.
I-Tanaka: Replace ${ }^{2}$ distance ξ by $\binom{\xi / 2-1}{n / 4-1}$.
Works also for $n=2^{k}$.
${ }^{2}$ This hides intermediate research such as $\frac{1}{16} \xi^{3}-\frac{3}{2} \xi^{2}+\frac{49}{4} \xi-33$ for $k=4$.

Thank you for your attention!

