PROBABILITIES OF INCIDENCE BETWEEN LINES AND A PLANE CURVE OVER FINITE FIELDS

JYU

Mehdi Makhul

Radon Institute For Computation and Applied Mathematics
June 19, 2019

Incidence over finite fields

Definition

Let X be an algebraic curve over a field K. We say that X is geometrically irreducible if X is irreducible over \bar{K}. Here \bar{K} denotes the algebraic closure of K.

Example (non-geometrically irreducible curve)

Consider the curve C given by

$$
C:=x^{2}+y^{2}=0
$$

C is irreducible over real numbers but it is not irreducible over complex numbers. i.e $x^{2}+y^{2}=(x+i y)(x-i y)=0$.

Incidence over finite fields

If C is an irreducible algebraic curve of degree d, by Bézout's theorem every line intersects C in d points (over an algebraically closed field). We can see that if the base field is not algebraically closed then we can get less than d intersection points.

Example

Incidence over finite fields

Given an algebraic curve C over a finite field \mathbb{F}_{q} we would like to study the behaviour of the number of k-rich lines determined by the set of points corresponding to the some algebraic plane curve from a probabilistic point of view.

What is the probability that a random line in the (affine or projective) plane intersects a curve of given degree in a given number of points? What happens when we extend the base field to $\mathbb{F}_{q^{2}}, \mathbb{F}_{q^{3}}, \ldots, \mathbb{F}_{q^{N}}$, and in particular what happens to the probabilities as $N \rightarrow \infty$.

Incidence over finite fields

Example

Let C be an irreducible quadratic curve in $\mathbb{P}^{2}\left(\mathbb{F}_{q}\right)$. It is known that C contains exactly $q+1 \mathbb{F}_{q}$-points. Hence the number of lines that meets C in exactly two points is

$$
\binom{q+1}{2}
$$

On the other hand every tangent line touches C in exactly one point, hence there are $q+1$ lines in $\mathbb{P}^{2}\left(\mathbb{F}_{q}\right)$ that intersects C in exactly one point. By a straight forward calculation since the total number of lines in the projective plane is $q^{2}+q+1$, we expect that the number of lines that do not meet C to be

$$
\frac{q(q-1)}{2}
$$

Incidence over finite fields

Now if we replace \mathbb{F}_{q} with $\mathbb{F}_{q^{N}}$ for $N=1,2,3, \ldots$, then we have

$$
t_{2}=\frac{q^{N}\left(q^{N}+1\right)}{2}, t_{1}=q^{N}+1, t_{0}=\frac{q^{N}\left(q^{N}-1\right)}{2}
$$

Since the total number of lines in $\mathbb{P}^{2}\left(\mathbb{F}_{q^{N}}\right)$ is $q^{2 N}+q^{N}+1$. We conclude

$$
p_{2}(C)=\frac{1}{2}, p_{1}=0, p_{0}=\frac{1}{2} .
$$

We would like to control this behaviour for an arbitrary curve.

Incidence over finite fields

Definition (Probabilities of intersection)

Let q be a prime power and let $C \subseteq \mathbb{P}^{2}\left(\mathbb{F}_{q}\right)$ be a geometrically irreducible curve of degree d defined over \mathbb{F}_{q}. For every $N \in \mathbb{N}$ and for every $k \in\{0, \ldots, d\}$, the k-th probability of intersection $p_{k}^{N}(C)$ of lines with C over $\mathbb{F}_{q^{N}}$ is

$$
p_{k}^{N}(C):=\frac{\mid\left\{\text { lines } \ell \subseteq \mathbb{P}^{2}\left(\mathbb{F}_{q^{N}}\right):\left|\ell\left(\mathbb{F}_{q^{N}}\right) \cap C\left(\mathbb{F}_{q^{N}}\right)\right|=k\right\} \mid}{q^{2 N}+q^{N}+1}
$$

Notice that $q^{2 N}+q^{N}+1$ is the number of lines in $\mathbb{P}^{2}\left(\mathbb{F}_{q^{N}}\right)$. We define $p_{k}(C)$ to be the limit of $\left(p_{k}^{N}(C)\right)$ if it exists.

Incidence over finite fields

Theorem (M, Gallet-Schicho)
Let C be a geometrically irreducible plane algebraic curve of degree d over \mathbb{F}_{q}, where q is a prime power. Then the limit $p_{k}(C)$ exists for $0 \leq k \leq d$. Furthermore,

$$
p_{0}(C)+p_{1}(C)+\cdots+p_{d}(C)=1
$$

Incidence over finite fields

Definition (Simple tangency)

Let C be a geometrically irreducible curve of degree d in $\mathbb{P}^{2}\left(\overline{\mathbb{F}_{q}}\right)$. We say that C has simple tangency if there exists a line $\ell \subseteq \mathbb{P}^{2}\left(\overline{\mathbb{F}_{q}}\right)$ intersecting C in $d-1$ smooth points of C such that ℓ intersects C transversely at $d-2$ points and has intersection multiplicity 2 at the remaining point.

Incidence over finite fields

Theorem (M, Gallet-Schicho)

Let C be a geometrically irreducible plane algebraic curve of degree d over $\mathbb{F}_{\boldsymbol{q}}$. Suppose that C has simple tangency. Then for every $k \in\{0, \ldots, d\}$ we have

$$
p_{k}(C)=\sum_{s=k}^{d} \frac{(-1)^{k+s}}{s!}\binom{s}{k} .
$$

In particular, $p_{d-1}(C)=0$ and $p_{d}(C)=1 / d$!.

Incidences in higher dimension

Incidence over finite fields

Finally we generalize the intersection between a given curve and a random line to a given variety of dimension m in \mathbb{P}^{n} with a random linear subspace of codimension m.

Definition

In projective space \mathbb{P}^{n}, we denote $J_{m}=G(n-m, n)$ to be the variety of all linear subspaces of codimension m in the projective space \mathbb{P}^{n}, the so-called Grassmannian.

Incidence over finite fields

Definition
Let X be a geometrically irreducible variety in $\mathbb{P}^{n}(K)$ of dimension m. We say that X has the simple tangency property if there exist a linear subspace $\Gamma \in J_{m-1}$ such that the curve $X \cap \Gamma$ has simple tangency.

Incidence over finite fields

Theorem (M-Schicho)
Let X be a geometrically irreducible variety of dimension m and degree d in projective space $\mathbb{P}^{n}\left(\mathbb{F}_{q}\right)$, where q is a prime power. Suppose that X has the simple tangency property. Then for every $k \in\{0, \ldots d\}$ we have

$$
p_{k}(X)=\sum_{s=k}^{d} \frac{(-1)^{k+s}}{s!}\binom{s}{k} .
$$

Thank you for your attention.

