## PD-sets for codes related to flag-transitive symmetric designs

Nina Mostarac (nmavrovic@math.uniri.hr)<br>Dean Crnković (deanc@math.uniri.hr)<br>

Department of Mathematics, University of Rijeka, Croatia Supported by CSF (Croatian Science Foundation), Grant 6732

> Finite Geometry \& Friends A Brussels summer school on finite geometry

$$
\text { June 18, } 2019
$$

## Introduction

- permutation decoding was introduced in 1964 by MacWilliams
- it uses sets of code automorphisms called PD-sets
- the problem of existence of PD-sets and finding them
- we will prove the existence of PD-sets for all codes generated by the incidence matrix of an incidence graph of a flag-transitive symmetric design and construct some examples


## Refrences

[1] D. Crnković, N. Mostarac, PD-sets for codes related to flag-transitive symmetric designs, Trans. Comb., 7 (2018) 37-50.
[2] P. Dankelmann, J.D. Key and B.G. Rodrigues, Codes from incidence matrices of graphs, Des. Codes Cryptogr., 68 (2013) 373-393.

- for prime $p$ let $C_{p}(G)$ be the $p$-ary code spanned by the rows of the incidence matrix $G$ of a graph $\Gamma$
- we will show that if $\Gamma$ is the incidence graph of a flag-transitive symmetric design $D$, then any flag-transitive automorphism group of $D$ can be used as a PD-set for full error correction for the linear code $C_{p}(G)$ (with any information set)


## Codes

## Definition 1

Let $p$ be a prime. A $p$-ary linear code $C$ of length $n$ and dimension $k$ is a $k$-dimensional subspace of the vector space $\left(\mathbb{F}_{p}\right)^{n}$.

## Definition 2

- Let $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{F}_{p}^{n}$. The Hamming distance between words $x$ and $y$ is the number

$$
d(x, y)=\left|\left\{i: x_{i} \neq y_{i}\right\}\right| .
$$

- The minimum distance of the code $C$ is defined by $d=\min \{d(x, y): x, y \in C, x \neq y\}$.
- Notation: $[n, k, d]_{p}$ code
- it can detect at most $d-1$ errors in one codeword and correct at most $t=\left\lfloor\frac{d-1}{2}\right\rfloor$ errors


## Graphs

We will discuss undirected graphs, with no loops and multiple edges.

## Definition 3

Edge connectivity $\lambda(\Gamma)$ of a connected graph $\Gamma$ is the minimum number of edges that need to be removed to disconnect the graph.

## Remark 1

For every graph $\Gamma: \lambda(\Gamma) \leq \delta(\Gamma)$.

## Codes from incidence matrices of graphs

Let $G$ be the incidence matrix of a graph $\Gamma=(V, E)$ over $\mathbb{F}_{p}, p$ prime and the code $C_{p}(G)$ the row-span of $G$ over $\mathbb{F}_{p}$.

## Theorem 2.1 (Dankelmann, Key, Rodrigues [2](Result 1))

Let $\Gamma=(V, E)$ be a connected graph and $G$ its incidence matrix. Then:
(1) $\operatorname{dim}\left(C_{2}(G)\right)=|V|-1$;
(2) for odd $p, \operatorname{dim}\left(C_{p}(G)\right)=|V|$ if $\Gamma$ is not bipartite, and $\operatorname{dim}\left(C_{p}(G)\right)=|V|-1$ if $\Gamma$ is bipartite.

## Codes from incidence matrices of graphs

## Theorem 2.2 (Dankelmann, Key, Rodrigues [2](Theorem 1))

Let $\Gamma=(V, E)$ be a connected graph, $G a|V| \times|E|$ incidence matrix for $G$. Then:
(1) $C_{2}(G)$ is a $[|E|,|V|-1, \lambda(\Gamma)]_{2}$ code;
(2) if $\Gamma$ is super $-\lambda$, then $C_{2}(G)$ is a $[|E|,|V|-1, \delta(\Gamma)]_{2}$ code, and the minimum words are the rows of $G$ of weight $\delta(\Gamma)$.

## Codes from incidence matrices of graphs

## Theorem 2.3 (Dankelmann, Key, Rodrigues [2](Theorem 2))

Let $\Gamma=(V, E)$ be a connected bipartite graph, $G a|V| \times|E|$ incidence matrix for $G$, and $p$ an odd prime. Then:
(1) $C_{p}(G)$ is a $[|E|,|V|-1, \lambda(\Gamma)]_{p}$ code;
(2) if $\Gamma$ is super $-\lambda$, then $C_{p}(G)$ is a $[|E|,|V|-1, \delta(\Gamma)]_{p}$ code, and the minimum words are the non-zero scalar multiples of the rows of $G$ of weight $\delta(\Gamma)$.

## Codes from incidence matrices of graphs

## Theorem 2.4 (Dankelmann, Key, Rodrigues [2](Result 3))

Let $\Gamma=(V, E)$ be a connected bipartite graph. Then $\lambda(\Gamma)=\delta(\Gamma)$ if one of the following conditions holds:
(1) $V$ consists of at most two orbits under Aut( $\Gamma$ ), and in particular if $\Gamma$ is vertex-transitive;
(2) every two vertices in one of the two partite sets of $\Gamma$ have a common neighbour;
(3) $\operatorname{diam}(\Gamma) \leq 3$;
4. $\Gamma$ is $k$-regular and $k \geq \frac{n+1}{4}$;
(5) $\Gamma$ has girth $g$ and $\operatorname{diam}(\Gamma) \leq g-1$.

## Information sets

## Definition 4

Let $C \subseteq \mathbb{F}_{p}^{n}$ be a linear $[n, k, d]$ code. For $I \subseteq\{1, \ldots, n\}$ let $p_{l}: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}^{|/|},\left.x \mapsto x\right|_{I}$, be an $l$-projection of $\mathbb{F}_{p}^{n}$. Then $l$ is called an information set for $C$ if $|I|=k$ and $p_{l}(C)=\mathbb{F}_{p}^{|I|}$.
The set of the first $k$ coordinates for a code with a generating matrix in the standard form is an information set.

## PD-sets

## Definition 5

Let $C \subseteq \mathbb{F}_{p}^{n}$ be a linear $[n, k, d]$ code that can correct at most $t$ errors, and let $I$ be an information set for $C$. A subset $S \subseteq$ Aut $C$ is called a PD-set for $C$ if every $t$-set of coordinate positions can be moved by at least one element of $S$ out of the information set $l$.

A lower bound on the size of a PD-set:

## Theorem 3.1 (The Gordon bound)

If $S$ is a $P D$-set for an $[n, k, d]$ code $C$ that can correct $t$ errors, $r=n-k$, then:

$$
|S| \geq\left\lceil\frac{n}{r}\left\lceil\frac{n-1}{r-1}\left\lceil\cdots\left\lceil\frac{n-t+1}{r-t+1}\right\rceil \cdots\right\rceil\right\rceil\right\rceil \text {. }
$$

## Symmetric designs

## Definition 6

A symmetric $(v, k, \lambda)$-design is an incidence structure $D=(P, B, I)$ which consists of the set of points $P$, the set of blocks $B$ and an incidence relation / such that:

- $|P|=|B|=v$,
- every block is incident with exactly $k$ points
- and every pair of points is incident with exactly $\lambda$ blocks $(\lambda>0)$.

A symmetric $(v, k, 1)$-design is called a projective plane of order $k-1$, and a symmetric ( $v, k, 2$ )-design is called a biplane.

## Incidence graph of a symmetric design

## Definition 7

An incidence graph or a Levi graph of a symmetric design is a graph whose vertices are points and blocks of the design, and edges are incident point-block pairs (flags).

## Remark 2

An incidence graph $\Gamma$ of a symmetric $(v, k, \lambda)$-design:

- is bipartite,
- is $k$-regular,
- has diameter diam $(\Gamma)=3$.


## Flag transitive symmetric designs

## Definition 8

- An automorphism of a symmetric design is a permutation of points which sends blocks to blocks.
- An automorphism group of a symmetric design $D$ is called flag-transitive if it is transitive on flags of $D$.


## Theorem 3.2 (Dankelmann, Key, Rodrigues [2](Result 7))

Let $\Gamma=(V, E)$ be a $k$-regular graph with the automorphism group $A$ transitive on edges and let $G$ be an incidence matrix of $\Gamma$. If $C=C_{p}(G)$ is a $[|E|,|V|-\varepsilon, k]_{p}$ code, where $p$ is a prime and $\varepsilon \in\{0,1, \ldots|V|-1\}$, then any transitive subgroup of $A$ is a $P D$-set for full error correction for $C$.

## Theorem 3.3 (D.C., N.M.)

Let $\Gamma=(V, E)$ be an incidence graph of a symmetric $(v, k, \lambda)$-design
$D$ with flag-transitive automorphism group $A$ and let $G$ be an incidence matrix for $\Gamma$. Then $C=C_{p}(G)$ is a $[|E|,|V|-1, k]_{p}$ code, for any prime $p$, and any flag transitive subgroup of $A$ can serve as a $P D$-set (for any information set) for full error correction for the code $C$.

## Examples

- for the following computational results we use programming packages GAP and Magma
(1) examples of flag-transitive projective planes
(2) examples of flag-transitive biplanes

Parameters of the linear $[n, k, d]_{p}$ code obtained from a
flag-transitive symmetric $\left(v, k^{\prime}, \lambda\right)$-design in the described way
are:

- $n=v \cdot k^{\prime}$
- $k=2 v-1$
- $d=k^{\prime}$


## Flag-transitive projective planes

| i | Flag- <br> transitive <br> projective <br> plane $D_{i}$ | Code <br> $C_{p}\left(G_{i}\right)$ | Gordon <br> bound <br> $g_{i}$ | Orders of all <br> flag-transitive <br> subgroups of <br> autom. group $A_{i}$ | Smallest <br> PD-set <br> found <br> in $A_{i}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $(7,3,1)$ | $[21,13,3]$ | 3 | 21,168 | 4 |
| 2 | $(13,4,1)$ | $[52,25,4]$ | 2 | 5616 | 4 |
| 3 | $(21,5,1)$ | $[105,41,5]$ | 4 | 20160,40320, <br> 60480,120960 | 64 |

## Flag-transitive biplanes

| i | Flag-transitive symmetric <br> design $D_{i}$, full automorphism <br> group $A_{i}$, point stabilizer | Code <br> $C_{p}\left(G_{i}\right)$ | Gordon <br> bound <br> $g_{i}$ | Orders of all <br> flag-transitive <br> subgroups of $A_{i}$ |
| :---: | :---: | :---: | :---: | :---: |
| 4 | $(4,3,2), S_{4}, S_{3}$ | $[12,7,3]$ | 3 | 12,24 |

## Flag-transitive biplanes

| i | Flag-transitive <br> design $D_{i}$ | Code <br> $C_{2}\left(G_{i}\right)$ | Gordon <br> bound $g_{i}$ | Smallest PD-set <br> found in $A_{i}$ |
| :---: | :---: | :---: | :---: | :---: |
| 4 | $(4,3,2)$ | $[12,7,3]$ | 3 | 3 |
| 5 | $(7,4,2)$ | $[28,13,4]$ | 2 | 3 |
| 6 | $(11,5,2)$ | $[55,21,5]$ | 4 | 10 |
| 7 | $(16,6,2)$ | $[96,31,6]$ | 3 | 12 |
| 8 | $(16,6,2)$ | $[96,31,6]$ | 3 | 9 |

## Thank you!

