On some self-orthogonal codes from M_{11}

Ivona Novak
(inovak@math.uniri.hr)
joint work with Vedrana Mikulić Crnković
(vmikulic@math.uniri.hr)
Department of Mathematics, University of Rijeka

Finite Geometry \& Friends, A Brussels Summer School on Finite Geometry

This work has been supported by Croatian Science Foundation under the projeet 6732 and by the University of Rijeka under the project number uniri-prirod-18-111-1249.

Weakly self-orthogonal designs from M_{11}

Codes from M_{11}

Codes from orbit matrices of weakly q-self-orthogonal 1-designs
V. Tonchev, Self-Orthogonal Designs and Extremal Doubtly-Even Codes, Journal of Combinatorial Theory, Series A 52, 197-205 (1989).
D. Crnković, V. Mikulić Crnković, A. Svob, On some transitive combinatorial structures constructed from the unitary group $U(3,3)$, J. Statist. Plann. Inference 144 (2014), 19-40.
D. Crnković, V. Mikulić Crnković, B.G. Rodrigues, On self-orthogonal designs and codes related to Held's simple group, Advances in Mathematics of Communications 607-628 (2018).

Mathieu group M_{11}

M_{11} is simple group of order 7920 which has 39 non-equivalent transitive permutation representations.

Among others, lattice of M_{11} is consisted of 1 subgroup of index 22, 1 subgroup of index 55,1 subgroup of index 66,3 subgroups of index 110,2 subgroups of index 132 , 1 subgroup of index 144 and 1 subgroup of index 165 . Subgroup of M_{11} with largest index has index 3960.

Using mentioned subgroups we obtained transitive permutation representations of M_{11} on $22,55,66,110,132,144$ and 165 points.

Weakly self-orthogonal designs

An incidence structure $\mathcal{D}=(\mathcal{P}, \mathcal{B}, \mathcal{I})$, with point set \mathcal{P}, block set \mathcal{B} and incidence \mathcal{I} is called a $t-(v, k, \lambda)$ design, if \mathcal{P} contains v points, every block $B \in \mathcal{B}$ is incident with k points, and every t distinct points are incident with λ blocks.

The incidence matrix of a design is a $b \times v$ matrix $\left[m_{i j}\right]$ where b and v are the numbers of blocks and points respectively, such that $m_{i j}=1$ if the point P_{j} and the block B_{i} are incident, and $m_{i j}=0$ otherwise.

A design is weakly q-self-orthogonal if all the block intersection numbers gives the same residue modulo q.
A weakly q-self-orthogonal design is q-self-orthogonal if the block intersection numbers and the block sizes are multiples of q.

Specially, weakly 2-self-orthogonal design is called weakly self-orthogonal design, and 2-self-orthogonal design is called self-orthogonal.

Construction

Theorem ([2])

Let G be a finite permutation group acting transitively on the sets Ω_{1} and Ω_{2} of size m and n, respectively. Let $\alpha \in \Omega_{1}$ and $\Delta_{2}=\bigcup_{i=1}^{s} \delta_{i} G_{\alpha}$, where $\delta_{i}, \ldots, \delta_{s} \in \Omega_{2}$ are representatives of distinct G_{α}-orbits. If $\Delta_{2} \neq \Omega_{2}$ and

$$
\mathcal{B}=\left\{\Delta_{2} g \mid g \in G\right\}
$$

then $\mathcal{D}=\left(\Omega_{2}, \mathcal{B}\right)$ is $1-\left(n,\left|\Delta_{2}\right|, \frac{\left|G_{\alpha}\right|}{\left|G_{\Delta_{2}}\right|} \sum_{i=1}^{n}\left|\alpha G_{\delta_{i}}\right|\right)$ design with $\frac{m \cdot\left|G_{\alpha}\right|}{\left|G_{\Delta_{2}}\right|}$ blocks.
Using mentioned construction for transitive permutation representations of M_{11}, we constructed 169 non-isomorphic weakly self-orthogonal designs:

- 6 designs on 66 points,
- 41 designs on 110 points,
- 76 designs on 132 points,
- 26 designs on 144 points,
- 20 designs on 165 points.

Two of constructed designs are 2-designs: $2-(144,66,30)$ and its complement

Codes from weakly self-orthogonal designs

Theorem ([1])

Let \mathcal{D} be weakly self-orthogonal design and let M be it's $b \times v$ incidence matrix.

- If \mathcal{D} is a self-orthogonal design, then the matrix M generates a binary self-orthogonal code.
- If \mathcal{D} is such that k is even and the block intersection numbers are odd, then the matrix $\left[I_{b}, M, 1\right]$ generates a binary self-orthogonal code.
- If \mathcal{D} is such that k is odd and the block intersection numbers are even, then the matrix $\left[I_{b}, M\right]$ generates a binary self-orthogonal code.
- If \mathcal{D} is such that k is odd and the block intersection numbers are odd, then the matrix $[M, 1]$ generates a binary self-orthogonal code.

Codes from weakly q-self-orthogonal designs

Theorem

Let q be prime power and \mathbb{F}_{q} a finite field of order q. Let \mathcal{D} be a weakly q-self-orthogonal design such that $k \equiv a(\bmod q)$ and $\left|B_{i} \cap B_{j}\right| \equiv d(\bmod q)$, for all $i, j \in\{1, \ldots, b\}, i \neq j$, where B_{i} and B_{j} are two blocks of a design \mathcal{D}. Let M be it's $b \times v$ incidence matrix.

- If \mathcal{D} is q self-orthogonal design, then M generates a self-orthogonal code over \mathbb{F}_{q}.
- If $a=0$ and $d \neq 0$, then the matrix $\left[\sqrt{d} \cdot I_{b}, M, \sqrt{-d} \cdot 1\right]$ generates a self-orthogonal code over \mathbb{F}, where $\mathbb{F}=\mathbb{F}_{q}$ if $-d$ is a square in \mathbb{F}_{q}, and $\mathbb{F}=\mathbb{F}_{q^{2}}$ otherwise.
- If $a \neq 0$ and $d=0$, then the matrix $\left[M, \sqrt{-a} \cdot I_{b}\right]$ generates a self-orthogonal code over \mathbb{F}, where $\mathbb{F}=\mathbb{F}_{q}$ if $-a$ is a square in \mathbb{F}_{q}, and $\mathbb{F}=\mathbb{F}_{q^{2}}$ otherwise.
- If $a \neq 0$ and $d \neq 0$, there are two cases:

1. if $a=d$, then the matrix $[M, \sqrt{-d} \cdot 1]$ generates a self-orthogonal code over \mathbb{F}, where $\mathbb{F}=\mathbb{F}_{q}$ if $-a$ is a square in \mathbb{F}_{q}, and $\mathbb{F}=\mathbb{F}_{q^{2}}$ otherwise, and
2. if $a \neq d$, then the matrix $\left[\sqrt{d-a} \cdot I_{b}, M, \sqrt{-d} \cdot 1\right]$ generates a self-orthogonal code over \mathbb{F}, where $\mathbb{F}=\mathbb{F}_{q}$ if $-d$ is a square in \mathbb{F}_{q}, and $\mathbb{F}=\mathbb{F}_{q^{2}}$ otherwise.

Some results...

From permutation representations of M_{11} on less than 165 points (inclusive), from incidence matrices of weakly self-orthogonal designs we constructed at least 70 non-equivalent non-trivial binary self-orthogonal codes:

- 6 codes from M_{11} on 66 points,
- 14 or more codes from M_{11} on 110 points,
- 37 or more codes from M_{11} on 132 points,
- 3 or more codes from M_{11} on 144 points,
- 10 or more codes from M_{11} on 165 points.

Orbit matrices

Let \mathcal{D} be a $1-(v, k, \lambda)$ design and G be an automorphism group of the design. Let $v_{1}=\left|\mathcal{V}_{1}\right|, \ldots, v_{n}=\left|\mathcal{V}_{n}\right|$ be the sizes of point orbits and $b_{1}=\left|\mathcal{B}_{1}\right|, \ldots, b_{m}=\left|\mathcal{B}_{m}\right|$ be the sizes of block orbits under the action of the group G. We define an orbit matrix as $m \times n$ matrix:

$$
O=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

where $a_{i j}$ is the number of points of the orbit \mathcal{V}_{j} incident with a block of the orbit \mathcal{B}_{i}. It is easy to see that the matrix is well-defined and that $k=\sum_{j=1}^{n} a_{i j}$.

For $x \in \mathcal{B}_{s}$, by counting the incidence pairs $\left(P, x^{\prime}\right)$ such that $x^{\prime} \in \mathcal{B}_{t}$ and P is incident with the block x, we obtain

$$
\sum_{x^{\prime} \in \mathcal{B}_{t}}\left|x \cap x^{\prime}\right|=\sum_{j=1}^{m} \frac{b_{t}}{v_{j}} a_{s j} a_{t j} .
$$

Let \mathcal{D} be a weakly q-self-orthogonal design such that

$$
k \equiv a(\bmod q)
$$

and

$$
\left|B_{i} \cap B_{j}\right| \equiv d(\bmod q)
$$

for all $i, j \in\{1, \ldots, b\}, i \neq j$, where B_{i} and B_{j} are two blocks of a design \mathcal{D}.
Let G be an automorphism group of the design which acts on \mathcal{D} with n point orbits of length w and block orbits of length $b_{1}, b_{2}, \ldots, b_{m}$, and let O be an orbit matrix of a design \mathcal{D} under the action of a group G.
For $x \in \mathcal{B}_{s}$ and $s \neq t$ it follows that

$$
\begin{align*}
& \frac{b_{t}}{w} O[s] \cdot O[t] \equiv b_{t} d(\bmod q) \tag{1}\\
& \frac{b_{s}}{w} O[s] \cdot O[s] \equiv a+\left(b_{s}-1\right) d(\bmod q) \tag{2}
\end{align*}
$$

Codes from orbit matrices of q-self-orthogonal 1-designs

Theorem ([3])

Let \mathcal{D} be a self-orthogonal 1-design and G be an automorphism group of the design which acts on \mathcal{D} with n point orbits of length w and block orbits of length $b_{1}, b_{2}, \ldots, b_{m}$ such that $b_{i}=2^{\circ} \cdot b_{i}^{\prime}, w=2^{u} \cdot w^{\prime}, o \leqslant u, 2 \nmid b_{i}^{\prime}, w^{\prime}$, for $i \in\{1, \ldots, m\}$. Then the binary code spanned by the rows of orbit matrix of the design \mathcal{D} (under the action of the group G) is a self-orthogonal code of length $\frac{v}{w}$.

Theorem

Let q be prime power and \mathbb{F}_{q} a finite field of order p.
Let \mathcal{D} be a q self-orthogonal 1-design and let G be an automorphism group of the design which acts on \mathcal{D} with n point orbits of length w and m block orbits of length w. Then the linear code spanned by the rows of orbit matrix of the design \mathcal{D} (under the action of the group G) is a self-orthogonal code over \mathbb{F}_{q} of length $\frac{v}{w}$.

Case 2

Theorem

Let \mathcal{D} be a weakly self-orthogonal 1-design such that k is even and the block intersection numbers are odd and G be an automorphism group of the design which acts on \mathcal{D} with n point orbits of length w and block orbits of length $b_{1}, b_{2}, \ldots, b_{m}$ such that $b_{i}=2^{o} \cdot b_{i}^{\prime}, w=2^{u} \cdot w^{\prime}, o \leqslant u, 2 \nmid b_{i}^{\prime}, w^{\prime}$ for $i \in\{1, \ldots, m\}$. Let O be the orbit matrix of \mathcal{D} under action of a group G.
a) If $o=u=0$, then the binary linear code spanned by the rows of the matrix [$\left.I_{m}, O\right]$ is a self-orthogonal code of the length $m+\frac{v}{w}$.
b) If $o \geqslant 1$ and $o=u$ then the binary linear code spanned by the rows of the matrix $\left[I_{m}, O, \mathbf{1}\right]$ is a self-orthogonal code of the length $m+\frac{v}{w}+1$.
b) If $o<u$, then binary linear code spanned by the rows of the matrix O is a self-orthogonal code of the length $\frac{v}{w}$.

Case 2 (over \mathbb{F}_{q})

Theorem

Let q be prime power and \mathbb{F}_{q} a finite field of order p.
Let \mathcal{D} be a weakly q-self-orthogonal 1-design such that $k \equiv 0(\bmod q)$ and $\left|B_{i} \cap B_{j}\right| \equiv d(\bmod q)$, for all $i, j \in\{1, \ldots, b\}, i \neq j$, where B_{i} and B_{j} are two blocks of a design \mathcal{D}, and let G be an automorphism group of the design which acts on \mathcal{D} with n point orbits of length w and m block orbits of length w and let O be the orbit matrix of \mathcal{D} under action of a group G.
a) If $p \mid w$, then linear code spanned by the rows of the matrix $\left[\sqrt{-d} I_{m}, O\right]$ is a self-orthogonal code over the field \mathbb{F}, where $\mathbb{F}=\mathbb{F}_{q}$ if d is a square in \mathbb{F}_{q}, and $\mathbb{F}=\mathbb{F}_{q^{2}}$ otherwise.
b) If $p \mid w-1$, then linear code spanned by the rows of the matrix $\left[\sqrt{w d} I_{m}, O, \sqrt{-w d} 1\right]$ is a self-orthogonal code over the field \mathbb{F}, where $\mathbb{F}=\mathbb{F}_{q}$ if wd is a square in \mathbb{F}_{q}, and $\mathbb{F}=\mathbb{F}_{q^{2}}$ otherwise.
c) If $p \nmid w$ and $p \nmid w-1$, then linear code spanned by the rows of the matrix $\left[\sqrt{w d-(w-1) d} l_{m}, O, \sqrt{-w d} 1\right]$ is a self-orthogonal code over the field \mathbb{F}, where $\mathbb{F}=\mathbb{F}_{q}$ if - wd is a square in \mathbb{F}_{q}, and $\mathbb{F}=\mathbb{F}_{q^{2}}$ otherwise.

Case 3

Theorem ([3])

Let \mathcal{D} be a weakly self-orthogonal 1-design such that k is odd and the block intersection numbers are even and G be an automorphism group of the design which acts on \mathcal{D} with n point orbits of length wand block orbits $b_{1}, b_{2}, \ldots, b_{m}$ such that $b_{i}=2^{\circ} \cdot b_{i}^{\prime}, w=2^{u} \cdot w^{\prime}, o \leqslant u, 2 \nmid b_{i}^{\prime}, w^{\prime}$, for $i \in\{1, \ldots, m\}$. Let O be the orbit matrix of \mathcal{D} under action of a group G.
a) If $o=u$, then he binary linear code spanned by the rows of matrix $\left[I_{m}, O\right]$ is a self-orthogonal code of length $m+\frac{v}{w}$.
b) If $o<u$, then he binary linear code spanned by the rows of matrix O is a self-orthogonal code of length $\frac{v}{w}$.

Theorem

Let q be prime power and \mathbb{F}_{q} a finite field of order p.
Let \mathcal{D} be a weakly q-self-orthogonal design such that $k \equiv a(\bmod q)$ and block intersection numbers are multiples of q, and let G be an automorphism group of the design which acts on \mathcal{D} with n point orbits of length w and m block orbits of length w. Then the linear code spanned by the rows of matrix $\left[\sqrt{-a} l_{m}, O\right]$, where O is orbit matrix of the design \mathcal{D} (under the action of the group G), is a self-orthogonal code over \mathbb{F}, where $\mathbb{F}=\mathbb{F}_{q}$ if a is a square in \mathbb{F}_{q}, and $\mathbb{F}=\mathbb{F}_{q^{2}}$ otherwise.

Case 4

Theorem

Let \mathcal{D} be a weakly self-orthogonal 1-design such that k is odd and the block intersection numbers are odd and G be an automorphism group of the design which acts on \mathcal{D} with n point orbits of length w and block orbits of length $b_{1}, b_{2}, \ldots, b_{m}$ such that $b_{i}=2^{\circ} \cdot b_{i}^{\prime}, w=2^{u} \cdot w^{\prime}, o \leqslant u, 2 \nmid b_{i}^{\prime}, w^{\prime}$, for $i \in\{1, \ldots, m\}$. Let O be the orbit matrix of \mathcal{D} under action of a group G.
a) If $o=u=0$, then the binary linear code spanned by the rows of the matrix $[O, 1]$ is a self-orthogonal code of the length $\frac{v}{w}+1$.
b) Otherwise, the binary linear code spanned by the rows of the matrix O is a self-orthogonal code of the length $\frac{v}{w}$.

Theorem

Let q be prime power and \mathbb{F}_{q} a finite field of order q. Let \mathcal{D} be a $1-(v, k, r)$ design such that $k \equiv a(\bmod q)$ and $\left|B_{i} \cap B_{j}\right| \equiv d(\bmod q)$, for all $i, j \in\{1, \ldots, b\}, i \neq j$, where B_{i} and B_{j} are two blocks of a design \mathcal{D}, and let G be an automorphism group of the design which acts on \mathcal{D} with n point orbits of length w and m block orbits of length w and let O be the orbit matrix of \mathcal{D} under action of a group G.

- If $a=d$ we differ two cases.
a) If $p \mid w$, then linear code spanned by the rows of the matrix O is a self-orthogonal code over the field \mathbb{F}_{q}.
b) If $p \nmid w$, then linear code spanned by the rows of the matrix $\left[\sqrt{-a} I_{m}, O\right]$ is a self-orthogonal code over the field \mathbb{F}, where $\mathbb{F}=\mathbb{F}_{q}$ if -a is square root in \mathbb{F}_{q}, and $\mathbb{F}=\mathbb{F}_{q^{2}}$ otherwise.
- If a $\neq d$, we differ three cases.
a) If $p \mid w$, then linear code spanned by the rows of the matrix $\left[\sqrt{d-a} I_{m}, O\right]$ is a self-orthogonal code over the field \mathbb{F}, where $\mathbb{F}=\mathbb{F}_{q}$ if $d-a$ is square root in \mathbb{F}_{q}, and $\mathbb{F}=\mathbb{F}_{q^{2}}$ otherwise.
b) If $p \mid w-1$, then linear code spanned by the rows of the matrix $\left[\sqrt{w d-a} l_{m}, O, \sqrt{-w d} 1\right]$ is a self-orthogonal code over the field \mathbb{F}, where $\mathbb{F}=\mathbb{F}_{q}$ if -wd is square root in \mathbb{F}_{q}, and $\mathbb{F}=\mathbb{F}_{q^{2}}$ otherwise.
c) If $p \nmid w$ and $p \nmid w-1$, then binary linear code spanned by the rows of the matrix $\left[\sqrt{d-a} I_{m}, O, \sqrt{-w d} 1\right]$ is a self-orthogonal code over the field \mathbb{F}, where $\mathbb{F}=\mathbb{F}_{q}$ if -wd is square root in \mathbb{F}_{q}, and $\mathbb{F}=\mathbb{F}_{q^{2}}$ otherwise.

Some results...

From permutation representations of M_{11} on less than 165 points (inclusive), from orbit matrices we constructed at least 87 non-equivalent non-trivial binary self-orthogonal codes:

- 2 codes from M_{11} on 66 points,
- 22 codes from M_{11} on 110 points,
- 21 codes from M_{11} on 132 points,
- 24 or more codes from M_{11} on 144 points,
- 18 or more codes from M_{11} on 165 points.

8 of constructed codes are optimal:
$[10,4,4],[12,5,4](2),[12,6,4],[12,11,2],[16,5,8],[24,12,8],[31,15,8]$ and one of them is best known: $[96,48,16]$.

Thank you for your attention!

