On some self-orthogonal codes from M_{11}

Ivona Novak (inovak@math.uniri.hr) joint work with Vedrana Mikulić Crnković (vmikulic@math.uniri.hr)

Department of Mathematics, University of Rijeka

Finite Geometry & Friends, A Brussels Summer School on Finite Geometry

This work has been supported by Croatian Science Foundation under the project 6732 and by the University of Rijeka under the project number uniri-prirod-18-111-1249.

> UNIVERSITY OF RIJEK DEPARTMENT OF MATHEMATICS

Weakly self-orthogonal designs from M_{11}

Codes from M_{11}

Codes from orbit matrices of weakly q-self-orthogonal 1-designs

- V. Tonchev, Self-Orthogonal Designs and Extremal Doubtly-Even Codes, Journal of Combinatorial Theory, Series A 52, 197-205 (1989).
- D. Crnković, V. Mikulić Crnković, A. Svob, On some transitive combinatorial structures constructed from the unitary group U(3,3), J. Statist. Plann. Inference 144 (2014), 19-40.

D. Crnković, V. Mikulić Crnković, B.G. Rodrigues, On self-orthogonal designs and codes related to Held's simple group, Advances in Mathematics of Communications 607-628 (2018).

Mathieu group M_{11}

 M_{11} is simple group of order 7920 which has 39 non-equivalent transitive permutation representations.

Among others, lattice of M_{11} is consisted of 1 subgroup of index 22, 1 subgroup of index 55, 1 subgroup of index 66, 3 subgroups of index 110, 2 subgroups of index 132, 1 subgroup of index 144 and 1 subgroup of index 165. Subgroup of M_{11} with largest index has index 3960.

Using mentioned subgroups we obtained transitive permutation representations of M_{11} on 22, 55, 66, 110, 132, 144 and 165 points.

Weakly self-orthogonal designs

An incidence structure $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$, with point set \mathcal{P} , block set \mathcal{B} and incidence \mathcal{I} is called a $t - (v, k, \lambda)$ design, if \mathcal{P} contains v points, every block $B \in \mathcal{B}$ is incident with k points, and every t distinct points are incident with λ blocks.

The incidence matrix of a design is a $b \times v$ matrix $[m_{ij}]$ where b and v are the numbers of blocks and points respectively, such that $m_{ij} = 1$ if the point P_j and the block B_i are incident, and $m_{ij} = 0$ otherwise.

A design is weakly q-self-orthogonal if all the block intersection numbers gives the same residue modulo q.

A weakly q-self-orthogonal design is q-self-orthogonal if the block intersection numbers and the block sizes are multiples of q.

Specially, weakly 2-self-orthogonal design is called weakly self-orthogonal design, and 2-self-orthogonal design is called self-orthogonal.

Weakly self-orthogonal designs from M₁₁

Construction

Theorem ([2])

Let G be a finite permutation group acting transitively on the sets Ω_1 and Ω_2 of size m and n, respectively. Let $\alpha \in \Omega_1$ and $\Delta_2 = \bigcup_{i=1}^{s} \delta_i G_{\alpha}$, where $\delta_i, \ldots, \delta_s \in \Omega_2$ are representatives of distinct G_{α} -orbits. If $\Delta_2 \neq \Omega_2$ and

$$\mathcal{B} = \{\Delta_2 g \mid g \in G\},\$$

then
$$\mathcal{D} = (\Omega_2, \mathcal{B})$$
 is $1 - (n, |\Delta_2|, \frac{|G_{\alpha}|}{|G_{\Delta_2}|} \sum_{i=1}^n |\alpha G_{\delta_i}|)$ design with $\frac{m |G_{\alpha}|}{|G_{\Delta_2}|}$ blocks

Using mentioned construction for transitive permutation representations of M_{11} , we constructed 169 non-isomorphic weakly self-orthogonal designs:

- 6 designs on 66 points,
- 41 designs on 110 points,
- 76 designs on 132 points,
- 26 designs on 144 points,
- 20 designs on 165 points.

Two of constructed designs are 2-designs: 2 - (144, 66, 30) and its complement versity of Rijer

Codes from weakly self-orthogonal designs

Theorem ([1])

Let \mathcal{D} be weakly self-orthogonal design and let M be it's $b \times v$ incidence matrix.

- If D is a self-orthogonal design, then the matrix M generates a binary self-orthogonal code.
- If D is such that k is even and the block intersection numbers are odd, then the matrix [I_b, M, 1] generates a binary self-orthogonal code.
- If D is such that k is odd and the block intersection numbers are even, then the matrix [I_b, M] generates a binary self-orthogonal code.
- If D is such that k is odd and the block intersection numbers are odd, then the matrix [M, 1] generates a binary self-orthogonal code.

Codes from weakly q-self-orthogonal designs

Theorem

Let q be prime power and \mathbb{F}_q a finite field of order q. Let \mathcal{D} be a weakly q-self-orthogonal design such that $k \equiv a \pmod{q}$ and $|B_i \cap B_j| \equiv d \pmod{q}$, for all $i, j \in \{1, \ldots, b\}$, $i \neq j$, where B_i and B_j are two blocks of a design \mathcal{D} . Let M be it's $b \times v$ incidence matrix.

- If \mathcal{D} is q self-orthogonal design, then M generates a self-orthogonal code over \mathbb{F}_q .
- If a = 0 and $d \neq 0$, then the matrix $[\sqrt{d} \cdot I_b, M, \sqrt{-d} \cdot 1]$ generates a self-orthogonal code over \mathbb{F} , where $\mathbb{F} = \mathbb{F}_q$ if -d is a square in \mathbb{F}_q , and $\mathbb{F} = \mathbb{F}_{q^2}$ otherwise.
- If a ≠ 0 and d = 0, then the matrix [M, √-a · I_b] generates a self-orthogonal code over F, where F = F_q if −a is a square in F_q, and F = F_{q²} otherwise.
- If $a \neq 0$ and $d \neq 0$, there are two cases:
 - 1. if a = d, then the matrix $[M, \sqrt{-d} \cdot 1]$ generates a self-orthogonal code over \mathbb{F} , where $\mathbb{F} = \mathbb{F}_q$ if -a is a square in \mathbb{F}_q , and $\mathbb{F} = \mathbb{F}_{q^2}$ otherwise, and
 - if a ≠ d, then the matrix [√d − a · I_b, M, √-d · 1] generates a self-orthogonal code over F, where F = F_q if −d is a square in F_q, and F = F_{q²} otherwise.

UNIVERSITY OF RIJEKA DEPARTMENT OF MATHEMATICS

Some results...

From permutation representations of M_{11} on less than 165 points (inclusive), from incidence matrices of weakly self-orthogonal designs we constructed at least 70 non-equivalent non-trivial binary self-orthogonal codes:

- 6 codes from M_{11} on 66 points,
- 14 or more codes from M_{11} on 110 points,
- 37 or more codes from M_{11} on 132 points,
- 3 or more codes from M_{11} on 144 points,
- 10 or more codes from M_{11} on 165 points.

Orbit matrices

Let \mathcal{D} be a $1 - (v, k, \lambda)$ design and G be an automorphism group of the design. Let $v_1 = |\mathcal{V}_1|, \ldots, v_n = |\mathcal{V}_n|$ be the sizes of point orbits and $b_1 = |\mathcal{B}_1|, \ldots, b_m = |\mathcal{B}_m|$ be the sizes of block orbits under the action of the group G. We define an orbit matrix as $m \times n$ matrix:

$$O = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix},$$

where a_{ij} is the number of points of the orbit V_j incident with a block of the orbit \mathcal{B}_i . It is easy to see that the matrix is well-defined and that $k = \sum_{i=1}^{n} a_{ij}$.

For $x \in B_s$, by counting the incidence pairs (P, x') such that $x' \in B_t$ and P is incident with the block x, we obtain

$$\sum_{x'\in\mathcal{B}_t}|x\cap x'|=\sum_{j=1}^m\frac{b_t}{v_j}a_{sj}a_{tj}.$$

Let \mathcal{D} be a weakly *q*-self-orthogonal design such that

 $k \equiv a \pmod{q}$

and

$$|B_i \cap B_j| \equiv d \pmod{q},$$

for all $i, j \in \{1, ..., b\}$, $i \neq j$, where B_i and B_j are two blocks of a design \mathcal{D} . Let G be an automorphism group of the design which acts on \mathcal{D} with n point orbits of length w and block orbits of length $b_1, b_2, ..., b_m$, and let O be an orbit matrix of a design \mathcal{D} under the action of a group G.

For $x \in \mathcal{B}_s$ and $s \neq t$ it follows that

$$\frac{b_t}{w}O[s] \cdot O[t] \equiv b_t d \pmod{q}, \tag{1}$$

$$\frac{b_s}{w}O[s] \cdot O[s] \equiv a + (b_s - 1)d \pmod{q}. \tag{2}$$

Codes from orbit matrices of q-self-orthogonal 1-designs

Theorem ([3])

Let \mathcal{D} be a self-orthogonal 1-design and G be an automorphism group of the design which acts on \mathcal{D} with n point orbits of length w and block orbits of length b_1, b_2, \ldots, b_m such that $b_i = 2^o \cdot b'_i$, $w = 2^u \cdot w'$, $o \leq u, 2 \nmid b'_i$, w', for $i \in \{1, \ldots, m\}$. Then the binary code spanned by the rows of orbit matrix of the design \mathcal{D} (under the action of the group G) is a self-orthogonal code of length $\frac{v}{w}$.

Theorem

Let q be prime power and \mathbb{F}_q a finite field of order p. Let \mathcal{D} be a q self-orthogonal 1-design and let G be an automorphism group of the design which acts on \mathcal{D} with n point orbits of length w and m block orbits of length w. Then the linear code spanned by the rows of orbit matrix of the design \mathcal{D} (under the action of the group G) is a self-orthogonal code over \mathbb{F}_q of length $\frac{1}{w}$.

12 / 19

EPARTMENT OF MATHEMATIC

Case 2

Theorem

Let \mathcal{D} be a weakly self-orthogonal 1-design such that k is even and the block intersection numbers are odd and G be an automorphism group of the design which acts on \mathcal{D} with n point orbits of length w and block orbits of length b_1, b_2, \ldots, b_m such that $b_i = 2^{\circ} \cdot b'_i$, $w = 2^u \cdot w'$, $o \leq u, 2 \nmid b'_i, w'$ for $i \in \{1, \ldots, m\}$. Let O be the orbit matrix of \mathcal{D} under action of a group G.

- a) If o = u = 0, then the binary linear code spanned by the rows of the matrix $[I_m, O]$ is a self-orthogonal code of the length $m + \frac{v}{w}$.
- b) If $o \ge 1$ and o = u then the binary linear code spanned by the rows of the matrix $[I_m, O, \mathbf{1}]$ is a self-orthogonal code of the length $m + \frac{v}{w} + 1$.
- b) If o < u, then binary linear code spanned by the rows of the matrix O is a self-orthogonal code of the length $\frac{v}{w}$.

Case 2 (over \mathbb{F}_q)

Theorem

Let q be prime power and \mathbb{F}_q a finite field of order p. Let \mathcal{D} be a weakly q-self-orthogonal 1-design such that $k \equiv 0 \pmod{q}$ and $|B_i \cap B_j| \equiv d \pmod{q}$, for all $i, j \in \{1, \dots, b\}$, $i \neq j$, where B_i and B_j are two blocks of a design \mathcal{D} , and let G be an automorphism group of the design which acts on \mathcal{D} with n point orbits of length w and m block orbits of length w and let O be the orbit matrix of \mathcal{D} under action of a group G.

- a) If $p \mid w$, then linear code spanned by the rows of the matrix $[\sqrt{-d}I_m, O]$ is a self-orthogonal code over the field \mathbb{F} , where $\mathbb{F} = \mathbb{F}_q$ if d is a square in \mathbb{F}_q , and $\mathbb{F} = \mathbb{F}_{q^2}$ otherwise.
- b) If $p \mid w 1$, then linear code spanned by the rows of the matrix $[\sqrt{wd}I_m, O, \sqrt{-wd}1]$ is a self-orthogonal code over the field \mathbb{F} , where $\mathbb{F} = \mathbb{F}_q$ if wd is a square in \mathbb{F}_q , and $\mathbb{F} = \mathbb{F}_{q^2}$ otherwise.
- c) If $p \nmid w$ and $p \nmid w 1$, then linear code spanned by the rows of the matrix $[\sqrt{wd (w 1)dI_m}, O, \sqrt{-wd}\mathbf{1}]$ is a self-orthogonal code over the field \mathbb{F} , where $\mathbb{F} = \mathbb{F}_q$ if -wd is a square in \mathbb{F}_q , and $\mathbb{F} = \mathbb{F}_{q^2}$ otherwise.

UNIVERSITY OF RIJEKA DEPARTMENT OF MATHEMATICS

Case 3

Theorem ([3])

Let \mathcal{D} be a weakly self-orthogonal 1-design such that k is odd and the block intersection numbers are even and G be an automorphism group of the design which acts on \mathcal{D} with n point orbits of length wand block orbits b_1, b_2, \ldots, b_m such that $b_i = 2^o \cdot b'_i$, $w = 2^u \cdot w'$, $o \leq u, 2 \nmid b'_i, w'$, for $i \in \{1, \ldots, m\}$. Let O be the orbit matrix of \mathcal{D} under action of a group G.

- a) If o = u, then he binary linear code spanned by the rows of matrix $[I_m, O]$ is a self-orthogonal code of length $m + \frac{v}{w}$.
- b) If o < u, then he binary linear code spanned by the rows of matrix O is a self-orthogonal code of length $\frac{v}{w}$.

Theorem

Let q be prime power and \mathbb{F}_q a finite field of order p.

Let \mathcal{D} be a weakly q-self-orthogonal design such that $k \equiv a \pmod{q}$ and block intersection numbers are multiples of q, and let G be an automorphism group of the design which acts on \mathcal{D} with n point orbits of length w and m block orbits of length w. Then the linear code spanned by the rows of matrix $[\sqrt{-a}I_m, O]$, where O is orbit matrix of the design \mathcal{D} (under the action of the group G), is a self-orthogonal code over \mathbb{F} , where $\mathbb{F} = \mathbb{F}_q$ if a is a square in \mathbb{F}_q , and $\mathbb{F} = \mathbb{F}_{q^2}$ otherwise.

Case 4

Theorem

Let \mathcal{D} be a weakly self-orthogonal 1-design such that k is odd and the block intersection numbers are odd and G be an automorphism group of the design which acts on \mathcal{D} with n point orbits of length w and block orbits of length b_1, b_2, \ldots, b_m such that $b_i = 2^o \cdot b'_i$, $w = 2^u \cdot w'$, $o \leq u, 2 \nmid b'_i, w'$, for $i \in \{1, \ldots, m\}$. Let O be the orbit matrix of \mathcal{D} under action of a group G.

- a) If o = u = 0, then the binary linear code spanned by the rows of the matrix [O, 1] is a self-orthogonal code of the length $\frac{v}{w} + 1$.
- b) Otherwise, the binary linear code spanned by the rows of the matrix O is a self-orthogonal code of the length $\frac{V}{w}$.

Theorem

Let q be prime power and \mathbb{F}_q a finite field of order q. Let \mathcal{D} be a 1 - (v, k, r) design such that $k \equiv a \pmod{q}$ and $|B_i \cap B_j| \equiv d \pmod{q}$, for all $i, j \in \{1, \ldots, b\}$, $i \neq j$, where B_i and B_j are two blocks of a design \mathcal{D} , and let G be an automorphism group of the design which acts on \mathcal{D} with n point orbits of length w and m block orbits of length w and let O be the orbit matrix of \mathcal{D} under action of a group G.

- If a = d we differ two cases.
 - a) If $p \mid w$, then linear code spanned by the rows of the matrix O is a self-orthogonal code over the field \mathbb{F}_q .
 - b) If $p \nmid w$, then linear code spanned by the rows of the matrix $[\sqrt{-a}I_m, O]$ is a self-orthogonal code over the field \mathbb{F} , where $\mathbb{F} = \mathbb{F}_q$ if -a is square root in \mathbb{F}_q , and $\mathbb{F} = \mathbb{F}_{q^2}$ otherwise.
- If $a \neq d$, we differ three cases.
 - a) If $p \mid w$, then linear code spanned by the rows of the matrix $[\sqrt{d-a}I_m, O]$ is a self-orthogonal code over the field \mathbb{F} , where $\mathbb{F} = \mathbb{F}_q$ if d a is square root in \mathbb{F}_q , and $\mathbb{F} = \mathbb{F}_{q^2}$ otherwise.
 - b) If $p \mid w 1$, then linear code spanned by the rows of the matrix $[\sqrt{wd a}I_m, 0, \sqrt{-wd}\mathbf{1}]$ is a self-orthogonal code over the field \mathbb{F} , where $\mathbb{F} = \mathbb{F}_q$ if -wd is square root in \mathbb{F}_q , and $\mathbb{F} = \mathbb{F}_{q^2}$ otherwise.
 - c) If $p \nmid w$ and $p \nmid w 1$, then binary linear code spanned by the rows of the matrix $[\sqrt{d-a}I_m, O, \sqrt{-wd}\mathbf{1}]$ is a self-orthogonal code over the field \mathbb{F} , where $\mathbb{F} = \mathbb{F}_q$ if -wd is square root in \mathbb{F}_q , and $\mathbb{F} = \mathbb{F}_{q^2}$ otherwise.

Some results...

From permutation representations of M_{11} on less than 165 points (inclusive), from orbit matrices we constructed at least 87 non-equivalent non-trivial binary self-orthogonal codes:

- 2 codes from M_{11} on 66 points,
- ▶ 22 codes from *M*₁₁ on 110 points,
- 21 codes from M₁₁ on 132 points,
- 24 or more codes from M_{11} on 144 points,
- 18 or more codes from M_{11} on 165 points.

8 of constructed codes are optimal:

 $[10,4,4], [12,5,4](2), [12,6,4], [12,11,2], [16,5,8], [24,12,8], [31,15,8] \ \text{and one of} \ them is best known: [96,48,16].$

On some self-orthogonal codes from M_{11}

Codes from orbit matrices of weakly q-self-orthogonal 1-designs

Thank you for your attention!

