On the Structure of Large Equidistant Grassmannian Codes

Ago-Erik Riet ${ }^{1}$
joint work with Daniele Bartoli, Leo Storme and Peter Vandendriessche; Jozefien D'haeseleer and Giovanni Longobardi

Finite Geometry and Friends, Brussels

June 2019

[^0]
Codes, Anticodes, Erdős-Ko-Rado problem

- A code is a subset of a metric space with pairwise minimum distance $\geq d$, its elements called codewords.
- An anticode or an Erdős-Ko-Rado set/family is a subset of a metric space with pairwise maximum distance $\leq d$.
- In a graph, $V=$ codewords and $x \sim y \Leftrightarrow \operatorname{dist}(x, y) \geq d$ they are cliques and independent sets respectively.
- There may be a natural generalization of a distance $\mathrm{d}: C^{(2)} \rightarrow \mathbb{R}$ to a function $\mathrm{d}: C^{(k)} \rightarrow \mathbb{R}$, think of span/union/intersection size or dimension for constant-sized or constant-dimension codewords.

Codes, Anticodes, Erdős-Ko-Rado problem

- T. Etzion posed the question of restricting the threewise intersection dimension in a collection of subspaces.
- Motivated by this, say an
$\left(d_{1}, D_{1} ; d_{2}, D_{2} ; \ldots, d_{m}, D_{m}\right)$-family is a collection of subspaces in a projective space, each of dimension (non-strictly) between d_{1} and D_{1}, the dimension of the intersection of every pair of them between d_{2} and D_{2} etc.
- Call this family proper if each bound d_{i} and D_{i} is attained.
- In a proper family with $D_{i-1}=d_{i}$ all codewords share a common d_{i}-space.
- In this talk I will next only talk about
($d_{1}=D_{1} ; d_{2}=D_{2}$)-families. We also have work in progress about ($d_{1}=D_{1} ; \ldots ; d_{3}=D_{3}$)-families.

Constant intersection Grassmannian Codes

- Denote the q-element finite field by \mathbb{F}_{q}. The Grassmannian $\mathcal{G}_{q}(m, k)$ is the set of all k-dimensional vector subspaces of the m-dimensional vector space \mathbb{F}_{q}^{m}.
- A constant dimension subspace code or a Grassmannian code is a subset of $\mathcal{G}_{q}(m, k)$. Its elements are codewords.
- Projectively, a code $\subseteq \mathcal{G}_{q}(m, k)$ is a collection of (projective) $(k-1)$-spaces contained in a (projective) ($m-1$)-space $\mathrm{PG}(\mathbf{m}-\mathbf{1}, \mathbf{q})$.

Constant intersection Grassmannian Codes

- A Grassmannian code is equidistant or constant distance or constant intersection if every pair of codewords intersect in a subspace of some fixed dimension t. It is also called a t-intersecting constant dimension code.
- Then say $C \subseteq \mathcal{G}_{q}(m, k)$ is a $(k-1, t-1)$-code. Here we have projective dimension, which equals vector dimension minus 1.
- Assume dimension $m-1$ of ambient projective space $\operatorname{PG}(m-1, q)$, equivalently of \mathbb{F}_{q}^{m}, is sufficiently large.

$$
(k-1, t-1) \text {-codes }
$$

- A sunflower is a (k, t)-code such that all codewords share a common t-space. Thus they are pairwise disjoint outside this t-space. On quotienting, equivalent to a partial $(k-t-1)$-spread.
- Let $C \subseteq \mathcal{G}_{q}(*, k)$ be a $(k-1, t-1)$-code. Etzion and Raviv [Equidistant codes in the Grassmannian, 2013] notice that, via a reduction to classical binary equidistant constant weight codes and results of Deza, and, Deza and Frankl:
If C is not a sunflower then

$$
|C| \leq\left(\frac{q^{k}-q^{t}}{q-1}\right)^{2}+\frac{q^{k}-q^{t}}{q-1}+1
$$

$$
(k-1, t-1) \text {-codes }
$$

- If C is not a sunflower then

$$
|C| \leq\left(\frac{q^{k}-q^{t}}{q-1}\right)^{2}+\frac{q^{k}-q^{t}}{q-1}+1 .
$$

- Conjecture (Deza): If C is not a sunflower then

$$
|C| \leq\left[\begin{array}{c}
k+1 \\
1
\end{array}\right]_{q}=\frac{q^{k+1}-1}{q-1} .
$$

- Theorem [Bartoli, R., Storme, Vandendriessche]. If C is not a sunflower and $t=1$ then

$$
|C| \leq\left(\frac{q^{k}-q}{q-1}\right)^{2}+\frac{q^{k}-q}{q-1}+1-q^{k-2} .
$$

$(2,0)$-codes

Beutelspacher, Eisfeld, Müller [On Sets of Planes in Projective Spaces Intersecting Mutually in One Point, 1999]:

- For projective planes pairwise intersecting in a projective point:
- the set of points in ≥ 2 codewords spans a subspace of projective dimension ≤ 6;
- there are up to isomorphism only 3 codes C where this projective dimension is 6 , all related to the Fano plane.
- For $q \neq 2$ and $|C| \geq 3\left(q^{2}+q+1\right)$:
- C is contained in a Klein quadric in $P G(5, q)$, or
- is a dual partial spread in $P G(4, q)$, or
- all codewords have a point in common.

$(2,0)$-codes, $q=2$

- For projective planes pairwise intersecting in a projective point, for $q=2$:
Deza's Conjecture: If C is not a sunflower then

$$
|C| \leq 15 .
$$

- Bartoli and Pavese [A note on equidistant subspace codes, 2015] disproved it and found a code with

$$
|C|=21,
$$

with a unique such example.

$$
(n, n-t) \text {-codes }
$$

- A code of projective n-spaces pairwise intersecting exactly in an $(n-t)$-space.
- An intersection point is a point contained in ≥ 2 codewords.
- The base $\mathcal{B}(S)$ of a codeword S is the span of intersection points contained in it.
- Extending the definition of a code

$$
C \subseteq \mathcal{G}_{q}(*, n)
$$

to a code

$$
C \subseteq \mathcal{G}_{q}(*, n) \cup \mathcal{G}_{q}(*, n-1) \cup \ldots,
$$

we may replace each codeword by its base.

Primitive $(n, n-t)$-codes

- If the ambient projective space is $(2 n+1-\delta)$ dimensional, the dual of an $(n, n-t)$-code is an ($n-\delta, n-\delta-t$)-code.
- If \exists a point contained in all codewords then, upon quotienting by it, we have an ($n-1, n-1-t$)-code.
- An ($\leq n, n-t$)-code is a collection of at-most- n-spaces pairwise intersecting exactly in an ($n-t$)-space.
- An $(n, n-t)$-code C is primitive (old definition by Eisfeld) if

1. all $\mathcal{B}(S):=\langle S \cap T: T \in C \backslash\{S\}\rangle$, where $S \in C$, are n-dimensional;
2. ambient space has dimension at least $2 n+1$.
3. there is no point contained in all codewords;
4. ambient space is the span of all codewords;
5. $S=\mathcal{B}(S)$ for all $S \in C$.

New primitivity

- To make primitivity definition self-dual, should add:

$$
\text { 6. For all codewords } S \in C: S=\bigcap_{T \in C \backslash\{S\}}\langle S, T\rangle \text {. }
$$

- So, say an ($n, n-t$)-code C is 'new' primitive (new definition by us) if 1 . - 6. hold.
- Conditions 3. and 4. are dual. Conditions 5. and 6 . are dual.
- Condition 2. allows induction on n by dualisation.
- Conditions 3. and 4. allow induction on n by quotienting.
- Definition remains self-dual if generalised to codewords of several dimensions and several intersection dimensions, i.e. if we keep 3. - 6 .

($n, n-t$)-codes with small t

- For $t=0$ we have $|C|=1$.
- For $t=1$: for an ($n, n-1$)-code, equivalently, intersections are at least dimension $n-1$.
- By geometric Erdős-Ko-Rado: then all codewords 1) share a common ($n-1$)-space, i.e. they form a sunflower, or,
2) are contained in a common $(n+1)$-space (since any codeword S is contained in $\left\langle S_{1}, S_{2}\right\rangle$ for some codewords S_{1}, S_{2} such that $S_{1} \cap S_{2} \nsubseteq S$), i.e. they form a ball.
- Thus ($n, n-1$)-codes are classified.

Classifying ($n, n-2$)-codes

- If \exists a point in common in all codewords of an ($n, n-2$)-code, quotient by it to get an ($n-1, n-3$)-code. Such codes are thus classified by induction on n.
- We may assume $\langle S: S \in C\rangle$ is the ambient space. (Intersection properties do not change; otherwise, in the dual code there is a point in common in all codewords.)
- If ambient space dimension is $2 n+1-\delta$ then the dual of
- an $(n, n-t)$-code is an $(n-\delta, n-t-\delta)$-code;
- an ($\leq n, n-t$)-code is an ($\geq n-\delta, n-t-\delta$)-code.

Classifying ($n, n-2$)-codes

- Remember: An $(n, n-t)$-code C is equivalent to an $(\leq n, n-t)$-code $C^{\prime}=\{\mathcal{B}(S) \mid S \in C\}$.
- Say dimension of $S \in C$ is $\operatorname{dim}(\mathcal{B}(S))$.
- For ≥ 2 codewords, the dimension of each codeword is $n-2, n-1$ or n. If a dimension is $n-2$, the code C is a sunflower; so let codeword dimensions be $n-1$ or n.

A red codeword interresting $\left\langle\frac{5}{0}, \frac{\pi}{0}, \frac{\pi}{0}\right\rangle$ in dimension $n-1$.
[n]

$$
[n-1]_{1}
$$

$$
[n-1]_{2}
$$

$[n-1]_{3}$

$$
\binom{\geqslant n-1}{\leq n-1}
$$

$4 \square>4$ 吕 $\quad 4 \equiv>4 \equiv>$ 三

A red codeword interresting $\left\langle\frac{5}{0}, \frac{\pi}{0}, \frac{\pi}{0}\right\rangle$ in dimension $n-1$.

Thank you!

[^0]: ${ }^{1}$ agoerik@ut.ee, University of Tartu - My work was supported by COST action IC-1104: Random network coding and designs over GF(q); Ghent University; and Estonian Research Council through the research grants PUT405, IUT20-57, PSG114.

