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Codes, Anticodes, Erdős-Ko-Rado problem

• A code is a subset of a metric space with pairwise
minimum distance ≥ d , its elements called codewords.

• An anticode or an Erdős-Ko-Rado set/family is a subset
of a metric space with pairwise maximum distance ≤ d .

• In a graph, V = codewords and x ∼ y ⇔ dist(x , y) ≥ d
they are cliques and independent sets respectively.

• There may be a natural generalization of a distance
d : C (2) → R to a function d : C (k) → R, think of
span/union/intersection size or dimension for
constant-sized or constant-dimension codewords.



Codes, Anticodes, Erdős-Ko-Rado problem

• T. Etzion posed the question of restricting the threewise
intersection dimension in a collection of subspaces.

• Motivated by this, say an
(d1,D1; d2,D2; . . . , dm,Dm)-family is a collection of
subspaces in a projective space, each of dimension
(non-strictly) between d1 and D1, the dimension of the
intersection of every pair of them between d2 and D2 etc.

• Call this family proper if each bound di and Di is attained.
• In a proper family with Di−1 = di all codewords share a
common di -space.

• In this talk I will next only talk about
(d1 = D1; d2 = D2)-families. We also have work in
progress about (d1 = D1; . . . ; d3 = D3)-families.



Constant intersection Grassmannian Codes

• Denote the q-element finite field by Fq. The
Grassmannian Gq(m, k) is the set of all k-dimensional
vector subspaces of the m-dimensional vector space Fm

q .
• A constant dimension subspace code or a Grassmannian
code is a subset of Gq(m, k). Its elements are codewords.

• Projectively, a code ⊆ Gq(m, k) is a collection of
(projective) (k − 1)-spaces contained in a (projective)
(m − 1)-space PG(m− 1,q).



Constant intersection Grassmannian Codes

• A Grassmannian code is equidistant or constant distance
or constant intersection if every pair of codewords
intersect in a subspace of some fixed dimension t. It is
also called a t-intersecting constant dimension code.

• Then say C ⊆ Gq(m, k) is a (k − 1, t − 1)-code. Here we
have projective dimension, which equals vector dimension
minus 1.

• Assume dimension m − 1 of ambient projective space
PG(m − 1, q), equivalently of Fm

q , is sufficiently large.



(k − 1, t − 1)-codes

• A sunflower is a (k , t)-code such that all codewords share
a common t-space. Thus they are pairwise disjoint
outside this t-space. On quotienting, equivalent to a
partial (k − t − 1)-spread.

• Let C ⊆ Gq(∗, k) be a (k − 1, t − 1)-code. Etzion and
Raviv [Equidistant codes in the Grassmannian, 2013]
notice that, via a reduction to classical binary equidistant
constant weight codes and results of Deza, and, Deza and
Frankl:
If C is not a sunflower then

|C | ≤
(
qk − qt

q − 1

)2

+
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+ 1.



(k − 1, t − 1)-codes

• If C is not a sunflower then
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• Conjecture (Deza): If C is not a sunflower then

|C | ≤
[
k + 1
1

]
q

=
qk+1 − 1
q − 1

.

• Theorem [Bartoli, R., Storme, Vandendriessche]. If C is
not a sunflower and t = 1 then

|C | ≤
(
qk − q

q − 1

)2

+
qk − q

q − 1
+ 1− qk−2.



(2, 0)-codes

Beutelspacher, Eisfeld, Müller [On Sets of Planes in Projective
Spaces Intersecting Mutually in One Point, 1999]:
• For projective planes pairwise intersecting in a projective
point:
• the set of points in ≥ 2 codewords spans a subspace of

projective dimension ≤ 6;
• there are up to isomorphism only 3 codes C where this

projective dimension is 6, all related to the Fano plane.
• For q 6= 2 and |C | ≥ 3(q2 + q + 1):

• C is contained in a Klein quadric in PG (5, q), or
• is a dual partial spread in PG (4, q), or
• all codewords have a point in common.



(2, 0)-codes, q = 2

• For projective planes pairwise intersecting in a projective
point, for q = 2:
Deza’s Conjecture: If C is not a sunflower then

|C | ≤ 15.

• Bartoli and Pavese [A note on equidistant subspace
codes, 2015] disproved it and found a code with

|C | = 21,

with a unique such example.



(n, n − t)-codes

• A code of projective n-spaces pairwise intersecting exactly
in an (n − t)-space.

• An intersection point is a point contained in ≥ 2
codewords.

• The base B(S) of a codeword S is the span of
intersection points contained in it.

• Extending the definition of a code

C ⊆ Gq(∗, n)

to a code

C ⊆ Gq(∗, n) ∪ Gq(∗, n − 1) ∪ . . . ,

we may replace each codeword by its base.



Primitive (n, n − t)-codes

• If the ambient projective space is (2n + 1− δ)-
dimensional, the dual of an (n, n − t)-code is an
(n − δ, n − δ − t)-code.

• If ∃ a point contained in all codewords then, upon
quotienting by it, we have an (n − 1, n − 1− t)-code.

• An (≤ n, n − t)-code is a collection of at-most-n-spaces
pairwise intersecting exactly in an (n − t)-space.

• An (n, n − t)-code C is primitive (old definition by
Eisfeld) if

1. all B(S) := 〈S ∩ T : T ∈ C\{S}〉, where S ∈ C , are
n-dimensional;

2. ambient space has dimension at least 2n + 1.
3. there is no point contained in all codewords;
4. ambient space is the span of all codewords;
5. S = B(S) for all S ∈ C .



New primitivity

• To make primitivity definition self-dual, should add:

6. For all codewords S ∈ C : S =
⋂

T∈C\{S}

〈S ,T 〉.

• So, say an (n, n − t)-code C is ‘new’ primitive (new
definition by us) if 1. - 6. hold.

• Conditions 3. and 4. are dual.
Conditions 5. and 6. are dual.

• Condition 2. allows induction on n by dualisation.
• Conditions 3. and 4. allow induction on n by quotienting.
• Definition remains self-dual if generalised to codewords of
several dimensions and several intersection dimensions,
i.e. if we keep 3. - 6.



(n, n − t)-codes with small t

• For t = 0 we have |C | = 1.
• For t = 1: for an (n, n − 1)-code, equivalently,
intersections are at least dimension n − 1.

• By geometric Erdős-Ko-Rado: then all codewords
1) share a common (n − 1)-space, i.e. they form a
sunflower, or,
2) are contained in a common (n + 1)-space (since any
codeword S is contained in 〈S1, S2〉 for some codewords
S1, S2 such that S1 ∩ S2 6⊆ S), i.e. they form a ball.

• Thus (n, n − 1)-codes are classified.



Classifying (n, n − 2)-codes

• If ∃ a point in common in all codewords of an
(n, n − 2)-code, quotient by it to get an
(n − 1, n − 3)-code. Such codes are thus classified by
induction on n.

• We may assume 〈S : S ∈ C 〉 is the ambient space.
(Intersection properties do not change; otherwise, in the
dual code there is a point in common in all codewords.)

• If ambient space dimension is 2n+ 1− δ then the dual of
• an (n, n − t)-code is an (n − δ, n − t − δ)-code;
• an (≤ n, n − t)-code is an (≥ n − δ, n − t − δ)-code.



Classifying (n, n − 2)-codes

• Remember: An (n, n − t)-code C is equivalent to an
(≤ n, n − t)-code C ′ = {B(S) | S ∈ C}.

• Say dimension of S ∈ C is dim(B(S)).
• For ≥ 2 codewords, the dimension of each codeword is
n− 2, n− 1 or n. If a dimension is n− 2, the code C is a
sunflower; so let codeword dimensions be n − 1 or n.















Thank you!


