More quasi-symmetric 2-(56, 16, 6) designs

Renata Vlahović Kruc
joint work with Vedran Krčadinac
Deparment of Mathematics
Faculty of Science
University of Zagreb, Croatia

Finite Geometry and Friends
Brussels (Belgium)
June 18, 2019

* This work has been supported by Croatian Science Foundation under projects 1637 and 6732.

Definition.

A $t-(v, k, \lambda)$ design is a set of v points and a collection of k-subsets called blocks, with the property that any t-subset of points is contained in exactly λ blocks.

For a $t-(v, k, \lambda)$ design we denote by b the total number of blocks, and by r the number of blocks through any point:

$$
b=\lambda \cdot \frac{\binom{v}{t}}{\binom{k}{t}} \quad r=\lambda \cdot \frac{\binom{v-1}{t-1}}{\binom{k-1}{t-1}}
$$

The numbers t, v, k, λ, b and r are parameters of the design.

Example: 2-(7, 3, 1) Fano plane
$\mathcal{V}=\{1,2,3,4,5,6,7\}$
$\mathcal{B}=\{\{1,2,4\},\{2,3,5\},\{1,3,7\},\{1,5,6\},\{3,4,6\},\{2,6,7\}$, $\{4,5,7\}\}$
The total number of blocks: $b=7$.
The number of blocks through any point: $r=3$.

Definition.

A $t-(v, k, \lambda)$ design is quasi-symmetric if any two blocks intersect either in x or in y points, for non-negative integers $x<y$.

The numbers x and y are called intersection numbers.

- Any symmetric 2-design $(v=b)$ is quasi-symmetric with $x=\lambda$ and y is arbitrary.
- Any Steiner 2-design $(\lambda=1)$ is quasi-symmetric with $x=0$ and $y=1$.

GOAL: construct new quasi-symmetric 2 -designs with exceptional parameters
M.S. Shrikhande, Quasi-symmetric designs, in: The Handbook of Combinatorial Designs, Second Edition (editors: C.J. Colbourn i J.H. Dinitz), CRC Press, 2007., pp. 578-582.

No.	v	k	λ	r	b	x	y	Existence	Ref.

47	56	16	18	66	231	4	8	$?$	
48	56	15	42	165	616	3	6	$?$	
49	56	12	9	45	210	0	3	$?$	
50	56	21	24	66	176	6	9	$?$	
51	56	20	19	55	154	5	8	$?$	
52	56	16	6	22	77	4	6	$\operatorname{Yes}(\geq 2)$	$[2045,1659]$

No.	v	k	λ	r	b	x	y	Existence	Ref.

47	56	16	18	66	231	4	8	≥ 4	
48	56	15	42	165	616	3	6	0	
49	56	12	9	45	210	0	3	$?$	
50	56	21	24	66	176	6	9	0	
51	56	20	19	55	154	5	8	$?$	
52	56	16	6	22	77	4	6	Yes (≥ 2)	$[2045,1659]$

V. D. Tonchev, Embedding of the Witt-Mathieu system $S(3,6,22)$ in a symmetric 2-(78, 22, 6) design, Geom. Dedicata, 22 (1987), 49-75.
A. Munemasa and V. D. Tonchev, A new quasi-symmetric 2-(56, 16, 6) design obtained from codes, Discrete Math., 284 (2004), 231-234.

We use computational methods for the construction of quasi-symmetric designs with prescribed automorphism groups.

METHOD 1: a method based on clique search
METHOD 2: a method based on tactical decompositions
METHOD 3: a method based on binary codes

GAP - Groups, Algorithms, and Programming, Version 4.8.10, 2018.
https://www.gap-system.org
W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I. The user language, J. Symbolic Comput., 24(3-4):235-265, 1997.

METHOD 1: a method based on clique search

1: select a group G

Let G be a permutation group on a v-element set.

2: compute good orbits under G
Let $\mathcal{K}_{1}, \ldots, \mathcal{K}_{n}$ be the good orbits of k-element subsets of the v-element set induced by G.

An orbit \mathcal{K} is good if

$$
\left|K_{1} \cap K_{2}\right|=x \text { or } y,
$$

for any two elements $K_{1}, K_{2} \in \mathcal{K}$.

METHOD 1: a method based on clique search

We use our own C program to compute good orbits. It is based on an orderly generation algorithm of Read-Faradžev type.
I.A. Faradžev, Constructive enumeration of combinatorial objects, Problèmes combinatoires et théorie des graphes, Colloq. Internat. CNRS 260, Paris, 1978, pp. 131-135.
R.C. Read, Every one a winner or how to avoid isomorphism search when cataloguing combinatorial configurations, Annals of Discrete Mathematics 2 (1978), 107-120.

METHOD 1: a method based on clique search

3: use cliques algorithm

A clique is a subset of vertices of a graph such that every two distinct vertices in the clique are adjacent.

Let Γ be the graph with following properties:

- vertices are the good orbits $\mathcal{K}_{1}, \ldots, \mathcal{K}_{n}$,
- two vertices are joined if the corresponding orbits are compatible,
- the weight of a vertex is the size of the orbit.

The graph Γ is called the compatibility graph of the orbits.
PROBLEM: find all cliques of weight b in the graph Γ

METHOD 1: a method based on clique search

S. Niskanen, P.R.J. Östergård, Cliquer User's Guide, Version 1.0,

Communications Laboratory, Helsinki University of Technology, Espoo, Finland, Tech. Rep. T48, 2003.

Searching all cliques of a given size in the graph is a NP complete problem.
\ldots it is easier if the density of the graph Γ is small.

$$
D=\frac{2|E|}{|V|(|V|-1)},
$$

where E is the set of edges and V is the set of vertices in the graph Γ.

RESULT: collections of b compatible blocks (not necessary designs)

METHOD 1: a method based on clique search

4: test for designs
We need to check the property that any 2 -subset of v points is contained in exactly λ blocks.

876 new quasi-symmetric $2-(56,16,6)$ designs

METHOD 1: a method based on clique search

Let G_{48} be a certain permutation group on 56 points isomorphic to $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{3}$.

The number of orbits of 16 -element subsets: 867693085859 The number of good orbits of 16 -element subsets: 5352

The compatibility graph: 5352 vertices and 379369 edges (density 0.02649)
The number of cliques of weight $b=77$: 224256
The number of designs: 224256

Theorem.

There are 876 quasi-symmetric designs 2 -($56,16,6), x=4, y=6$ with G_{48} as automorphism group.

METHOD 2: a method based on tactical decompositions

1: select a group G

2: generate good orbit matrices

Let $\mathcal{V}_{1}, \ldots, \mathcal{V}_{m}$ and $\mathcal{B}_{1}, \ldots, \mathcal{B}_{n}$ be the point- and block-orbits of a 2- (v, k, λ) design with respect to a group of automorphisms G.

$$
\begin{array}{r}
\text { Let } \nu_{i}=\left|\mathcal{V}_{i}\right| \text { and } \beta_{i}=\left|\mathcal{B}_{i}\right|: \quad \sum_{i=1}^{m} \nu_{i}=v \quad \text { and } \quad \sum_{j=1}^{n} \beta_{j}=b . \\
\nu=\left(\nu_{1}, \ldots, \nu_{m}\right) \quad \beta=\left(\beta_{1}, \ldots, \beta_{n}\right)
\end{array}
$$

For $1 \leq i \leq m$ and $1 \leq j \leq n$, let

$$
b_{i j}=\left|\left\{p \in \mathcal{V}_{i} \mid p \in B\right\}\right|, \quad \text { for } B \in \mathcal{B}_{j} .
$$

METHOD 2: a method based on tactical decompositions

The number $b_{i j}$ is independent of the choice of $B \in \mathcal{B}_{j}$.
The matrix $B=\left[b_{i j}\right]$ has following properties:
(1) $\sum_{i=1}^{m} b_{i j}=k, \quad$ for $1 \leq j \leq n$
(2) $\sum_{j=1}^{n} \frac{\beta_{j}}{\nu_{i}} b_{i j}=r, \quad$ for $1 \leq i \leq m$
(3) $\sum_{j=1}^{n} \frac{\beta_{j}}{\nu_{i}^{\prime}} b_{i j} b_{i^{\prime} j}=\left\{\begin{array}{ll}\lambda \nu_{i}, & \text { for } i \neq i^{\prime} \\ \lambda\left(\nu_{i}-1\right)+r, & \text { for } i=i^{\prime}\end{array}\right.$, for $1 \leq i, i^{\prime} \leq m$

Any matrix with these properties is called an orbit matrix.

METHOD 2: a method based on tactical decompositions

For quasi-symmetric designs with intersection numbers x and y the matrix $B=\left[b_{i j}\right]$ has further properties (COLUMN TEST):

$$
\sum_{i=1}^{m} \frac{\beta_{j}}{\nu_{i}} b_{i j} b_{i j^{\prime}}=\left\{\begin{array}{ll}
\alpha x+\left(\beta_{j}-\alpha\right) y, & \text { for } j \neq j^{\prime} \\
\alpha x+\left(\beta_{j}-\alpha-1\right) y+k, & \text { for } j=j^{\prime}
\end{array},\right.
$$

for $1 \leq j, j^{\prime} \leq n$, and

$$
\alpha=\left|\left\{B \in \mathcal{B}_{j}| | \mathcal{B} \cap \mathcal{B}^{\prime} \mid=x, B^{\prime} \in \mathcal{B}_{j^{\prime}}\right\}\right| .
$$

We shall call any such orbit matrix good.

METHOD 2: a method based on tactical decompositions

3: compute orbits under G using good orbit matrices
We generate block orbits compatible with the columns of an good orbit matrix, i.e. having the prescribed intersection pattern with the point orbits $\mathcal{V}_{1}, \ldots, \mathcal{V}_{m}$.

4: use backtracking solver

We get fewer block orbits and information on how to choose them to get the desins (one orbit for every column).

We use our own backtracking program instead of cliquer to make use of this information.

METHOD 2: a method based on tactical decompositions

We consider all possible actions of the group $G_{21} \cong \mathbb{Z}_{7} \rtimes \mathbb{Z}_{3}$ on 56 points.
The group $\mathbb{Z}_{7} \cdot \mathbb{Z}_{3}$ can act as a permutation group on orbits of size 7 and 21.

Lema.

An automorphism of order 7 of a quasi-symmetric design $2-(56,16,6), x=4, y=6$ acts without any fixed points and blocks.

ν	β	\#OM	\#GOM	\#D
$(7,7,7,7,7,7,7,7)$	$(7,7,7,7,7,7,7,7,21)$	26	26	0
$(7,7,7,7,7,21)$	$(7,7,7,7,7,7,7,7,21)$	501	8	0
$(7,7,7,7,7,21)$	$(7,7,7,7,7,21,21)$	8	8	0
$(7,7,21,21)$	$(7,7,7,7,7,21,21)$	16	4	2
$(7,7,21,21)$	$(7,7,21,21,21)$	1	1	0

METHOD 2: a method based on tactical decompositions

$$
\begin{aligned}
& A_{1}=\left[\begin{array}{lllllll}
4 & 4 & 3 & 1 & 1 & 2 & 1 \\
3 & 0 & 4 & 3 & 3 & 1 & 2 \\
6 & 6 & 3 & 9 & 3 & 6 & 7 \\
3 & 6 & 6 & 3 & 9 & 7 & 6
\end{array}\right] \quad A_{2}=\left[\begin{array}{lllllll}
4 & 4 & 3 & 1 & 1 & 2 & 1 \\
3 & 0 & 1 & 3 & 0 & 3 & 2 \\
6 & 6 & 3 & 3 & 9 & 6 & 7 \\
3 & 6 & 9 & 9 & 6 & 5 & 6
\end{array}\right] \\
& A_{3}=\left[\begin{array}{lllllll}
4 & 3 & 3 & 3 & 0 & 2 & 1 \\
0 & 4 & 1 & 1 & 1 & 3 & 2 \\
6 & 6 & 9 & 3 & 9 & 5 & 6 \\
6 & 3 & 3 & 9 & 6 & 6 & 7
\end{array}\right] \quad A_{4}=\left[\begin{array}{lllllll}
4 & 1 & 1 & 1 & 0 & 3 & 2 \\
0 & 3 & 3 & 0 & 1 & 2 & 3 \\
6 & 9 & 3 & 9 & 6 & 5 & 6 \\
6 & 3 & 9 & 6 & 9 & 6 & 5
\end{array}\right]
\end{aligned}
$$

METHOD 2: a method based on tactical decompositions

Theorem.

There are two quasi-symmetric designs $2-(56,16,6), x=4, y=6$ with G_{21} as automorphism group.

METHOD 2: a method based on tactical decompositions

We consider some possible actions of the group $G_{12} \cong A_{4}$ on 56 points.

The group A_{4} can act as a permutation group on orbits of size 3 , 4,6 and 12 .
(1) $\nu=(4,4,6,6,6,6,12,12)$
$\beta=(1,1,1,3,3,4,4,6,6,12,12,12,12)$
$\Rightarrow 253$ quasi-symmetric designs (67 new)
(2) $\nu=(1,3,4,6,6,12,12,12)$
$\beta=(1,1,3,4,4,4,6,6,6,6,12,12,12)$
$\Rightarrow 500$ quasi-symmetric designs (236 new)

Theorem.

There are at least 753 quasi-symmetric designs 2-(56, 16, 6), $x=4, y=6$ with G_{12} as automorphism group.

METHOD 3: a method based on binary codes

1: generate a binary code

Let C be the binary code spanned by block incidence vectors of quasi-symmetric $2-(v, k, \lambda)$ design with intersection numbers x and y.

2: identify codewords of weight k into orbits (optional)
We can identify codewords of code C of weight k into orbits under various automorphism groups G.

METHOD 3: a method based on binary codes

3: use cliques algorithm

Let Γ be the graph with following properties:

- vertices are the (orbits of) codewords of weight k,
- two vertices are joined if the corresponding (orbits of) codewords are compatible,
- weight of a vertex is equal to 1 (or size of the orbit).

The graph Γ is called the compatibility graph of the orbits.
PROBLEM: find all cliques of size (weight) b in the graph Γ

4: test for designs
\Downarrow
228 new quasi-symmetric $2-(56,16,6)$ designs

METHOD 3: a method based on binary codes

The 1182 known 2-(56,16,6) designs span 39 inequivalent codes

	dim	a_{0}	a_{8}	a_{12}	a_{16}	a_{20}	a_{24}	a_{28}
C_{1}	26	1	91	2016	152425	2939776	16194619	28531008
C_{2}	26	1	7	2016	155365	2926336	16224019	28493376
C_{3}	24	1	75	0	40089	730368	4055835	7124480
$C_{4-6,9,10}$	22	1	15	0	9933	183168	1012515	1783040
$C_{7,11-13}$	25	1	75	672	77721	1465984	8103963	14257600
C_{8}	25	1	75	960	75417	1474048	8087835	14277760
C_{14}	22	1	15	0	10701	178560	1024035	1767680
C_{15}	23	1	15	288	19917	361216	2040867	3544000
C_{16}	23	1	15	96	19917	365056	2028579	3561280
C_{17}	24	1	75	160	39833	728704	4062235	7115200
C_{18}	22	1	15	64	9677	183424	1012771	1782400
$C_{19}, 21,24$	22	1	15	16	10061	182080	1015459	1779040
$C_{20}, 22$	22	1	15	64	10445	178816	1024291	1767040
C_{23}	25	1	75	1280	74905	1470720	8100635	14259200
C_{25}	25	1	75	992	77209	1462656	8116763	14239040
C_{26}	27	1	139	4992	307161	5848832	32477083	56941312
C_{27}	27	1	99	4304	305873	5872320	32406731	57039072
$C_{28,29}$	27	1	99	4112	307409	5866944	32417483	57025632
C_{30}	26	1	147	1008	158529	2920512	16231467	28485536
$C_{31}, 32,34,35$	27	1	147	3696	309057	5862976	32423979	57018016
$C_{33,39}$	27	1	147	4976	307009	5849664	32475179	56943776
C_{36}	26	1	75	2240	153241	2931200	16218395	28498560
$C_{37,38}$	27	1	75	4416	305817	5871616	32408859	57036160

METHOD 3: a method based on binary codes

Let G_{16} be a certain permutation group on 56 points isomorphic to $\mathbb{Z}_{4} \rtimes \mathbb{Z}_{4} \rtimes \mathbb{Z}_{4} \rtimes \mathbb{Z}_{4}$.

We identify codewords of weight 16 of codes C_{3}, \ldots, C_{25} into orbits under the group G_{16}, and use clique algorithm to find all cliques of weight $b=77$ in the compatibility graphs.

Theorem.

There are at least 228 quasi-symmetric designs 2-(56, 16, 6), $x=4, y=6$ with G_{16} as automorphism group.

Theorem.

There are at least 1410 quasi-symmetric designs 2-(56, 16, 6$)$, $x=4, y=6$.

\mid Aut \mid	$\#(56,16,6)$
168	1
48	876
24	1
21	1
16	228
12	303

Thank you for your attention!

