Method 1: clique search

Method 2: tactical decomposition

Method 3: binary code

イロト イヨト イヨト イヨト

3

More quasi-symmetric 2-(56, 16, 6) designs *

Renata Vlahović Kruc

joint work with Vedran Krčadinac

Deparment of Mathematics Faculty of Science University of Zagreb, Croatia

Finite Geometry and Friends Brussels (Belgium) June 18, 2019

* This work has been supported by Croatian Science Foundation under projects 1637 and 6732.

Quasi-symmetric 2-design	Method 1: clique search	Method 2: tactical decomposit
00000		

Method 3: binary code

ion

A (1) < A (2) < A (2) </p>

Definition.

A t- (v, k, λ) design is a set of v points and a collection of k-subsets called blocks, with the property that any t-subset of points is contained in exactly λ blocks.

For a t- (v, k, λ) design we denote by b the total number of blocks, and by r the number of blocks through any point:

$$b = \lambda \cdot \frac{\binom{v}{t}}{\binom{k}{t}} \qquad \qquad r = \lambda \cdot \frac{\binom{v-1}{t-1}}{\binom{k-1}{t-1}}$$

The numbers t, v, k, λ , b and r are **parameters** of the design.

Method 3: binary code

臣

Example: 2-(7, 3, 1) Fano plane

$$\begin{aligned} \mathcal{V} &= \{1, 2, 3, 4, 5, 6, 7\} \\ \mathcal{B} &= \{\{1, 2, 4\}, \{2, 3, 5\}, \{1, 3, 7\}, \{1, 5, 6\}, \{3, 4, 6\}, \{2, 6, 7\}, \\ & \{4, 5, 7\} \} \end{aligned}$$

The total number of blocks: b = 7.

The number of blocks through any point: r = 3.

Quasi-symmetric 2-design	Method 1:	clique
00000		

Method 2: tactical decomposition

Method 3: binary code

イロン イヨン イヨン イヨン

Definition.

A t- (v, k, λ) design is **quasi-symmetric** if any two blocks intersect either in x or in y points, for non-negative integers x < y.

The numbers x and y are called **intersection numbers**.

search

- Any symmetric 2-design (v = b) is quasi-symmetric with $x = \lambda$ and y is arbitrary.
- Any Steiner 2-design ($\lambda = 1$) is quasi-symmetric with x = 0 and y = 1.

GOAL: construct new quasi-symmetric 2-designs with exceptional parameters

Quasi-symmetric 2-design	Method 1: clique search	Method 2: tactical decomposition	Method 3: binary code
000000	000000	0000000	000000

M.S. Shrikhande, *Quasi-symmetric designs*, in: *The Handbook of Combinatorial Designs*, Second Edition (editors: C.J. Colbourn i J.H. Dinitz), CRC Press, 2007., pp. 578–582.

No.	v	k	λ	r	b	x	y	Existence	Ref.
						•	••		
47	56	16	18	66	231	4	8	?	
48	56	15	42	165	616	3	6	?	
49	56	12	9	45	210	0	3	?	
50	56	21	24	66	176	6	9	?	
51	56	20	19	55	154	5	8	?	
52	56	16	6	22	77	4	6	$Yes(\geq 2)$	[2045, 1659]

. . .

Renata Vlahović Kruc (University of Zagreb) More quasi-symmetric 2-(56, 16, 6) designs

イロト イヨト イヨト イヨト

3

Quasi-symmetric 2-design			M	Method 1: clique search					Method 2: tactical decomposition			Method 3: binary code	
	No.	v	k	λ	r	b	x	y	Existence	Rel			

. . .

 $\mathbf{5}$

?

?

 $\operatorname{Yes}(\geq 2)$

[2045, 1659]

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶

V. D. Tonchev, Embedding of the Witt-Mathieu system $S(3,6,22)$ in a
symmetric 2-(78, 22, 6) design, Geom. Dedicata, 22 (1987), 49–75.

A. Munemasa and V. D. Tonchev, A new quasi-symmetric 2-(56, 16, 6) design obtained from codes, Discrete Math., 284 (2004), 231-234.

We use **computational methods** for the construction of quasi-symmetric designs with prescribed automorphism groups.

- METHOD 1:a method based on clique searchMETHOD 2:a method based on tactical decompositions
- METHOD 3: a method based on binary codes

GAP - Groups, Algorithms, and Programming, Version 4.8.10, 2018. https://www.gap-system.org

W. Bosma, J. Cannon and C. Playoust, *The Magma algebra system I. The user language*, J. Symbolic Comput., 24(3-4):235–265, 1997.

Method 1: clique search

Method 2: tactical decomposition

Method 3: binary code

METHOD 1: a method based on clique search

1: select a group G

Let G be a permutation group on a v-element set.

2: compute **good orbits** under G

Let $\mathcal{K}_1, ..., \mathcal{K}_n$ be the **good orbits** of k-element subsets of the v-element set induced by G.

An orbit ${\mathcal K}$ is ${{\color{black} \textbf{good}}}$ if

$$K_1 \cap K_2 | = x \text{ or } y,$$

for any two elements $K_1, K_2 \in \mathcal{K}$.

・ロト ・同ト ・ヨト ・ヨト

Method 1: clique search ○●○○○○ Method 2: tactical decomposition

Method 3: binary code

METHOD 1: a method based on clique search

We use our own **C program** to compute good orbits. It is based on an orderly generation algorithm of Read-Faradžev type.

I.A. Faradžev, *Constructive enumeration of combinatorial objects*, Problèmes combinatoires et théorie des graphes, Colloq. Internat. CNRS 260, Paris, 1978, pp. 131-135.

R.C. Read, *Every one a winner or how to avoid isomorphism search when cataloguing combinatorial configurations*, Annals of Discrete Mathematics 2 (1978), 107-120.

イロト イポト イヨト イヨト

Method 1: clique search

Method 2: tactical decomposition

Method 3: binary code

METHOD 1: a method based on clique search

3: use cliques algorithm

A **clique** is a subset of vertices of a graph such that every two distinct vertices in the clique are adjacent.

Let Γ be the **graph** with following properties:

- vertices are the **good orbits** $\mathcal{K}_1, \ldots, \mathcal{K}_n$,
- two vertices are joined if the corresponding orbits are **compatible**,
- the weight of a vertex is the size of the orbit.

The graph Γ is called the **compatibility graph** of the orbits.

PROBLEM: find all cliques of weight b in the graph Γ

Method 1: clique search

Method 2: tactical decomposition

Method 3: binary code

METHOD 1: a method based on clique search

S. Niskanen, P.R.J. Östergård, *Cliquer User's Guide, Version 1.0*, Communications Laboratory, Helsinki University of Technology, Espoo, Finland, Tech. Rep. T48, 2003.

Searching all cliques of a given size in the graph is a NP complete problem.

... it is easier if the density of the graph Γ is small.

$$D = \frac{2|E|}{|V|(|V|-1)},$$

where E is the set of edges and V is the set of vertices in the graph $\Gamma.$

RESULT: collections of *b* compatible blocks (not necessary designs)

Method 1: clique search

Method 2: tactical decomposition

Method 3: binary code

METHOD 1: a method based on clique search

4: test for designs

We need to check the property that any 2-subset of v points is contained in exactly λ blocks.

\Downarrow

876 new quasi-symmetric 2-(56, 16, 6) designs

Quasi-symmetric 2-design	Method 1: clique search 00000●	Method 2: tactical decomposition	Method 3: binary code

METHOD 1: a method based on clique search

Let G_{48} be a certain permutation group on 56 points isomorphic to $(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_3$.

The number of orbits of 16-element subsets: 867693085859The number of **good orbits** of 16-element subsets: 5352

The compatibility graph: $5\,352$ vertices and $379\,369$ edges (density 0.02649) The number of cliques of weight $b = 77:\ 224\,256$

The number of **designs**: 224 256

Theorem.

There are 876 quasi-symmetric designs 2-(56, 16, 6), x = 4, y = 6 with G_{48} as automorphism group.

Renata Vlahović Kruc (University of Zagreb) More quasi-symmetric 2-(56, 16, 6) designs

Method 1: clique search

Method 2: tactical decomposition

Method 3: binary code

イロン イヨン イヨン ・ ヨン

METHOD 2: a method based on tactical decompositions

1: select a group G

2: generate good orbit matrices

Let $\mathcal{V}_1, \ldots, \mathcal{V}_m$ and $\mathcal{B}_1, \ldots, \mathcal{B}_n$ be the **point**- and **block-orbits** of a 2- (v, k, λ) design with respect to a group of automorphisms G.

Let
$$\nu_i = |\mathcal{V}_i|$$
 and $\beta_i = |\mathcal{B}_i|$: $\sum_{i=1}^m \nu_i = v$ and $\sum_{j=1}^n \beta_j = b$.

$$\nu = (\nu_1, \dots, \nu_m) \qquad \beta = (\beta_1, \dots, \beta_n)$$

For $1 \leq i \leq m$ and $1 \leq j \leq n$, let

 $b_{ij} = |\{p \in \mathcal{V}_i \mid p \in B\}|, \quad \text{for } B \in \mathcal{B}_j.$

 Quasi-symmetric 2-design
 Method 1: clique search
 Method 2: tactical decomposition
 Method 3: binary code

 000000
 000000
 000000
 000000
 000000
 000000

METHOD 2: a method based on tactical decompositions

The number b_{ij} is independent of the choice of $B \in \mathcal{B}_j$.

The matrix $B = [b_{ij}]$ has following properties:

$$\begin{array}{ll} \mathbf{D} & \sum_{i=1}^{m} b_{ij} = k, \quad \text{for } 1 \leq j \leq n \\ \mathbf{D} & \sum_{j=1}^{n} \frac{\beta_j}{\nu_i} b_{ij} = r, \quad \text{for } 1 \leq i \leq m \\ \mathbf{O} & \sum_{j=1}^{n} \frac{\beta_j}{\nu_i'} b_{ij} b_{i'j} = \begin{cases} \lambda \nu_i, & \text{for } i \neq i' \\ \lambda (\nu_i - 1) + r, & \text{for } i = i' \end{cases}, \text{ for } 1 \leq i, i' \leq m \\ \end{array}$$

Any matrix with these properties is called an orbit matrix.

 Quasi-symmetric 2-design
 Method 1: clique search
 Method 2: tactical decomposition
 Method 3: binary code

 000000
 000000
 000000
 000000
 000000
 000000

METHOD 2: a method based on tactical decompositions

For quasi-symmetric designs with intersection numbers x and y the matrix $B = [b_{ij}]$ has further properties (COLUMN TEST):

$$\sum_{i=1}^{m} \frac{\beta_j}{\nu_i} b_{ij} b_{ij'} = \begin{cases} \alpha x + (\beta_j - \alpha)y, & \text{for } j \neq j' \\ \alpha x + (\beta_j - \alpha - 1)y + k, & \text{for } j = j' \end{cases}$$

for $1 \leq j, j' \leq n$, and

$$\alpha = |\{B \in \mathcal{B}_j \mid |\mathcal{B} \cap \mathcal{B}'| = x, \, B' \in \mathcal{B}_{j'}\}|.$$

We shall call any such orbit matrix good.

イロト イポト イヨト イヨト

・ロン ・回 と ・ ヨン ・ ヨ

METHOD 2: a method based on tactical decompositions

3: **compute orbits** under *G* using good orbit matrices

We generate **block orbits compatible with the columns of an good orbit matrix**, i.e. having the prescribed intersection pattern with the point orbits V_1, \ldots, V_m .

4: use backtracking solver

We get fewer block orbits and information on how to choose them to get the desins (one orbit for every column).

We use our **own backtracking program** instead of cliquer to make use of this information.

304 new quasi-symmetric 2-(56, 16, 6) designs

METHOD 2: a method based on tactical decompositions

We consider all possible actions of the group $G_{21} \cong \mathbb{Z}_7 \rtimes \mathbb{Z}_3$ on 56 points.

The group $\mathbb{Z}_7.\mathbb{Z}_3$ can act as a permutation group on orbits of size 7 and 21.

Lema.

An automorphism of order 7 of a quasi-symmetric design 2-(56, 16, 6), x = 4, y = 6 acts without any fixed points and blocks.

ν	β	#OM	#GOM	$\#\mathcal{D}$
(7, 7, 7, 7, 7, 7, 7, 7, 7)	(7, 7, 7, 7, 7, 7, 7, 7, 7, 21)	26	26	0
$\left(7,7,7,7,7,21 ight)$	(7, 7, 7, 7, 7, 7, 7, 7, 7, 21)	501	8	0
$\left(7,7,7,7,7,21 ight)$	(7, 7, 7, 7, 7, 21, 21)	8	8	0
(7, 7, 21, 21)	(7, 7, 7, 7, 7, 21, 21)	16	4	2
(7, 7, 21, 21)	(7, 7, 21, 21, 21)	1	1	0

1 nac

Method 1: clique search

Method 2: tactical decomposition

Method 3: binary code

<ロ> <四> <四> <四> <三</td>

METHOD 2: a method based on tactical decompositions

Method 1: clique search

Method 2: tactical decomposition

Method 3: binary code

イロト イヨト イヨト イヨト

æ

METHOD 2: a method based on tactical decompositions

$$A_3^{\tau} = \begin{bmatrix} 4 & 0 & 6 & 6 \\ 3 & 4 & 6 & 3 \\ 3 & 1 & 9 & 3 \\ 3 & 1 & 3 & 9 \\ 0 & 1 & 9 & 6 \\ 2 & 3 & 5 & 6 \\ 1 & 2 & 6 & 7 \end{bmatrix} \xrightarrow{\rightarrow} \begin{array}{c} \mathbf{882} \text{ good orbits} \\ \rightarrow \mathbf{588} \text{ good orbits} \\ \rightarrow \mathbf{490} \text{ good orbits} \\ \rightarrow \mathbf{490} \text{ good orbits} \\ \rightarrow \mathbf{735} \text{ good orbits} \\ \rightarrow \mathbf{3674412} \text{ good orbits} \\ \rightarrow \mathbf{3628548} \text{ good orbits} \end{array}$$

Theorem.

There are two quasi-symmetric designs 2-(56, 16, 6), x = 4, y = 6 with G_{21} as automorphism group.

90

METHOD 2: a method based on tactical decompositions

We consider some possible actions of the group $G_{12} \cong A_4$ on 56 points.

The group A_4 can act as a permutation group on orbits of size 3, 4, 6 and 12.

(1)
$$\nu = (4, 4, 6, 6, 6, 6, 12, 12)$$

 $\beta = (1, 1, 1, 3, 3, 4, 4, 6, 6, 12, 12, 12, 12)$
 $\Rightarrow 253$ quasi-symmetric designs (67 new)
(2) $\nu = (1, 3, 4, 6, 6, 12, 12, 12)$
 $\beta = (1, 1, 3, 4, 4, 4, 6, 6, 6, 6, 6, 12, 12, 12)$
 $\Rightarrow 500$ quasi-symmetric designs (236 new)

Theorem.

There are at least 753 quasi-symmetric designs 2-(56, 16, 6), x = 4, y = 6 with G_{12} as automorphism group.

Method 1: clique search

Method 2: tactical decomposition

Method 3: binary code

METHOD 3: a method based on binary codes

1: generate a **binary code**

Let C be the binary code spanned by block incidence vectors of quasi-symmetric $2\text{-}(v,k,\lambda)$ design with intersection numbers x and y.

2: identify codewords of weight k into orbits (optional)

We can identify codewords of code C of weight k into orbits under various automorphism groups G.

(日)

Method 3: binary code ○●○○○○

ヘロン 人間 とくほ とくほ とう

METHOD 3: a method based on binary codes

3: use cliques algorithm

Let Γ be the **graph** with following properties:

- vertices are the (orbits of) codewords of weight k,
- two vertices are joined if the corresponding (orbits of) codewords are **compatible**,
- weight of a vertex is equal to 1 (or size of the orbit).

The graph Γ is called the **compatibility graph** of the orbits.

PROBLEM: find all cliques of size (weight) b in the graph Γ

4: test for designs

228 new quasi-symmetric 2-(56, 16, 6) designs

Method 1: clique search

Method 2: tactical decomposition

Method 3: binary code

METHOD 3: a method based on binary codes

The 1182 known 2-(56, 16, 6) designs span 39 inequivalent codes C_1, \ldots, C_{39} .

	dim	a_0	a_8	a_{12}	a_{16}	a_{20}	a_{24}	a_{28}
C_1	26	1	91	2016	152 425	2 939 776	16 194 619	28 531 008
C_2	26	1	7	2016	155365	2926336	16224019	28493376
C_3	24	1	75	0	40 089	730 368	4 055 835	7 124 480
$C_{4-6,9,10}$	22	1	15	0	9933	183 168	1 012 515	1 783 040
$C_{7,11-13}$	25	1	75	672	77721	1 465 984	8 103 963	14 257 600
C_8	25	1	75	960	75 417	1 474 048	8 087 835	14 277 760
C_{14}	22	1	15	0	10701	178 560	1 024 035	1 767 680
C_{15}	23	1	15	288	19917	361 216	2 040 867	3 544 000
C_{16}	23	1	15	96	19917	365 056	2 028 579	3 561 280
C_{17}	24	1	75	160	39833	728 704	4 062 235	7 115 200
C_{18}	22	1	15	64	9677	183 424	1012771	1 782 400
$C_{19,21,24}$	22	1	15	16	10061	182 080	1 015 459	1 779 040
$C_{20,22}$	22	1	15	64	10 445	178 816	1 024 291	1 767 040
C_{23}	25	1	75	1 280	74 905	1 470 720	8 100 635	14 259 200
C_{25}	25	1	75	992	77 209	1 462 656	8 116 763	14 239 040
C_{26}	27	1	139	4 992	307 161	5848832	32 477 083	56 941 312
C_{27}	27	1	99	4 304	305 873	5 872 320	32 406 731	57 039 072
$C_{28,29}$	27	1	99	4112	307 409	5 866 944	32 417 483	57 025 632
C_{30}	26	1	147	1 008	158 529	2 920 512	16 231 467	28 485 536
$C_{31,32,34,35}$	27	1	147	3 6 9 6	309 057	5862976	32 423 979	57 018 016
$C_{33,39}$	27	1	147	4 976	307 009	5849664	32 475 179	56 943 776
C_{36}	26	1	75	2 2 4 0	153241	2 931 200	16 218 395	28 498 560
$C_{37,38}$	27	1	75	4 4 1 6	305 817	5871616	32 408 859	57 036 160

Renata Vlahović Kruc (University of Zagreb)

More quasi-symmetric 2-(56, 16, 6) designs

イロト イヨト イヨト イヨト

臣

Method 1: clique search

Method 2: tactical decomposition

Method 3: binary code

METHOD 3: a method based on binary codes

Let G_{16} be a certain permutation group on 56 points isomorphic to $\mathbb{Z}_4 \rtimes \mathbb{Z}_4 \rtimes \mathbb{Z}_4 \rtimes \mathbb{Z}_4$.

We identify codewords of weight 16 of codes C_3, \ldots, C_{25} into orbits under the group G_{16} , and use clique algorithm to find all cliques of weight b = 77 in the compatibility graphs.

Theorem.

There are at least 228 quasi-symmetric designs 2-(56, 16, 6), x = 4, y = 6 with G_{16} as automorphism group.

Quasi-symmetric	2-design

Method 1: clique search

Method 2: tactical decomposition

Method 3: binary code

イロン イヨン イヨン イヨン

3

Theorem.

There are at least $1\,410$ quasi-symmetric designs $2\mathchar`-(56,16,6)\mbox{,}$ $x=4\mbox{,}~y=6\mbox{.}$

Aut	#(56, 16, 6)
168	1
48	876
24	1
21	1
16	228
12	303

Method 1: clique search

Method 2: tactical decomposition

Method 3: binary code

イロト イヨト イヨト イヨト

э.

590

Thank you for your attention!