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Preface

€C  The way to get started is to quit talking and begin doing. 99

—Walt Disney

My engagement towards mathematics started at secondary school. I always liked to solve exer-
cises, and I loved to accept the challenges the teachers gave me. After my graduation in secondary
school, I really wanted to further discover the beautiful parts of mathematics. So it was clear that I
wanted to study this. During the bachelor and master years, I enjoyed seeing all the different parts
of mathematics. It gave me a broad view and a chance to sample every branch in mathematics.
During my bachelor project, I got the opportunity to work on different topics in finite geometry. I
really liked the freedom to think about some new things, and due to the combination of good ideas
and excellent aid of my supervisors we discovered new characteristics about Sudoku Latin Squares.
This was the start of my first publication. Together with prof. Klaus Metsch from the University of
Giefien, we generalized the first results and continued the research on this topic. This was an inter-
esting chance to start exploring the research world. In the last master year, I focused on the master
thesis. During this period, I also got the opportunity to go abroad. With the Erasmus program, I
went to the Technical University of Eindhoven. Here I got the chance to work together with prof.
Aart Blokhuis on the Sunflower bound. Thanks to enriching conversations and discussions with
prof. Aart Blokhuis and other researchers in Eindhoven, I discovered the advantages of working
together with international academics. I realized for the second time that I enjoyed doing research
and discovering new things. Beside that, I was aware, by reading lots of articles, of the fact that
my knowledge at that time, only corresponds to the tip of the iceberg. That was the reason why I
wanted to continue the research, to get a more fundamental understanding and to reach the bottom
of the iceberg.

So, more or less 4 years ago, I got the great opportunity to start with a PhD in finite geometry. I
got the chance to work on topics in finite geometry that interest me, such as Cameron-Liebler sets
and intersection problems. The result of this research is collected in this thesis.

This thesis contains three main parts. The first part handles several intersection problems.

During the first months of the PhD, I started with the first intersection problem. I investigated sets
of solids pairwise intersecting in at least a line. Later on, we could generalise this to a classification
of the largest sets of k-spaces in PG(n, q), pairwise intersecting in at least a (k — 2)-space. With
the aid of dr. Giovanni Longobardi, dr. Ago Riet and prof. Leo Storme, we were able to classify the
ten largest examples, see Chapter 3] Thorough this thesis, it will become clear that I like to classify
different structures in finite geometries.

A second intersection problem handles a Hilton-Milner problem in projective and affine spaces.
Here, I investigated large sets of k-spaces pairwise intersecting in at least a ¢-space in both PG(n, q)
and AG(n, q). A straightforward example of these sets is a t-pencil; the set of all k-spaces contain-
ing a fixed t-space. In this research, I classified the largest examples of pairwise ¢-intersecting sets
in both PG(n, ¢) and AG(n, ¢), different from a ¢-pencil. This classification result can be found in
Chapter
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Recall that, in my master thesis, I started investigating the Sunflower bound in projective spaces.
For this, I studied large sets of k-spaces in a projective space, pairwise intersecting in precisely a
point. A classical example of such a set is the sunflower, where all subspaces pass through the same
point. The Sunflower bound states that a set S of k-spaces, pairwise intersecting in a point must be
a sunflower if |.S| surpasses the Sunflower bound. Prof. Aart Blokhuis, dr. Maarten De Boeck and I
could lower this Sunflower bound significantly. How we succeeded in this, can be read in Chapter

Gl

In spring 2020, I got the opportunity to visit prof. Klaus Metsch in Gieflen. Together with dr. Daniel
Werner, we investigated the chromatic number of g-Kneser graphs of flags in projective spaces. This
problem can be translated to the following research problem: finding a partition of flags such that
every two flags in a partition class intersect. We found the chromatic number of the ¢-Kneser graph
of line-solid flags and of line-plane flags in PG(4, ¢). Furthermore, if we assume that structural
information on the large intersecting sets of {d — 1, d}-flags in PG(2d, ¢) is known, then we were
also able to generalize our results. Hence, given a Hilton-Milner type conjecture, we found the
chromatic number of {d — 1, d}-flags in PG(2d, ). These results are written in Chapter [6| which
concludes the first main part.

In the second main part of this thesis, I describe several Cameron-Liebler results in different con-
texts.

In [28], Cameron and Liebler introduced specific line classes in PG(3, ¢) when investigating the
orbits of the projective groups PGL(n + 1,¢). These line sets £ have the property that every
line spread S in PG(3, ¢) has the same number of lines in common with £. One of the main
reasons for studying Cameron-Liebler sets is that there are several equivalent definitions for them,
some algebraic, some geometrical or combinatorial in nature. The main question, independent of
the context where Cameron-Liebler sets are investigated, is always the same: for which values of
the parameter = do there exist Cameron-Liebler sets and which examples correspond to a given
parameter x?

In the first year of my PhD, I started defining and investigating Cameron-Liebler sets of k-spaces
in PG(n, q). Prof. Aart Blokhuis, dr. Maarten De Boeck and I found many equivalent definitions,
and we could prove a classification result. These results are described in Chapter 8]

During this first Cameron-Liebler project, my interest grew, and I was curious to discover Cameron-
Liebler sets in different contexts.

In a second Cameron-Liebler project, Cameron-Liebler sets of generators in finite classical polar
spaces were investigated. Dr. Maarten De Boeck and I introduced degree one Cameron-Liebler sets in
finite classical polar spaces. These sets are Cameron-Liebler sets with an extra assumption, and they
give a link between Boolean degree one functions (see [59]) and Cameron-Liebler sets of generators
in finite classical polar spaces (see [36]]). These results can be found in Chapter [10]

In summer 2019, prof. Morgan Rodgers found a new, non-trivial example of a Cameron-Liebler set
of generators in QT (5, 3) by using a computer search. Dr. Maarten De Boeck and I investigated this
example, and generalized it. In this way, we found a non-trivial example of a degree one Cameron-
Liebler set of generators in Q™ (5, ¢). The construction for this example is described in Section
[10.5

In the second year of my PhD, I got the opportunity to mentor the master thesis of Jonathan Man-
naert. Prof. Leo Storme suggested to investigate Cameron-Liebler sets in an affine context. During
this research, we first defined Cameron-Liebler line sets in AG(3, ¢). We found many equivalent
definitions, and some classification results. In a second step, we generalized these Cameron-Liebler



Preface

line sets in AG(3, ¢) to Cameron-Liebler k-sets in AG(n, ¢). These results are described in Chapter
9

The last main part of this thesis discusses Linear sets of pseudoregulus type. In spring 2019, I visited
my co-supervisor dr. Geertrui Van de Voorde in Christchurch, New-Zealand, where she immersed
me in the world of linear sets. In [7], a characterisation for translation hyperovals in PG(4, q), ¢
even, was given. Originally our research goal was to generalize these results for PG(2k, q), ¢ even.
While investigating this topic, we could characterise the point sets defined by translation hyper-
ovals in the André/Bruck-Bose representation. We showed that the affine point sets of translation
hyperovals in PG(2, ¢*) are precisely those that have a scattered Fo-linear set of pseudoregulus
type in PG(2k — 1, q) as set of directions. These results are described in Chapter[11]

I hope that this introduction could engage you for reading this thesis. I already want to thank you
for the interest and I hope you enjoy reading this exciting math story. ®

Jozefien D’haeseleer
March 2021






I Preliminaries

€C La mathématique est I’art de donner le méme nom a des choses différentes. 99

—Henri Poincare

In this first chapter, we introduce important concepts and known results that will be used through-
out the thesis. We suppose that the reader is familiar with the basic notions in finite geometry,
combinatorics, linear algebra and graph theory.

1.1 Incidence geometries

Several geometries, such as projective geometries, affine geometries and finite classical polar spaces,
are investigated in this thesis. These geometries all are incidence geometries, and therefore we start
with introducing the notion of a general incidence geometry.

Definition 1.1.1. An incidence geometry S is a quadruple S = (V,wy,, t,Z), with V a non-empty
set, wy, = {0,1,...,n — 1}, ¢ a surjective map from V to wy, and Z a symmetric incidence relation
on V, such that (v1,ve) € Z, implies that ¢(vy) # t(v2), for all v1, vy € V.

The elements of V are called the varieties of S. Varieties of type 0 and 1 are called the points and
lines respectively. The map ¢ is called the type map and in this thesis, this map will always be the
dimension map. The integer n is called the rank of the geometry S. If (vi,v2) € Z, then these
elements v; and vy are called incident. Moreover, if ¢(v1) < t(v2), then we say that v; is contained
in vo, that vo contains vy or that vo goes through v;. A set of points, incident with a fixed line, is
said to be collinear, and a set of lines incident with a fixed point, is said to be concurrent.

If the rank of the incidence geometry is 2, then the set V of varieties consists of points and lines.
This geometry is called a point-line geometry. For this, we use the notation S = (P, B,Z), with Z
the incidence relation such that Z C (P x B) U (B x P). In this geometry, the elements of PP are the
points and the elements of B are the lines. The elements of B are sometimes also called the blocks
of S.

The dual of an incidence geometry S = (V, wy, t,7) is the incidence geometry S’ = (V,wp, t',7)
witht' =V — w, : v = n — t(v) — 1. Note that the dual of a point-line geometry S = (P, B,7)
can be obtained by interchanging the roles of points and lines. Hence, the dual of the point-line
geometry S is the point-line geometry 8’ = (B, P, Z).

Let S = (V1,wn,t1,Z1) and So = (Va, wy, t2,Z2) be two incidence geometries of the same rank
n. A bijection « : Vi — Vs with the property that (v,v") € Z; & (a(v), a(v')) € Iy, Vv, v" € V1,
and t1(v) = ta(a(v)), Vv € Vi, is an isomorphism between S1 and Ss. In the case that S; = So,
then « is called an automorphism of S;1. If Sy is the dual of S9, then « is called a duality.

11



1 Preliminaries

Definition 1.1.2. The incidence matrix H of a point-line geometry (P, B,Z), with P the set of
points {p1,p2, ..., pm} and B the set of blocks {by, ba, ..., b,} is the m X n matrix over the field
R, in which the rows are labeled by the points and the columns are labeled by the blocks, so that
Hij = 1if (pl', bj) €7 ,and Hl‘j = 0 otherwise.

In this thesis, we denote the n X n identity matrix by I,,, the n x n all one matrix by J,, and the
all one column vector of dimension n by j,,. If the size n is clear from the context, we also use
the notations I, J, and j respectively. In general, all vectors in this thesis are regarded as column
vectors.

For a subset S of a finite set €2, which can consist of points or blocks, we will often use the corre-
sponding characteristic vector xs.

Definition 1.1.3. Consider a set 2 = {x1,...,x,} of size n. Then we define for every subset S of
() a characteristic vector yg € R™ as a {0, 1}-valued column vector that has a one on position ¢ if
and only x; € S.

We end this section with a first example of an incidence geometry.

Definition 1.1.4. At — (v, k, \) design,v > k > 1,k >t > 1, A > 0, is a point-line geometry
D = (P, B,T) with incidence matrix Z with the following properties:

<[Pl =v,

every element of 3 contains k points of P,
« every set of ¢ distinct points of P is contained in precisely A different lines of B,
+ no two lines of B are incident with the same & points of P.

In this thesis, we will often investigate 2— (v, k, \) designs, or in short, 2-designs. For these designs,
we give a classical result in design theory, which follows from the proof of Fisher’s inequality by
Bose [19].

Result 1.1.5. The incidence matrix of a 2-design has full row rank over R.

1.2 Finite projective spaces

Consider the finite field IF, of order ¢, with ¢ = p", p prime and h > 0. Let V(n + 1, q) denote the
vector space of dimension n + 1 over F: V(n+1,¢q) = FZH.

Let D(V') be the set of non-trivial subspaces of V(n + 1,¢). Define the incidence relation Z
as follows: (UW) € ZifU C WorW C U. Letdim : D(V) — {0,1,...,n — 1} be
the map such that dim(7) is the vector dimension of 7 minus one. Then the incidence geom-
etry (D(V),{0,1,...,n — 1},dim,Z) is by definition the projective space corresponding with
V(n + 1, ¢). This projective space has projective dimension n and is denoted by PG(n, ¢). Note
that the projective dimension dim(7) of a subspace 7 is its vector dimension minus one. In this
thesis we will always use the projective dimension for subspaces of a projective geometry. Recall
that the subspaces of PG(n, ¢) of dimension 0 and 1 are the points and lines of the projective space.
The subspaces of dimension 2,3 and n — 1 are called the planes, solids, and hyperplanes, respec-
tively. We will consider the empty set as the subspace with dimension —1. Often, a k-dimensional
subspace is called a k-space, and we will sometimes consider a k-space as its set of points.

12



1 Preliminaries

In this thesis, we will count many objects. For the notation of these countings, we will use Gaussian
binomial coefficients [§] g fora,b e N\ {0}, a > b, and prime power g > 2:

o] e (1 1)

b (¢®—1)--(qg—1)
Furthermore, we define [z]q =1ifb=0,and [g]q =0ifb<0ord > a.

The Gaussian binomial coefficient [Z] . is equal to the number of b-spaces of the vector space F¢,

or in the projective context, the number of (b — 1)-spaces in the projective space PG(a — 1, q).
Moreover, we will denote the number [n#] , of points in PG(n, q) by the symbol 0,,(q). If the field

size q is clear from the context, we will write [‘g] and 6, instead of [‘Z] ‘ and 6,,(q), respectively.

The intersection of two subspaces U and W of PG(n, ¢), is the subspace of PG(n, ¢) containing all
points that are contained in both U and W, and is denoted by U N W. The span of two subspaces U
and W of PG(n, q), is the smallest subspace of PG(n, ¢) containing the points of both U and W,
and is denoted by (U, W).

A frequently used identity in this thesis is the Grassmann identity for subspaces of a projective
space:

dim(U) + dim(V) = dim((U, V) + dim(U N V),

for all subspaces U and V' of PG(n, q).

We started introducing projective spaces by using vector spaces. On the other side, we want to
mention that a projective space can also be defined by axioms. A projective space is a point-line
geometry (P, B, ) that satisfies the following three axioms.

1. Through every two points of P, there is exactly one line of B.

2. If P,Q, R, S are distinct points of P and the lines P() and R.S intersect, then so do the lines
PR and QS.

3. There are at least 3 points on a line.

Veblen and Young proved in [111] that if the dimension of the projective space is at least 3, then
every finite projective space (defined by the three axioms above) of dimension n > 3, is derived
from a vector space, and so, it is isomorphic with PG(n, g), with g a prime power.

For finite projective planes, the classification is more complicated, as not all of them are isomorphic
to PG(2, ¢). We continue with the definition of a Desarguesian plane.

Definition 1.2.1. A Desarguesian plane is an (axiomatic) projective plane II such that for all two
triangles of points P;, P>, P3 and (1, (2, Q3 in II, with the property that the lines P;Q1, PoQ2
and P3(Q)3 are concurrent, it holds that points Py P> N Q1Q2, PoP3s N Q2Q)3 and Py P3N Q1Q3 are
collinear.

The Desarguesian planes are precisely the planes coming from a three-dimensional vector space
over a division ring, see [70]]. Since we know, by Wedderburn [88], that a finite division ring is a
(finite) field, it follows that a finite Desarguesian projective plane is a projective plane PG(2, q).

Many non-Desarguesian projective planes are known, for example the Hall planes, Moulton planes
and Figueroa planes, see [[75]].

In this thesis we will only consider the projective spaces coming from a vector space.

13



1 Preliminaries

1.3 Collineations of PG(n, q)

A linear map on a vector space V. = V(n + 1,q) is amapping fa : V — V : z — Az, with A
a non-singular (n + 1) x (n + 1)-matrix over F,. We identify this matrix with the corresponding
linear map. The set of all linear maps on V' (n + 1, ) corresponds to the set of all non-singular
(n+1) % (n+1)-matrices over IF, and they form the general linear group, denoted by GL(n+1, q).

A semi-linear map on a vector space V = V(n + 1,q) is a mapping fa, : V = V : z — Ax°,
with € V again a column vector, A a non-singular (n + 1) x (n + 1)-matrix over F, and ¢ an
automorphism of the field ;. The automorphisms of the field F, ¢ = p", p prime, are precisely the
maps ¢* : Fpr — Fpr x> xpk, 0 < k < r. The group of all semi-linear maps on V' (n + 1,q) is
denoted by I'L(n + 1, q).

An automorphism of the projective space PG(n, q),n > 2, is called a collineation. The set of all
collineations of PG(n, ¢) forms the group Aut(PG(n,q)). Let V(n + 1, q) be the corresponding
vector space of the projective space PG(n, q). The fundamental theorem of projective geometry
states that each collineation of PG(n,q),n > 2, arises from an invertible semi-linear map f4 ,
of the points of PG(n, ¢) (and so of the 1-dimensional subspaces of V' = V(n + 1,q)): fa, :
V — V 1z — Az?. The set of semi-linear maps on PG(n, ¢) forms a group and is denoted by
PT'L(n + 1, q). Hence, it follows that PT'L(n + 1, q) ~ Aut(PG(n, q)). If we consider a linear map
on V(n + 1, q), then the corresponding collineation of PG(n, ¢) is called a projectivity. The group
of all projectivities of PG(n, q) is called the projective (general) linear group PGL(n + 1, q).

A perspectivity of PG(n, q) with axis the hyperplane H is an element of PI'L(n + 1, ¢) that fixes
all points of H. Let v be a perspectivity of PG(n, ¢) with axis H, then a point P is called a center
if a fixes every hyperplane through P. It can be proven that every perspectivity, different from the
identity map, contains precisely one axis and precisely one center.

An elation with axis a hyperplane H and center a point P of PG(n,q) is a perspectivity whose
center is contained in its axis; P € H.

1.4 Affine geometries

Definition 1.4.1. Let H, be a hyperplane of an n-dimensional projective space PG(n, ¢), and
let A4 be the set of subspaces of PG(n, q) that are not contained in H.,. Let Z4 and dimy4 be
the restriction of the natural incidence relation and the type map of PG(n, q) to A 4, respectively.
Then the incidence geometry using the subspaces of A4, the type map dimy4 and the incidence
relation Z4 defines the n-dimensional affine space AG(n, q). We call H, the hyperplane at infinity
of AG(n, q).

We introduced affine geometries by using projective geometries. The affine spaces used in this
thesis, will always arise from a vector space. We want to note that, similar to the projective spaces,
affine spaces can also be defined by axioms, see Theorem 2.4 and Theorem 2.6 in [[73]] for dimension
2 and dimension n > 3, respectively. Similar to the projective space, every axiomatic affine space
of dimension n arise from a vector space for n > 3. For n = 2 this is not the case.
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1 Preliminaries
1.5 Finite classical polar spaces

Finite classical polar spaces play an important role in finite geometries. We start introducing these
structures in vector spaces, but we will translate them to projective spaces later. Let F be a field,
and let o be a field automorphism. Let V be a vector space over F. A sesquilinear form is a map
f:V xV — T that is linear in its first argument and semi-linear in its second argument, hence
for all uy,ug,v1,v2 € Via € F: f(auy + ug,v1) = af(uy,v1) + f(ue,v1) and f(u1,avy + vo) =
a’ f(u1,v1) + f(u1,v2). A bilinear formis amap f : V x V — [ that is linear in both arguments.
A quadratic form () on a vector space V is amap () : V' — F that is homogeneous of degree two,
and with the property that f : V XV — F : (v,w) = Qv+ w) — Q(v) — Q(w) is a bilinear
form.

A sesquilinear form f on V' is reflexive if f(u,v) = 0 implies that f (v, u) = 0, Yu,v € V. Itis called
symplectic if f(v,v) = 0, Vv € V, and called Hermitian if the corresponding field automorphism
o is a non-trivial involution, so o2 is the identity, and if f(v,w) = f(w,v)’, Vv, w € V . We note
that every non-trivial reflexive sesquilinear form is a bilinear form or a non-zero scalar multiple of
a Hermitian form.

A reflexive sesquilinear form f is called degenerate if there exists a vector v € V'\{0} with f (v, w) =
0, Vw € V. A quadratic form is degenerate if there exists a vector v € V' \ {0} with Q(v) = 0 and
with f(v,w) =0,YVw € V.

A subspace is called totally isotropic with respect to a sesquilinear or quadratic form, when the form
is trivial on this subspace.

Now we are able to describe the classical polar spaces.

Definition 1.5.1. Let A be the set of subspaces in a vector space V(n + 1,FF), that are totally
isotropic with respect to a quadratic, symplectic or Hermitian form on V, and let d be the maximum
of the vector dimensions of the elements of A. Furthermore, let Zp be the restriction of the natural
incidence relation of V(n + 1,F) to A, and let dimp be the map such that dimp(7) is the vector
dimension of 7 minus one. Then, the incidence geometry P = (A, {0, 1,...,d — 1},dimp,Zp) is
a classical polar space.

These classical polar spaces can be seen as substructures in the projective geometry PG(n,F). If
IF is the finite field IF, then, these polar spaces are called the finite classical polar spaces. Note that
we will always consider the finite classical polar spaces through their embedding in the projective
space.

In this thesis, all polar spaces we will handle are finite classical polar spaces, so we will refer to
them as the polar spaces. Although there is a broad theory linked to these geometrical structures,
we will briefly discuss the most important properties and definitions, which will be of importance
in the following chapters. For an extensive introduction to finite classical polar spaces, we refer to
(74].

A polar space arising from a quadratic form is called a quadric. Consider a non-degenerate quadratic
form @ on the vector space V=V (n + 1, q). If n is even, we can find an appropriate basis for V,
so that () can be written as

Q(Xo,-- -, Xn) = X2+ X1 X0 + -+ X1 X
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This non-degenerate quadratic form is called parabolic. If n is odd, then we can again, by using an
appropriate basis for V, write () as

Q(Xo, ..., Xpn) = XoX1 + Xo X3+ -+ X1 X, (1.1)
oras Q(Xo,...,Xn) =XoX1 +Xo X3+ + X5, 353X, 0+ h(Xp—1,X,), (1.2)

with / an irreducible homogeneous polynomial over I, of degree 2. The non-degenerate quadratic
form in is called hyperbolic ; and the non-degenerate quadratic form in is called elliptic.
The polar spaces arising from a non-degenerate parabolic, hyperbolic or elliptic quadratic form
are called a non-degenerate parabolic, hyperbolic or elliptic quadric, respectively. Embedded in
PG(n, q), they are denoted by Q(n, q), Q" (n,q) and Q@ (n, q) respectively.

A polar space arising from a symplectic form is called a symplectic polar space. A non-degenerate
symplectic form f on V' (m, q) only exists if m is even. Let m = 2n, then we can find an appro-
priate basis {e1, ..., en, €], ..., ¢e,} for V(2n,q), so that f(e;, e;) = f(e,€}) = 0and f(e;, e)) =
dij, Vi,7 € {1,2,...,n}. Embedded in PG(2n — 1, ¢), this symplectic polar space is denoted by
W (2n — 1, q). Note that a symplectic polar space contains all points of PG(2n — 1, ¢), but not all
subspaces of dimension at least one.

A polar space arising from a Hermitian form is called a Hermitian polar space. The construction of a
Hermitian form over I, requires an involutory field automorphism of F/, which only exists for ¢’ a
square, ¢ = ¢°. The only involutory field automorphism of Fp2isthemapo : Fpo — Fpo :x — 2%
Let f be a non-degenerate Hermitian form on the vector space V (n + 1, ¢?). An appropriate basis
{eg, ...,en} for V(n + 1, ¢?) can be found, such that f(e;,e;) = d;;,Vi,7 € {0,1,2,...,n}.

Note that quadrics and Hermitian varieties are completely determined by their point sets, and can
be described as a set of points satisfying the corresponding quadratic or Hermitian form. This is
not the case for the symplectic polar spaces.

We continue with the definition of the rank and the parameter of a polar space.

Definition 1.5.2. A generator of a polar space is a subspace of maximal dimension and the rank
d of a polar space is the projective dimension of a generator plus 1. The parameter e of a polar
space P of rank d over [F, is defined as the number so that the number of generators through a
(d — 2)-space of P equals ¢° + 1.

In Table we give the parameter e of the polar spaces of rank d.

’ Polar space ‘ e ‘
QT(2d—-1,9) | 0
H(2d—-1,q9) | 1/2
W(2d—-1,q) 1
Q(2d,q) 1
H(2d,q) 3/2
Q7 (2d+1,q) | 2

Table 1.1: The parameter e of the polar spaces

Another important notion are the polarities associated to a polar space. Consider a non-degenerate
Hermitian form, or the bilinear form f, based on a non-degenerate quadratic form () on the vector
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space V =V (n + 1, ¢). Recall that f(v,w) = Qv+ w) — Q(v) — Q(w). For a subspace W of V,

we can define its orthogonal complement regarding f:
Wht={veV |YweW: flv,w) =0}

If we see the subspaces of V' as subspaces of PG(n, ¢), then the map [ that maps the subspace
W onto the subspace W+, is an involutory duality. This map 3 is called a polarity. For q odd,
the subspaces of a quadric or Hermitian variety in PG(n, q) are precisely the subspaces that are
contained in their image under the polarity. Geometrically, for ¢ odd, the image of a subspace on
the polar space under the corresponding polarity, is its tangent space.

Consider now a quadric or a Hermitian variety ¥ C PG(n, q). A tangent line in a point P to F
is a line ¢ through this point such that £ N F is { P} or the whole line ¢. A point P € PG(n, q) is
singular for F, if every line through P is a tangent line, or equivalently, if for every line ¢ through
P:¢NF = {P}ortnNF = L The polar space F is singular if it contains a singular point. For
a non-singular point P of F, we define the tangent space as the union of the tangent lines of F
in P. This tangent space forms a hyperplane, which we call the tangent hyperplane Tp(F) in P.
For q odd, this tangent hyperplane is the image of the point P under the corresponding polarity, as
mentioned above.

It is known that all singular points of a singular quadric or Hermitian variety F form a subspace.
In this case, F is a cone m,_,_1F . The vertex m,_,_1 of this cone is the (n — r — 1)-space of
singular points of 7, n > r, and the basis of the cone is a non-singular quadric or Hermitian variety
(depending on the type of F), in a subspace PG(r, ¢) of PG(n, ¢) that is disjoint from 7, _,_;.

A symplectic polar space can also be singular. Similar to the quadrics and Hermitian varieties, a
singular symplectic polar space in PG(n, ¢) is a cone. The vertex of this cone is an s-dimensional
subspace 7, and the basis of the cone is a non-singular symplectic polar space in an (n — s — 1)-
dimensional subspace, disjoint from 7;. Note that n — s — 1 must be odd, since non-singular
symplectic polar spaces only exist in a projective space with odd dimension. The singular points
of a singular symplectic polar space are the points contained in the vertex of the cone. For more
information, we refer to 73, [74].

We continue with some important counting results and remarks on some specific finite classical
polar spaces.

Lemma 1.5.3 ([23) Lemma 9.4.1]). The number of k-spaces in a finite classical polar space F of
rank d and with parameter e, embedded in a projective space over the field ¥, is given by

d k+1

d+e—i

[k + 1] H(q +1).
i=1

Hence, the number of points in F is [Cﬂ (q?*e=1+1). The number of generators in F is H?Zl (gite=i+

1).

Example 1.5.4. The non-singular parabolic quadric Q(2, q) is a set of g+ 1 points in a plane PG(2, q),
such that no three points are collinear. This parabolic quadric is also called a conic.

Remark 1.5.5. For q even, there exists a special point N, not belonging to the parabolic quadric
Q(2k,q), k > 1, such that every line through N in PG(2k, ¢) meets the quadric in a unique point.
Hence, every such line is a tangent line to the quadric. This point /V is called the nucleus of the
quadric.
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Example 1.5.6. Consider a hyperbolic quadric Q = Q*(2n + 1,q). The set of generators ) of Q
can be partitioned into two equivalence classes {21 and €)o. The corresponding equivalence relation ~
is defined as follows: T ~ ma < dim(m; Nm2) = n (mod 2), for any two generators m, and Ty in
Q" (2n + 1, q). The two equivalence classes 21 and Q23 are called the Latin and Greek generators. In
Section we will see that forn = 1, the equivalence classes in Q" (3, q) are two opposite reguli.

Remark 1.5.7 ([74]). The polar spaces Q(2d, q) and W (2d — 1, q) are isomorphic for ¢ even. We
find W(2d — 1, q), for q even, by a projection of Q(2d, q) from the nucleus N of Q(2d, q) to a
hyperplane not through N in the ambient projective space PG(2d, ¢). In this way, there is a one-
to-one connection between the generators of W (2d — 1, ¢) and the generators of Q(2d, q).

We finish this section with the Klein correspondence, which is a map from the lines of PG(3, ¢) to
the points of the hyperbolic quadric Q* (5, q).

Definition 1.5.8. Let [ be a line in PG(3, ¢), and let Y (yo, y1, y2, y3) and Z(2q, 21, 22, z3) be two
different points of [. The ordered set (po1, Po2, Po3, P23, P31, P12), With

Pij = YiZj — YjZi,

is called the set of Pliicker coordinates of |. The Klein correspondence maps a line [ to the point P} in
PG(5, q), such that the set of coordinates of P, is (po1, Po2, P03, D23, P31, P12)-

Note that all points P; in PG(5, ¢), with [ aline in PG(3, ¢), are contained in the hyperbolic quadric
Q% (5,q), defined by the equation zoz3 + T174 + x2x5 = 0. We also denote this quadric by the
Klein quadric. This correspondence has the advantage that constructions in PG(3, ¢) can lead to
good constructions of subspaces in PG(5, ¢). In Section [10.5] we use this correspondence to give a
new, non-trivial Cameron-Liebler example in Q" (5, q).

In Table we give an overview of the most important correspondences.

| PG(3,9) [ @7 (5.9)

Line Point

Two intersecting lines Two points, contained in a common line

The set of lines through a fixed point P and | Line

in a fixed plane 7 with P € 7

The set of lines in a fixed plane Greek plane

The set of lines through a fixed point Latin plane

Lines in a regulus Points of a conic, not contained in a Latin or
Greek plane

Lines of a hyperbolic quadric Points of two conics, contained in two planes
that are each others image under the polarity
of Q*(5,9).

Table 1.2: The image of sets of subspaces under the Klein correspondence.

1.6 Arcs, reguli, spreads and pencils

A line meeting a point set A in 0, 1 or 2 points, is called an external line, a tangent line or a bisecant
to A, respectively. In general, a line, meeting A in 7 points, is called an i-secant.
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Definition 1.6.1. A set S of k-spaces in PG(n, q), AG(n, q) or in a polar space P, that pairwise
have no point in common, is called a partial k-spread in PG(n, q), AG(n, q) or P respectively. If S
cannot be extended to a larger partial k-spread, then S is called maximal. A partial k-spread S such
that every point of PG(n, g¢), AG(n, ¢) or P is contained in an element of S, is called a k-spread.
The elements of a (d — 1)-spread in a polar space P of rank d are generators of P. A (d — 1)-spread
is also called a spread in P. For k = 1, a (partial) k-spread is called a (partial) line spread.

It is known that not every projective space PG(n, ¢) contains a k-spread.

Theorem 1.6.2 ([109]). There exists a k-spread in PG(n, q) if and only if k + 1 is a divisor ofn + 1.

Since PG(n, q) contains qnﬂf 1 points, and a k-space contains qkﬂf 1 points, it follows that a k-
spread only can exist if k+ 1 is a divisor of n+ 1. It is also a sufficient condition, which follows from
the construction of a Desarguesian spread, see for example [73] Theorem 4.1]. For this construction,
field reduction is used to determine the spread elements. Let r = Z—ﬁ The points of PG (r—1, ¢**+1)
correspond to 1-dimensional subspaces of V (r, ¢**1). By considering this vector space over Fy, we
obtain a vector space isomorphic to V(r(k + 1),q) = V(n + 1, ¢), such that the 1-dimensional
subspaces of V (r, ¢"*1) correspond to (k 4 1)-dimensional subspaces of V(n + 1, ¢). This is the
concept of field reduction. In this way, the point set of PG(r — 1,¢**!) corresponds to a set D
of k-dimensional subspaces of PG(n, ¢), which partitions the point set of PG(n, ¢). Hence, these
subspaces form a k-spread in PG(n, ¢). More specifically, this set D is called a Desarguesian spread,
and we have a one-to-one correspondence between the points of PG(r — 1, ¢*1) and the elements

of D.

We will also introduce regular spreads. For this, we first give the definition of a regulus.

Definition 1.6.3. A regulusin PG(2k + 1, q) is a set S of ¢ + 1 pairwise disjoint k-spaces, such
that every line that meets three elements of S, meets all elements of S.

It is known that every three pairwise disjoint k-spaces S, S2, S3 in PG(2k + 1, ¢) are contained
in a unique regulus, see [72] Lemma 15.1.1, Theorem 15.3.12]. For k = 1, a regulus consists of ¢ + 1
lines in PG(3, q). For every three lines l1, l2, l3 in a regulus R, the ¢ + 1 lines, meeting /1, [3 and
I3, also form a regulus, which we call the opposite regulus. A regulus and its opposite regulus in

PG(3, q) form a hyperbolic quadric Q* (3, q), see Section 1.5

Definition 1.6.4. A k-spread S in PG(2k + 1, q) is regular if for every three elements S, S2, S3
in S, it holds that all k-spaces of the regulus, determined by these subspaces, are also contained in

S.

For ¢ = 2, every k-spread in PG(2k + 1, 2) is regular. For ¢ > 2, a spread S is regular if and only
if § is Desarguesian [25]].

Definition 1.6.5. A k-spread S in PG(r(k + 1) — 1, q) is normal if the subspace spanned by any
two spread elements is partitioned by elements of S.

For rr < 2, every k-spread in PG(r(k + 1) — 1, ¢) is normal. For r > 2, it can be proven that S is
normal, if and only if S is Desarguesian, see [4].

Definition 1.6.6. A k-arc in PG(n, q) is a set of k points such that every subset of n + 1 points
spans the whole space PG(n, q). A k-arc is called complete if it is not contained in a (k + 1)-arc.

It is known that an arc in PG(2, ¢) has at most ¢+ 1 elements for ¢ odd, and at most ¢ + 2 elements
for q even, see [101]]. A (¢ + 1)-arc in PG(2, q) is called an oval and a (g + 2)-arc a hyperoval. A
hyperoval can only exist for ¢ even. In this case, a hyperoval is a complete arc. For ¢ odd, an oval is
a complete arc. It can be proven that, for g even, every oval is contained in a hyperoval, and hence,
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is not complete [18]. For ¢ even, the ¢ 4 1 tangent lines to an oval are concurrent, see [18]]. The
intersection point of the tangent lines is called the nucleus of the oval. In this case, for ¢ even, the
union of an oval and its nucleus is a hyperoval.

It is clear that a non-singular parabolic quadric in PG(2, ¢), so a conic Q(2,¢), is an oval, see
Example Moreover, Segre [106] could prove the converse for g odd.

Theorem 1.6.7 ([106]]). Every oval in PG(2,q), q odd, is a conic.

For PG(2, q), q even, this result is not true. A counterexample for this can be found by considering
a hyperoval which is a conic together with its nucleus. If we delete a point, different from the
nucleus, then we find an oval. This set is not a conic if ¢ > 8.

In an unpublished manuscript from Penttila, a characterisation for ovals in PG(2, q2), q even, is
given.

Result 1.6.8 ([98]). Let O be an oval of PG(2,¢?), q even. Then O is a conic if and only if every
triple of distinct points of O, together with the nucleus of O, lies in a Baer subplane that meets O in
q + 1 points.

A set S of points in PG(2, q) is called a translation set, with respect to a line 4, if the group of elations
with axis ¢, fixing S, acts transitively on the points of S \ £. The line ¢ is called the translation line.
If a hyperoval H in PG(2, ¢) is a translation set, then it is called a translation hyperoval. To avoid
the trivial and special cases, we suppose that ¢ = 2", h > 2. It is known that the translation line
must be a bisecant of H, and that every translation hyperoval in PG(2, ¢) is PGL-equivalent to the
point set ; = {(1,¢,t*)|t € F,} U{(0,1,0),(0,0,1)}, for a certain i < % and ged(i, h) = 1 (see
e.g. [73, Theorem 8.5.4], [97]). For ¢ = 1, the hyperoval H; corresponds to a conic and its nucleus.
All hyperovals, equivalent with H1, are called regular. In this case, every bisecant of Hy, through
the nucleus of the conic, is a translation line for the hyperoval, and so the translation line is not
unique.

The hyperovals H;, with 1 < i < %, were the first examples of irregular hyperovals, and were

determined by Segre in [107]. The translation line of these hyperovals is unique: ¢ : X = 0. In this
case, the group G of elations with axis the line ¢, that fixes H;, is the translation group containing
all elements of the form

] )
X2
a2

00

M,=1a 1 0

0 1

with a € F,. From this representation of the group, it is clear that G = (F, +).

Ovoids can be defined in several incidence geometries, but in this thesis, we only use them in the
context of polar spaces.

Definition 1.6.9. A partial ovoid in a polar space P is a set of points in P such that each generator
contains at most one point of this set. It is called an ovoid if each generator contains precisely one
point of the set.

To end this section, we also give the definition of a pencil and a sunflower in PG(n, ¢), in AG(n, q)
and in a polar space P.

Definition 1.6.10. The set of all k-spaces through a fixed t-space 7, k > t, is called a t-pencil of
k-spaces with vertex 7, and, in particular, a point-pencil if t = 0 and a line-pencil if t = 1.
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Note that for all k-spaces U, V in a t-pencil with vertex 7, it holds that 7 C U N V. In this thesis,
we will always use the notation vertex, except in Chapter [6] In this chapter, graphs are involved,
and to avoid confusion, we will denote the vertex of a point-pencil by the base point.

We use the notation Star( P) for all lines through the point P, Lines(r) for all lines in the subspace
7, and Pencil( P, 7v) for all lines through the point P contained in the subspace 7.

Definition 1.6.11. A sunflower S, with vertex 7, is a set of subspaces through 7, such that for
every two distinct subspaces U,V € Sitholdsthat U NV = 7.

1.7 Graph theory

1.7.1 General graph theory

In this thesis, we will use graphs to model some incidence geometries.

Definition 1.7.1. A graph ' = (V(T"), E(T')) consists of a set V(I") of vertices and a set E(T")
of unordered pairs of V(I"), which are called edges. If we only use one graph I', then we use the
notation V' and E, instead of V(I") and E(T"). A vertex v and an edge e are incident if the vertex
v is contained in the edge e. Two vertices v and w are adjacent if there is an edge containing both
vertices. We denote this by v ~ w. The vertices adjacent to a fixed vertex v are called the neighbours
of v. Two edges are adjacent if they have a vertex in common.

Definition 1.7.2. A path of length [, from a vertex vy to a vertex v; in a graph I' is a sequence

of (distinct) vertices (vg, v1,va, ..., v;—1,;), such that the vertices v;_; and v; are adjacent for all
i,1 < i < [. The distance d(z,y) between two vertices = and y is the minimal length of a path
(vo,...,v;) with vg = z,v; = y. For a given vertex v € V, the set of vertices in I" at distance i

from v is denoted by I';(v). A graph I is connected if there exists a path between every two vertices
of I'. The maximal distance that occurs between two vertices of a connected graph I is called the
diameter of the graph.

In this thesis, we suppose that every pair of vertices can be contained in at most one edge and
that every edge contains two different vertices. We also suppose that every two vertices can be
connected by a path. In other words, we will only consider connected, simple graphs.

Definition 1.7.3. The degree of a vertex v in a graph I' = (V| F) is the number of vertices in V'
adjacent with v, or equivalently the number of edges in E that are incident with v. The graph I is
k-regular, or regular of degree k € N if every edge of F has degree k.

Let d be the diameter of I'. If there exist integers ¢y, ..., cq, ao, - .., aq, bo, - . ., bg—1, such that for
all vertices v and w in V, we have that

e a; = |Ti(v) NT1(w)| if i = d(v, w),

« b =Tit1(v) NT1(w)] if i = d(v,w) < d,

o ¢; =|Tim1(v) NT1(w)] ifi = d(v,w) > 0,
then I is a distance-regular graph with intersection array {ci,...,cq;a0,...,aq;bo, ..., bi_1}.
Note that all distance-regular graphs are regular.

Definition 1.7.4. A graph I is strongly regular if I" is k-regular and if there exist integers A and
1 > 0 such that
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« every two adjacent vertices have A common neighbours,

« every two non-adjacent vertices have 1 common neighbours.

1.7.2 Algebraic graph theory

We continue with introducing some aspects in algebraic graph theory. These topics will be useful
in the context of Cameron-Liebler sets.

LetI' = (V, E) be a graph, and let V = {vy,v2,...,v,},n > 1.

Definition 1.7.5. The adjacency matrix of I is the matrix A = (a;j)1<i j<n, With a;; = 1 if the
vertices v; and v; are adjacent and a;; = 0 if the vertices v; and v; are non-adjacent. The elements
a;; are zero for all 7.

Note that the adjacency matrix of a graph depends on the order of the vertices.

Definition 1.7.6. The characteristic polynomial of a graph I is the characteristic polynomial of its
adjacency matrix A, i.e. the polynomial p(\) = det(AI, — A). Likewise, the eigenvalues of I" are
the eigenvalues of its adjacency matrix, i.e. the (complex) roots of the characteristic polynomial of
the graph I'. If I' is k-regular, then Aj = kj, and so, we have that k is an eigenvalue of I'. This
eigenvalue is often called the trivial eigenvalue. The multiplicity of an eigenvalue is the algebraic
multiplicity as a root of the characteristic polynomial. As A is a real symmetric matrix, we know
that all eigenvalues of A, and so of I, are real.

We end with the definition of intriguing and tight sets, which have a strong link with Cameron-
Liebler sets.

Definition 1.7.7. Let ' = (V, E) be a connected k-regular graph. A set Y of vertices of I is an
intriguing set if there are integers y and ¢’ such that every vertex of Y is adjacent to y vertices of
Y and every vertex of V' \ Y is adjacent to y vertices of Y.

Note that () and V' are examples of intriguing sets in I' = (V, F). An intriguing set, different from
() and V, is called non-trivial.

Lemma 1.7.8. LetI" = (V, E) be a connected k-regular graph. A setY of vertices, withY # (), V, is
intriguing if and only if its characteristic vector lies in the span of the all-one vector and an eigenvector
vg of T such thaty —y = 0.

If 6 is the largest or smallest non-trivial eigenvalue of I, then Y is called a tight set of type 1 or 2
respectively.

1.7.3 Graph colorings

Many problems in finite geometry can be translated to finding specific families or partitions of
vertices in a certain graph. To see this, we start with the definition of a clique and coclique.
Definition 1.7.9. Let ' = (V| F) be a graph.

« A set S of vertices in V' is called a clique if every two vertices in S are adjacent.

« A set S of vertices in V is an independent set if no two vertices in S are adjacent. An inde-
pendent set is also called a coclique.
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A clique or coclique is maximal if it is not contained in a larger clique or coclique, respectively. The
size of the largest clique or coclique in a graph I' is called the clique number w(I") and independence
number o(I") respectively.

We end this section on graphs with the definition of a coloring.

Definition 1.7.10. A coloring of a graph I is an assignment of colors to the vertices of I', such that
every vertex has one color and such that adjacent vertices get different colors. The sets of vertices
with the same color are called the color classes.

The chromatic number x(I") of a graph I' is the smallest number ¢ such that there exists a coloring
of I with ¢ colors.

1.8 Tactical decompositions

The first exploration of Cameron-Liebler sets, by Cameron and Liebler [28], uses the theory of
tactical decompositions. Tactical decompositions were first introduced by Dembowski [42]. This
section is based on the notes in [38]].

Definition 1.8.1. Let (P, B, 1) be an incidence geometry with P a set of points and B a set of
blocks. Let { Py, Ps, ..., Ps}, P; # (), be a partition of P, and let {By, By, ..., B}, B; # 0, be a
partition of .

« If there exists an (s x r)—matrix X with [{p € P p I b}| = X;;,¥b € Bj, then the
decomposition is called block-tactical.

« If there exists an (s x r)—matrix Y with [{b € B;| p I b}| = Y;;,Vp € P}, then the decom-
position is called point-tactical.

The decomposition is called tactical if it is both block- and point-tactical.

Lemma 1.8.2. Let (P,B,1) be an incidence geometry with P a set of points, B a set of blocks
and A the point-block incidence matrix. Let { Py, Py, ..., Ps}, P; # ), be a partition of P, and let
{B1,Ba,...,B.},B; # 0, be a partition of B.

e If the partition is block-tactical with corresponding matrix X, then

,
ATXpi = ZXilXBuW e{1,...,s}.
=1

« If the partition is point-tactical with corresponding matrix Y, then

Axp, = ZYljxpl,W e{l,...,r}.
=1

The action of (a subgroup of) the automorphism group of an incidence geometry gives rise to a
tactical decomposition of the point- and block-set.

Lemma 1.8.3. Let (P, B, I) be an incidence geometry, with P the set of points and B the set of blocks.
Consider a subgroup G of the automorphism group of (P, B, I), with orbits { P1, P», ..., Ps} on the
points and orbits { By, Ba, . .., B} on the blocks. Then these partitions form a tactical decomposition.
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1.9 Association schemes

In this section, we give a short introduction on association schemes. We rely on [23| Chapter 2].
For more details, we refer to [22] Section 2], [23| Chapter 2] and [20].

Definition 1.9.1 ([22] Section 2.1]). Let X be a finite set of size n, whose members are known
as vertices. A d-class association scheme is a pair (X, R), where R = {Ro, R1,...,Rq} is a set of
binary symmetric relations with the following properties:

1. {Ro,R1,...,Rq} is a partition of X x X,
2. Ry is the identity relation,

3. there are constants péj such that for all (z,y) € Ry, there are exactly pﬁj elements z € X
such that (z, z) € R; and (z,y) € R;. These constants are called the intersection numbers of
the association scheme.

Note that the association schemes defined above are sometimes also called symmetrical association
schemes. Since the relations R; are symmetric, we have that péj = péi, V0<1,75,0<d.

We now investigate the (binary) adjacency matrices A; corresponding to the relations R;.

1 if (z,y) € Ry,
(Ai)wy =
0 else.

Property 1.9.2. For all values 0 < i,j < d, it holds that:

1 Z?:OAZ’ =J,
2. Ag =1,
3. A; = AT,

4 AiAj =Yg P AL = A A

From the first property, it follows that the matrices A; are linearly independent, and from the third
and fourth property we find that these matrices generate a (d+1)-dimensional commutative algebra
A of symmetric matrices, which is called the Bose-Mesner algebra.

Since the matrices A; commute, they can be diagonalized simultaneously. This gives the following
result, which was originally proven in [41].

Result 1.9.3. Consider a d-class association scheme (X, R ), with adjacency matrices A; correspond-
ing to the relations R;, 0 < i < d, and with | X| = n. Then, there is an orthogonal decomposition of
R™ as a direct sum of d + 1 orthogonal eigenspaces of the matrices A;, corresponding to the common
eigenvectors. Hence, we have that R™ = Vo L Vi L -+ L Vg, with Vg, ..., Vy the common spaces
of eigenvectors with associated eigenvalues Pj;, with Pj; the eigenvalue of A; on V;. Note that one
of the spaces of eigenvectors, w.Lo.g. Vy, will be 1-dimensional since J € A has eigenvalue n with
multiplicity 1.

Let (A, R) be an association scheme linked to a geometrical structure, such as a projective space,
an affine space or a finite classical polar space. The elements Ay, of the association scheme corre-
spond to the k-spaces in the geometrical structure. For these schemes, a classical ordering of the
eigenspaces V), . .., V; is imposed; V} is the 1-dimensional eigenspace (j) and V; is the eigenspace
such that im(AT) = V5 L V4, with A the point-k-space incidence matrix.
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We end this subsection with two well-known association schemes. For more information on these,
we refer to [41]], [23] Section 9.1 and 9.3] and [67, Section 6 and 9].

Example 1.9.4 (The Johnson scheme). Let X be a finite set of size n, and let F,, k < n, be the set
of all subsets of size k. The Johnson graph J(n, k) is the graph whose vertices are the elements of Fy,
and two vertices are adjacent if they have k — 1 elements in common. The relations of the corresponding

association scheme are R; = {(Hl, Ily) € Fi x F||ILi N1ly| =k — i}, withi € {0,...,k}.

Example 1.9.5 (The Grassmann scheme). Consider the n-dimensional projective space PG(n, q)
over the field F,, and let Ay, k < n, be the set of all k-dimensional subspaces. The Grassmann graph
Jq(n + 1,k + 1) is the graph whose vertices are the elements of Ay, and two vertices are adjacent if
the corresponding subspaces intersect in a (k — 1)-space. The relations of the corresponding association
scheme are R; = {(m1,m2) € Ap X Ag| dim(m; Nme) = k—i}, withi € {0, ..., k+1}. This scheme
is also called the g-analogue of the Johnson scheme.

There are many other mathematical structures that can be linked to an association scheme, for
example polar spaces, affine spaces and groups, see [114] Introduction]. In Chapter we will
often use the association schemes on the generators of finite classical polar spaces.

1.10 Useful countings and bounds

In this thesis, we will frequently use counting arguments to find classification results. For this, we
will often use the following lemma.

Lemma 1.10.1 ([[108, Section 170]). The number of j-spaces disjoint from a fixed m-space in

PG(n, Q) equals q(m+1)(j+1) [T;:-T]

Furthermore, we will use bounds on the Gaussian binomial coefficients found in [77, Lemma 2.1]
and [[78] Lemma 34, Lemma 37].

Lemma 1.10.2. Letn > k > 0.

1. Letq > 3. Then [}}] < 2¢F (k).

2. Letq > 4. Then [}] < <1 + %) gFn=F),

qn+1
q—1"

3. Letq>2andn > 1. Then6,, <

4. Letn >k > 0. Then [}}] > (1 + %) gFn=F),

We end with another result on the Gaussian binomial coefficients. First, we formulate the (double)
g-analogue of Pascal’s rule:

Result 1.10.3 (Pascal’s Rule).
pla—1 a—1 a a—1 apla—1
= = . 1.3
A A A R @
Lemma 1.10.4. For integers a, b, c, with0 < b, c < a, we have that

-5 e

1=0
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Proof. We use induction on c. For ¢ = 0, the statement is trivial, so suppose that <h is true for a
value ¢ — 1. Then we will prove that it is also true for the value c. We first use the left equality of

(1.3). In the second last step, we use the right equality of (1.3).

a . ! a—=c + 1 C — 1 (b*Z)(C*l*Z)
b T | b—i i |1

0

1

o ([a—c] b a—c c—=11 4 i)e—1-i)
S (Gl b )

0

1 1

bitie—i) LN~ a—¢ Jfe=1] i1
1 * O[b—z‘—lni 1

a—c||lc—1 . . ‘fa—clfe—1 . .
(b—3)(c—1) (b—j+1)(c—j)
A T 1 e P

=1

€l 4  =Ja—c b—k)e—k) [ [¢—1 c—1] (cp a—c
]q 2 bkz]q <[ k ]+[1€1 1 Tlo—ec

<
Il

k=1
c—1
_ a—C be a—cC C (b—k)(c—k) a—cC
e 91 | i T
k=1
_ s [ [e] ye-men
bl -
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Intersection problems for subspaces in
projective and affine spaces

27






2 Introduction

€C  Life without geometry is pointless. 99

—Unknown

One of the classical problems in extremal set theory is to determine the size of the largest sets of
pairwise non-trivially intersecting subsets. This problem was solved in 1961 by Erdos, Ko and Rado
[55]], and their result was improved by Wilson in 1984.

Theorem 2.0.1 ([113]]). Let n, k and t be positive integers and suppose thatk > t > 1 andn >
(t+1)(k—t+1). IfS is a family of subsets of size k in a set 2 with |Q)| = n, such that the elements
of S pairwise intersect in at least t elements, then |S| < (7_1).

Moreover, ifn > (t+ 1)(k —t + 1) + 1, then |S| = (Z:ﬁ) holds if and only if S is the set of all the
subsets of size k through a fixed subset of () of sizet.

Note that if ¢ = 1, then § is a collection of subsets of size k of an arbitrary set, which are pairwise
not disjoint. In the literature, a family of subsets that are pairwise not disjoint, is called an Erdos-
Ko-Rado set, in short EKR set and the classification of the largest Erdos-Ko-Rado sets is called the
Erdos-Ko-Rado problem. Furthermore, as new families of any size can be found by deleting elements,
the research is focused on maximal families: these are families of pairwise intersecting subsets, not
extendable to a larger family with the same property.

Hilton and Milner [71]] described the largest Erdos-Ko-Rado sets S with the property that there is
no element contained in all elements of S.

Theorem 2.0.2 ([71]]). Let 2 be a set of size n and let S be an Erdos-Ko-Rado set of k-subsets in €2,
k > 3 andn > 2k + 1. If there is no element in §) which is contained in all subsets in S, then

n—1 n—k—1
< — .
|8|_(k—1) ( k-1 )“

Moreover, equality holds if and only if

e S is the union of { F'}, for some fixed k-subset F, and the set of all k-subsets G of €2 containing
a fixed element x ¢ F, such that G N F # ), or

e k =3 and S is the set of all subsets of size 3 having an intersection of size at least 2 with a fixed
subset I of size 3.

The classification of the second largest maximal EKR set is often called a Hilton-Milner result.

This set-theoretical problem can be generalized in a natural way to many other structures such
as designs [102], permutation groups [66], affine spaces and projective geometries [37]. In this
thesis, we work in the projective and affine setting, where this problem is known as the q-analogue
of the Erdds-Ko-Rado problem. Frankl and Wilson classified the largest set of k-spaces, pairwise
intersecting in at least a ¢-space in PG(n, q).

Theorem 2.0.3 ([60]). Lett andk be integers, withQ < t < k. LetS be a set of k-spaces in PG(n, q),
pairwise intersecting in at least a t-space.
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(i) Ifn > 2k + 1, then |S| < [Z:ﬂ Equality holds if and only if S is the set of all the k-spaces,
containing a fixed t-space of PG(n, q), orn = 2k + 1 and S is the set of all the k-spaces in a
fixed (2k — t)-space.

(ii) If 2k — t < n < 2k, then |S| < [2’“,:#] Equality holds if and only if S is the set of all the
k-spaces in a fixed (2k — t)-space.

Corollary 2.0.4. Let S be an Erdos-Ko-Rado set of k-spaces in PG(n, q), sot = 0. If n > 2k + 1,
then |S| < [Z] . Equality holds if and only if S is the set of all the k-spaces, containing a fixed point of
PG(n,q), orn =2k + 1 and S is the set of all the k-spaces in a fixed hyperplane.

Note that in Theorem|2.0.3| the condition n > 2k—t is not a restriction, since any two k-dimensional
subspaces in PG(n, q), with n < 2k — t, meet in at least a ¢-dimensional subspace.

Related to this question, we report the g-analogue of the Hilton-Milner result on the second largest
maximal Erdos-Ko-Rado sets of subspaces in a finite projective space, due to Blokhuis et al.

Theorem 2.0.5 ([12]]). Let S be a maximal set of pairwise intersecting k-spaces in PG(n, q), with
n>2k+2,k>2andq>3 (orn>2k+4,k>2andq=2) IfS is not a point-pencil, then

S| < [Z] EICEY [" - ’]: - 1] + g

Moreover, if equality holds, then

(i) either S consists of all the k-spaces through a fixed point P, meeting a fixed (k + 1)-space T,
with P € 7, in a j-space, j > 1, and all the k-spaces in T; or

(ii)) k = 2 and S is the set of all the planes meeting a fixed plane 7 in at least a line.

The Erd6s-Ko-Rado problem for & = 1 has been solved completely. Indeed, in PG(n, ¢) withn > 3,
a maximal Erdos-Ko-Rado set of lines is either the set of all the lines through a fixed point or the set
of all the lines contained in a fixed plane. It is possible to generalize this result for a maximal family
S of k-spaces, pairwise intersecting in a (k — 1)-space, in a projective space PG(n, q), n > k+2.

Theorem 2.0.6 ([123} Section 9.3]). Let S be a set of projective k-spaces, pairwise intersecting in a
(k — 1)-space in PG(n, q), n > k + 2. Then, all the k-spaces of S contain a fixed (k — 1)-space or
they are contained in a fixed (k + 1)-space.

All intersection problems we discuss in this part, can be linked to the Erdos-Ko-Rado problem.

In Chapter|[3} we classify the largest examples of k-spaces, pairwise intersecting in at least a (k — 2)-
space in PG(n, ¢). In Chapter [4] we investigate the second largest Erdés-Ko-Rado sets of k-spaces
in both a projective and affine context. This Hilton-Milner result classifies large sets S of k-spaces
pairwise intersecting in a ¢-space, such that S is not a t-pencil.

Note that in Chapters[3|and[4] we investigate subspaces pairwise intersecting in at least a subspace of
a certain dimension. However, in Chapter[5] we investigate sets S of k-spaces in PG(n, ¢) pairwise
intersecting in precisely a point. The Sunflower bound states that if the number of elements in such
a set S surpasses the Sunflower bound, then & must be a sunflower. We were able to lower this
bound for k > 3 and ¢ > 9.

In Chapter [6] we do not investigate subspaces in PG(n, ¢), but flags of subspaces. By definition,
two flags are intersecting if they are not in general position. Hence, an Erdos-Ko-Rado set of flags,
is a set of flags that are pairwise not in general position. In this thesis, we investigate how we can
cover all flags of a specific type in PG(n, ¢), by using as few Erdos-Ko-Rado sets as possible. We
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discuss this question for line-solid flags in PG(4, ¢) and for flags containing a (d — 1)- and a d-space
inPG(2d,q),d > 2.
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3 Subspaces of dimension £, pairwise
intersecting in at least a (k — 2)-space

€C Not everything that counts can be counted, and not everything that can be
counted counts. b/

—Albert Einstein

The results in this chapter are joint work with dr. Giovanni Longobardi, dr. Ago-Erik Riet and prof.
Leo Storme, and will appear in [45].

3.1 Introduction and preliminaries

In this chapter, we investigate large sets of k-spaces, pairwise intersecting in at least a (k — 2)-space
in PG(n, ¢). For k = 2, this corresponds to large sets of planes, pairwise intersecting in at least
a point. This Erdos-Ko-Rado problem for sets of projective planes is trivial if n < 4. For n = 5,
Blokhuis, Brouwer and Szonyi classified the six largest examples [13] Section 6].

De Boeck investigated the maximal Erdos-Ko-Rado sets of planes in PG(n, ¢) with n > 5, see [33]].
He characterized those sets with sufficiently large size and showed that they belong to one of the
11 known examples, explicitly described in his work.

In [53]], a classification of the largest examples of sets of k-spaces in PG(n, q) pairwise intersecting
in precisely a (k —2)-space is given. In [21]], Brouwer and Hemmeter investigated sets of generators,
pairwise intersecting in at least a space with codimension 2, in quadrics and symplectic polar spaces.
In this chapter, we will study the projective analogue of this question. Let f(k,q) = max{3¢* +
6¢> +5¢> +q+ 1,011 + ¢* +2¢° + 3¢} and so

3¢ +6¢°+5¢> +q+1 ifk=3,g>20rk=4,q=2

k,q) =
Sk 0) {9k+1+q4+2q3+3q2 ifk=4,9g>2o0rk > 4.

We analyze the sets of k-spaces in PG(n, q) pairwise intersecting in at least a (k — 2)-space and
with more than f(k, ¢) elements. We will suppose that these sets S of subspaces are maximal, and
during this discussion, we will give bounds on the size of the largest examples.

In [54], and in Chapter[4] families of subspaces pairwise intersecting in at least a ¢-space were inves-
tigated. More specifically, the largest non-trivial examples of a set of k-spaces, pairwise intersecting
in at least a t-space in PG(n, q) were given.

Theorem 3.1.1 ([54] and Theorem [4.4.7). Let F be a set of k-spaces pairwise intersecting in at
least a t-space in PG(n,q), k >t+1,t > 0,n > 2k + 3 +t, ¢ > 3, of maximum size, with F not a
t-pencil, then F is one of the following examples:

i) the set of k-spaces, meeting a fixed (t 4+ 2)-space in at least a (t + 1)-space,

i1) the set of k-spaces in a fixed (k + 1)-space & together with the set of k-spaces through a t-space
0 C &, that have at least a (t + 1)-space in common with §.
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Note that the two examples in the previous theorem correspond to Example [3.1.2f(ii) and (i) for
t = k — 2 respectively (see below). While, in [54] and in Chapter[4] the largest non-trivial example
for all values of ¢ is classified, here, for ¢ = k — 2 we improve on this result by classifying the ten
largest examples, see Main Theorem [3.5.1}

We end this section with some examples of maximal sets S of k-spaces in PG(n, ¢) pairwise inter-
secting in at least a (k — 2)-space, n > k + 2 and k > 3. We add a proof of maximality for the
examples for which it is not straightforward.

Example 3.1.2. Examples of maximal sets S of k-spaces in PG(n, q) pairwise intersecting in at least

a (k — 2)-space.

(4)

(i)

(idd)

(k — 2)-pencil: the set S is the set of all k-spaces that contain a fixed (k — 2)-space. Then
‘S’ _ [n—§+2] )

Star: there is a k-space ( such that S contains all k-spaces that have at least a (k — 1)-space in
common with . Then |S| = ¢0x0,——1 + 1.

Generalized Hilton-Milner example: there is a (k + 1)-space v and a (k — 2)-space 7 C v such
that S consists of all k-spaces in v (type 1), together with all k-spaces of PG(n, q), not in v,
through 7 that intersect v in a (k — 1)-space (type 2). Then |S| = Op1 +¢*(¢®> +q+1)0,_p_a.

There is a (k + 2)-space p, a k-space « C p and a (k — 2)-space m C « so that S contains all
k-spaces in p that meet « in a (k — 1)-space not through  (type 1), all k-spaces in p through
m (type 2), and all k-spaces in PG(n, q), not in p, that contain a (k — 1)-space of « through
(type 3). Then |S| = (¢ + 1)0n—1 + ¢*(¢ + DOr—2 + ¢* — q.

Figure 3.1: Example (iv): the blue, red and green k-spaces correspond to the k-spaces of type 1, 2
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and 3, respectively.

Lemma 3.1.3. The set S from Example(3.1.2(iv) is maximal.

Proof. Suppose there is a k-space E ¢ S, meeting all elements of S in at least a (k —2)-space.
We start with the case 7 ¢ E. If dim(ENa) < k—2, then there is a (k — 1)-space p through
min o with dim((E N a) N p) < k — 3. There are elements of type 3 through p that meet £
in a subspace of dimension at most & — 3, which gives a contradiction. Hence, F contains
a (k — 1)-space o C a. Let G be an element of S of type 2 such that (G, ) = p, and so

G Na = 7. We have
dim(ENp) > dim((ENG,ENa)) m(ENa)+dim(ENG) —dim(ENGNa)

> di
> (k—1)+(k—2)— (k—3) > k.
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So, E C p, which implies that ¥ € S (type 1), a contradiction. Now, we suppose that 7 C F.
Let F and F5 be two elements of S of type 1, with (F}, F») = pand dim(mrNF1NFy) = k—4.
First we show that their existence is assured. Indeed, let 7r; and 72 be two different (k — 3)-
spaces in 7 and let «; be a (k — 1)-space in « through 7,7 = 1,2. Let P; be a pointin p \ «
and let 7} = (P;, a1). Finally, consider P, to be a point in p \ («, F) and let Fy, = (Ps, ag).
Since £ ¢ S and m C E, we know that E cannot contain a (k — 1)-space of «, and so,
ENa = 7. Hence, from F) N Fy C a, it follows that dim(E N Fy N Fy) = dim(7 N Fy N Fy).

Then
dim(E N p) = dim(E N (F, Fy))
> dim(E N F) +dim(E N Fy) — dim(E N Fy N Fy)
>(k—-2)+(k—2)—(k—4) > k.
Hence, ¥ C p which implies that £ € S, type 2, again a contradiction. |

(v) Thereis a (k + 2)-space p, and a (k — 1)-space o« C p such that S contains all k-spaces in p
that meet « in at least a (k — 2)-space (type 1), and all k-spaces in PG(n, q), not in p, through
a (type 2). Note that all k-spaces in PG(n, q) through o are contained in S.

Then |S| = 0 + ¢*(¢* + ¢ + 1)0k_1.

Figure 3.2: Example(v): the blue and red k-spaces correspond to the k-spaces of type 1, 2, respec-
tively.

Lemma 3.1.4. The set S from Example[3.1.3(v) is maximal.

Proof. Suppose there is a k-space E ¢ S, meeting all elements of S in at least a (k — 2)-
space. Then E contains a (k — 2)-space o in «, since E meets all elements of S of type
2. Note that F cannot contain «, since then, F would be a k-space in S. Let o1 and o3 be
two distinct (kK — 2)-spaces in o with dim (o1 No2 Nog) = k — 4. Consider F} and F3, two
elements of S of type 1 through o1 and o9, respectively, with dim(F; N Fy) = k — 2. Note
that dim(E N F1 N Fy) = k — 4. Indeed,

k—4<dmENFNF) <k-2
(a) ¥dim(ENFNFy) =k —2,then ENFyNFyNa=F; N FyNa, a contradiction.
(b) f dim(E N Fy N Fy) = k — 3, there exists a point P € F; N F, N E not in o and
dim(ENp) >k — 1. Since E ¢ S, then E ¢ p. The only possibility is dim(E N p) =

k — 1, but then we can find a k-space F of type 1 such that E N F is a (k — 3)-space,
again a contradiction.
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Hence, dim(E N F} N Fy) = k — 4 and

dim(E N p) = dim(E N (F1, F3))
> dlm(E N Fl) + dlm(E N Fg) — dlm(E NFy N FQ)
S (h—2)+ (k—2)— (h—4) > k.

So, E C p, which implies that &/ € S, a contradiction. [ |
(vi) There are two (k + 2)-spaces p1, p2 intersecting in a (k + 1)-space o = p1 N pa. There are two

(k—1)-spacesma, mp C o withwaNmp the (k—2)-space A, there is a point Pap € a\{(ma,7B),
and let Ao, A\p C A be two different (k — 3)-spaces. Then S contains

type 1. all k-spaces in «,

type 2. all k-spaces of PG(n, q) through (Pap, \), not in py and not in pa.

type 3. all k-spaces in p1, not in «, through Pap and a (k — 2)-space in 7 4 through A4,

type 4. all k-spaces in p1, not in «, through Pap and a (k — 2)-space in wp through \p,

type 5. all k-spaces in pa, not in «, through Pop and a (k — 2)-space in 7 4 through Ap,

type 6. all k-spaces in ps, not in o, through Pap and a (k — 2)-space in wp through A 4.

Then |S| = 0,k + ¢*0r_1 + 4¢°.

Figure 3.3: Example(vi): the orange k-space is of type 1, the green one of type 2, the red ones of
type 3 and 6, and the blue ones of type 4 and 5.

Lemma 3.1.5. The set S from Example[3.1.4 (vi) is maximal.

36



3 Subspaces of dimension k, pairwise intersecting in at least a (k — 2)-space

Proof. Suppose there is a k-space F ¢ S, meeting all elements of S in at least a (k —2)-space.
Suppose first that P4 ¢ E. As E contains at least a (k — 2)-space of all elements of S, type
1 and 2, E contains a (k — 1)-space (3 in « such that 3 contains a (k — 2)-space of (P4p, \),
not through P4p. Consider now the elements F' and G of S, type 3 and 4 respectively, with
FNGNa=(Pap,\aNAp).IfE ¢ p1,thendim(ENFNG) <k—4and

E—1=dim(ENa)=dim(ENp)=dim(E N (F,G))
>dim(ENF)+dim(ENG) —dim(ENFNG)
>(k—-2)4+(k—2)—(k—4) >k,

a contradiction. Hence, EF C p;. Analogously, we find that E C p9, using two elements of &
of type 5 and 6. And so, F C p1 N p2 = «, which implies that ¥ € S, type 1, a contradiction.
So now we may suppose that P45 € E. Then FE contains a (k — 1)-space of « that meets \
in a (k — 3)-space. This follows since E meets the elements of S of type 1 and 2 in at least a
(k — 2)-space. Note that the dimension of E N4 and EN7pisk —2ork —3as EN\is
a (k — 3)-space. Moreover, the latter spaces do not both have the same dimension. Indeed, if
dim(ENn4) =dim(ENng) =k — 2, then E C a, type 1, a contradiction. Moreover, since
E contains P4p, and since dim(E N«a) = k — 1, we know that dim(E N (w4, 7mR)) = k — 2.
Ifdim(ENms) =dim(E N7p) = k — 3, then wlo.g. we may suppose that E N A # A 4.
Consider now an element X of type 3 such that A ¢ X. Then dim(X N ENa) = k — 3,
and so, E N X ¢ «. Hence, E and X also share points in p; \ o and so, E C p;. Similarly,
E C paandso E C p1 N pa = a which cannot occur.

By a similar argument, we find that the dimension of E N A4 and ENApisk — 3 or k — 4,
both not the same dimension. Then E contains a (k — 2)-space of w4 or 7, and E contains
A4 or Ap. W.lo.g. we may suppose that F contains A4 and a (k — 2)-space of 7 4, and meets
TR in Ag.

Let H be an element of type 1 of S, and let G be an element of type 4 of S through a (k — 2)-
space 0 # A in mp with H NG = 0. Then, since dim(ENG N H) = k — 4,

dim(E N p) = dim(E N (G, H))
> dim(EN Q) + dim(E N H) — dim(ENG N H)
>(k=2)+(k=2)—(k=4) >k,

and so E C p;. Hence, E € S, type 3, a contradiction. [ |

Figure 3.4: Example(vii): the red, blue and green planes correspond to the k-spaces of type 1, 2 and
3 in PG(n, q)/~, respectively.

(vii) There is a (k — 3)-space v contained in all k-spaces of S. In the quotient space PG(n,q)/~,
the set of planes corresponding to the elements of S is the set of planes of example VIII in
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3 Subspaces of dimension k, pairwise intersecting in at least a (k — 2)-space

(viii)

[33]: let U be an (n — k + 2)-space, disjoint from =y, in PG(n, q). Consider two solids o1 and
o9 in VU, intersecting in a line l. Take the points P; and P onl. Then § is the set containing
all k-spaces through (v,1) (type 1), all k-spaces through (-, P\) that contain a line in o1 and
a line in oy (type 2), and all k-spaces through (v, P3) in (y,01) or in (7y,02) (type 3). Then
S| = n—k + ¢* + 2¢° + 3¢

In Lemma [3.4.2] we prove that the set S is maximal.

There is a (k — 3)-space y contained in all k-spaces of S. In the quotient space PG(n, q)/~, the
set of planes corresponding to the elements of S is the set of planes of example I X in [33]: let ¥
be an (n — k + 2)-space, disjoint from~, in PG(n, q), and let | be a line and o a solid skew to,
both in V. Denote (l,0) by p. Let P; and P, be two points onl and let R1 and Ry be a regulus
and its opposite regulus in 0. Then S is the set containing all k-spaces through (v, 1) (type 1), all
k-spaces through (-, P1) in the (k 4+ 1)-space generated by v, 1 and a fixed line of R1 (type 2),
and all k-spaces through (v, Py) in the (k + 1)-space generated by 7, and a fixed line of R2
(type 3). Then |S| = 0,1, + 2¢° + 2¢°.

In Lemma 3.4.3] we prove that the set S is maximal.

Figure 3.5: Example(viii): the red, green and blue planes correspond to the k-spaces of type 1, 2, 3

(ix)

()

in PG(n, q) /7, respectively.

There is a (k — 3)-space y contained in all k-spaces of S. In the quotient space PG(n, q)/~, the
set of planes corresponding to the elements of S is the set of planes of example V11 in [33]: let
VU be an (n — k + 2)-space, disjoint from v in PG(n, q) and let p be a 5-space in V. Consider a
line l and a 3-space o disjoint from I, both in p. Choose three points P;, Py, P3 onl and choose
four non-coplanar points Q1, Q2, Q3, Q4 in 0. Denotel; = Q1Q2, I1 = Q3Q4, Iz = Q1Q3,
lo = Q2Qu4, I3 = Q1Q4, and I3 = Q2Q3. Then S is the set containing all k-spaces through
{(v,1) (type 0) and all k-spaces through {~y, P;) in (,1,1;) orin {(v,1,1;), i = 1,2,3 (typei).
Then |S| = 0, + 64>.

In Lemma [3.4.1) we prove that the set S is maximal.

S is the set of all k-spaces contained in a fixed (k + 2)-space p. Then |S| = [k;?’]

From now on, let S be a maximal set of k-spaces pairwise intersecting in at least a (k — 2)-space
in the projective space PG(n, q) with n > k + 2.

We will focus on the sets S such that |S| > f(k,q). In Section we investigate the sets S of
k-spaces in PG(n, q) such that there is no point contained in all elements of S and such that S
contains a set of three k-spaces that meet in a (kK — 4)-space. In Section we assume again
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3 Subspaces of dimension k, pairwise intersecting in at least a (k — 2)-space

Figure 3.6: Example(ix): the red, blue, green and orange planes correspond to the k-spaces of type
0,1, 2 and 3 respectively.

that there is no point contained in all elements of S and that for any three k-spaces X,Y, Z in S,
dim(X NY N Z) > k — 3. In Section [3.4] we investigate the maximal sets S of k-spaces such that
there is at least a point contained in all elements of S. We end this chapter with the Main Theorem
that classifies all sets of k-spaces pairwise intersecting in at least a (k — 2)-space with size
larger than f(k, q).

3.2 There are three elements of S that meet in a (k — 4)-space

Note that for three k-spaces A, B, C in S, it holds that dim(A N B N C) > k — 4. Suppose there
exist three k-spaces A, B,C in § with dim(A N BN C) = k — 4, and suppose that there is no
point contained in all elements of S. If all k-spaces are contained in a (k + 2)-space, then we find
Example [3.1.2)(z), so we may assume that the elements of S span at least a (k + 3)-space. In this
subsection, we will use the following notation.

Notation 3.2.1. Let S be a maximal set of k-spaces in PG(n, q) pairwise intersecting in at least a
(k — 2)-space. Let A, B and C in S be three k-spaces with mapc = AN BN C a(k — 4)-space. Let
map =ANB,mac = ANC andmgc = BN C. Let S’ be the set of k-spaces of S not contained in
(A, B), and let a be the span of all subspaces D' :== DN (A,B),D € S’

WV

C

Figure 3.7: Notation m
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3 Subspaces of dimension k, pairwise intersecting in at least a (k — 2)-space

Note, by the Grassmann dimension property, that map, m7pc and m4c are (k — 2)-spaces and
(A,B) =(B,C) =(A,C).

We first present a lemma that will be useful for the later classification results in this section.

Lemma 3.2.2. [Using Notation [3.2.1]] If there exist three k-spaces A, B and C' in S, with dim(A N
BN C) =k — 4, then a k-space of 8" meets (A, B) in a (k — 1)-space. More specifically, it contains
TABc and meets TAp, TAc and e, each in a (k — 3)-space through mApc.

Proof. Consider a k-space E of §’. Clearly,
E—2<dm(En(A,B)) <k-—1.

Ifdim(EN(A, B)) = k — 2, then this (k — 2)-space has to liein A, B and C, and so in the (k —4)-
space T4pBc, a contradiction. Hence, we know that dim(E N (A, B)) = k — 1. By the symmetry of
the k-spaces A, B and C, it suffices to prove that F contains 74 pc and meets 74 in a (k—3)-space
through 7 4. Using the Grassmann dimension property we find that

dim(FNmap) > dim(EFNA)+dim(ENB) —dim(E N (A, B))
=k-2)+(k—-2)—(k—1)=k -3,

and so, dim(E Nmap)isk —2ork — 3. f dim(E N7wap) = k — 2, then

dim(ENC) <dim(ENmape) +dim(E N (C,map)) — dim(ENmwap)

<
<(k—4)+(k-1)—(k—2)=k—3,

a contradiction since any two elements of S meet in at least a (k — 2)-space. Hence, dim(EN74R)
is k — 3, and so

dim(EN7mape) > dim(ENC)+dim(EN7map) — dim(EN{(C,maB))

>
>h—2)+ (k-3 —(k—1) =k — 4.

This implies that the (k — 4)-space m4pc is contained in E. |

Let D be a k-space of S’. By Lemma [3.2.2] we know that D N (A, B) is a (k — 1)-space. For the
remaining part of this chapter, we will denote this (k — 1)-space by D’.

Corollary 3.2.3. [Using Notation Suppose S contains three elements A, B and C, meeting
in a (k — 4)-space, and « is a (k + i)-space. Up to a suitable labelling of A, B and C, we have the
following results.

a) Ifi=—1,thenao = DN (A, B) forevery D € S'.

b) Ifi = 0, then a« = (p1, p2, p3), with p1 a (k — 3)-space in Tap, p2 a (k — 3)-space in Tpc,
p3 = mac andmwapc C pj,j = 1,2, 3. In this case, all elements of 8’ contain the (k — 2)-space
(p1, p2).

¢) Ifi =1, then o = (p1, p2, p3), with p1 a (k — 3)-space in Tap, p2 = TBC, p3 = Tac and
maBc C pj,J = 1,2,3. In this case, all elements of S" contain the (k — 3)-space p;.

d) Ifi =2, thena = (A, B).
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3 Subspaces of dimension k, pairwise intersecting in at least a (k — 2)-space

Proof. Fori¢ = —1 and 7 = 2, the corollary follows immediately from Lemmaw Hence, we start
with the case that « is a k-space. Consider two elements of S, say D1, D, meeting (A4, B) in two
different (k—1)-spaces D/, D). These two elements of S’ exist, as otherwise dim(a)) = k—1. Since
D and D), span the k-space «, they meet in a (k — 2)-space. By Lemma|[3.2.2] this (k — 2)-space
D' N D}, contains w4 pc, together with a (k— 3)-space p; through m4pc in mxy and a (k — 3)-space
p2 through Tapc in my 7, with {X, Y, Z} = {A, B, C'}. By Lemma[3.2.2] every other element of &’
will meet (A, B) in a (k — 1)-space through this (k — 2)-space D} N D} = (p1, p2), which proves
the statement.

Suppose now that « is a (k + 1)-space. Then, we consider two elements D3, Dy of S’ meeting
(A, B) intwo (k — 1)-spaces Dj, D} such that dim(D% N D)) = k — 3. These elements of S’ exist
as otherwise all elements of S’ correspond to (k — 1)-spaces pairwise intersecting in a (k — 2)-
space. But then, since these (k — 1)-spaces span a (k + 1)-space, they form a (k — 2)-pencil (see
Theorem|2.0.6). Using Lemma|3.2.2] and the proof above of the case dim(c) = k or i = 0, it follows
that o would be a k-space. Now, again by Lemma we see that D N D contains m4pc and a
(k — 3)-space p; through mapc in mxy, with {X,Y, Z} = {A, B, C'}. Using dimension properties
and the fact that D} N D), = p1, we see that every other element of S’ will contain p;, which proves
the statement. |

We will now use Corollary[3.2.3]to explicitly describe the possibilities, depending on the dimension
ofa=(DN(A,B)|DeS§').

3.2.1 aisa (k — 1)-space

Proposition 3.2.4. [Using Notation[3.2.1]] If S contains three k-spaces that meet in a (k — 4)-space
and dim(a) = k — 1, then S is Example[3.1.4(v).

Proof. From Corollary we have that for all D € §', D N (A, B) = a, so all the k-spaces in &’
meet (A, B) in . As a k-space of S in (A, B) needs to have at least a (k — 2)-space in common
with every D € S’, we find that every k-space of S in (A4, B) meets « in at least a (k — 2)-space.
Note that the condition that every two k-spaces of S in (A, B) meet in at least a (k — 2)-space is
fulfilled. Hence, S is Example 3.1.2(v) with p = (A, B). [

3.2.2 «is a k-space

Proposition 3.2.5. [Using Notation[3.2.1]] If S contains three k-spaces that meet in a (k — 4)-space
and dim(«) = k, then S is Example(3.1.2(iv).

Proof. If o is a k-space, we may suppose w.lLo.g., by Corollary that « = (wap, Pac, Pac)
with P4¢ and Ppe points in ma¢ \ mapc and mpe \ maBC, respectively. We also know that all the
k-spaces D € S’ have a (k — 1)-space D" in common with « and they contain the (k — 2)-space
7w = (mapc, PacPBc). So, every pair of k-spaces in S’ meets in a (k — 2)-space inside (A, B).
Consider a k-space E of S in (A, B), not having a (k — 1)-space in common with «, and let D; and
D be k-spaces of S’ with D] N D), = 7, and so (D}, D) = a. If E does not contain 7, then

dim(ENa) >dim(END,ENDY) >k—2+k—-2—dim(EN7)>k— 1.

This is a contradiction. Hence, every k-space of S\ &’ contains 7 or has a (k — 1)-space in common
with o. From the maximality of S, it follows that S is Example [3.1.2fiv) with p = (A, B) and

m = (maBc, PacPBc). [ |
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3 Subspaces of dimension k, pairwise intersecting in at least a (k — 2)-space

3.2.3 aisa (k+ 1)-space

To understand the structure of these sets of k-spaces, we will first investigate the case kK = 3 and
then we will generalize our results to k > 3.

k = 3 and « is a 4-space

Note that for £ = 3, the spaces map, mpc and 74¢ are pairwise disjoint lines and m4pc is the
empty space. By Corollary [3.2.3] we may suppose w.l.o.g. that & = (Pap, Tac, Tc), with Pap a
point in T4 \ Tapc. Hence, each of the planes D' = DN (A, B), D € &, contains P45 and the
set of all these planes D’ span the 4-space a.

From now on, let £ be the set of lines DNC, D € §'.

Figure 3.8: There are three solids A, B,C in S, with AN BN C = () and dim(«) = 4

Proposition 3.2.6. [Using Notation [3.2.1]] If S contains three solids such that there is no point
contained in the three of them, and if dim(«) = 4, then a solid of S in (A, B) either

i) is contained in o, or
ii) contains Psp and a line r of C, intersecting all lines of L.

Proof. Recall that each of the intersection planes D N (A, B) contains P4p and that the set of all
these planes span the (k + 1)-space a.. Hence, we can see that there exist solids D1, Dy € &',
such that their intersection planes D} and D/, with «, meet exactly in the point P4p. Indeed, by
’Iheorem if all the planes D N (A, B), D € §’, would pairwise intersect in a line, then these
planes lie in a fixed solid or contain a fixed line. Neither possibility can occur since « is a 4-space,
and P4p is the only point contained in all intersection planes.

Suppose first that F is a solid of S in (A, B), not containing P4p. As E needs to contain at least a
line of every plane D' = DN (A, B), D € §’, we have that F contains at least aline ly C D} C «
and a line [s C D) C «a. Note that 1 and I are disjoint as they do not contain the point P4p.
Hence, E = (l1,12) C o

So now we may suppose that E contains the point P4p and meets « in precisely the plane ~.
The plane v is the span of P4p and the line r = vy N C. As N D is at least a line of the plane
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3 Subspaces of dimension k, pairwise intersecting in at least a (k — 2)-space

D' = Dn (A, B) for every D € §’, and since every two lines in the plane v meet each other, we
have that r has to intersect all the lines of £. Hence, we find the second possibility. |

In the previous proposition, we proved that there are two types of solids of S contained in (A, B).
One of them are the solids containing P4p and aline » C C, intersecting all lines of £. The number
of these solids depends on the number of lines 7 meeting all lines of L.

We first investigate the case that there is a line [ € £ that intersects all the lines of £. Note that
there cannot be two lines in £ intersecting all the lines of £, since then all lines of £ would lie in a
plane or go through a fixed point in C. This gives a contradiction as the lines of £ span C and at
least two points of both 74 p and mp¢ are covered by the lines of L.

Proposition 3.2.7. Ifthereisalinel € L that intersects all the lines of L, then S is Example[3.1.3(vi)
fork = 3.

Proof. Let Py = lN7mac, P =1Nnpe, 74 = (mac,l) and mp = (mpc, ). Since every line m # 1
of L intersects the lines m4c, mpc and [, it follows that m contains the point P4 and is contained
in mp, or m contains the point Pp and is contained in 7 4. Note that since dim(«) = 4, there is at
least one line my # [ in £ through P4 and there is at least one line mqy # [ in £ through Pp. As a
consequence of Proposition[3.2.6} we have that a solid of S in (A, B), not contained in c, contains
P4 p and it meets C in a line r that meets all lines of £. Hence, r is a line of the plane 74 through
P4 or in a line of w5 through Pp. Consider now the set F of solids of &', not through (P4p, ).
We will prove that these solids lie in a 5-space that meets (A, B) in «. Let F4, Eg € F be two
solids through m; 3 P4 and mg 2 Pp respectively. Since the planes £ 4 N o and Ep N o meet in
precisely the point P4p, the solids £ 4 and Ep have precisely a line in common, and so, they span
a b-space p through a. Then every other solid /' € F is contained in ps as it meets 4 N «, or
Ep N q, precisely in one point, namely P4p, and so it must contain at least a point of F 4, or Ep
respectively, in py \ a. This point, together with the plane F' N «, spans F and so F' C py. Hence,
Sis Examplem'), with py = (A, B), ma = (7ac,l), 18 = (7pc, 1), A\a = Pa, A\p = Pp and
A= [

Hence, in this case, we find that S has the following size
S| = Op_s + ¢*02 + 4¢° = 0,3 + ¢* + 5¢° + ¢°. (3.1)

Suppose now that there is no line in £ that intersects all the lines of £. Hence, for every line in £,
there exists another line in £ disjoint from the given line. We will prove that

IS| < 2¢* +3¢° +4¢> + ¢ + 1. (3.2)

Since this number is smaller than f(3,q) = 3¢* + 6¢> 4+ 5¢® + ¢ + 1, we will not consider these
maximal sets of solids in our classification result for kK = 3 (Main Theorem [3.5.1).

For every intersection plane D’ in «, there are at most E’] — [ﬂ = ¢* ways to extend the plane to
asolid D € &', as this solid also has to meet several solids of §’” in a point @ ¢ (A, B). And since
the number of planes D’ equals the number of lines in £, there are at most ¢> - | £| solids outside of
(A, B). Let R be the set of lines meeting all lines of £. For the solids inside (A4, B), there are m =0,
solids in o and |R| - ¢? solids of the second type of Proposition respectively. We find this
number by multiplying the number |R| of possibilities for the line r and the number ¢? of 3-spaces
through a plane in (A, B), not contained in . So, in total, we have that |S| < ¢?|£| + 04 + Rq¢® =
04 + ¢*(|L| + R). For every possible set of lines £, we prove that |S| < 2¢* + 3¢3 + 4¢% + ¢ + 1,
or equivalently, that |£| + |R| < ¢* + 2¢ + 3.
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3 Subspaces of dimension k, pairwise intersecting in at least a (k — 2)-space

Since every element of £ meets both m4c and mgc, we know that |£] < (¢ + 1)2. If R =
{mac,mpc}, then we have that |£]| + |R| = |£]| +2 < (¢ + 1)? + 2. Hence, we may assume
that {mac,7Bc} € R, and so |R| > 3.

Suppose first that £ contains three pairwise disjoint lines /1,2 and /3. These three lines are con-
tained in a unique regulus R, and the lines, meeting I, o and [3, are contained in the opposite
regulus R’. Hence, R C R/, and since R contains at least three pairwise disjoint lines, we know
that £ must be contained in the regulus R, opposite to R’. In this way, we find that |£| < ¢+ 1
and |R| < g+ 1,andso ||+ |R| <2¢+2 < ¢® +2¢ + 3.

For the other case, so if £ contains no three pairwise disjoint lines, we may suppose that £ contains
at least two disjoint lines /1, [2, since the lines of £ span the solid C. In this case, we prove the
following lemma.

Lemma 3.2.8. The set L is contained in the union of two point-pencils such that their vertices are
contained either in wc or in TRC.

Proof. Let P; = mac Nl; and Q; = mpo N I;, for i = 1,2. As there are no three pairwise disjoint
lines in £ we see that every line | € L contains at least one of the points P; and Q);, with i = 1,2,
and so L is contained in the union of 4 point-pencils with vertices P;, Py, Q1, Q2. If |£| < 4, then
it is easy to see that £ is contained in the union of two point-pencils. Suppose now that |[£| > 5
and that £ is not contained in the union of two of these point-pencils. Due to the symmetry, we
may suppose that £\ {l1,l2, P1Q2} contains three lines I3, l4, [5, such that P} € [3,Q2 € l4 and
P €ls. Let Q3 = IsNmpe and Py = 4 N w4¢. Then [5 contains the point (3 as otherwise I3, l4
and /5 would be pairwise disjoint. So l5 = P»(@Q)3, but then we see that /1, [4 and [5 are three pairwise
disjoint lines, a contradiction. Hence, L is contained in the union of two point-pencils. [ |

Hence, |£| < 2¢q + 2. If |£] = 2, then there are at most (g + 1)? lines meeting both [; and l5, and
so |L|+|R| <2+ (g+1)%

If 3 < |£] < 2g+ 2 then we may assume that £ contains a line [y # [1, [y with P; € [y. Every line r
of R must meet both lines ly, [1, and so, it contains P} = lp N {; or it is contained in (ly, [1). Taking
into account that » must meet lo as well, we find that there are ¢ + 1 possibilities for the line r,
containing the point P; and a point of l5. Furthermore, if  does not contain Pj, then r is contained
in the plane (lo, l), and meets lo N (ly, I1). Since Iz € (lo, 1), we find that I N (lp, l1) = Q2, and so
there are ¢ possibilities for the line 7 in (ly, [;) through the point (2, not through P;. This implies
that |[£|+|R| < (2¢+2)+ (¢+1+q) =49+ 3 < ¢*>+2q+ 3.

General case k£ > 3 and o is a (k + 1)-space

By Corollary[3.2.3] we may suppose w.Lo.g., that cis spanned by 7w 4c, 7pc and a point Pyp of m4p
outside of w4, and that all (k — 1)-spaces D' = DN (A, B), D € S, contain (PAp, mApc)-

Proposition 3.2.9. [Using Notation[3.2.1]] IfS contains three k-spaces that meet in a (k — 4)-space
and dim(a) = k + 1, then a k-space of S in (A, B) is contained in « or contains wapc. More

specifically, if |S| > f(k,q), then S is Example[3.1.4(vi).

Proof. We suppose that E is a k-space of S in (A, B), not through m4pc. As E contains at least a
(k — 2)-space of all the (k — 1)-spaces D', with D € §’, we find that F contains a hyperplane 7 of
maBc, a (k —4)-space 71 of a N wap, a (k — 3)-space 72 of m4c and a (k — 3)-space 73 of Tpc. As
71 NTe =11 N T3 =T N T3 = Ty, and by the Grassmann dimension property, we see that £ C «.
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For the k-spaces through 74pc, we can investigate the solids E/mapc, E € S, in the quotient
space PG(n, q)/mapc, and use the results for k = 3 in the first part of Section [3.2.3] These results
imply that a k-space in (A, B) through 74 ¢ is contained in « or contains (Pap, mapc) and a line
in C'\ mapc that meets all the (k — 2)-spaces D N C, D € S'. Then there are two cases:

- Cask 1. If there is a line | € C'\ m4pc meeting the subspaces D N C for all D € &', then
we can use in the quotient space PG(n, q)/mapc = PG(n — k + 3, q). Hence, there are
Op_1 + q* + 5¢% + ¢* k-spaces of S that contain 74 5c.

- Cask 2. If there is no line [ € C'\ m4pc meeting the subspaces DN C forall D € &', then we
use (3.2). Hence, there are at most 2¢* 4 3¢® 4 4¢% 4+ ¢ + 1 k-spaces of S that contain 74 pc.

It is clear that two elements of S in o meet in at least a (k — 1)-space. From the investigation of the
quotient space PG(n, q)/mapc, it follows that two elements of S through 74 ¢, not in a, meet in
at least a (k — 2)-space. A k-space E of S in o and a k-space Es of S not in «, but through 745,
will also meet in a (k—2)-space. This follows since F contains the (k—3)-space (Pap, Tapc) C «
and a line in C'\ mapc C a. Hence, E» meets o in a (k — 1)-space. Since E is contained in «, it
follows that F; and F5 meet in at least a (k — 2)-space.

Now, as every element of S, not through 74 ¢, is contained in «, there are 6,1 — 04 elements of S
not through m4pc. Hence, in Cask 1, S is Example vi) and |S| = O, _p + Opy1 +4¢3 —q— 1.
In Cask 2, |S| < 041 + q* + 2¢3 + 3¢%, which proves the proposition. |

3.24 «aisa (k+ 2)-space

Here again, we first consider the case k = 3.

k = 3 and « is a 5-space

We start with a lemma that will often be used in this subsection.

Lemma 3.2.10. [Using Notation 3.2.1]] If S contains three solids A, B, C, with AN BN C = (), then
every two intersection planes D and D}, with D, = D; N (A, B), D; € §',i = 1,2, share a point on
TAB> TAC O TBC-

Proof. Consider two solids D; and Ds in &', with corresponding intersection planes D} and D),

in (A, B). Since D; and Dy meet in at least a line, D} and D, have to meet in at least a point.
If D} and DY do not meet in a point of m4p, Tac or mpc, then these planes define 6 different

intersection points P, ..., Ps on the lines map, mac and mpc. As (D7, D)) = (Py,...,Ps) =
(TaB, TAC, TBC), we find that D] and DY, span a 5-space, so these planes are disjoint, a contradic-
tion. [ |

If o is a 5-space, we distinguish two cases, depending on the planes D' = DN (A, B), D € §'.

Lemma 3.2.11. [Using Notation[3.2.1]] IfS contains three solids A, B, C, with ANBNC = 0, and if
dim(«) = 5, then we have one of the following possibilities for the planes D' = DN (A, B), D € §':

i) There are four possibilities for the planes D': (Py, Ps, Ps), (P1, Py, P5), (Pa, Py, Ps) and
(Py, P, P5), where PPy = map, PsPy = wpc and Ps Ps = mac. Each of them appears as an
intersection plane D' for a solid D.
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ii) There are three points P € wap,Q € o and R € wac so that every plane D' contains at
least two of the three points of { P, Q, R}. For every two different points in { P, Q, R}, there
exists a plane D' containing these two points, but not the remaining point.

Proof. We prove the Lemma by construction and we start with a plane, we say D], intersecting
maB, Tpc and T4 in the points P, Q and R’ respectively.

Case (a): there exists a plane D} such that D} N DY is a point (w.lo.g. P, see Lemma[3.2.10) and
let D}, N wpc be Q' and D)y N mwac be R. In this case we know that there exists a third plane Df
intersecting m4p in a point P’ different from P (as dim(«) = 5). Then D} needs to have at least
a point of D), and D). This implies that D contains () and R or @’ and R’ (w.l.o.g. @ and R) by
Lemma[3.2.10] Now there are two possibilities:

i) There exists a plane D), = (P’,Q’, R'), and then, by construction, we cannot add another
plane D). (In the formulation of the lemma P = P;,P' = P,,Q = P3,Q' = P;,R =
Ps,R = Ps.)

it) There does not exist a plane D) = (P’,Q’, R'), then, by construction, we see that all the
planes need to contain at least two of the three points P, ), R by Lemma 3.2.10

Case (b): all the planes D) intersect pairwise in a line. Then all these planes have to lie in a solid
(contradiction since they span a 5-space) or they go through a fixed line /. In the latter, [ cannot be
one of the lines T4, TAc, T and also, [ cannot intersect one of these lines, as otherwise all the
planes D) would contain the intersection point of this line and ! (which gives a contradiction since
dim(a) = 5). Consider now the disjoint lines [ and 7 4p. Then all the planes D} would contain !
and a point of 7 4 g, but this implies that dim(«) = 3 which also gives a contradiction. We conclude
that this case does not occur. |

We start with the case that there are four intersection planes D’.

In this situation, using the notation from Lemma there are four possibilities for the planes
D' =Dn <A, B>, DecS" <P1, Ps, P6>, <P1, Py, P5>, <P2, Py, P6> and <P2, Ps, P5>, where P, P, €
waB, P3, Py € mpc and Ps, Py € mac. We show that the only solids of S in (A, B) are A, B and
C.

Figure 3.9: There are three elements A, B,C' in S with AN BN C = () and dim(a) =5
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Proposition 3.2.12. [Using Notation[3.2.1] If S contains three solids A, B, C, with AN BN C = 0,
dim(«) = 5, and so that there are exactly four intersection planes D', see Lemma([3.2.11(i), then the
only solids of S in (A, B) are A, B and C.

Proof. Let Py, ..., Psbe the intersection points of DN(A, B), D € §’, withthelines map, mac, TBC,
and let F be a solid in (A, B) different from A, B, C. The solid E cannot contain all the points
Py, ..., Ps, by its dimension so we may suppose that P; ¢ E. We will first show that £ contains
the point P». As F has a line in common with every plane intersection D’ = D N (A, B), with
D € 8, F has at least a point in common with every line of these planes D’. This implies that E has
at least a point in common with P, P3, P, Py, P, P5, and P, Ps or equivalently, a line [ 4 in common
with (Py, m4¢) and a line [ g in common with (P;, 7). Hence, E = (l4,lp) and so E C (P;,C).
If P, ¢ E then we find by symmetry that £ C (P, C), and so that E C (P;,C) N (P, C) and
E = C, a contradiction. Then P, € E; furthermore F cannot contain P, ..., Ps, by the dimen-
sion, and so we may suppose that Ps; ¢ E. Then, by the previous arguments and symmetry, we
know that P; lies in F. In A, the solid E' needs an extra point P of P, P since E shares a line with
(Py, Ps, Ps). This gives that F contains the plane v = (P, Py, P5) of A. As E also needs to have
at least a point of each line P P3, P; Py, E needs at least one extra line, disjoint from ~y. This gives
the contradiction, again by the dimension, and so F cannot be different from A, B, C. [ |

There are at most 4 - ( E’] — [ﬂ ) solids in §’. The first factor of this number follows since every solid
in &’ meets (A, B) in one of the four intersection planes. The second factor follows as each of these
intersection planes is contained in at most E’] - m solids of §’: any two solids, intersecting (A, B)
in different intersection planes, have to intersect in at least a point @) outside of (A, B). There are
only 3 solids, A4, B, C, in (A, B). Hence |S| < 4¢° + 3.

The second possibility is that every intersection plane D’ contains at least two of the points P, Q, R,
and for every two different points in { P, ), R}, there exists a plane D’ containing these two points,
but not the remaining point. Note that in this situation we have at least the red, green and blue plane
(see Figure[3.10) as intersection planes D’ = DN (A, B), D € S'. In the following proposition, we
prove how the solids in (A, B) lie with respect to the points P, Q, R.

Figure 3.10: There are three elements A, B,C in S with AN BN C = () and dim(a) =5

Proposition 3.2.13. [Using Notation [3.2.1]] Suppose that S contains three solids A, B, C, with AN
BN C =0, dim(a) = 5, and so that every intersection plane D' contains at least two of the points
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P,Q, R, such that for every two different points in { P, Q, R}, there exists a plane D' containing these
two points, but not the remaining point (see Lemmal[3.2.11(43)). Then all the solids of S in (A, B), also
contain at least two of the points P, Q), R.

Proof. Let E be a solid of S in (A, B), different from A, B and C. Suppose P ¢ E, then we have to
prove that E contains the points R and (). We find that £ N A and E' N B are subspaces that meet
the lines PR, PR', P'R and PQ, PQ’, P'Q, respectively, as F meets every intersection plane D’
in at least a line. Hence, F meets A in a line [ 4p through R and a point of PR/, or E has a plane
~YAE in common with A. By symmetry, F meets B in a line Iz through Q and a point of PQ’, or
E has a plane ypg in common with B.

a) fdim(ANE) = dim(B N E) = 2, then the planes 74 and ypE meet in a point of 745 as
they cannot contain the line m4p since P ¢ E. Hence, F contains two planes meeting in a
point, which gives a contradiction since dim(F) = 3.

b) f dim(ANE) =2and dim(BNE) = 1, then yap N map = lpp N map. First note that
lpg N mAp is not empty by the dimension of F. Now, if yaog N map # IBe N TAR, then
map C E, which gives a contradiction as P ¢ F. Since [pp can only meet 745 in the point
P, we find a contradiction, again as P ¢ E. Clearly, by symmetry, an analogous argument

holds also if dim(A N E) =1 and dim(BN E) = 2.

Hence, we know that E contains a line [, C A through R and a line [gr C B through @), which
proves the proposition. ]

There are at most (3 - m —2) (E’] — E]) solids not in (A, B). This follows as two solids Dy, Da,
intersecting (A, B) in the intersection planes D} and D) meeting in a point, then D; and Ds
have to intersect in at least a point not in (A, B). And there are at most 3 - E] — 2 intersection
planes D’. There are at most [‘;’] + 3q m solids in (A, B), namely all the solids through the plane
(P,Q, R) and all solids through precisely two of the three points P, Q), R in (A, B). Hence, |S| <
6¢3 +5¢% +4q + 1.

Remark 3.2.14. Note that if S contains three elements A, B,C, with AN BN C = 0, and if
dim(a) = 5, then the number of elements of S is at most f(3,q) = 3¢* + 6¢> + 5¢> + ¢ + 1, and
so we will not consider these maximal sets of solids in our classification.

General case k£ > 3 and o is a (k + 2)-space

In this case, we prove that all the k-spaces of S contain m4pc. This implies that we will be able
to investigate this case by considering the quotient space of m4pc and use the previous results for
k=3.

Proposition 3.2.15. [Using Notation[3.2.1]| If S contains three k-spaces A, B, C, with dim(AN BN
C) =k —4, and dim(«) = k + 2, then every k-space in S contains TApc.

Proof. By Lemma we know that all the k-spaces of S outside of (A, B) contain m4pc. It is
also clear that A, B and C contain m4pc.

Suppose that there is a k-space F in (A, B), not through m4pc. As E has to meet all the (k — 1)-
spaces D) in at least a (k — 2)-space, E has to meet mapc in a (k — 5)-space «y and map, Tpc,
mac in three distinct (k — 3)-spaces such that they meet pairwise in . This would imply that
dim(F) = k + 1, which gives a contradiction. [
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Clearly, the previous proposition implies that in order to have an estimate of the number of k-
spaces in and outside of (A, B), we can use the results for & = 3 in the first part of Section
S <4 (1] —[]) +3or |8l < (8- [i] = 2)([}] = [{]) + [1] (3¢ + 1). In both cases,
S| < Opr1 +q* +2¢% +3¢% = f(k,q).

To conclude this section, we give a theorem which summarizes Proposition (3.2.4, Proposition (3.2.5]
Proposition and Proposition [3.2.15] and so, it gives an overview of the different cases studied
in this section.

Proposition 3.2.16. [Using Notation [3.2.1]] In the projective space PG(n, q), withn > k + 2 and
k > 3, let S be a maximal set of k-spaces pairwise intersecting in at least a (k — 2)-space such that S
contains three k-spaces A, B, C, with dim(A N BN C) = k — 4, and such that |S| > f(k,q). Then

we have one of the following possibilities:

i) there are no k-spaces of S outside of (A, B) and S is Example[3.1.4(x),

ii) dim(o) = k — 1 and S is Example[3.1.9(v),
iii) dim(«) = k and S is Example|3.1.4(iv),
iv) dim(a) = k + 1 and S is Example[3.1.4(vi).

3.3 Every three elements of S meet in at least a (k — 3)-space

Throughout this section, we suppose that every three elements of S meet in at least a (k — 3)-space.
Moreover, to avoid trivial cases, we may suppose that there exist two k-spaces in S intersecting in
precisely a (k—2)-space. We can find those two k-spaces as otherwise all subspaces would pairwise
intersect in a (k — 1)-space and the classification in this case is known: all the k-spaces go through a
fixed (k — 1)-space or all the k-spaces lie in a (k+ 1)-dimensional space, see Theorem[2.0.6 We also
suppose that S is not a (k — 2)- or a (k — 3)-pencil as in this case either S is Example[3.1.2(7) or we
can investigate the quotient space and use the known Erdos-Ko-Rado results on planes intersecting
in at least a point [33]]. We begin this section with a useful lemma.

Lemma 3.3.1. Let S be a maximal set of k-spaces in PG(n, q) pairwise intersecting in at least a
(k — 2)-space such that for every X,Y,Z € S, dim(X NY N Z) > k — 3, and such that there is no
point contained in all elements of S. Then there exist three elements A, B, C' of S such that

a) m=ANBNC isa(k— 3)-space,

b) at least two of the three subspaces taop = AN B, mpc = BNC,mac = ANC have dimension
k — 2, and at most one of them has dimension k — 1.

¢) ¢ = (maB,7TBC,TAC) has dimension k ork + 1.
Every k-space in S not through m meets the space ( = (Tap, Tpc, TAc) in at least a (k — 1)-space.

Proof. If every three k-spaces in S meet (at least) in a (k—2)-space, then S is a (k—2)-pencil, and so
there is a point contained in all the k-spaces of S. Therefore, there exist three elements A, B,C € S
suchthat m = AN BNCisa(k—3)-space. Let map = AN B, mpc = BNCand mayc = ANC,
and let ( = (map, Tpc, TAC). Note that at least two of the three subspaces m4p, Tpc, Tac have
dimension k — 2. Otherwise, if, for example, dim(m4p) = dim(mac) = k — 1, then the k-space
A contains two (k — 1)-spaces, m4p and m4¢, meeting in at most a (k — 3)-space, a contradiction.
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W.l.o.g. we may suppose that dim(rap) = dim(mac) = k — 2 and dim(wpc) € {k — 1,k — 2}.
This also implies that the dimension of ( is at most k4 1. On the other hand, note that ( has at least
dimension k. Otherwise, if ( = (map, Tpc, TAC) is a (k — 1)-space, then { = (map, mac) and so
¢ C A. By the same argument, ( C B, and ¢ C C. Hence, ( C AN BN C = T, a contradiction.

CASE 1. Suppose that m4p, m4c and T are (k — 2)-spaces. Then, ( is a k-space. Since there is no
point contained in all elements of S, we know that not all elements of S contain 7. Let G be such
a k-space G in S not through 7. Since any three elements of S meet in at least a (k — 3)-space and
7 ¢ G, we have that G meets 7 in a (k — 4)-space 7 and it contains at least a (k — 3)-space of
TAB, Tec and w4¢. Since the three subspaces G N74p, G N Tpc and G N 7 4c have dimension at
least k — 3, since they pairwise meet in the (k — 4)-space 7, and since m4p, TAc and Tpc span
at least a k-space, G contains the subspace (GNmap, GNmpc, GNTac), with at least dimension
k—1,inC.

CASE 2. Suppose that dim(7m4p) = dim(wac) = k — 2 and dim(7wpc) = k — 1. They meet in the
(k — 3)-space m. Now, ( is a (k + 1)-space and consider a k-space G not through 7. As before G
meets 7 in a (k — 4)-space; the spaces G N m4p and G N are (k — 3)-spaces otherwise G goes
through 7 and finally dim(G N7pc) € {k — 3,k — 2}.

Case 2a. dim(GN7pc) = k—3. Then GN7 ¢ and GN7pe cannot be contained in 74 g otherwise
dim(G N7) = k — 3. Hence, G N mac, G N mpc and G N m4p are linearly independent (k — 3)-
spaces (i.e. the span of two of them does not meet the other space) pairwise intersecting in G N 7.
Therefore,

dim<7TABﬁG,7TAcﬂG,7TBcﬂG> =k—1.
Case 2b. dim(G Nmpc) = k — 2. Note that G N7 e cannot meet 74 in a (k — 3) space, otherwise
G goes through 7. Then, again, G N 7xy, with {X,Y} C {A, B,C}, are linearly independent

(k — 3)-spaces pairwise intersecting in G N 7 and
dim<7TABﬁG,7TAcﬂG,7chﬂG> =k.

Hence, the k-space G is inside of C.
So, in any case, we get that a k-space not through 7 meets ( in at least a (k — 1)-space. |

Theorem 3.3.2. Let S be a maximal set of k-spaces pairwise intersecting in at least a (k — 2)-space
in PG(n, q). If for every three elements X, Y, Z of S: dim(X NY N Z) > k — 3, and if there is no

point contained in all elements of S, then S is one of the following examples:

(i) Example[3.1.4(ii): Star.
(ii) Example([3.1.(iii): Generalized Hilton-Milner example.

Proof. From Lemma it follows that we may suppose that there are three k-spaces A, B, C
withdim(ANBNC) =k —3,dim(rap) = dim(rac) = k — 2 and dim(7pc) € {k — 1,k — 2}.

Cask 1. dim(wpc) = k—2. In this case we know, again from Lemma|3.3.1| that = (map, Tac, TBC)
has dimension k and that any element of S, not through m = ANBNC, meets ( in atleasta (k—1)-
space.

Case 1.1. Suppose that there exists a k-space D, not containing 7, with dim(D N A) = dim(DNB) =
dim(DNC)=k—2.

Let mop, mpp and mop be these (k — 2)-spaces. Note that each of them contains the (k — 4)-space
mp = D N 7 and that they are contained in (. We prove that all elements of S meet ( in at least
a (k — 1)-space. From Lemma [3.3.1] it follows that we only have to check that all elements of S
through 7 have this property. Let E be a k-space in S through 7. Then F contains a (k — 3)-space
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of map, mpp and Top. At least two of these (k — 3)-spaces are different, since 7 is not contained
in D, and span together with 7 at least a (k — 1)-space contained in the k-space (. Hence, every

k-space of S meets ( in at least a (k — 1)-space. Then S is Example [3.1.2(i).

Case 1.2. For every k-space D € S, it holds that m C D or at least one of the dimensions dim(D N A),
dim(D N B),dim(D N C) is larger than k — 2.

In this case, we will prove that if not every k-space of S meets ¢ in a (k — 1)-space, then S is the
second example described in the theorem. Let D be a k-space of S not containing 7 and meeting
A,Bor Cina (k — 1)-space. W.lo.g. we may suppose that C' N D is the (k — 1)-space m¢p and
that AN D and BN D are (k — 2)-spaces (m4p and mpp respectively). Note that these subspaces
TAD, TBD, Tcp contain the (k — 4)-space 71p = D N 7 and that m4p,7pp C (. This follows
since D meets map, mac, Tpc in a (k — 3)-space, and D Nmap and D N7 c span w4 p. The same
argument holds for the space B. Suppose that S is not a Star, then there does not exist a k-space
such that each element of S meets 7 in at least a (k — 1)-space. In particular, there exists a k-space
F' € S that meets ¢ in (at most) a (k — 2)-space. As every k-space in S, not containing 7, meets
(ina (k — 1)-space (Lemma , we see that F' contains 7. Now, since every three elements of
S meet in a (k — 3)-space, F' also contains a (k — 3)-space of the two (k — 2)-spaces m4p and
mpp in ¢ (TApF, TepF respectively). As F' has no (k — 1)-space in common with ¢, and since
TAp,TBDp C C, TCcD Q ¢, we find that Tapr = mppr = map N D and that mopp g . Hence,
FN{=mapand CNF = (mcpr, ). Let v = (¢, C). Then we prove that every k-space in S is
contained in v or contains 745 and meets v in a (k — 1)-space. Every k-space in S containing w4 p
must contain at least a (k — 2)-space of C. Hence, this k-space meets v in at least a (k — 1)-space.
Consider now a k-space Y € S not through m4p. From the arguments above, it follows that, if
7 C E, then E C v. Moreover, if 7 ¢ E, then, by Lemma([3.3.1] E contains a (k — 1)-space in ¢ and
a point in C' \ ¢ as otherwise we have Case 1.1, and so S would be a Star, a contradiction. Hence,
ECuw.

CASE 2. For every three k-spaces X, Y, Z € S, we have that diim(X NY NZ) > k — 2 or two of these
spaces meet in a (k — 1)-space. Since we suppose that there is no point contained in all elements of
S, we see that not every three elements meet in a fixed (k — 2)-space. Recall that AN B = 7y is
a (k — 2)-space. Hence, every other element of S contains 745 or meets A or B in a (k — 1)-space.
Note that the elements of S, not through 743, are contained in (A, B). By Example [3.1.2)(z), we
may suppose that not all elements of S are contained in (A, B). Hence, let D € S be a k-space not
contained in (A, B).

If DNA = DN B = myp, then, by symmetry, it follows that every element of S, not through 745,
meets two of the three elements A, B, D in a (k — 1)-space. This is a contradiction since a k-space
cannot contain two (k — 1)-spaces, meeting in a (k — 3)-space.

Hence, every k-space in S, not in (A, B), meets A or B in a (k — 1)-space through m45. W.lo.g.
we suppose that BN D = wpp is a (k — 1)-space, and so AN D = w4p = wap. Consider now
an element £ € S not through m4p. Then, E C (A, B), and since both A, B and A, D meet in a
(k —2)-space, F contains a (k — 1)-space in A or E contains a (k — 1)-space in both D and B. Note
that £ cannot contain a (k — 1)-space of D, since E C (A, B),but D N (A, B) isa (k — 1)-space
through map 2 E. Hence, E must contain a (k — 1)-space of A and a (k — 2)-space of BN D and
so every element of S, not through 74, is contained in v = (A, 7gp).

To conclude this proof, we show that every element of S, through w45, meets v = (A, 7pp) in at
least a (k — 1)-space, which proves that S is the Generalized Hilton-Milner example. So, consider
a k-space F' € S, map C F. Then F must contain a (k — 2)-space g of E. Hence, F' contains
the (k — 1)-space (rgr, maB) C (A, TBD). [ ]
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3.4 There is at least a point contained in all k-spaces of S

To classify all maximal sets of k-spaces pairwise intersecting in at least a (k —2)-space, we also have
to investigate the families of k-spaces such that there is a subspace contained in all its elements.
More precisely, in this section, we will consider a set S of k-spaces of PG(n, ¢) such that there is
at least a point contained in all elements of S. So, let g, with 0 < g < k — 3, be the dimension
of the maximal subspace 7 contained in all elements of S, and let &’ = k — g — 1. In the quotient
space of PG(n, q) with respect to 7, the set S of k-spaces corresponds to a set 7 of k’-spaces in
PG(n — g — 1, q) that pairwise intersect in at least a (k' — 2)-space, and so that there is no point
contained in all elements of 7. Since we are interested in sets S of k-spaces with |S| > f(k, q),
this corresponds with sets 7 of k’-spaces with |T| > f(k, q).

Since f(k,q) > f(K',q) = f(k — g — 1,q), we can use 'Iheoremand "Iheoremfor the

sets T in PG(n — g — 1, q), in the case that Kk — g — 1 > 2. For each example, we show that it can
be extended to one of the examples discussed in the previous sections.

1. T is the set of k’-spaces of Theorem [3.2.16(i), so that 7 is Example [3.1.2[x) : there exists
a (k' + 2)-space p’ such that 7 is the set of all &’-spaces in p. Then S can be extended to

Example[3.1.2(z) in PG(n, q), with p = (¢, 7).

2. T is the set of k’-spaces of Theorem [3.2.16{ii), so that 7 is Example v) : there are a
(k" + 2)-space p/, and a (K’ — 1)-space o’ C p’ so that T contains all k’-spaces in p’ that
meets o in at least a (k' — 2)-space, and all k¥’-spaces in PG(n — g — 1, ¢) through /. Then
S can be extended to Example[3.1.2(v) in PG(n, q), with p = (p/,v) and o = (/7).

3. T is the set of k’-spaces of Theorem [3.2.16{iii), so that 7 is Example [3.1.2(iv) : there are a
(k" + 2)-space p/, a k’-space o/ C p' and a (k' — 2)-space 7’ C o so that T contains all
k'-spaces in p’ that meet o/ in at least a (K’ — 1)-space, all k’-spaces in p’ through 7/, and all
k'-spaces in PG(n — g — 1, q) that contain a (k' — 1)-space of o’ through 7’. Then S can be
extended to Example 3.1.2{iv) in PG(n, ¢), with m = (7', ), p = (p/, ) and a = (¢, 7).

4. T is the set of k’-spaces of Theorem [3.2.1¢[iv). Since we suppose that |S| = |T| > f(k,q),
we know that 7 is Example [3.1.2(vi): there are two (k" 4 2)-spaces p}, p} intersecting in a
(K’ + 1)-space o/ = p N p). There are two (K’ — 1)-spaces n’y, 7y C o/, with 7’y N 7’5 the
(k" — 2)-space I/, there is a point P’ € o/ \ (74, 7), and let P}, P, C I’ be two different
(k" — 3)-spaces. Then T contains

o all k’-spaces in o,
o all k’-spaces through (P’ '),
o all k'-spaces in p} through P’ and a (k' — 2)-space in 7’y through P,
o all k’-spaces in p) through P’ and a (k' — 2)-space in 75 through Pp,
o all k’-spaces in pf, through P’ and a (k' — 2)-space in 7’y through Py,
o all k'-spaces in pl, through P’ and a (k' — 2)-space in 7 through P.
Then S can be extended to Example[3.1.2{(vi) in PG(n, q), with P4 = (P}, ~), P = (P,7),

A = (1), 1B = (mg, ). L = ({I',7), a = (/,7), pr = (p1,7), p2 = (ph,7) and
Pig = P
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5. T is the set of k’-spaces of Theorem i): there exists a k’-space ¢’ such that T is the set
of all k’-spaces that have a (k' — 1)-space in common with ¢’. Then S can be extended to

example (i) in Theorem|3.3.2] and so to Example[3.1.2((i7), with ¢ = ({’, 7).

6. T is the set of k’-spaces of Theorem ii): there exists a (k' + 1)-space v/ and a (k' — 2)-
space ©’ C v such that T consists of all &’-spaces in v/, together with all &’-spaces through
7’ that intersect ¢/ in at least a (k' — 1)-space. Then S can be extended to example (i7) in

Theorem 3.3.2] and so to Example[3.1.2{(ii), with v = (V/,7), m = (', 7).

We note that if 7 is one of the set of k’-spaces described in Section then S can be extended
to a set S’ of k-spaces pairwise intersecting in a (k — 2)-space such that S’ contains three k-spaces
that meet in a (k — 4)-space with dim(a) = k + 2. Hence, |S’| < f(k, ¢) and so these sets 7 do
not lead to large examples of S.

Ifk—g—1=2,theset T is aset of planes in PG(n — k + 2, q) pairwise intersecting in at least a
point, i.e. an Erdds-Ko-Rado set of planes. In [13] Section 6], Blokhuis et al. classified the maximal
Erd6s-Ko-Rado sets T of planes in PG(5, ¢) with |T| > 3¢* + 3¢ +2¢® + ¢ + 1. In [33], De Boeck
generalized these results and classified the largest examples of sets of planes pairwise intersecting
in at least a point in PG(n, ¢),n > 5. Below we retrace the examples in [13]] and [33] with size at
least f(k, ¢) and such that there is no point contained in all their elements. For each example, we
show that it can be extended to one of the examples discussed in the previous sections, or that it
gives rise to a new maximal example.

1. 7T is the set of planes of Example I in [33]]: consider a 3-space ¢ and a point Py € o. Let T
be the set of all planes that either are contained in ¢ or else intersect ¢ in a line through F.
Then S can be extended to Example [3.1.2)(ii7), with ¢ the (k + 1)-space spanned by ¢ and -,
and map = (v, Py).

2. T is the set of planes of Example /17 in [33]: consider a plane 7, then 7 is the set of planes
meeting 7 in at least a line. Then S can be extended to Example [3.1.2)(iz), with ¢ the k-space
spanned by 7 and ~.

3. T is the set of planes of Example IV in [33]]: consider a 4-space 7, a plane 0 C 7 and a
point Py € §. Then 7T is the set containing the planes in 7 intersecting ¢ in a line, the planes
intersecting ¢ in a line through P and the planes in 7 through Fy. Then we can refer to

Subsection[3.2.2/and so S can be extended to Example [3.1.2fiv), with p = (7, 7), & = (7, 6)
and ™ = (7, Pp).

4. T is the set of planes of Example V in [33]: consider a 4-space 7, and a line [ C 7. Then 7 is
the set containing the planes through [ and all planes in 7 containing a point of /. Then we

can refer to Subsection[3.2.1]and S can be extended to Example [3.1.2[v), with p = (v, 7) and
a = (v,1).

5. 7T is the set of planes of Example V' I in [33]]: let 71 and 7 be two 4-spaces such that 0 = 71N
is a 3-space. Let m; and 72 be two planes in ¢ with intersection line [y and let P, and P> be
two different points on lp. Then 7 is the set of planes through /o, the planes in o, the planes
in 71 containing a line through P; in m; or a line through P, in 79, and the planes in 7
containing a line through P; in 73 or a line through P in 7;. Then by using Section
Case 1, S can be extended to Example [3.1.2(vi) with p; = (7, 73), @ = (y,0), ma = (7, m1),
g = (7, m2), A = (7,l0), Aa = (7, P1), A\p = (7, P») and P4p a point in .
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6. T is the set of planes of Example V' II in [33]: let p be a 5-space. Consider a line | C p

and a 3-space o C p disjoint from [. Choose three points P, P», P53 on | and choose four
non-coplanar points ()1, @2, @3, 4 in . Denote [} = (1Q)2, l_l = Q3Q4, ls = Q1Q3,
lo = Q2Q4, I3 = Q1Q4, and I3 = Q2Q3. Then T is the set containing all planes through
[ and all planes through P; in (I, 1;) or in (I,1;), i = 1,2,3. Note that this set S is the set
described in Example iz). We can prove the following lemma.

Lemma 3.4.1. The setS of k-spaces described in Example[3.1.4(ix) is a maximal set of k-spaces
pairwise intersecting in at least a (k — 2)-space.

Proof. We have to prove that there does not exist a k-space £ in PG(n, ¢), withy ¢ E and so
that F meets all elements of S in at least a (k — 2)-space. Suppose there exists such a k-space
E. As S contains all k-spaces through the (k — 1)-space (v, 1), E contains a (k — 2)-space
mo of (77, 1), not through . Hence, dim(E N~y) = g — 1 = k — 4. As S contains all k-spaces
through (7, P;) in the (k + 1)-space (7, 1,1;) (or (v,1,1;)), E contains a (k — 1)-space of each
of those (k+1)-spaces. Consider now the quotient space PG(n, ¢) /v, and let E' = (v, E)/~,
Q= (Qi,v)/v, Pl = (P;,7)/v.and ' = (I,7)/~. Then E’ is a solid in PG(n, q) /y through
! that contains a point of each of the lines Q) 9, 1 <i < j < 4,but this gives a contradiction
as dim(E') = 3. [ ]

. T is the set of planes of Example VIII in PG(n — k + 2, ¢) in [33]: consider two solids o1

and o9, intersecting in a line [. Take the points P; and P on [. Then 7 is the set containing
all planes through [, all planes through P, that contain a line in ¢; and a line in o9, and all
planes through P; in 0; of o2. Note that this set S is the set described in Examplm’i).
We can prove that the set S of k-spaces is not extendable.

Lemma 3.4.2. ThesetS of k-spaces described in Example[3.1.4(vii) is a maximal set of k-spaces
pairwise intersecting in at least a (k — 2)-space.

Proof. We have to prove that there does not exist a k-space E in PG(n, ¢), with v ¢ E and
so that F meets all elements of S in at least a (k — 2)-space. Suppose there exists such a
k-space E. As S contains all k-spaces through the (k — 1)-space (7, 1), E contains a (k — 2)-
space g of (,1), not through ~. Hence, dim(y N E) = k — 4. As S contains all k-spaces
through (v, P,) in the (k+1)-space (7, 01) (or (7, 02)), E contains a (k — 1)-space of each of
those (k4 1)-spaces. These two (k — 1)-spaces, 1 and ay respectively, span E and meet in a
(k —2)-space mp. Then we show that there exists a k-space A € S, containing ~, that meets E
in precisely a (k — 3)-space. Consider the quotient space PG(n, q)/v, andlet E' = (v, E) /7,
op = (oM /7% P = (Pi,v) /v, A = (A7) /v and ' = (I,7)/y = (m0,7)/7. Then E' is a
solid in PG(n, ¢) /-y through I’ that contains planes o/}, o, in o} and o/, respectively. Note that
ajNaly =1'. Letl; € o} andly € o) be two lines containing P so thatl;Na) = laNad, = P,
and let A’ be the plane spanned by /1 and lo. Then E’ N A’ is a point in PG(n, q) /7. Since
v C Aandy ¢ E, we find that EN Ais a (k — 3)-space of (v, P1) in PG(n, q), and so these
elements of S meet in a (k — 3)-space, a contradiction. |

. T is the set of planes of Example I X in PG(n — k + 2,q) in [33]: let [ be a line and o a

solid skew to [. Denote ([, o) by p. Let P; and P, be two points on [ and let R; and Ry be
a regulus and its opposite regulus in . Then 7 is the set containing all planes through [, all
planes through P; in the solid generated by [ and a line of R, and all planes through P in
the solid generated by [ and a line of R5. Note that this set S is the set described in Example
3.1.2(viii). We can prove the following lemma.

Lemma 3.4.3. The set S of k-spaces described in Example[3.1.4(viii) is a maximal set of k-
spaces pairwise intersecting in at least a (k — 2)-space.
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Proof. We have to prove that there does not exist a k-space E in PG(n, ¢), withy € E, and
so that £/ meets all elements of S in at least a (k — 2)-space. Suppose there exists such a k-
space E. Let Ry = {l1,1l2,...,lg+1} and Ry = {I1,1s, ... ,l_q+1}. As S contains all k-spaces
through the (k—1)-space (v, (), F contains a (k—2)-space 7 of (7, ), not through ~. Hence,
dim(yNE) = k—4. As S contains all k-spaces through (-, P;) in the (k+1)-spaces (v, [,1")
(or {7,1,1")), with I’ € R;, E contains a (k—1)-space of each of those (k+1)-spaces. Consider
now the quotient space PG(n,q)/7, and let E' = (v, E)/v, I, = {i,7) /v, I, = {€1,7) /7,
P! = (P;,v)/v,and ' = (l,7)/y = (m0,7) /7. Then E’ is a solid in PG(n, ¢) /7 through I’
that contains a point of each of the lines l; and lz, 1 <¢ < g+ 1, but this gives a contradiction
as dim(E’) = 3. [ |
We see that example (f), (¢) and (h) give rise to maximal examples of sets S of k-spaces pairwise
intersecting in at least a (k — 2)-space, described in Example [3.1.2(iz), (vii), (viii) respectively.
From [33], it follows that the number of elements in S equals 6,,_j, + 6¢2, 0,,_r + ¢* + 2¢° + 3¢>
and 60,,_, + 2¢> + 2¢® respectively.

Finally, if k — g — 1 = 1, then g = k — 2 and so, there is a (k — 2)-space contained in all solids of
S. This case gives rise to Example [3.1.2]().

3.5 Main Theorem

By collecting the results from Propositions [3.2.16| Theorem and Section we find the fol-

lowing result.

Main Theorem 3.5.1. Let S be a maximal set of k-spaces pairwise intersecting in at least a (k — 2)-
space in PG(n,q), n > 2k, k > 3. Let

Flk.q) = 3¢* +6° +5¢° +q+1 ifk=3,g>20rk=4,q=2
’ Opr1 + ¢* +2¢° + 3¢° else.

If|S| > f(k,q), then S is one of the families described in Example[3.1.3 Note that forn > 2k + 1,

the examples (i) — (ix) are stated in decreasing order of the sizes.

Proof. - Ifthere is no point contained in all elements of S and S contains three k-spaces A, B, C'
with dim(A N BN C) = k — 4, then we distinguished the possibilities for S depending on
the dimension of « = (DN (A,B)|D € §'), where S’ = {D € S|D ¢ (A, B)}, see
Section [3.2] By Proposition[3.2.16| it follows that S is one of the examples (iv), (v), (vi), (z)
in Example

- If there is no point contained in all elements of S and if for every three elements A, B, C' in
S, we have that dim(A N BN C) > k — 3, then the only possibilities for S are described in

Example (4i) and (4ii), see Theorem|3.3.2]

- If there is at least a point contained in all k-spaces of S, then we refer to Section Let
~ be the maximal subspace contained in all k-spaces of S, with dim(y) = ¢g. Then T =
{D/y|D € S} isasetof (k— g— 1)-spaces of PG(n — g — 1,q) ~ PG(n, q)/7 pairwise
intersecting in at least a (k — g — 3)-space. The only examples of sets 7 that give rise to
maximal examples of sets of k-spaces are described in Section[3.4]in the examples ( f), (), (h).
In these examples, g = k — 3. They correspond to Example [3.1.2)(i), (iz), (vii), (viii).

55






4 Hilton-Milner problems in PG(n, ¢) and AG(n, q)

€C Equations are just the boring part of mathematics. I attempt to see things in
terms of geometry. bb/

—Stephen Hawking

The results in this chapter will appear in [43].

4.1 Introduction

Before we start with the introduction, we would like to indicate how this chapter came about. We started
investigating the Hilton-Milner problem in the affine context: we studied the second largest examples
of sets of affine k-spaces pairwise intersecting in at least a t-space in AG(n, q). Thanks to prof. Tamas
Szonyi, we received notes of David Ellis about the projective analogue of this problem [54]. In these
notes, he studied the second largest families of projective k-spaces, pairwise intersecting in at least a
t-space in PG(n, q). These notes helped me to shorten my, affine, arguments. Since these notes are not
published, we integrate them in this chapter. The results that are mostly influenced by the ideas in the
notes of David Ellis are Lemmas|(4.4.3,|4.4.4,|4.4.5 and|4.4.6, In his notes, David Ellis used the kernel
method [67, Section 15.1].

While finishing the last details of this project, the paper [29] appeared on Arxiv. In that paper, the
authors deduce similar results as ours in the vector space setting. It is worth noting that our results
were obtained independently, and our paper deals with both the affine and projective case at once. A
comparison between the results of this chapter and the results in [29] is given in Remark|[4.4.§

In [69], Guo and Xu investigated the Erdos-Ko-Rado problem in affine spaces. They proved that
the largest ¢-intersecting family of k-spaces in AG(n, q), n > 2k + ¢ + 2, is the set of all k-spaces
through a fixed ¢-space. In Section we give a shorter proof for their result and improve their
bound on n to n > 2k + 1. For t = 0, the second largest ¢-intersecting set of k-spaces in PG(n, q)
and AG(n, q) were already described in [12] (see ’Iheorem and [68]] respectively. We describe
the result from [68] in Theorem[4.4.10] The main goal in this chapter is to describe the second largest
Erdos-Ko-Rado sets for t > 1, for both PG(n, ¢) and AG(n, q).

In Section [4.2| and in Section we give two examples of maximal sets of k-spaces in PG(n, q)
and AG(n, q), respectively, pairwise intersecting in at least a ¢t-space, which are not ¢-pencils. In
Section [4.4] we prove the Hilton-Milner results.

4.2 Two examples in PG(n, q)

We start by giving two examples of maximal sets of k-spaces in PG(n, ¢), pairwise meeting in at
least a t-space. Note that for n < 2k—t, all projective k-spaces in PG(n, q) are pairwise intersecting
in at least a t-space. Hence, we may suppose that n > 2k — ¢ 4 1.
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Example 4.2.1. Letd beat-space,t < k—1,inPG(n,q),n > 2k—t+1, andlet be a (k+1)-space
inPG(n,q) witho C . Let Sy be the set of all k-spaces in €. Let So be the set of all k-spaces through
0 and meeting £ in at least a (t + 1)-space. Let S be the union of the sets S1 and S5.

Lemma 4.2.2. The set S, described in Example [4.2.1, is a maximal set of k-spaces in PG(n, q),
n > 2k — t + 1, pairwise intersecting in at least a t-space, of size

n—t n—k—1
_ _ (k1) (k—1)
S| = Op1 — Op—t + [k: —t] q [ bt }

Proof. We start with determining the size of S. First note that the number of elements of S; \ S2
is equal to the number of k-spaces in the (k + 1)-space £, not containing 6. Hence, |S; \ S2| =

Ory1 — Okt

All elements of Sy contain ¢. To determine |S2|, we consider the quotient space PG(n, ¢)/d, which
isisomorphic to PG(n—t—1, q). Let o be the projective (k—t)-space in PG(n, q)/, corresponding
to £&. A (k —t — 1)-space, corresponding to an element of S2 in PG(n, ¢)/d has at least a point
in common with o(. Hence, |S2| is the number of (k — t — 1)-spaces in PG(n — ¢t — 1), minus
the number of (k — ¢ — 1)-spaces, disjoint from op. From Lemma we have that |Sa| =

(i) =g E0 . Hence,

n—t _ aAln—-k-1
|S|=0k+1—9k_t+[k_t]—q<’“ Dk “[ . } (4.1)

It is clear that all elements of Sy pairwise meet in at least the t-space J. Every two elements of S}
meet in a (k — 1)-space, since they are contained in a (k + 1)-space. Note that k — 1 > ¢. Consider
now a k-space m in Sy and a k-space 7y in Sy. Note that 71 C &, and 7 meets £ in at least a
(t + 1)-space. Again, from the Grassmann dimension property, it follows that they meet in at least
a t-space.

Now we prove that S cannot be extended to a larger set of k-spaces pairwise intersecting in at least
a t-space. Suppose that a ¢ S is a k-space that meets every element of S in at least a ¢-space.
If § C q, then, since & ¢ S, a meets £ only in §. Hence, there is an element 7 of S; such that
dim(7NJ) =t—1, and so, dim(7Nea) < ¢. This gives a contradiction with the fact that & meets all
elements of S in at least a t-space. Hence, we may suppose that § ¢ a. So, & meets ¢ in a d-space
with d < ¢t — 1. Note that dim(aN &) > ¢ + 1 since a meets all elements of S; in at least a t-space.
Let mg C { be a (k — ¢t — 1)—space disjoint from J. For every point P € m, consider the set Sp of
elements of S that meet £ in (0, P). If dim(a N (6, P)) < t, then o must meet all elements of Sp
in a subspace outside of £. We now prove that this gives a contradiction since n > 2k — ¢ + 1. Let
a N (P,d) = v and suppose that dim(v) = r < t. We investigate the quotient space PG(n, q) /v,
and let o’ be the subspace in this quotient space corresponding to «. Let 3 be a k-space through
(P,0) with 3’ be the corresponding subspace in PG(n, ¢)/v, such that dim({c/, 8)) is maximal.
Hence, dim({a/, 8’)) = min{n — r — 1,2k — 2r — 1}. From the Grassmann dimension property,
and since « and [ have at least a (¢ — r — 1)-space in common in the quotient space, we then have
that

dim(a/ N B') = dim(a’) + dim(8’) — dim({c/, 5'))
=t—r—1<2k—2r—2—min{n —r—1,2k —2r — 1}.

This gives a contradiction since r < ¢t and n > 2k — ¢ + 1. Hence, dim(a N (0, P)) = t for all
points P € . This implies that dim(« N §) = ¢t — 1, and « must have a ¢t-space in common with
all (t 4+ 1)-spaces (9, P) with P € m. Hence, o C &, and so a € 51, a contradiction. [ |
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Example 4.2.3. Suppose k >t + 1 and let w be a (t + 2)-space in PG(n,q),n > 2k —t+ 1. Let S
be the set of all k-spaces in PG(n, q), meeting w in at least a (t + 1)-space.

Lemma 4.2.4. The set S, described in Example is a maximal set of k-spaces in PG(n,q),
pairwise intersecting in at least a t-space, of size

n—t—2 n—t—1 n—t—2
151 = [k:—t—Q] ez <[k—t—1} B [k—t—QD'

Proof. The number of elements in S is the number of k-spaces through w, together with the number
of k-spaces, meeting w in a (¢ + 1)-space:

n—t—2 n—t—1 n—t—2
SR PR Y { i B e )

Consider two elements 71, m € S. Then 71 N w and 73 N w are two subspaces with dimension at
least ¢t + 1 in a (¢ 4 2)-space, and so, they meet in at least a ¢-space.

Now we prove that S cannot be extended to a larger set of k-spaces pairwise intersecting in at least
a t-space. Suppose that « ¢ S is a k-space that meets every element of S in at least a t-space. Since
a ¢ S, we know that dim(aNw) < t. Lety be a (t+1)-space in w such that dim(aNwN~y) <t—1.
Then o must meet all elements of S through + in a subspace outside of w. Since n > 2k — ¢ + 1,
this is not possible. Hence, S cannot be extended. |

Remark 4.2.5. Note that for k = ¢ + 1, Example and Example coincide. In that case, S is
the set of all (¢ + 1)-spaces in a fixed (¢ + 2)-space in PG(n, ¢), see Theorem|2.0.6]

Remark 4.2.6. In the previous chapter, k-spaces pairwise intersecting in at least a (k — 2)-space in
PG(n, q) were investigated. For ¢ = k — 2, Example coincides with Example [3.1.2(i77), and

Example coincides with Example [3.1.2(i).

4.3 Two examples in AG(n, q)

We also give two examples of maximal sets of k-spaces in AG(n, g), pairwise meeting in at least a
t-space. For the remainder of this chapter, we suppose that n > 2k — ¢ + 1 and £ > 1. In Section
we prove that the largest non-trivial sets of k-spaces, pairwise meeting in at least a ¢-space,

in AG(n, q) are given by Examples and[4.3.3] If k > 2t + 2, Example is the largest set,
whereas if k£ < 2t + 1, Example [4.3.3]is the largest one.

For an affine subspace «, we denote the projective extension of a by &, and let Hy, = PG(n,q) \
AG(n, q) be the hyperplane at infinity. Similarly, if S = {m1, m2,..., 7y} is a set of affine spaces,
then we denote the corresponding set of projective spaces by S = {71, T2, ..., Tm}.

Example 4.3.1. Let 0 be at-space,t < k — 1, in AG(n,q), and let £ be a (k + 1)-space in AG(n, q)
with 0 C €. Let S1 be a maximal set of affine k-spaces in &, such that for any two elements 71, T2 of
S1, 1 N Heo # T2 N Hyo, and such that for every m; € Sp: 5N Hy Q 7. Let Sy be the set of all
k-spaces through 6 and meeting £ in at least a (t + 1)-space. Let S be the union of the sets S1 and Ss.

Note that this example corresponds to the affine case of Example
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Lemma 4.3.2. The set S, described in Example 4.3.1, is a maximal set of k-spaces in AG(n, q),
n > 2k —t + 1, pairwise intersecting in at least a t-space, of size

n—t n—k—1
_ - _(k—t+1)(k—t) . 4.2
Sl= =it |1 ] - L 2

Proof. We start with determining the size of S. Note first that the number of elements of .S is equal
to the number of (k — 1)-spaces in Hy, N &, not containing 6 N H,. Hence, |S1| = 0 — 0.

Let 6 be the projective (k — t)-space, corresponding to & in the quotient space PG(n,¢)/d. An
extended element of Sy to PG(n, ), corresponds to a (k — t — 1)-space in PG(n, ¢)/d, that has
at least a point in common with . Hence, | S| is the number of projective (k — ¢ — 1)-spaces in
PG(n, a)/g = PG(n —t — 1, ¢), minus the number of (k — ¢ — 1)-spaces, disjoint from 7. By
Lemma|1.10.1, we have that |Ss| = [Z:ﬂ — gkt (k=) [";ﬁ;l] Hence,

n—t n—k—1
= - — (k_t+1)(k_t) 4
51 = 6 @4+[k_4 q [ k_t]. (@3)

It is clear that all elements of S pairwise meet in at least a ¢-space (9). Consider now two elements
71,2 € S1. It follows, from the Grassmann dimension property, that 71 N 72 is a (k — 1)-space in
the (k 4 1)-space €. This (k — 1)-space is not contained in Hy, by the definition of S;. Let 7 be
a k-space in Sp and let 73 be a k-space in Sy. Since 1 C &, and dim(7wg N &) > ¢ + 1, we know,
again by the Grassmann dimension property, that 71 N 73 meet in at least a projective ¢-space. Now,
71 N 73 is not contained in H, since there is an affine (¢ — 1)-space contained in both 71 and 3.

Now we prove that S cannot be extended to a larger set of k-spaces pairwise intersecting in at least
an affine ¢-space. Suppose that o ¢ S is an affine k-space that meets every element of S in at least
an affine ¢-space. If « contains J, then, since @ ¢ S, we know that « N § = 6. Let 7 € S; with
8 ¢ 7. Then o meets 7 only in a (t — 1)-space, and so, there is an element of S that meets « notin a
t-space, which contradicts the statement. Hence, we may suppose that § ¢ «, and this implies that
dim(a N §) < ¢t — 1. Note that there is no affine ¢-space contained in all elements of Sy, as ¢ > 1.
Hence, we have that dim(a N &) > t + 1 as o meets all elements of S in at least a ¢-space. Let 7
be a projective (k — t)-space in é\ 6. For every point P € 7, consider the set Sp of elements of S
that meet £ in (5, P). If dim(& N (3, P)) < t, then & must meet all elements of Sp in a subspace
outside of . This gives a contradiction since n > 2k — t 4 1. Hence, dim(a N (8, P)) = t for all
points P € . This implies that dim(a N §) = ¢ — 1, and & must have a ¢-space in common with
all (t 4+ 1)-spaces <(§, P), with P € my. Hence, o C &, and so a € 51, a contradiction, since we
supposed that o ¢ S. [

Example 4.3.3. Suppose k >t + 1. Let w be an affine (t + 2)-space in AG(n, q), and let R be a set
of 011 affine (t + 1)-spaces in w such that R contains precisely one element through every t-space in
Ho, N@. Note that every two different elements of R meet in an affine t-space. Let S be the set of all
k-spaces in AG(n, q), containing w or meeting w in an element of R.

Note that this example corresponds to the affine case of Example

Lemma 4.3.4. The set S, described in Example is a maximal set of k-spaces in AG(n, q),
n > 2k — t + 1, pairwise intersecting in at least a t-space, of size

n—t—2 n—t—1 n—t—2
T PR R { iy B e )
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Proof. Since R is a maximal set, we have that |R| is the number of all ¢-spaces in @ N H,. Hence,
|R| = 604+1. The number of elements in S is the number of k-spaces through w, together with the
number of k-spaces, meeting w in an element of R:

S| = n—t—2 iy n—t—1 n—t—2

Clk—t—2) T k=t -] [k—t—2])"

Consider two elements 71,19 € S. If 1 or 7o contains w, then 71 and 79 intersect in at least a
(t + 1)-dimensional space. Hence, we suppose that 7 N w and 72 N w are two (¢ + 1)-spaces of R

in a (¢ 4 2)-space. Since every two elements of R meet in an affine space with dimension at least
t, we have that m; and 72 meet in at least an affine ¢-space.

Now we prove that S cannot be extended to a larger set of k-spaces pairwise intersecting in at
least a t-space. Suppose that a ¢ S is an affine k-space that meets every element of S in at least a
t-space. Consider an element o € R. Since a must meet all affine k-spaces through o in at least a
t-space, we find that « contains a t-space of 0, as n > 2k — ¢ 4+ 1. As o is an arbitrary element of
R, we see that o must meet every element of R in at least an affine ¢-space. As¢ > 1, there cannot
be an affine t-space contained in all elements of R. This implies that & meets w in a (¢ 4 1)-space
ay,. Now, o, must meet every element of R in an affine ¢-space. From the maximality of R, we
have that o, € R, and so that o € S, a contradiction. [ |

4.4 Classification results

We start with a classification result on maximal sets of k-spaces pairwise intersecting in a (k — 1)-
space. In the projective case, we know that a set of k-spaces, pairwise intersecting in a (k— 1)-space
in PG(n,q),n > k + 2, is a set of k-spaces through a fixed (k — 1)-space or a set of k-spaces such
that each element is contained in a fixed (k + 1)-space, see Theorem 2.0.6]

We use this classification to deduce the classification of maximal sets of k-spaces pairwise inter-
secting in a (k — 1)-space in AG(n, q).

Theorem 4.4.1. Let S be a set of k-spaces in AG(n, q), n > k+ 1, pairwise intersecting in a (k—1)-
space such that S is not a (k— 1)-pencil, then |S| < 0y, and equality occurs if and only if S is Example
[4.3.3 fort = k — 1. Hence, all elements of S are contained in a (k + 1)-space.

Proof. As before, let S be the set of projective extensions of the elements in S. So, S is a set of
projective k-spaces pairwise intersecting in a (k — 1)-space, and such that there is no (k — 1)-space
contained in all these elements. Hence, S is contained in a (k + 1)-space II, by Theorem
Now, every two elements of S must meet in AG(n, ¢). So, for every two elements w1, m € S,
71 N g € Heo. This implies that every k-space in II N H is contained in precisely one element
of S. This is Example for k =t 4 1, which proves the theorem. |

Remark 4.4.2. Note that for ¢t = k — 1, the set of all examples described in Example [4.3.1]is a subset
of the set of examples in Example[4.3.3] This follows since for t = k — 1, the k-spaces of a set S from
Example[4.3.1] are contained in a fixed (¢ 4 2)- or, (k + 1)-space (£). Moreover, the set of examples
in Example and[4.3.3]are not equal, since in Example an extra condition is imposed. For
these sets, all k-spaces 7 € S through 6 N Hy contain 4.

For t = k — 1, the number of elements of Example (and so of Example [4.3.1), is 0}, while, the
number of affine subspaces in AG(n, ¢) through a fixed affine (k — 1)-space is 6,,_x. Hence, for

61



4 Hilton—Milner problems in PG(n, q) and AG(n, q)

n < 2k, Example 4.3.3] is the largest example of a set of affine k-spaces, pairwise intersecting in at
least a (k — 1)-space.

From now on, we suppose that & > ¢ 4+ 2. In Section [4.4.1]and Section [4.4.3] we classify the largest
non-trivial {-intersecting sets of k-spaces in PG(n, ¢) and AG(n, q), respectively. In Section [4.4.2}
we give a shorter proof of the classification result for the largest ¢-intersecting sets of k-spaces in
AG(n, q), which was first proven in [69]. We will also improve the bound on n in their result to
n > 2k + 1. As mentioned in the introduction, several ideas in the following subsection are based
on the notes of David Ellis [54].

4.4.1 Classification result in PG(n, q)

Let S, be a maximal set of k-spaces in PG(n,q),n > 2k —t+ 1,k > t+2,and t > 1, pairwise
meeting in at least a ¢-space. Let

Y(Sp) = min{ dim(T) | T C PG(n,q), dim(T Na) > t, Yo € Sp}.

Note that 1(S,) is well-defined. Every element 5 € S, is an example of a subspace such that
dim(B Na) > t,Ya € Sp. Let T be the collection of all 1)(S,)-dimensional spaces in PG(n, g),
that meet every element of S, in at least a ¢-space.

Lemma 4.4.3. We have the following properties for )(S,) and T.
1. We have thatt < ¢(Sp) < k, and if )(Sp) = t, then S, is a t-pencil.
2. If T €T, then all k-spaces through T' are contained in S,.
3. The elements of T are t-intersecting in PG(n, q).

Proof. 1. Let m; € S,. Since every element of S, meets 7 in at least a ¢-space, we have that
(Sp) < k. Let T € T. Since all elements of S, meet 7" in at least a ¢-space, we have that
Y(Sp) > t. If(Sp) = t, then all elements of S,, contain the t-space 7', and, hence, S, is a
t-pencil.

2. This property follows from the maximality of S,.

3. Suppose that there are two elements 7,75 € T, with dim(771 NT5) = | < t. Since n >
2k — t + 1, there are two k-spaces m; and mo through 77 and 75, respectively, such that
dim(m; N me) < t. From the second item, we have that m;, 7 € S, a contradiction since
they have no ¢-space in common. |

Lemma 4.44. Let(Sy)) =t+ax, 2 > 1,k >t+2,t> 1andn > 2k —t + 1. Then the
number of elements of S, through a projective (t + = — j)-space, with j € {0,1,2, ..., x}, is at most
(k) [Ri22]-

Proof. Let ¢(S,) =t + x, © > 2. We prove, by induction on j € {0, 1,2, ..., z}, that the number
of k-spaces of S,, through a (¢ +  — j)-space is at most [}—/~*](6;_;)’. Note that the statement is
true for j = 0. Let j € {1,2,3,..., 2z} and suppose now that the number of k-spaces of S,, through
a projective (t 4+ x — jo)-space, is at most (f_; )70 [Z:i::ﬂ for all jo < j. Then we prove that this
also holds for j. Consider a projective (t + x — j)-space 7;. Since ¥(Sp) = t + =, we know that
there exists a k-space 7; of Sp, meeting y; in at most a (¢ — 1)-space. Let max{dim(y; N 7)|7 €
Sp,dim(y; N ) < t} =t — 1, then! > 1, and suppose that 7; € S, is an element such that
dim(7j Nv;) =t — . Let mj, be a projective (k — ¢t 4+ [ — 1)-space in 7; \ 7;. Then every element

of S, through +; contains at least an (I — 1)-space of 7j,. Since there are [k_lt—"l] subspaces of
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dimension | — 1 in 7, and since the number of projective k-spaces through a (t + 2« — j + I)-

space is at most (f_;)7 ! [Z:z:ﬂ, we find that the number of elements of S, through ; is at most

[+ (047~ [2~1=*]. Note that

k—t+1 (-1 ) j—
[ I ](ek—t)J f= T RCE (1)

k—t+1 _ ! , .
< <(q(qill)1)> (Or—t) ™" = (Or—t)’.

Hence, we find that the number of elements of S, through +; is at most (Or—¢)’ [Z:;:;‘n] . |

Lemma 4.4.5. Let S, be a maximal set of k-spaces, pairwise intersecting in at least a t-space in
PG(n,q). IfY(Sp) = t+az, o > 2,k > t+2,t > 1, andn > 2k —t + 1, then |S,| <

v laven

Proof. Suppose that ¢)(S,) = t+z, > 2. By Lemma we know, for j € {0,1,2,...,z}, that
the number of k-spaces of S, through a (t + = — j)-space is at most [} /%] (f)_¢ ).

Consider now an element 7' € 7. Then every element of S, meets 7" in at least a t-space. Since there

are [t—;f_i'l] projective ¢-spaces in 7" and since every ¢-space is contained in at most (0;_;)” [z:z:ﬂ
elements of S, we find that S, has at most (6j,_¢)® [} —1_7] [ttﬂrl] elements. |

Lemma 4.4.6. Let S, be a maximal set of k-spaces, pairwise intersecting in at least a t-space in
PG(n,q),n>2k—t+1,k>t+1andt > 1. If(Sy) =t + 1 and |T| < 2, then

t—1
t—1

n

— n—t—2
_ } + (0r410k—t — Or1 — 1)9k—t|: ]

k—t—2]

Proof. Let T be a (t+1)-space of 7. Since S, is a maximal set, we know that all [2:2:% ] subspaces of
dimension k, through 7', are contained in S,,. Now we determine the size of the set S, of k-spaces
of S, not through 7. For every m € Sy, dim(m NT) = t. Let E be a t-space in T, then there exists
an element a € Sy not through E, and so dim(a N E) = ¢t — 1. Hence, every element 7 of Sy
through F must contain a (¢ + 1)-space 7, different from 7, such that E C 7 and 7 N (a\ E) # 0.
Note that there are §;_; — 1 possibilities for 7. Fix such a (¢ + 1)-space 7.

« If T = {T'}, we know that 7 ¢ T, and hence there exists an element o of S, meeting 7 in at
most a (£ — 1)-space. Hence, every element of S, through 7 meets ¢ \ 7, and so the number
of elements of Sy through 7 is at most 0, [z:i:g] Since there are 6, possibilities for F,
and at most 6;,_; — 1 for 7, we have that

1
1

t

n_
<

— n—t—2
B ] + 01 (Ot — 1)9k—t[ ]

k—t—2

« Suppose |T| = 2, and let 7 = {T,V}. If 7 = ¥, then S, contains all [z:f:ﬂ k-spaces
through 7. If 7 # W, then we can follow the argument in the previous item, and we find
that the number of elements of S, through 7 is at most 6;,_; [Z:f:g] Note that there are
0:+1 — 1 possibilities for £ # T NW. If £ # T N, there are at most 6;_; — 1 possibilities for

7 ¢ {¥,T}, through E. Furthermore, if £ = 7' N ¥, there are at most 6;,_; — 2 possibilities
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for 7 ¢ {¥, T} through E =T N V. Hence, we have that

[n—t—1]
Sol <\, _, 4 + ) e Splr c
- - ECT DOF
[n—t—1] n—t—2
<l gl 2 DOk, ot D HreSplrcnl
L 4 EATNUTDE TOTNW
n—t—1] n—1t—2
Sl +(9t+1_1)(9k—t_1)9k—t|:k_t_2]
_ _ n—t—2 n—t—1
S Hkt{k—t—Q]Jr[k:—t—l]
TAU,T
n—t—1 n—t—2

=

]-%wwl—lx&Ft—lwb¢[ n_t_Q}

th] +(9k—t—2)9k—t|:k;t2
n—t—Q}

k—t—2

k—t—1
n—t—1
ZQ[kz—t— 1] + (Or10k— — Op1 — 1)9kt[

The lemma follows since

n—t—1 n—t—2
2[1{:—7&—1] +(9t+19k—t—9t+1—1)9k—t[k_t_2]
n—t—1 n—t—2
> —
> [k—t—l} + 01 (Ok— — 1)0k—y [k:—t—2]

forn>2k—t+1,k>t+1,q> 2 (see Lemmal4.5.3). [ |

From now on, we define f,(q,n, k,t) as the maximum of the number of elements in the sets de-

scribed in Example and Example
k—t k —
p n—t—1 n—t—-2 n n—t—2
Ak —t-1] (k—t-2 k—t—2] [

From Lemma [4.5.5} |[4.5.6(and |4.5.7, we find, forn > 2k —t 4+ 1,k >t + 2,q > 3, that

@@mhwzmw{%ﬂ—@t+r_q—¢k”Wk”r_kgﬂ,

gk t) = O 1 — O+ [171] — DGO [kl ip g > 91 43
B o (G - GE) + (o) ks

Theorem 4.4.7. Let S, be a maximal set of k-spaces, pairwise intersecting in at least a t-space in
PG(n,q), k> t+2,t > 1, withq > 3, andn > 2k +t + 3,. If S, is not a t-pencil, then

|Sp| S fp(q7 n’ k? t)‘

Equality occurs if and only if S, is Example[4.2.1 for k > 2t + 3 or Example[4.2.3|for k < 2t + 2.

Proof. Let S, be a maximal set of k-spaces, pairwise intersecting in at least a t-space, in PG(n, q),
with S, not a t-pencil, and suppose that |S,| > f,(¢, n, k,t). From Lemma and Lemma4.5.13]|
it follows that 1/(S,) < t + 2. Since S, is not a t-pencil, 1)(S,) > t, and so ¥(S,) = t + 1. From

Lemma it follows that if | 7| < 2, then |Sp| < Q[Z:z:ﬂ + (Op410k—t — Orp1 — 1)0k—y [Z:i:g],
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a contradiction, by Lemma Hence, | 7] > 2. From Lemma [4.4.3(3), it follows that 7 is a
t-intersecting set of (¢ + 1)-spaces. Hence, 7 is contained in a t-pencil or all elements of 7 are
contained in a (¢ + 2)-space (see Theorem [2.0.6).

We first suppose that there is no ¢-space contained in all elements of 7. Hence, we know that all
elements of 7 are contained in a (¢ +2)-space w. This implies that every element of S, must meet w
inatleasta (t+1)-space. Since S, is maximal, we know that S,, contains all k-spaces meeting w in at
n—t—1 n—t—2 n—t—2
Spl = e ([0l = [073)) + 3,
if there is no t¢-space contained in all elements of 7. This number is larger than 0y, — 0;_; +

[Z:ﬂ — gk—t=D(k—1) [”;ﬁ;l] ifand only if k¥ < 2t + 2. So, for k > 2t + 3, we find a contradiction.

least a (¢ + 1)-space, which is Example|4.2.3| Hence,

It follows that we may suppose that the elements of 7 are contained in a ¢-pencil with vertex the
t-space 0. Let Z be the span of all elements of 7 and let dim(Z) = t 4+ z, x > 2. Since S, is not
a t-pencil, we know that there are k-spaces in S, that do not contain §. These elements of S, not
through d, meet d in a (¢ — 1)-space, since they have a ¢-space in common with every (¢ + 1)-space
of 7. We can also check that each such element meets Z in a (¢ + x — 1)-space: suppose to the
contrary that there is an element « of S, not through J, that meets Z in the subspace Zp = aN Z,
with dimension at most ¢ + x — 2. Since o meets all (¢ + 1)-spaces of 7 in a ¢-space different from
J, it follows that the span of all elements of T is equal to (Zj, d), which has dimension at most
t + x — 1. This contradicts the assumption that the span of all elements of 7 has dimension ¢ 4 x.

The dimension of the span Z of all the (¢ + 1)-spaces in 7 is at most k + 1: if dim(Z) > k+ 1, then
every k-space of S;, not through 6, would meet Z in a subspace with dimension dim(Z) — 1 > k,
a contradiction.

Let m € S) be an element that does not contain d, and let £ = (9, 7). Note that every element of S,
through 0 has at least a (¢ + 1)-space in common with £. Now we claim that all elements of S, not
through 6, are contained in &. Suppose that this is not the case, then there exists an element m; € S,
withd ¢ 7 and m; € &. Then every element of S, through 6 meets both 7\ § and 71 \ 8. Hence, the
number of elements of S, through 6, is at most 9,%_,5 [Z:E:g] +0p_11 [z:ﬁ:ﬂ Here, the first term
is an upper bound on the number of elements meeting both 7\ 71 and 71 \ 7. The second term is an
upper bound on the number of elements meeting (7M7) \ d. Since every element of S, not through
d meets Z ina (t+x —1)-space, we find that | S| < 6,4, [Z:;:giﬂ +602_, [Z:f:g] +0p_i_1 [z:z:ﬂ .
For2<x<k—-t+1,k>2t+3,n>2k+t+3,{>1and g > 3; this gives a contradiction by
Lemma [4.5.20] since |S| > f,(q, n, k,t). Hence, we find that S, is contained in Example The

theorem follows from the maximality of S,,. n

Remark 4.4.8. As already mentioned in the introduction of this chapter, a similar result was found
independently by Cao, Lv, Wang and Zhou in [29]. They could prove the same result as in Theorem
for all values of ¢ and n > 2k + ¢ + 6. Hence, the difference between the results is that they
also covered the case for ¢ = 2, but we found a better bound on the possible values of the dimension
n:n>2k+t+ 3.

4.4.2 Classification of the largest ¢-intersecting sets in AG(n, q)

In [69], the authors prove that the largest ¢-intersecting set of k-spaces in AG(n, q), with n >
2k + t + 2, is the set of all k-spaces through a fixed affine ¢-space. They use geometrical and
combinatorial techniques, but they do not use the connection between AG(n,q) and PG(n, q).
Below we give a shorter proof for this result, for n > 2k + 1, by using Theoremm
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Theorem 4.4.9. Let S be a set of k-spaces in AG(n, q),n > 2k+ 1,k >t > 0, pairwise intersecting
in at least a t-space. Then |S| < [Z:ﬂ , and equality occurs if and only if S is a t-pencil.

Proof. Let S be a set of k-spaces in AG(n, ¢), pairwise intersecting in at least a ¢-space. Every affine
element « in S can be extended to the corresponding projective k-space & in PG(n, ¢). Let S be
the set of these extended k-spaces. Note that then, S is a t-intersecting set of k-spaces in PG(n, ¢).
If there would exist such a set S with |S| > [Z:ﬂ, then |S| > [z:ﬂ, which contradicts Theorem

Hence, |S| < [}~}] for all t-intersecting sets S in AG(n, q).

Note that the set of all affine k-spaces through a fixed affine ¢-space is a t-intersecting set of k-
spaces in AG(n, q) with size [Z:ﬂ . Suppose now that there exists a ¢-intersecting set S of k-spaces

in AG(n, ¢) with [z:ﬂ elements, which is not a t-pencil. Then S is a t-intersecting set of k-spaces
in PG(n, q) with |S| = [Z:ﬂ It follows from Theoremthat n = 2k + 1 and that all elements

of S are contained in a projective (2k —t)-space. Since the number of affine k-spaces in a projective

2k — t)-space is [2FFH1] — [2Et , we see that in this case |S| < n:t . Hence, an affine ¢-pencil
P k+1 k+1 k—t p
n—t

is the only example of a set of pairwise ¢-intersecting k-spaces in AG(n, ¢) with size [ o t]. |

4.4.3 Classification of the largest non-trivial ¢-intersecting sets in AG(n, q)
In this subsection, we investigate the largest non-trivial sets of k-spaces in AG(n, ¢) pairwise in-
tersecting in at least a t-space. For ¢t = 0, the largest non-trivial example was found in [68]].

Theorem 4.4.10 ([68]). Supposek > 3,n > 2k + 4 and (n, q) # (2k +4,2). Let S be a non-trivial
intersecting family in AG(n, q), then |S| < [Z:ﬂ — ghtk=1) [”;ﬁ;l] + ¢*. Equality holds if and only
if

1. S is Example[4.3.1 fort = 0, or
2. S is Example[4.3.3 fort = 0.

Many results and proofs in this affine setting are similar to the results and proofs in the projective
setting, but because of some structural differences, we decided to discuss the Hilton-Milner problem,
in the projective and affine context, in different subsections.

We again suppose that & > ¢ + 2 and ¢ > 1. Let S, be a maximal set of k-spaces in AG(n, q),
n > 2k — 1 + 1, pairwise meeting in at least a ¢t-space. Let

¥(Sa) = min{ dim(7T") | T C AG(n,q), dim(T Na) > t, Vo € Sy}

Let 7 be the set of all 1(S,)-dimensional spaces in AG(n, ¢) that meet every element of S, in at
least a t-space.
Lemma 4.4.11. We have the following properties for 1)(S,) and T .

1t <Y(Ss) <k, and if (S,) = t, then S, is a t-pencil.

2. LetT € T, then all k-spaces through T' are contained in S,.

3. The elements of T are t-intersecting in AG(n, q).
Proof. Analogous to the proof of Lemma@ |

Lemma 4.4.12. Let)(S,) =t+x, o > 1,k > t+2,t > 1, andn > 2k — t + 1. Then the
number of elements of S, through an affine (t + x — j)-space, with j € {0,1,2,...,x}, is at most
(Or—)’ [ =42 ]-
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Proof. Suppose that ¢(S,) =t + x, © > 2. We prove, by induction on j € {0,1,2,...,z}, that
the number of k-spaces of S, through an affine (¢ + = — j)-space is at most [Z:,’;:i] (0x_¢)?. Note
that the statement is true for j = 0, by counting the total number of k-spaces through an affine

(t 4 x)-space.

Let j € {1,2,3,...,z} and suppose now that the number of k-spaces of S, through an affine
(t + = — jo)-space, is at most (6;_; )70 [Z:;:i], for all jo < j. Then we prove that this also holds
for j. Consider an affine (t + = — j)-space ;. Since ¥/(S,) = t + x, we know that there exists a

k-space m; of Sy, meeting y; in at most an affine (¢t — 1)-space.

Let max{dim(y; N7)|r € S,,dim(y;N7) < t} =t—1[, then! > 1, and suppose that 7; € S, is an
element such that dim(7;N~y;) =t — 1. Let wj, be a projective (k —t+1 — 1)-space in 77; \ 7;. Then
every element of S, through 7; contains at least an (I — 1)-space of 7. Since there are [k_lt +l]
(I — 1)-spaces in 7}, and since the number of affine k-spaces in S, through a (¢t + z — j + [)-
space is at most (f_¢)7 ! [Z:ﬁ:ﬂ , we find that the number of elements of S, through 7, is at most

[kiltﬂ} (Op—)7 " [Z:i:ﬂ . Note that

k—t+1 1 (" —1).. . (¢F L —1) .
[ l ] (ek—t)] = (ql _ 1) o (q _ 1) (Gk—t)] :

k—t+1 _ 1\ ! ) .
< <qq_1) (Ok—t)' " = (Or—t)’

Hence, also in this case, we find that the number of elements of Sa through 7;, and so, the number
of elements of S, through =, is at most (05_;) [z:f::ﬂ . [ |

Lemma 4.4.13. Let S, be a set of k-spaces, pairwise intersecting in at least a t-space in AG(n, q). If
W(Se) =t+a, x>2,k>t+2,t>1andn > 2k —t+1, then [Sy| < ¢*["F7](0r—¢)* [} 7%].

Proof. Suppose that ¢(S,) =t + x, x > 2. By Lemma we know, for j € {0,1,2,...,z},

that the number of k-spaces of S, through an affine (t + z — j)-space is at most [} !~ 7] (6x_¢)’.

Consider now an element 7" € 7. Then every element of S, meets T in at least a t-space. Since

there are ¢* [t;x] affine ¢-spaces in T" and since every ¢-space is contained in at most (0 _¢)” [z:f:i]
elements of S,, we find that S, has at most ¢* [t—;x} (Ok—t)" [Z:i:i] elements. [ |

Lemma 4.4.14. Let S, be a maximal set of k-spaces, pairwise intersecting in at least a t-space in
AG(n,q),n>2k—t+1,k>t+1andt > 1. If)(S,) =t + 1 and |T| < 2, then

t—1 n—t—2
t—1 k—t—2|

n

|Sa| <2 [kz : ] + (Op410k—¢ — Op1 — 9kt)9kt[

Proof. Let T be an element of 7. Since S, is a maximal set, we know that all [z:i:ﬂ k-spaces
through T are contained in S,. Now we count the size of the set Sy of k-spaces of S, not through
T. For every m € Sqo, dim(m NT) = ¢, and let E be an affine ¢-space in 7T". Then there exists an
element o € S, not through E, and so dim(a N E) = ¢t — 1. Hence, every element 7 of S,
through F must contain a (¢ + 1)-space 7, different from 7, such that E C 7 and 7 N (a\ E) # 0.
Note that there are 0)_; — 1 possibilities for 7. Fix such a (¢ + 1)-space 7.

« If T = {T'}, we know that 7 ¢ T, and hence there exists an element o of S,, meeting 7 in at
most a (¢ — 1)-space. Hence, every element of S, through 7 meets o \ 7, and so the number
of elements of S, through 7 is at most 6 [Z:z:g] Since there are gf; possibilities for F,

and at most 6;,_; — 1 for 7, we have that

n—t—1
|Sa| < [k: B } + @0 (O —¢ — l)gkt|:

n—t—2
t—1 '

k—t—2
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« Suppose [T| = 2, and let T = {T,¥}. If 7 = V¥, then S, contains all [Zj:ﬂ k-spaces

through 7. If 7 # W, then we can follow the argument in the previous item, and we find
that the number of elements of Sy through 7 is at most 6, [Z:;:g] Note that there are
q0; — 1 possibilities for £ # T N, and at most 6;,_; — 1 for 7 # U, T, through £ # T N V.
Moreover, there are at most 0;,_; — 2 possibilities for 7 # W, T" through £ = T'N V. Hence,

we have that

(n —t —1]
[Sal <\, + )0 {7 € Salr C 7}

ECT 7DE
(n —t —1] n—t—2
<o _, 1T 2 Zekt[k_t_2]+ > € Saolr C 7}
L 4 EATNUDE TOTNW
(n —t—1] n—t—2
< _ _
Slk—t—1] + (g0 — 1)(Op—t — 1)0r—¢ L{; i 2}
n—t—2 n—t—1
up> 0kt[k—t—2}+{k—t—1}
T#Y,T
n—t—1 n—t—2 n—t—2
<2 -1 4+ —1)0s_ 4+ —2)0,_
< [k—t—1]+(q9t ) (Or— )9kt[k_t_2}+(9kt )Hkt[k:—t—Q]

n—t—1
:2[ :| + (Op410k—t — Opp1 — Ot )Oi—¢ |:

n—t—2
k—t—1 '

k—t—2

The lemma follows since

n—t—1
[k 4 1] + (010Kt — 01 — 9k—t)9k—t[
[n —t—1
=

k—t—1

n—t—2
k—t—2

} + g0 (Op_y — 1)0p—s [n —i 2]

k—t—2
fork>t+4+1,n> 2k —t,q> 2 (see Lemmal4.5.4). [ |

From now on, we define f,(q,n, k,t) as the maximum of the number of elements in the sets de-
scribed in Example and Example forn > 2k —t+ 1.

n—t _ _nln—k—-1
fa(q,n,k:,t)—max{ﬁk—ﬁkt+ [k—t] I t)[ o ]’

(i i i

From Lemma[4.5.8] [4.5.9|and [4.5.10] we find forn > 2k — ¢t + 1,k >t + 2,q > 3 that

O — Op— + [[71] — g HDE=O [T ke > 2t + 2
O () - 072) + 03 k<2t

fa<Q7n7k7t> - {

Theorem 4.4.15. Let S, be a maximal set of k-spaces, pairwise intersecting in at least a t-space in
AG(n,q),k>t+2,t>1, withq > 3,andn > 2k +t + 3. If S, is not a t-pencil, then

|Sal < falg; 0, K, 1)
Equality occurs if and only if S, is Example[4.3.1 for k > 2t + 2 or Example[4.3.3 for k < 2t + 1.
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Proof. Let S, be a maximal set of k-spaces, pairwise intersecting in at least a t-space, in AG(n, q),
with S, not a t-pencil, and suppose that |S,| > fau(g,n, k,t). From Lemma and Lemma
it follows that ¢(S,) < t + 2. Since S, is not a t-pencil, we find that ¢(S,) > t, and so
T/J(Sa) =14+ 1.

From Lemma , it follows that if |7| < 2, then [So| < 2[}7!71] + (Or410k—¢ — Ors1 —

Or )0kt [Z:i:Q], a contradiction by Lemma Hence, |7| > 2. From Lemma (3) it

follows that 7 is a t-intersecting set of (¢ + 1)-spaces. Hence, T, is contained in a ¢-pencil or all
elements of 7 are contained in a (¢ + 2)-space (see Theorem [4.4.1).

We first suppose that there is no ¢-space contained in all elements of 7. Hence, we know that
all elements of 7 are contained in a (¢ + 2)-space w. We also know that the elements of 7 are ¢-
intersecting in the affine space, and so, every ¢-space in @M H is contained in at most one element
of 7. Moreover, we also find that every element 7; of S, must meet w in at least a (¢ + 1)-space.
This follows since 71 must meet all elements of 7, that are contained in a (¢ + 2)-space, in at least
a t-space, and that there is no ¢-space contained in all elements of 7.

In this case, we claim the following.
Claim (x) The number of elements of S, is at most 641 - ([Z:Z:ﬂ — [Z:t:g]) + [Z:i:g], and
equality holds if and only if S, is Example [4.3.3].

Proof of claim: We first of all note that all k-spaces through w are contained in S,. Consider a
projective t-space oy C @ N Hy. Then we count the number of elements of S, through a4, not
through w. There are two possibilities.

« All these elements meet @ in the same affine (¢+1)-space ;" through ;. Then the number of

elements of S, through oy and not through w is at most [Z:i:ﬂ - [Z:z:g] . If this is the case

for all t-spaces oy C @ N Hoo, then |S,| < 0441 - <[Z:§:ﬂ — [Z::th + [Z:;:g] Note that

two elements through the same t-space a; meet in at least an affine (* + 1)-space; a;. Two
k-spaces through different ¢-spaces ay; and aze will also have a t-space in common, since
they both contain the affine t-space ;] N ajf,. Since S, is a maximal set of ¢-intersecting

k-spaces, we find that |S,| = 641 - ([Z:E:ﬂ — [Z:i:g]) + [z:zjg] and that S, has the
form described in Example

« There is a t-space oy C WM Ho, such that there are two elements 71, m9 € S,, not contained
in w, with oy C 7 N 79, but 7 Nw # w2 N w. Then every element 7 of S'a through oy,
not through 7; N w, meets 71 in an affine point outside of w. For the elements of S, through
71 Nw, but not through @, we can use the same argument by using 5.

Note that 7 meets @ in one of the ¢ affine (¢ 4 1)-spaces in @ through «.

- f7 NG # 7 N @, then there are ¢*'~! — 1 ways to extend this (¢ + 1)-space 7 N w
to a (¢ + 2)-space, meeting 71 in an affine (¢ + 1)-space, not in w. By investigating 71
in the quotient space PG(n, q)/ay, we find that there are ¢*~*~1 ways to extend 7 N @
to a (t + 2)-space meeting 7 in an affine (¢ 4+ 1)-space, and one of these extended
(t + 2)-spaces is equal to w.

-If7Nw=m N, then T Nw # Ty N @. Hence, we can use the same argument from
the previous point to see that there are ¢*'~! — 1 ways to extend this (¢ + 1)-space to
a (t + 2)-space, meeting 79 in an affine (¢ + 1)-space, not in w.
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Z:i:g] elements of S'a through oy and not through
n—t—2

w, and as there are ;11 possibilities for oy, and [ki t—2] elements through w, we find that
Sal = |Sal < Op1q(¢" 1 — 1) - [17172] + [1Z127]. We can check that this upper bound

Hence, there are at most ¢(¢" "' —1) - |

k—t—2 k—t—2
is smaller than ;1 - ([Z:j:ﬂ - [Z:Z:g]) + [Z:i:g], since

k—t |t =2 n—t—1] (n—-t—-2
O1+1(q Q)[k—t—2]<9t“<[k—t—1 b t_9

SR N e N

k—t—2 k—t—1 k—t—2
—t—1 k—t—1
k—t q" —q
= 4 —q< qkftfl -1
o q2k—2t—1 . 2qk:—t fg< gt qk:—t—l

o (< k2l <qn—2k+t _ 1) i qk—t—l(q 1) 4g (qk—t—l _ 1) :

is valid forn > 2k —t + 1,k > ¢ + 2,q > 3. This proves that if there exists a {-space
at € Hyo N@, such that not all elements of S, through o; meet w in the same (¢ + 1)-space,
then the number of elements in S, is smaller than the number of elements in Example

This proves Claim ().
k—t—2

7. This number is larger than 0, — 0 _; + [Z:ﬂ — glk—t=1)(k—t) [";ﬁ;l}, ifand only if k£ < 2t + 1.
So, for k > 2t + 2, we find a contradiction.

So |Su| = 0441 - ([Zj:ﬂ — [Z:;:g]) + ["7“2] if there is no t-space contained in all elements of

Now we continue with the case that all elements of 7 are contained in a ¢-pencil with vertex the
affine ¢-space 0. Let Z be the span of all elements of 7 and let dim(Z) = ¢t 4+ x, + > 2. Since
S, is not a t-pencil, we know that there are k-spaces in S, that do not contain 9. These elements
of S,, not through §, meet 0 in a (¢t — 1)-space, since they have an affine ¢-space in common with
every (¢ + 1)-space of 7. We can also check that each such element meets Z in a (t + = — 1)-
space: suppose to the contrary that there is an element « of S,, not through J, that meets Z in the
subspace Zy = aN Z, with dimension at most ¢ 4+ z — 2. Since « meets all (¢ + 1)-spaces of 7 in a
t-space different from d, it follows that the span of all elements of 7 is equal to (Z, d), which has
dimension at most ¢t + x — 1. This contradicts the assumption that the span of all elements of 7 has
dimension ¢ + z.

The dimension of the span Z of all the (¢ + 1)-spaces in 7 is at most k£ + 1: if dim(Z) > k+1, then
every k-space of S,, not through 9, would meet Z in a subspace with dimension dim(Z) — 1 > k,
a contradiction.

Let m € S, be an element that does not contain §, and let £ = (§, 7). Note that every element of S,
through ¢ has at least a (¢ + 1)-space in common with {. Now we claim that all elements of S,, not
through 4, are contained in £. Suppose that this is not the case, then there exists an element 73 € S,
withd ¢ 19 and my € £. Then every element of S, through 6 meets both 7\ § and 72 \ 8. Hence, the
number of elements of S, through 4, is at most 9,%_,5 [Z:E:S] + 011 [zzz:ﬂ . Here, the first term
is an upper bound on the number of elements meeting both 7 \ 75 and 75 \ 7. The second term is an
upper bound on the number of elements meeting (7 N72) \ J, since dim((mNma) \J) < k—¢—1.
Every element of S, not through § meets Z in a (¢t + x — 1)-space. This implies that |S,| <
Ore [ 2 407 [T 5] 4+ Ok—i—1 [~} "1]- Forn > 2k+1+3,k > 2t4+2,t > 1,2 > 3,q > 3;
this gives a contradiction by Lemma [4.5.21] since |Sq| > fa(g,n, k,t). Now, in a last step, we also
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have to find a contradiction for = 2, and so Z a (t + 2)-space. In this situation, all k-spaces
not through § must meet Z in a (¢ + 1)-space, not through 6. Now, every two elements of S, not
through J, must meet in at least a ¢-space. The same argument, used to deduce Claim (%), can
be used to show the following. For every ¢-space oy C ZNH 00> 5N Hy, g_ oy, we have that all
elements of Sa through a; must meet Z in the same (¢+1)-space. Hence, there are at most 011 —6;
possibilities for the intersection 7N Z, with m € S, ¢ Q 7, and there are at most [z:i:ﬂ k-spaces
through a fixed (¢ + 1) space. Hence, we find that the number of elements of S,, not through 9, is
at most ¢%0;_1 [}~ f, 1] and s0 |S,| < ¢?0;_1 [Z:E:ﬂ +07_, [Z:ﬁ:g] +0p_t—1 [Z:i:ﬂ This gives a
contradiction for n > 2k +t¢+ 3,k > 2t + 2 and ¢ > 3 by Lemma[4.5.22|since |S,| > fo(q, 1, k, t).
Hence, we find that every element of S, not through 4, is contained in £, and so S, is contained in

Example The theorem follows from the maximality of S,. [ |

4.5 Appendix

In this appendix, we will often use the bounds on the binomial Gaussian coefficient, see Lemma
11.10.2)

We start with two lemmas that give two formulas for the number of elements in each of the Exam-
plesf4.2.1 4.2.3} [4.3.1] and [4.3.3] We will use these different expressions of the number of elements
of a set, depending on which formula simplifies the counting argument.

Lemma 4.5.1. Let So1 be the set of elements described in Example[4.2.1 and let So 3 be the set of
elements described in Example[4.2.3, then we have that

[S2.1] = Ok1 — Op—t + [Z : z] _ gt (=) [n ; ﬁ; 1} (4.4)
NS ] Lt [ Kt N
< @0+ 0,y [Z ~ i ~ ﬂ (4.6)
\523|=[Z:i:ﬂ+9t+2([Z:i:ﬂ—[g:i:ﬂ) (4.7)
— [Z - i - ﬂ (1 + eﬁzqk‘t‘lf_:f_ﬂ) : (48)

Proof. We will use the notation from Examples 4. and The first equality for | S5 1| follows
from Lemma“ 4.2.2] For the second equality, we count the number of elements of S5 1 in a different
way. We have that [S21| = 6k41 + Zk 21Qi(n, k1), with Qj(n, k,t) = {8 € Sa1|8 ¢
&, dim(Bn¢)=j5+t+1},5€{0,1,..., k‘ —t —2}. Let 0 be the (k — t)-space corresponding to
¢ in the quotient space PG(n, q)/d. Note that the first term in the sum is the number of k-spaces
in &. Since an element in ); corresponds to a (k — ¢t — 1)-space in PG(n, ¢)/0, meeting op in a
j-space, and since there are [k bl ] j-spaces in o, we find, by using Lemma | that

k—t—2
k—t+1 . . n—k—1
Soq1l =6 + E (k—t—3)(k—t—j—1) )
15211 mH =0 [ J+1 }q k—t—j5—1

k—t+10t

Inequality (4.6) follows since g is the number of elements of S ; contained in ¢ but not
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containing §. The second term 6, [Z:f:ﬂ is the total number of k-spaces through a (¢ + 1)-space
in £ through §. Note that in this term, the k-spaces meeting £ in a subspace with dimension more
than ¢ + 1 are counted multiple times.

The first equality for |S2 3| follows from Lemma and the second from the definition of the
Gaussian coefficients. |

Lemma 4.5.2. Let R3 1 be the set of elements described in Example and let R3 3 be the set of
elements described in Example[4.3.3, then we have that

|R3.1| = 0 — Oy + [Z B ﬂ _ gkt k) [n ; ﬁ; 1] (49)
= O + k;ztj [k J_fj 1] A ) [k ﬁ;f ]—_1 1] : (4.10)
< ¢ e, + 0, [Z - i - ﬂ (4.11)
|R33| = {Z_E_;] +Or41 - ([Z_z_ﬂ - [Z_E_ED (4.12)
= {Z : z : ;] <1 + 9t+1q’”1ﬁ1__11> . (4.13)

Proof. The first equality for | R3 1| follows from Lemma or the second equality, we use the
equality between the two formulas for |S2 ;| in Lemma [4.5.1} since the formulas for |S2 1| and
| R3.1| only differ in the first term. Inequality follows from inequality and the fact that
|R3.1] < |S2.1|. The first equality for | S 3| follows from Lemma [4.2.4] and the second from the
definition of the Gaussian coefficients. |

Lemma 4.5.3. Forn > 2k —t+ 1,k >t+ 1 and ¢ > 2, we have that

n—t—1 n—t—2
Q[k_t_1]+(9t+16kt_9t+1_1)0kt [k—t—2]
n—t—1 n—t—2
> [k—t—l} +9t+1(9k—t—1)9k—t[k_t_2]-

Proof. The inequality is equivalent to
n—t—1 >0 n—t—2
k—t—1] = " k—t—2
k—t4+1 _
q S 4 1
qk:—t—l -1~ g—1
net _gntel g > 2R gkt gkete1

2k—2t (qankth _ g2kt 1) tq <qk7t _ 1) I )

n—t—1 _ 1
=

< q
< q

The last inequality is valid since all terms in the left hand side of the last inequality are non-negative
forn>2k—t+1,k>t+1andqg > 2. [ |

Lemma 4.5.4. Forn > 2k —t,k > t+ 1 and g > 2, we have that

ntQ]

k—t—1 k—t—2

n—t—1
2 { } F(Or110k— — Op1 — Op—¢)0p— [
[n —t—1
>

n—t—2
bt — 1] + q0(0—t — 1)6kt[ } .

k—t—2
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Proof. The inequality follows by subtracting (0x_; — 1)0;_; [k t 2] on both sides of the inequality
from Lemma [4.5.3] |

Lemma 4.5.5. Letn > 2k—t+1,q > 3 and considerExample‘ and Example- inPG(n,q).
The number of elements in Example[4.2.1] is larger than the number of elements in Example- if
k>2t+3.

Proof. Suppose to the contrary that the number of elements in Example |4.2.3|is larger than the
number of elements in Example [4.2.1|for k > 2¢ + 3. By using (4.5) and (4.8), we have

n—t—2 PRl |
1 ) k—t—1
[k:—t—Q} < + Oty2q P —

k—t—2
> Opq1 + Z [ _t+1} (b= t_j)(k_t_j_l)[ n_kfl ]

ot j+1 k—t—j—1
j=0 n—t—2 et 4P -1 (h=t)(k—t-1) [~ K =1
[k—t—2}< TOd Ty ) 7 Ot k—t—1
I o - e qn—k -1
@; 2q(k t—2)(n—k) <1 + 9t+2qk ! 1k;—t—1>
q -1
2
> (1 4 1> qk—t+(k—t)(k—t—1)+(k—t—1)(n—2k+t)
q
_ 2
1 q" k_1q 1 _
= 2+20t+2qk ¢ 1qk_t_1—1><1+q qn t
- 20 - D@ =D+ 2P - 1) -1
1\? e _
> (14 1) @ e
= qu—t _ 2qk—t—1 _ 2q 4 9 4 2q’l’b+2 _ 2qn—t—1 _ 2qk5+2 + 2qk_t_1

1\? ~ o _ -
> <1+q> (qn—i-k Qt,q"“‘k 2t liqn t+1+qn t)

n+k—2t n+k—2t—1 n+k—2t—2 n+k—2t—3 n—t+1 n—t
+q —q —q —q -

=q q

+ qn—t—l + qn—t—2
N gt (_qk—t—l +ogtt 4 1) 4t (_qk—t—l I 1)
(2052 426 4 2) 4 (20 - 3" = ") >0

In the left hand side of the last inequality, all terms are at most zero for £ > 2¢t + 3 and ¢ > 3.
Hence, we find a contradiction which proves the statement. [ |

Lemma 4.5.6. Letn > 2k—t+1,k > t+2,q > 3, and consider Example[4.2.1 and Example[4.2.3)in
PG(n, q). The number of elements in Example[4.2.3 is larger than the number of elements in Example

@z1ifk <2t +1.

Proof. Let k < 2t 4 1 and suppose to the contrary that the number of elements in Example is
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at most the number of elements in Example Then we have, by using (4.6) and (4.8) that

n—t—2 P Ll | _ n—t—1
[ ] (1+9t+2qk ! 1qkt1_1> <q" t+19t+9k—t|: ]

k—t—2 k—t—1
L 1 k) (h—f— 1 R -1 _ k) (b —f—
g <1+q) q( k) (k—t—2) (0t+2qk t 1;7#1 _1> <" t+19t+29k_tq( k)(k—t—1)
1 _ i

(qt+1 _ 1)(qk—t—1 o 1)
q(n—k)(k—t—Z)—kz—i-t—l

+ 2(qk7t+1 _ 1)(qk7t71 _ 1)qn7k
- qn+2 + qk—t—l + qn—l-l + qk—t—2 _ qn—t—l _ qk+2 _ qn—t—2 _ qk—|—1

< 2qn+k‘—2t + 2qn—k‘ o 2qn—t—1 _ 2qn—t+1
+ qk7t+1*(n7k)(l€7t72) (qt+1 _ 1)(qk7t71 . 1)

- (qn+2 _ gtk _ qk—t+1—(n—k:)(k—t—2)(qt+1 _ 1)(ql~c—t—1 _ 1)> gt (g - 1)

4 qk+1 (qn—k —q- 1) + qk’—t—l(2qn—k‘+2 + 1— 2qn—2k2+t+1) 4 qk’—t—2 < 0

Now, the contradiction follows since all terms in the left hand side of the last inequality are positive.
For the last four terms, this follows immediately sincen > 2k —t+ 1,k < 2t+2,k > t+2,q > 3.
We end this proof by proving that the first term is also positive. Since k > t+2andn > 2k—t+1 =
k+ (k—t)4+ 1> k+ 2, we have that

L<(n—k—1)k—t—1)
& n+1>2%—t+1—(n—k)(k—t—2)
. qn+2 > 2qn+1 + qn—l—l > 2qn+k—2t + q2k—t+1—(n—k)(k—t—2)

> Qqn+k—2t + qk—t-‘rl—(n—k)(k—t—Z) (qt+1 _ 1)(qk—t—1 o 1). m

Lemma4.5.7. Letn > 2k—t+1,q > 3, and considerExample andExample inPG(n,q).
The number of elements in Example [4.2.3 is larger than the number of elements in Example if
k=2t+2.

Proof. Let Sa1 and S5 3 be the set of elements in Example and in Example [4.2.3| respectively.
Suppose that k = 2¢ + 2, then we have to prove that | Sy 3| > |S2.1|. From and Lemma|(1.10.4

for [Z] equal to [n;:l] and [nfffﬂ, and with for both ¢ = ¢ + 1, we find that

t+1
|52.3\—{ y ]-i-jg[)@wz[ i }(q T e

t . .
n—t—2 t+1] vy n—2t—3] gt —o¢t—It1 4 1
N [ ]JFZQW[ J }q(t e ])[ }q ; * b2

t = t—3j gttt —1
(4.14)
On the other hand, by (4.5), we have that
¢
t+3 . an—2t—3
Sl = On+ S| (t+2—5) (t+1—) { . } _ 15
S2.1] = b2e43 ;LJFJC] P41 (4.15)
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From and (4.15), it follows that |.S 3| — |S2.1] is equal to

t
n—t—2 g n =2t =31[t+1] ¢33 -1
[ t } O = O+ 3 g ]){ t—j } { j ]qt—m_l“’?’
§=0
=w1
with
0y — qn—t—j—l o 2qt—j+1 1 B qQ(t—l—l—j) (qn—3t—3+j _ 1)(qt+2 o 1)

q—1 @+ =g+ 1)

We will prove that w; > 0 and wy > 0, which proves that | Sy 3| > |S2.1| for k = 2t + 2.

n—t—2 LII102 1 o e
o [ t ] s 2 (Hq) @ b
1

> oD (q(n72t72)t+2 _ g2 q2t+5> ¥ Oy

As

gD (=220t 245 5 g (n=2=2)t] _ (n=2t=2)t _ 2045

q S (P22 _ 2045

q

it is sufficient to prove that ¢("~2=2)t+1 > 245 This inequality is valid for n > 2t + 4 + %. For
t > 1, this assumption holds since n > 2k —t +1 = 3t 4+ 5. If t = 1 and n > 10, we also find that
q(”*%*z)“r1 > ¢*"*5 Forn = 9and t = 1, we find that w; = 63 > 0. In the last remaining case;
n = 8,1 = 1, we have that w; < 0. For this case, we used a computer algebra package to calculate
both numbers |S2 3|, |S2.1] to see that |Sa 3| > [S2.1].

qn—t—j—l _ 2qt—j+1 +1  a(tt1-) (qn—43t—3+j _ 1)(qt-'l—2 o 1)
q—1 (¢t = 1)(¢"+277 = 1)
g (g 41— g — g L) g2 (gL g 9)
(¢ — (g7t = 1)(¢"*+277 — 1)
2qt—j+1 (qj+1 _ 1) + (qt+3 _ qj+1 _ qt—j+2) + q2t—2j+2 + q2t—2j+3 +1
(¢ —1)(g7t = 1)(g"+277 — 1)

Wy =

_l’_

For 0 < j < t, we find that both the nominator and denominator are positive, since we have that
q > 3. So wy > 0. Hence, we have that |Sa2.3| > [S2.1]. [ ]

Lemma 4.5.8. Letn > 2k —t+1,q > 3, and consider Example[4.3.1 and Example[4.3.3in AG(n, q).
The number of elements in Example[4.3.1 is larger than the number of elements in Example [4.3.3 if
k>2t+ 2.

Proof. Let k > 2t 4 2 and suppose to the contrary that the number of elements in Example is
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at most the number of elements in Example [4.3.3] Then by using (4.10) and (4.13), we have that

n—t—2 PR e |
1 0 k—t—1
[k—t—2] ( + 0119 -1

k—t—2
>0+ > [ t+1] (- tj)(ktjl)[ n—k-1 ]

L i+l k—t—j—1
— [Z - z } ;] (1 + 9t+1qk_t_1qc,{l_:1__11> > 6y, qDE=t=1) [7; B ’tf: 11]
ﬂ 2q(k—t=2)(n—k) <1 TR qq:—:l__ll)
S (1 n ;)2 gt (=) (b=t D+ (k1) (n—2k1)
= 2+ 29t+1q’€‘t‘1q§i:l__11 > (1 + ;)2 gt
= 2(g = (" =) +2(¢"? = D" (" - 1)

> (1 ;)2 (g- D@~ )

:> qu—t . qu—t—l _ 2q + 2 + 2qn+1 . 2qn—t—1 o 2qk+1 + 2qk}—t—1
2
> <1 + 1) (qn+k72t o qn+k72t71 _ qn7t+1 + qnft)
q
— qn+k—2t + qn+k—2t—1 _ qn+k—2t—2 _ qn+k—2t—3 _ qn—t+1 _ qn—t
+ qn—t—l + qn—t—2
= gt (_qkftfl + 24t + 1) s (_qkftfl 4ght2 g ghts 1)

+ 2 (_qk+1 + qk:—t + 1) _ (2q 4 3qn—t—1 4 qn—t—Z) > 0

In the left hand side of the last inequality, all terms are at most zero for k > 2t 4+ 2 and ¢ > 3.

Hence, we find a contradiction which proves the statement.

Lemma4.5.9. Letn > 2k—t+1,k > t+2,q > 3, and consider Example[4.3.1 and Example[4.3.3 in
AG(n, q). The number of elements in Example is larger than the number of elements in Example

3T ik < 2.

Proof. Let k < 2t and suppose to the contrary that the number of elements in Example |4.3.1|is at
pp Y p

least the number of elements in Example [4.3.3] Then we have, by using (4.11) and (4.13), that

n—t—2 v _ n—t—1
1 0 k—t—1 kt+19 0,
[k—t—Z](+t+1q g1_1) <1 R

k

L T\ k)t 1 ¢ =1 _ ) (h—t—
@ <1+q) gk (k=t=2) <0t+1qk t 1qz_t_1 ) < * 10, + 20, gt

-1
1
= <1+) (qt+2_1)(qn k—l)qk t—1

(qt—i-l _ 1)(qk—t—1 _ 1)

k—t+1 k—t—1 n—k
(=R h—t—2)—k+i-1 +2(q —1)(g —1)q

<
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- qn-‘rl + qk—t—l + qn + qk—t—2 _ qn—t—l _ qk+1 _ qn—t—Z _ qk

k—t+1/ t+1 k—t—1
n+k—2t n—k n—t—1 n—t+1 q (q — 1)(q - 1)
<2¢ +2¢7 " —2q — 2 + g R 1-2)

N <qn+1 _9gntk2t qk—t+1—(n—k)(k—t—2) (¢! — 1)(qk—t—1 _ 1)> b2 (g — 1)

44 (qn—k g 1) 4 g2 <2qn—k’+3 +q+1— qn—2k+t+2) <0

Now, the contradiction follows since all terms in the left hand side of the last inequality are positive.
For the last three terms, this follows immediately sincen > 2k —t+1,k < 2t+1,k > t+2,q9 > 3.

We end this proof by proving that the first term is also positive. Since k > t+2andn > 2k—t+1 =
k+ (k—t)+ 1> k+ 3, we have that

2<(n—k—D)(k—t—1)
on>2k—t+1—(n—k)(k—t—2)
- qn—i-l > 2" 4 ¢" > 2qn+k’—2t + q2k—t+1—(n—k’)(k—t—2)

> 2qn+k72t + qk7t+17(n7k)(k7t72)(qt+1 _ 1)(qk7t71 . 1). m

Lemma 4.5.10. Letn > 2k —t + 1,q > 3, and consider Example and Example in

AG(n, q). The number of elements in Example[4.3.3 is at least the number of elements in Example[4.3.]]
ifk =2t + 1.

Proof. Let R3 1 and R3 3 be the set of elements in Example and in Example |4.3.3|respectively.

Suppose that k& = 2t + 1, then we have to prove that |R3 3| > |R31|. By (4.12) and Lemma [1.10.4
for [Z] equal to [”7;&71] and [";tf] and with for both ¢ = ¢, we find that

t
|R33| = [n t__t I 2} +> 0 m <q<t‘j)2 [n —E 1] O (G [“ - 2= QD

= t—7 t—j—1
t—1 , .
n—t—2 t Y n—22%t—2 qn*tfjfl_2qtf]+1
= [ 1 } + 0t+1{}q(t = 1)[ . 1} T + 0p41.
t— = J t—J— q -
(4.16)
On the other hand, by (4.10), we have that
At+2 n—2t—2
Rail—0 (+1=7)=g) | — =" 2] 4.17
By 2t+1+j§:;[j+1]q - @17)
Hence, it follows that
t—1
n—t—2 NG M —2t =2 [t
|R33| — |R31| = [ P ] + 041 —92t+1+2q(t (=3 1)[ iy ] u (2 — 1)ws,
§=0
=wq
with
qnftfjfl _ 2qtfj 1 qt+1 -1

2(t—9)

PN ) @ - nE -t
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We will prove that wy > 0 and wy > 0, which proves that |R3 3| > |Rs.1| for k = 2t + 1.

n—t—2
wy = [ ]+9t+1 — O 41

t—1
1 2t4-2
> (1 + ) q(antfl)(tfl) O — q
q q—1
1
_ (n—2t—1)(t—1)+2 _  (n—2t—1)(t—1) _ _2t+3
g —1) (q q q )+0t+1.

Note that we used Lemma [1.10.2|for the inequality on the second line. Since

n=2t=1)(t=1)+2 _ (n=20-1)(t=1) _ 2643 5 g, (n=2t=1)(t=1)+1 n—2t—1)(t—1) _  2t+3

—q( q

n—2t—1)(t—1)+1 _ s
)

q(
> ¢

it is sufficient to prove that ¢(*~2=D(=D+1 > 2643 This inequality is valid for n > 2t 4+ 3 + %.
For ¢t > 3, this assumption holds since n > 2k —t + 1 = 3t + 3. For t = 2, the assumption holds
forn > 11. For t = 2,n = 10, we have that wy = 63 > 0. Since n > 2k —t + 1 = 3t + 3, the only
remaining casesaret = 2andn = 9,and ¢ = 1 and n > 6. In these cases, we immediately calculate
|R3.3| — |R3.1]. For t = 2,n = 9, we have that |R3 3| — |Rs.1| = ¢° +2¢® +3¢" + 2¢° + ¢° > 0.
Fort = 1,n > 5, we have that |Rs 3| = |R3.1| = 1 + ¢020,,—4.

Now we investigate ws:

gt _ogti 4 - gt -1 261)
(= D@11 (@ =g -1
(@ =D =" = 2¢" T + 1) — (¢ — (" 1) (¢ = 1)
(¢ — D)(gn3H=1 = 1)(¢Z+! = 1)(¢g!=7+1 = 1)

gt (qj+t g% — qt) 4 2tmit2 (qtfj _gti1 2)

(¢ — D(gn=3H=1 = 1)(¢7+! = 1)(¢t=7+1 = 1)
(qt+2 + 2qt+1 o qt—j+1 o 2qt—j o qj—l-l) + q2t—2j+1 4 q2t—2j + 1 + qn—j—t

(¢ — D)(gn=3H=1 = 1) (g2t = 1)(¢gt=7+! — 1) '

Wy =

As0 < j <t—1andq > 3, we find that all terms in the nominator are at least 0, which proves
that wy > 0. Hence, we find that |R3 3| > |R31]. [

Lemma 4.5.11. Supposen > 2k+t+3,q> 2,k >t+ 2,1 > 1, then
n—t—x||t+z+1 n—t—2|(t+3
Or_t)" Op_t)*
(Or—t) [k—t—:n” t41 ]<(’“ t) [k—t—Q] [t+1]
forall2 <x <k —t.

Proof. 1t is sufficient to prove that

e |n—t—o—1]|t+x+2 sn—t—z||{t+x+1
(Or—t) [k—t—x—lHtJrl R PP | I L (4.18)
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forall z > 2.
t—ax—1||t+x+2 n—t—ax||[t+x+1

0 x+1 < (0%
(Or—t) [k t—a:—lH t+1 ] 2 P |
k—t+1 n—t—x
q —1 et q -1
- -1 R S—— -1

& 1 (q ) < o L (g )

o (qkft‘f’l _ 1)(qk7t7:p . 1) (qt+m+2 _ 1) < (q _ 1) (qnftfw _ 1) (qz+1 . 1)

(qn—t—I—Q _ qn—t+1 _ qn—t—a:+1 _ qQk—t+3) + qk—t—x(qn—k _ 1) + qt+m+2(qk—t+1 _ 1)

3

+ (qk+2 _ qm+2 _ qk7t+1) + q(q2k72t7x + qa: + 1) > 0.
The last four terms are positive for ¢ > 2 since k > x > 2. For the first term, we have that

qn—t+2 _ qn—t+1 > qn—t+1 > zqn—t > qn—t—x+1 + qQk—t—&-S’

which is true since x > 2and n > 2k + ¢ + 3. [ |

Lemma 4.5.12. Supposek > 2t +2,t > 1,q > 3 andn > 2k + 1 + 3, then

2 t+3 k_t_Q (k—t—j—2)2 n_k'
(Or—t) [t—l—l i k—t—j—2

k—t +1 (k—t—j)(k—t—j—1) n—k—1
<[j+1 ]q k—t—j—1]
forallj € {0,...,k —t—2}.
Proof.

2 t+3 k_t_Q (k—t—j—2)2 n_k
(Or—t) [t—l—l i k—t—j—2

k—t+1 - » n—k—1
- [ _ ]q(k—t—yxk—t—a—l) { . ]
Jj+1 k—t—j—1
(¢ — 1)2 (g3 — 1)(g"2 — 1) [ n—k }
(g—1)2 (@2-1)(qg—-1) |[k—t—7—-2
(e )
@ - D@ - )@= 1) | j+1
E—t+1 ( —2k+t+j5+2 _ 1)(qn72k+t+]’+1 _ 1) n—k Sh—3t—3j—d
[m}( e SR )T
(@1 1) (¢ - ) @ D@ g
(¢—12 (-D(-1 (¢t =1)(g" 1 1)
(qn—2k+t+j+2 _ 1)( n—2k+t+j+1 _
(¢" % = 1)(¢" 1 = 1)

i . I =) (g -
P e =
q

=4

54

< 1) HhBt=3i-1

n—2k+t+5+1 _ 1 n— 2k+t+j+2_1 b 3t3i4
—3t—3j—

<=V -V oo

It is true that gz:i < qa_b if and only if b > a. We use this bound twice in the last fraction on the

: : . . n—2kt-t4j+2_ ; o .
left side of the inequality. Moreover, since W > "2+ =3 > 1 it is sufficient to
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prove that
, s A N | .
qn+k—2t—3] < (q _ 1)3((]2 _ 1) o qn+k—4t—2j—7
2t—j+7 -1 3(,2 1
o ¢ J a1 - 1)
g2k P 1
g i+1 3,92
= m(q] —1)<(¢g—1)(¢" - 1)
T—
e LWt <))
qj+4 -1
q 3,2
= g qle-1)<@-1)%¢ -1
The third inequality follows since f(n) = Cﬂﬁiii” is decreasing and n > 2k + ¢t + 3. The
G2t—ItT

fourth inequality follows since h(t) = 751 is decreasing and ¢ > 0 while the last inequality

q
follows as ¢g(j) = q]q+4 =(¢?T1 — 1) is decreasing and j > 0. The last inequality is true for all
q>3. ]

Lemma 4.5.13. Supposek >t+2,t > 1,q > 3 andn > 2k + 1t + 3, then

(ek_t)x[n—t—x} [t—i—x—i—l

k:—t—:c t—|—1 :|<fp(Qan>k7t)

forall2 <x <k —t.

Proof. From Lemma [4.5.11] it follows that it is sufficient to prove the lemma for x = 2. Hence, we
have to prove the following inequalities, for which we use (4.8) and (4.5):

o[n—t—=2][t+3] [n—t-2 et 4" -1
(O—1) k—t—2|t+1] S |k—t—2 L Oad™ i fork <2642
(4.19)
(n—t—2][t+ 3]
k—t—2||t+1]

k—t—2
—t41 P n—k—1
0 > (k=t=7)(k=t=j—1) for k > 2t + 3.
< bUgq1 + 2 { i1 } k—t—j—1 ork >2t+3

(Or—1)?

(4.20)

We start by proving inequality (4.19). Suppose to the contrary that this inequality does not hold.
Then we have that

(Op—1)® ﬁ 1 ﬂ > 1+ 9t+2qkt1;l,jfl__11
ﬂ qQk—Qt—l—Z 2q2t+2 . qt+3 _ 1qk7t71 qn—k -1
(¢ —1)? q-1 gttt -1
n>2k+1+43 2qk+t+5(qk—t—1 o 1) > (C] o 1)(qt+3 o 1)(qn—k . 1)
> (g = 1)(¢" = 1)(¢"*? — 1)
= 0> q2k+4(q2t—k+3 _ q2t—k:+2 _ 2) + qt+4(2qkz+l _ qk o 1)

+ (q o 1) +qt+3 + qk+t+3.
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All terms in the right hand side of the last inequality are non-negative since k < 2t + 2 and ¢ > 3.
Hence, we have a contradiction which proves (4.19).

Now we prove inequality li We use Lemma [1.10.4 for the factor [Z i 2] withe =k —t — 2,
and so, we have to prove the following inequality

k—t—2
2 t+3 k_t_Q (k—t—j—2)2 n_k
(%*)L+¢}§:{ i k—t—j—2

J=0

k—t—2
—t+1 . ‘ n—k—1
0 qlk—t=a)(k=t=j—1) i
<k“*‘§£[3+1} k—t—j—1

Hence, it is sufficient to prove that

e | i P

t4+1 ] —t—j—2
< [Pt ety | Pk
Jj+1 E—t—j5—-1
forall j € {0,1,...,k —t — 2}. This follows from Lemma |

Lemma 4.5.14. Supposen > 2k +t+3,9> 2,k >t+2,t > 1, then
n—t—ux t+uw gln—t—=2] 5[t+2
Or_¢)* r 05—
(O—t) [k—t—m}q[ . }<(kt) [k—t—Q}q 9
forall2 < x <k —t.

Proof. 1t is sufficient to prove that

epr|n—t—xz—1| qlt+z+1 sn—t—z| ,|t+=x
(Or—t) [kz—t—x—l]q [3:—1—1 < () k—t—z|T| 2 |

Sincen > 2k +t+3,q> 2,k >t+2,t > 1,2 <z <k, we have from (4.18) that
(0 )xn—t—x s|tt+x > [ (0 )x+1 n—t—z—1 [ttif] R
O )T e ket k—t—xz-—1 [ttfl“l] |

> (Opy)™! n—t—x—1] ¢ —1[t+z+1
ket k—t—:z:—qut”“—l z+1

—t—ax—1 t+x+1
0, :1:+1n z+1 .
> (i) [kz—t—m—lq z+1

This proves the lemma. u
Lemma 4.5.15. Supposek >t +2,t > 1,q > 3,andn > 2k +t + 3, then

n—t

(Or—t)" [k: . B ﬂ q° [t Z ﬂ < falg,n, k, 1)

forall2 < x <k —t.
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Proof. From Lemma [4.5.14{it follows that it is sufficient to prove the lemma for x = 2. Hence we
have to prove the following inequalities, for which we use (4.13) and (4.10):

n—t—2] ,[t+2] n—t—2 VR —
04 )> 2 14+0,1¢" 72—~ ) fork <2t+1;
(k t) _k—t—2_q I 9 |:k_t_2:|< + 0i+19 qk_t_l_l or K >~ + 1
(4.21)
-n_t_2- 2-t+2-
(ekz—t) k—t—2q 9
k;t2
—t+ L ety | k=1
for k > 2t + 2.
< 0 + Z [ ] ket -1 or k > 2t +
(4.22)

We start by proving inequality (4.21). Suppose to the contrary that this inequality doesn’t hold.
Then we have that

t+2 PR oy |
(Qk—t)z{ 9 ]q221+‘9t+1qk =14~

qkftfl -1
LITO2 g2t 24212 > g2 — 1qk—t—1 -1
(¢ —1)? q—1 gttt -1
Ll 20" (T — 1) > (= D(¢TP - 1)("F - 1)
> (q—1)(¢"? = 1) (¢ — 1)
N 0> @R (g2hT2 _ 2kt gy | g3 9kt _ gkl )

+qt+2 Jrqk—i-t—i-ii + (CI* 1).

All terms in the right hand side of the last inequality are non-negative since £ < 2t 41 and ¢ > 3.
Hence we have a contradiction which proves (4.21).

Now we prove inequality 1) We use Lemma [1.10.4) for the factor [Z:f:g] withe=Fk —t -2,

and so, we have to prove the following inequality.

k—t—2
22t+2 k_t_2 (k—t—j—2)2 n_k
oo 37 T T T

7=0

k—t—2
—t+1 k—t—i)(k—t—i—1 n—k—l
<9k+z [ ]( Pt nURT

Note that it is sufficient to prove the inequality below for all j € {0,...,k —t — 2}.

22t+2 k_t_2 (k—t—j—2)2 n_k

k'_t+1 (k—t—j)(k—t—j—l) n—]f—l
<[j+1 }q k—t—j—1)

This inequality follows from Lemma | since ¢ [t”] < [tg?)]. |

Lemma 4.5.16. Supposen > 2k +t+ 3,9 >3,k >t+2,t > 1, then

n—t—2

n—t—1
2 = — 1)0,._
[ } + (O1410k—t — Or1 — 1)0 t[k_t_z

k—t—l :| <fP(Q7nak7t)'
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Proof. We have to prove the following inequalities:

n—t—1 n—t—2
? [k - 1} T Brerrbis = B = D {k - 2]
n—t—2 peto1 @V F—1 .
<[k—t—2:| <1+9t+2q m for k <2t + 2;
(4.23)
n—t-—1 n—t—2
2 Op105—y — Or1 — 1)0;_
|:k,_t_1:|+(t+lkt 41 )kt[k’—t—2]
<4 +k§2k_t+1 (h=t=i)h—t—j=1) | MR =L e s g
r .
k+1 P 1 q h—t—j—1 or kK >

(4.24)

We start by proving inequality (4.23). Suppose to the contrary that this inequality doesn’t hold.
Then we have that

n—t—1 n—t—2
2 01101+ — 6 —1)0s_
|:k_t_1:|+(t+1kt t+1 )k:t|:k_t_2:|
n—1t—2 gk —1
> 1 9 k—t—li
qnftfl_l e qnfk_l
= 2W+(9t+19k—t—9t+1—1)9k—t > 1+ Op 0! lm
= 2(qn7t71 —1)+ (qkftfl — 1)(0r 105t — 011 — 1)0—y > 9t+2qk7t71(qn7k —1)
L t—1 k—t—1 k—t+1 g3
L2 2 D)+ @ D -
> (qt+3 _ l)qkz—t—l(qn—kz o 1)
¢ -1 Sh2t+s 12 =1 k42 | k—t—1
- 2t — ot g o4 L 5 g2 gntel e
q q q+2+ (q_1)2 q q q +4q
+2 PR3 ¢ t—1 k42 k—t—1
= 0> (¢2—L—— _9¢- ("” - —2) —t=1 49
(q TEE >+ q q +4q +2q
2k+3( t+2 q2k+5 2k+2 k+2 k—t—1
= 0>(q Rl —2)—(q_1)2)+(q +—q+—2)+q**+2q.

The last implication follows since n > 2k +t 4 3 and k < 2t 4 2. For ¢ > 3, we have that all terms
on the right hand side of the last inequality are non-negative. Hence we find a contradiction, which

proves (4.23).

Now we prove inequality (4.24) for £ > 2t + 3. Suppose again to the contrary that this inequality
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doesn’t hold. Then we have that

n—t—1 n—t—2
Q[k—t—l} + (O 410k—t — Or11 _l)gkt|: ]

k—t—2
k—t—2
—t4+1 PV n—k—1
>0 (k—t—=j)(k—t—j—1)
kmz[ o S
§=0 n—t—1 n—t—2
= 2 Or105—t — 011 — 1)0)—
[k_t_1:|+(t+1kt t+1 )kt[k:—t—Q
—-k—-1
> 0, gkt (k=t=1) n
Z Uk—tq E—t—1
2k—t+4
L — - q — =
ﬂ 4o (k) (k—t=1) 9 (k) (k—t—2)
! Tl
1
>0, (1 n q) PO (k—t=1)+(n=2k+t) (h—t—1)
4 2 >0 1 ! 0 4
= - gk (g = 1)3 k—t +a > Uk—t 1
n>2k+t+3 2¢F—2+1 F—t+1 _ q
-7 "7
q=>3 qk—2t+1 > qk—t+1 1.
The last inequality gives a contradiction for ¢ > 3,¢ > 1. |

Lemma 4.5.17. Supposen > 2k +t+3,q> 3,k >t+2,t > 1, then

—t—2

k—t—2

n—t—1
2 [k 4 1] + (Or10k—t — Orp1 — O—t)Op— t|:

] < falasmi k1),

Proof. We have to prove the following inequalities:

P Z B z - 1 4 (1Ot — Orsr — Oos)Ors Z - z - ;
[Z } z - 3] (1 +Gpargh ! qfi”tkl—_ll) fork <2t +1; (4.25)

2 Z : i : 1 + (Or410k—t — Ory1 — Op—t)Or—t Z : z : ;
<O+ kzt:Q [ oo 1] (emmentma= L{;i;f j__l J for k > 2t + 2. (4.26)

We start by proving inequality (4.25). Suppose to the contrary that this inequality doesn’t hold.
Then we have that

[n—t—l

n—t—2
k—t—1

] + (O 410k—t — Ot1 — Op—t)Op—s [k: _4_o
n—t—2 o1 4" =1
Z[k—t—Q} <1+9t+1q P
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gt -1 k—t—1 -1
< 2([’“’“71—1 + (04105t — Orp1 — Ok—t)0k—t > 1+ 01119 11
= 20" = 1)+ (¢ = 1) (Or10k—t — 1 — Op—t) O
> 014" (g - 1)
L —t—1 k—t—1 k—t+1 g e
A2 2(¢" " =g -1 +(q —1)(q - 1)@

> <qt+2 _ 1)qk7t71<qn7k _ 1)

3k—2t+3
= 2qn—t _ 2qn—t—1 _ 2q 4 2 4 (q — 1)2 > q’n"rl _ qn—t—l _ qk+1 4 qk’—t—l
Ph—2t+3
N 0> <qn+1 _ T _ 2qnt) X <qn7t71 g 2) 4l o
n>2k+t+3 0> q2k+3(qt+1 9y gt + (q2k+2 . qk+1 . 2) + qk—t—l +2g
k<2t+1 (g —1)2 ’

For ¢ > 3, we have that all terms on the right hand side of the last inequality are non-negative.
Hence we find a contradiction, which proves (4.25).

Now we prove inequality (4.26). Suppose again to the contrary that this inequality doesn’t hold.
Then we have that

n—t—1
2[ ] + (04105 — Opy1 — Op—¢)0p—4 {

Bt k—t—2
B
= i [Z - i - ﬂ + Or410k—t = Or1 = Or—t) 0k [k _ ; _ 2]
Z%t¢kﬂ%t1qz:f:ﬂ

2k—t+4

LOT0A 4gn—R)k—t=1) q

(a=1
> 0),_;qF—OkE—t=1) <1 + 1) g2k (k—t-1)
q

9g(nk)(k—1-2)

2 1
= 4+ gk (g = 1)3 > Ot (1 + q) > Op—t +4
n>2k+t+3 2qk_2t+21 S
(¢—1)
qZ?g/ UL S gt
The last inequality gives a contradiction for ¢ > 3, since t > 1. |

Lemma 4.5.18. For2 <x <k —t+1,q > 3 andn > k + 2, we have that
0 n—t—=x <0 n—t—x+1
et | T —t— 2+ 1
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Proof.

0 n—t—x <0 n—t—x—+1
t+z+1 ke t— o t+wk—t—x—|—1

. 9 ; 1 qn7t7:t+1 -1
= q-‘rac—i- _1<(q+m+ _l)m

k+3 t+x+42 k—t—z+1 n+2 n—t—z+1 t+z+1
< q —4q —q <q —4q —q

o - qk—t—x-i-l < (qn+2 _ qn—t—x-i-l _ qk+3> + qt-‘ra:—i-l (q - 1) )

Note that the right hand side of the last inequality is positive for ¢ > 3, which proves the inequality.
|

Corollary 4.5.19. Forz <k —t+ 1,9 > 3 andn > k + 2, we have that

n—t—x+1 n—t—1
< >
Otta [k:— ] < Opp2 [k—t ] ifx>2

t—x+1
n—t—z+1 t—2
0 <0 >3
t+$[k—t—a:+1] = t+3[k¢—t 2] i

Lemma 4.5.20. Suppose thatn > 2k +t+ 3,k >2t+3,2<x <k —t+ 1,1 > 1. Then we have
that

k—t—2
—t+1 N n—k—1
Orss + Z [ ] (k) (1 1>{k_t_j_J

-0 n—t—xz+1 . n—t—2 iy n—t—1
R S | k=t —t -2 s

Proof. Suppose to the contrary that the inequality in the statement of the lemma doesn’t hold. Then
we have that

k—t—2
—t+1 AV (i n—k—1
9k+1+z [ }q(kt])(ktjl)[k_t_j_l]

n—t—xz+1 9 [n—t—2 n—t—1
< Opys 05— Op—1—
= [kz—t—x+1]+ ’“ t[k—t—2]+ bt l[kr—t—l]

2>2,5=0 Ay m—k—1
>2,j O pq(F D)0 1)[ }

CE5IT k—t—1
n—t—1 5 [n—t—2 n—t—1
< 9t+2|:k‘—t—1:| +9k_t|:k‘—t—2:| +9kz—t—1|:k_t_1:|
@? qk—t+1 — 1q(k_t)(k_t_1) (1 + 1) q(n—2k+t)(k;—t—1)
qg—1 q
t+3 k—t+1 2
=1 kyh—t-1) , @ — 1% (k) (k—t-2)
i 79 M 0 -7
< i—1 q + (=17 q
i
_’_72q(n k) (k—t—1)

qg—1
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h=t+1 _1)2

_ 1 (q -
k—t+1 t+3 k—t
= q -1 (1+><2q -)+2—+2(¢ -1
( ) q ( ) g (g —1) ( )
N g3 (qk72t72 g 2) T <3 _ 2)
n—t —1)=2 k—t-‘rl_l?
q"*(qg—1)

Fork > 2t + 4,9 > 3and n > 2k 4+ ¢ + 3 all terms in the left hand side of the last inequality are
non-negative, which gives a contradiction. For k = 2¢ 4+ 3 we have

1 (qt+4 _ 1)2
t+4 t+3
-3 3———2——F—"— 0
(g ¢7) + ( g i3 1) <
1
q

t+4 2
n>5t+9 t+4 t+3 (¢ -1)
(a ¢") + ( P (g —1)
1
t>1 (qt+4 _ 3qt+3) + <1 — q> <0,

which also gives a contradiction for ¢ > 3 and t > 1. [ |

Lemma 4.5.21. Suppose thatn > 2k +t+ 3,k > 2t +2,3<ax<k—t+1,t>1,q > 3. Then
we have that

k—t—2
*t“’“l k—t—i)(k—t—i—1 n*kj*].
9k+z { }( §)k—t—j )k:—t—j—l

n—t—xz+1 9 [n—t—2 n—t—1
Otz 05— Op—1— .
> Vet {k:—t—:c+1]+ ’f t[k—t—2]+ bt l[k—t—l]

Proof. Suppose to the contrary that the inequality in the statement of the lemma doesn’t hold. Then
we have that

k—t—2
—t + 1 (k: t— ‘)(k‘—t— ‘_1) n — k’ -1
ak+§;[ el Pl
n—t—x+1 9 |M—t—2 n—t—1
<
et“{k—t—x—i—l]—i_ekt[k—t—2]+9k_t_1[k—t—1]

2>3,j=0 (k=) (h—t—1) [P~k — 1
223920 g,
cmxmm [k i1

n—1t—2 5 [n—t—2 n—t—1
<9t+3[k5—t—2} +0k_t[k‘—t—2} +0k_t_1[k—t—1}

LICT0A Qk_(]t+11_ 1q(k7t)(k7t71) <1 n ;) g2k (k=t=1)

- qt;”‘_—l 12q(n—k)(k—t—2) n (q’“(‘qtil 1—)21)22 R —t-2) | qkq_t_—l 1
= (" —1) (1 + ;) < th;:__k Ly 2(3::?(; — ?)2 +2(¢" " - 1)
e )
LN (q’” - QQt;_:—_k 1) + (1 - ;) +2 (qn_t q;_(glg;tjll)_ 2 2) <o.
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Forn > 2k 4+t + 3,q > 3 the terms in the left hand side of the last inequality are non-negative,
which gives a contradiction. |
Lemma 4.5.22. Suppose thatn > 2k +t+ 3,k > 2t + 2 and q > 3. Then we have that

k—t—2
—t+ 1] o jyh—t—j—1)| k-1
%+_§: [ ]( 7 (b=t >k_t_j_1

9 n—t—1 9 n—t—-2 n—t—1
0 0 O
-4 t{k—t—J*‘”¢h—t—2*‘ktlk—t—l

Proof. Suppose to the contrary that the inequality in the statement of the lemma doesn’t hold. Then
we have that
k—t—2

—t+1(kFMMFrn n—k-1
w3 [T C

—t-1 n—t—2 n—t—1
<¢%0,,|" 62 Oy
=1 t{k—t—J4_”%h—t—J4_ktlh—t—J

n—k—1
k—t—1

-1 -2 n—t—1
20,_,|" + 02 0
STO- e )T ktk poo| POy

=0, Oy, + 0y pq kD k—t=1) [

k—t4+1
@ q — 1q(k_t)(k—t—1) (1 + 1) q(n—2k+t)(k—t—1)
q—1 q
< q" — 12q(n—k)(k—t—1)+2 I (¢" ! - 1)22q(n—k)(k—t—2)
qg—1 (g —1)2
k—t
+Q72q(n k)(k—t—1)
q—1
k—t+1 1 t+2 2 (¢t —1)? k—t
= ¢ " =1 (1+><2q —q¢ )+ 22— +2(¢ 1
( (145 ) < )2y P2 )
1 k—t41 _ 1)2
= (qk7t+1_2qk7t_2qt+2> I (1_> i <qkt+2q2_2(qn_k ) ) <0
q q"*(g—1)
(4.27)
1 n—t 9 n—k+2 _ ( k—t+1 _ 1 2
923 VaE: (qkz—2t—2 _ 2) X <1 _ ) 19 <q +2q — (q ) > <0
q q"*(g—1)
—2k+Ht— —3k
N ¢+? <qk—2t—2 _ 2) i <1 _ 1) 4 9g2h-2t+2 <qn k4t 2__2 9qn—3k+2t _ 1) o
q q"*(g—1)

Fork > 2t + 3,9 > 3and n > 2k + t + 3 all terms in the left hand side of the last inequality are
non-negative, which gives a contradiction. For & = 2¢ 4 2 we have that n > 2k + ¢ + 2 = 5¢ 4 6,
and by using we have that

1 t+3 _ 1 2
(qt+3 — 3qt+2) + <2q2 +1—-— 2—(q ) ) <0
q (¢—1)

qn—2t—2
t+3 2

n>5t+7 t+3 t+2 2 1 (¢ -1)
= -3 2 1——-—2—7F7—>=]<0

la ! )+<q T T -

1
% (qt+3_3qt+2)+(2q2_1_q) <O
which also gives a contradiction for ¢ > 3. [ |

88



5 The Sunflower bound

€C It never hurts to keep looking for sunshine. 99

—Eeyore

The results in this chapter are joint work with prof. Aart Blokhuis and dr. Maarten De Boeck, and
will appear in [15].

5.1 Introduction

A (k+ 1,t+ 1)-SCID is a set of k-dimensional subspaces in PG(n, ¢), that pairwise intersect in
precisely a t-dimensional space (SCID stands for: Subspaces with Constant Intersection Dimension).
Note that this set corresponds to a set of (k + 1)-dimensional vector spaces, pairwise intersecting
in a (¢t + 1)-dimensional vector space. This indicates why we use the (k + 1,¢ + 1)-notation.

A (k+1,t+1)-SCID is also called a t-intersecting constant dimension subspace code, where the code
words have projective dimension k. Note that (k 4 1,0)-SCIDs correspond with partial k-spreads
in PG(n, q).

Investigating SCIDs is interesting for the link with coding theory. Network coding is a segment
of information theory dealing with data transmission over lossy and noisy networks. In such
networks, information travels from a set of sources to a set of receivers through several inter-
mediate nodes. An optimal information rate can be achieved by performing linear combinations
during transmissions in the intermediate nodes. This approach is called random network coding,
and utilizes subspace codes [81]]. In a subspace code, the code words are subspaces in a projective
space, and the subspace distance d(U, V') between two code words U and V is defined as follows:
d(U,V) = dim(U) + dim(V) — dim(U N V). Constant dimension subspace codes are subspace
codes whose elements all have the same dimension. They are the g-analogues of the classical codes.
SCIDs are equidistant constant dimension subspace codes since the pairwise distances between the
code words are equal.

An example of a (k + 1,¢ 4+ 1)-SCID is a sunflower, which is a set of k-spaces, passing through
the same t-space and having no points in common outside of this ¢-space. It can be shown that a
t-intersecting constant dimension subspace code is a sunflower if the code has many code words.

Theorem 5.1.1 ([56, Theorem 1]). A (k + 1,t+ 1)-SCID C is a sunflower if

E+1 _ t+1\ 2 E+1 41
|cy><q q_f ) +<q q_f >+1.

It is believed that the Sunflower bound is in general not tight. In [6], the Sunflower bound for
(k 4+ 1,1)-SCIDs was studied.
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5 The Sunflower bound

Theorem 5.1.2 ([6, Theorem 2.1]). Let C be a (k + 1,1)-SCID, with k > 4. If
E+1 N\ 2 E+1
o> (L——9) ¢ (L9 4,
q—1 q—1

In this chapter, we will give a better result for (k 4 1,1)-SCIDs, see Theorem In this result,
4

we improve the Sunflower bound with a factor 6%/6 + 55 — %, while in [6], the authors improve

then C' is a sunflower.

the bound with a lower order term ¢*.

We suppose that k > 3 as for (2, 1)-SCIDs we, more generally, known that every (k + 1, k)-SCID
is a sunflower or consists of k-spaces in a fixed (k + 1)-space, see Theorem For (3,1)-SCIDs,
an almost complete classification is known, see [9].

Result 5.1.3 ([9]]). Let C be a set of planes in PG(n,q),q > 3, pairwise intersecting in exactly a
point. If|C| > 3(q*>+ q+1), then C is contained in a Klein quadric in PG (5, q), or C is a dual partial
spread in PG(4, q), or all elements of C pass through a common point.

In Section 5.2 we give some definitions and general lemmas. In Section 5.3 we start with the Main
Lemma that gives an important inequality. Using this inequality, we continue with Theorem 5.3.6]
that gives an improvement on the Sunflower bound if £ > 3 and ¢ > 9 (and if ¢ > 7 and k > 5).

5.2 Preliminaries

From now on, we consider a fixed (k + 1, 1)-SCID S that is not a sunflower, of size |S| = (1 — )62,
0 < s < 1. Note that the size of |S| is smaller than the Sunflower bound for s > é — 9% We will
k

derive, for a fixed value of k and field size ¢, an upper bound on 1 — s.

Definition 5.2.1. Consider the SCID S. The sets of points and lines that are contained in an
element of S are denoted by Ps and Ls respectively.

Lemma 5.2.2. Suppose P € Ps, then P lies in at most 0}, elements of S and on at most 0y, - 0,1
lines of Ls.

Proof. There exists an element Sy € S not through P, since S is not a sunflower. Every k-space of
S through P contains a point @) of Sy and every line PQ) with Q) € Sy is contained in at most one
k-space. In this way we find at most 8}, elements of S that contain P. The lemma follows since the
number of lines through a point in a k-space is 6j_1. |

From now on, we distinguish ‘rich’ and ‘poor’ points and lines in Ps and Ls. First we give the
definition, then we continue with some counting arguments.

Definition 5.2.3. Suppose c, d are constants between s and 1. A point P € Pg is c-rich if it is
included in more than (1 — ¢)fj elements of S. A point is c-poor if it is not c-rich. Aline [ € Lg is
(¢, d)-rich if it contains more than (1 — d)(g + 1) c-rich points.

We will call c-rich and c-poor points, and (¢, d)-rich lines rich and poor points, and rich lines re-
spectively, if the constants c and d are clear from the context.

Lemma 5.2.4. For the number r of c-rich points in an element of S, we find:

TZTO=<1—§>91€,
C
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Proof. Fix Sy € S, and count the number of elements in S that intersect Sy in a point. By Lemma
we have that through every rich point P of Sy, there are at most 0, — 1 elements of S different
from Sp. Through every line spanned by P and a point of such a k-space, there is at most one
element of S.

Every poor point of Sy lies in at most (1 — ¢)0;, — 1 other elements of S by definition. We double-
count pairs (P, Z), with P € Z, Z € S where P € Sy and Z # Sy, to obtain the following
inequality:

r(Ok = 1)+ (0 —r) (A=) —1) > |S] -1
& rfr —1—(1—c)0p+1) > (1—35)07 —1—(1—c)07 + 0
= rcby > (c— s)07
= r o> (1_%)919

Lemma 5.2.5. An element of S contains at least

= ()

(¢, d)-rich lines and the total number of (c, d)-rich lines is at least (1 — s)63.

Proof. Consider a k-space Sy € S and let 8 denote the number of poor lines in Sp. By counting
pairs (P, [), with P a rich point in Sy, [ a line in Sy and P € [, we find:

(I3 -#) @r v+ s0-da+ 02 o= (1-2) o

which gives

O
< SOk0k—1
cd(g+1)
Hence, an element of S contains at least [k'gl] - B = g’jlaf{l - iZ’Egi*ﬁ (¢, d)-rich lines. [ |

Remark 5.2.6. In order to get a useful bound in the previous lemma, we need values of s, c and d
such that 1 — é > 0or s < cd. Later we will see that the values that we use for ¢ and d satisfy
these inequalities.

We continue with a lemma that will be useful to prove the Main Lemma and the theorems in the
following section.

Lemma 5.2.7. Let p(s) be the average number of (¢, d)-rich lines meeting two distinct elements Sy, So
of S in a c-rich point different from S1 N Sy (in the case the latter is c-rich). Then p(s) is at least

1—d S 1 2 d
f(s):gkek—lql_s(l—a> (1—c—ek> <1—d—q>.

Proof. We count triples (S1,.S2,7) where r is a rich line connecting a rich point in S; \ Sy with
a rich point in Sy \ S7. Let P{51,52}5 S1,92 € S, 51 # Sa, be the number of rich lines meeting
both Sy \ S2 and Sz \ Si in a rich point. We define p(s) as the average of the values pyg, 5,} With
51,52 € S and S; # S3. On the one hand, the number of triples equals

(1— )8} (1 — )67 — 1) p(s) < (1 — )6Lp(s).
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On the other hand, the number of triples is at least

(1= 205 (1= 2) - (1= )+ (1 - d)g - )+ (1 - i~ VP

as by Lemma 5.2.5| there are at least (1 — 5)6% e’jﬁf;l (1 — %) rich lines, and on a rich line there are

atleast (1—d)(¢+1)((1—d)g—d) possibilities for an ordered pair of two distinct rich points P, P.
Through those points, we find at least ((1 — ¢)f; — 1)? possibilities for the k-spaces S1,S52 € S
(not containing the line P; P). This gives that the average p(s) is at least f(s). [

5.3 Main Lemma and results

Using the combinatorial lemmas in the previous section, the main goal in this section is to find a
an upper bound on (1 — s), as a function of the field size q. We start with the Main Lemma, that
will be the basis of the theorems at the end of this section.

Main Lemma 5.3.1. Let S be a (k + 1,1)-SCID in PG(n, q), with |S| = (1 — )03, k > 3, that is
not a sunflower. For all values 0 < s < ¢,d < 1, we have the following inequality:

(1—5)(1—(1)(1—@ (1—c—q13>2<1—d—;l> (1—(1—1—gd>q

1—
<(1—s)?4+—2

q

(5.1)

Proof. Consider a pair of different k-spaces S, So € S having at least f(s) connecting rich lines,
then the 2k-space T' = (S, S2) contains at least

(I-d)g+1) -2 _(, , L1+d\ .
£(s)- L —(1 -1 >ﬂ)

rich points: every rich line contains at least (1 — d)(¢+ 1) — 2 rich points, not contained in S; U Ss.
Furthermore, every point P in the 2k-space T, not in the union S; U Sy, lies on at most ¢ such
connecting lines. That there are indeed at most ¢ such lines, follows since (P, S;) meets S in a
line ¢ through S1 N .S,. Hence, the lines through P, meeting both S; and .S, are precisely the lines
through P in the plane (P, ¢). In this plane there are ¢ lines through P that do not contain §; N Sa.
Hence, each such point P is counted at most ¢ times.

Since the dual of a (k+ 1, 1)-SCID in a 2k-space is a partial (k — 1)-spread in this 2k-space, we have
that a 2k-space contains at most |01, /0x_1| = ¢"T' + ¢ elements of S. On the other hand, this 2k-
space contains at most 6;_1 points from each element of S not contained in 7'. Hence, the number

of pairs (P, Sp), with P € (S7, S2) arich point in the k-space Sy, is at least (1 —d— 1%‘1> f(s)(1—
¢)0y, and at most (¢**! + )0y, + ((1 — 5)67 — (¢"™' + q)) O_1. Hence,

(1-a- ) - s < @+ 00+ (- 90— (65 + ) 0

1+d> f(s) ¢ +q 4 1
=(1-d-—=)(1-c <l-s+ <154 ——.
< ¢ ) %0, 020, 2
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The last inequality follows since ¢*(¢**1 + ¢q) < ¢> %626, ,. This implies that

(- 2)a-a0-o (e 1) (1ma-0) (1-a- 12,

1 —
<(1—s)P+ 7 62

which proves the lemma since k£ > 3. |

Corollary 5.3.2. LetS bea (k+1,1)-SCID in PG(n, q), with |S| = (1 — s)02, k > 3, that is not a

sunflower. Suppose that
1 Blged)’ 1
-————— | —4B d|——-1)>0.
<q Cd > (Q7 C, ) Cd —

Then we have, for all values0 < s < ¢,d < 1, that

(1-5) < Flg,ed) = (B(qdc”i\/GB@d‘”) _4B(g,ed) (21))

or (1— s) zG(q,c,d):% (B(qc’;d);ﬂ/(;’g(qc’;’@) — 4B(q,¢,d) (;1))

with B(g, ¢,d) = (1 — d)(1 — ¢) (1—c—qi3)2(1—d—g) (1-d- 1)

Proof. Using inequality from the Main Lemma, we immediately find the following quadratic
inequality

(- (5= 200D -9+ Blaca (- 1) 20

which proves the corollary. |

From now on, we put ¢(q) = d(q) = 1 — 6%/51 - 2\3[ Since ¢ and d must be non-negative by

definition, we have to assume that ¢ > 7. We denote c(q), F(q, c(q),c(q)), G(g,c(q),c(q)) and
B(q,c(q),c(q)) by ¢q, Fy, G4 and By respectively. We first give a lower bound on B,

Lemma 5.3.3. Lett = $/q,q > 7, then
1)’ 1 1)? 11 12
B 1 14 ——-—— 14 —-—= 14 —-——= d 5.3
‘1><+2t> (+2t t4> <+2t t5><+2t t5>’a" (5:3)
B, > 1+121+12 (5.4)
! 2t 3t) -
Proof. By using the equality ¢, = ¢ :1—%—#andt: q > /7, we have
1)\? 1
Bq:(l—cq)2<1—cq—3) <1— —Cq> (l—cq +Cq>q
q
(1,2 2 1)’ 1+ 1
S\t 22 22 18 2t8
11 1 1\
o + =+ oo

t o 2t2 2t8

—1+121+ 21+1 1+1 1+1 2+1+1
a 2t t17 2 t5 27 ot 5 6 247
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Using this expression for B,, we can check that the following two inequalities are true for all
t > /7, and so, for all q>T1.

B>1+121+1 121+1 L 1+1 2 d
— — — = - — = - — = an
4 2 2t t4 2t t5 ot 5 )7
1)\2 1\?2
B 1+ — 14— . ]
Q><+2t> <+3t>
Bq

2
We continue by investigating for which values of ¢ > 7 the condition (% — —) —4B, (% — 1) >

<
0, in Corollary|5.3.2] is true. Or equivalently, for which values of g, the argument of the square root
in F;;, and G is non-negative.

2
Lemma 5.3.4. Forq > 7, it is true that (1 — —Qq) — 4B, (% - 1) > 0, with
q 2

2 1 2 Cq 1+Cq 1 1
Bq:(l—cq) <l—cq—q7> (1—Cq—?)(1—cq— 7 )qandcqzl—%_m'

Proof. Note that it follows from Lemma that B, > 0if ¢ > 7. Suppose that the inequality in
the statement of the lemma does not hold. Then we have

B? 9B 1 1
q_q+(]2<4Bq< 1)

4 2 2
Cq ch Cq
B? 2 1
= 4q<2Bq<2—2+2>
C‘I Cq ch
By>0

=g 11 4 2 1 1
2 Bo<2(1--——) (-5 -+
< ( t 2t2) (t £ 2t4+t6>

2 2 2

£4) 1 1 1N\2/4 1
£, 1+ (1+4=) <2(1-=) (Z-=
(+3) (ra) <2(-1) (s

1\? 1\? ) 1

& t+=) (t+=) <20¢—1)2(4t—=
(7+3) (15) 2= (a=3)

5 37 5 1 2
= PSP S — <8 — 16t + 6t +4— =
Tl gt Tgt Ty < ot t
& po 19 013, 103, 13 2
3 36 18 36t '

The last inequality gives a contradiction for all values of ¢ > +/7, and so for all ¢ > 7, which proves
the lemma. u

Now we prove that G, > 1. This implies that the first bound in Corollary holds, since 0 <
s <1

Lemma 5.3.5. Forq > 7, it is true that

1({B, 1 1 B,\? 1
Go=s|=Z—=-+/(-—=) 4B, (5 -1)]>1
2 g q q ¢ cg
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5 The Sunflower bound

with

B, 1 1 B,\? 1
5 — =+ <—;ﬁ —M%<2—4>>2
Cl] q q Cq Cq

For all values of ¢ > 7 such that 2 — % + % < 0, the previous inequality is true. If 2 — % + % >0,
q q

then it is equivalent to proving that

1 B,\? 1 1 B 1 B,\?2
IR CORBI N )
q Cq Cq q C‘l q Cq
B 1 B
& —F+B>1+-—-=
Cq q Cq
1
& Bq>1+g.

Set t = {/q. From Lemma 5.3.3(5.4), we know that it is sufficient to prove the following inequality.

1+]’2 1+1 2>1+1
2t 3t 16
5 37 5 1 1
o IR+ Sty >t =
Tl g Tl T TR
§§+§L?+E¢+i~—l>0
3 36 18 36 27

This last inequality is true for t = ¢/q > /7, and so for q > 7, which proves the lemma. [ |

Theorem 5.3.6. A (k +1,1)-SCID in PG(n,q), k > 3,q > 7, that has more than F,0% elements, is
a sunflower. Here, we use

and

Cq=1———

Vi 2

In particular, we have that a (k + 1,1)-SCID in PG(n, q), with more than (% + % — i) 03
elements is a sunflower.

_Q
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5 The Sunflower bound

Proof. From Corollary , Lemma and Lemma , we know that F,0? gives an upper
bound on the size |S| = (1 —s)0;, of a (k + 1, 1)-SCID, with & not a sunflower. Hence, a (k+1,1)
SCID with more than F,0? elements is a sunflower.

We have to prove that
2 4 5
< = 4 = 2
Va4 q
B, 1 1 B\’ 1 4 8 10
©ZF--- —2’1> —4Bq<2—1> —+t—=—-—=
G 4 7 G

“ Ve Vi Ve
Iff—g—%—%ﬁ—%—i— i < 0, then this is true for all values of ¢ > 7. If
then it is equivalent to proving that

>(2+4 5)11 2+4_5>

“\Vq  ¥q q q \¥q 4 q
2 4 5

& B,(2—1+—+

q( Vi Va4 va

|
(G G i)
1
t

Vit vV

t= /g 1 4 4 1\? (/2 2 2 4 5

—= B — > (1--=-= T — —(Z+5-=) ).
<4t4+ t3)_< 2t2> <<t+t2 t3> +t6 P TET P

In view of equation in Lemma|5.3.3] it is sufficient to prove that

L el

(1t 2 2+4 5 2+1 2
= t 212 t 23
157

N
6\ t 3
157 ﬁ B 2165 n @ 1411 n 383 1313 69 n 1177 B 37
44 445 16t6 8t7 64¢t8 649 256t10  2¢ll © 32¢12 {13
3315 219 1631 3 557 151 293 1
B 14 = Q415 6T 7T T T 20 Q21
128t 8t 64t 32t 32t 16¢ 32t 8t
11 3 1 S
9122 9423 + {24 — 0.

itV v

This inequality is true for allt = ¢/q > V/7, and so for ¢ > 7. So, a (k + 1,1)-SCID in PG(n, q),
with at least (l ) 02 elements, has more than F,0? elements. This implies that this
SCID is a sunflower, which proves the theorem.

|
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5 The Sunflower bound

Note that the bound 1 — s < \2[ + V \/6
for large values of g. It is possible to show that for ¢ > 473, this bound is an improvement on the
bound in Theorem For fixed, smaller values of ¢, an improved Sunflower bound can be found
by investigating the bound 1 — s < F|,. This bound gives an improvement on the Sunflower bound

itF, <1-— é + 0%. For k = 3 and k = 4, this is the case for ¢ > 9 and ¢ > 8 respectively. For
k

only gives an improvement for the Sunflower bound

k > 4, we have that ', < 1— é + 9%, if Fy <1-— 9%, which is the case for ¢ > 7. For these values
k 9
of ¢ and k, we also found that the bound 1 — s < F|, improves the bound in Theorem

q F, 6%/51 + % — % Bound Theorem|5.1.2|
2% 1 0.97698136 1.59732210 0.99975770
26 | 0.89046942 1.37500000 0.99999619
28 | 0.78319928 1.11116105 0.99999999
210 | 0.67282525 0.87056078 0.99999999
212 | 0.56493296 0.67187500 1.00000000
2141 0.46301281 0.51527789 1.00000000
216 | 0.37118406 0.39466158 1.00000000
218 | 0.29280283 0.30273438 1.00000000
220 | 0.22886576 0.23291485 1.00000000

4 5 IS|
f %—ﬁonl—s—OQ

from Theorem|5.1.2| for k = 3 on % in column 3.
k

Table 5.1: Upper bound £ and in column 1 and 2. Upper bound

In Table 5 . we give the values of the upper bound F, and \[ \3[ \[ onl —s = ‘02|, for

some spec1ﬁc values of g. The values in this table confirm that the bound f + éf \/6 is a good
approximation for Fy, for large values of ¢. In the third column, the upper bound from Theorem

5.1.2, for k = 3 on % is given.
k

Note that for fixed values of k£ and g, there is a possibility to find a slightly better bound than the
bound F;, by using our techniques. Given the fixed values for k and ¢ in inequality , we can
choose the values of ¢ and d such that we get the best bound for (1 — s). We describe this technique
in the example below.

Example 5.3.7. Suppose that ¢ = 28 = 256 and k = 5, then we find from (5.2)), that

(1—£) (1—d)(1—c) (1—0—95(1?8)>2<1—d—;8> <1—d—1;8d>28

1—s
224

<(1-s)2+
1—s

@(1—%) Ble,d) < (1= s+ 5

e (1-52+(1—5s) <2§4 B(ccc’ld)> - (1—Cld> Ble,d) >0
sz (Pt () (G )

2
with B(c,d) = (1-d)(1—c¢) (1 —c— m> (1—d- 2%) (1—d- %) 28, By using a computer
algebra package, we find a very good bound on 1 — s for ¢ = 0.53152285 and d = 0.5294. For these
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5 The Sunflower bound

values, we find the bound 1 — s < 0.7825095. Hence, this gives a small improvement on the bound
1 —s < F, = 0.78319928, for which we used c(28) = d(2®) = 0.5244047. Note that the bound,
given by the Sunflower Yheorem and the bound given in [6] are both larger than 0.9999999967
for q = 2% = 256 and k = 5. This indicates that our new bound is a clear improvement.
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6 The chromatic number of some Kneser graphs

€C  All colors are the friends of their neighbors and the lovers of their opposites. 99
—Marc Chagall

The results in this chapter have been obtained in a collaboration with prof. Klaus Metsch and dr.
Daniel Werner, and will appear in [48]] and [47]).

6.1 Introduction

A flag in PG(n, q) is a set F' of non-trivial subspaces of PG(n, ¢) (that is, different from () and
PG(n, q)) such that for all &, 5 € F one has o C  or § C a. The subset {dim(«a) +1 | a € F'},
in which we use the projective dimension, is called the type of F' and it is a subset of {1,2,...,n}.
Note that the number of elements in a flag is equal to the size of its type, since every two elements
in a flag have a different dimension. Two flags F' and G are in general position if « N 3 = () or
(o, B) = PG(n,q) foralla € Fand B € G.

Notation 6.1.1. Although a flag is a set, we will write flags {c, 8} of cardinality two of projective
spaces as ordered pairs (., 3) where dim(«) < dim(f).

For Q@ C {1,2,...,n}, we define the g-Kneser graph ¢k, 1. to be the graph whose vertices are
all the flags of type € of PG(n, ¢) with two vertices adjacent when the corresponding flags are in
general position. For k € {1,...,n}, we put K,y 1.5 = ¢K;,11,{x}, and this g-Kneser graph is the
graph in the Grassmann scheme corresponding to the relation Ry, see Example

We are interested in the chromatic number of these graphs and hence in their independence number
a. An independent set of the Kneser graph is a set of flags that are mutually not in general position.
An independent set of flags in this graph, will also be called an Erdds-Ko-Rado set of flags, in short,
EKR set. Thus, the chromatic number of a Kneser graph is the smallest number of EKR sets whose
union comprises all flags.

An example of an EKR set of flags of type 2 C {2,3,...,n} is a point-pencil Fq(P) with base point
P € PG(n, q). This is the set of all flags F' of type €2 and for which F'U { P} is a flag. We use the
notation F(P) if the type of the flags is clear from the context. Note that a point-pencil Fq(P) for
|2| = 1, is equal to a point-pencil of subspaces in a projective space, which is defined in Section
1.6l

We now describe a strategy that — in some cases — is sufficient to determine the independence
number and that we will apply in this chapter. Recall that x and « are the chromatic and inde-
pendence number of a graph, and let V' be its vertex set. Let I' = qK,11,0 be the g-Kneser graph
with Q C {1,2,...,n}. We assume that we have constructed a coloring of T" of size x, and we
suppose that C' is a coloring with |C| < x. Furthermore, we assume that /(T") is an integer,
smaller than «(T"), such that one has structural information on all cocliques with more than o/(T")
vertices. Hence, this last assumption asks for a Hilton-Milner type theorem on the flags. Now, if
o (T')-|C| < |V], then at least (|[V| — &/(T")|C|)/(a(T") — &/(T")) color classes of g have cardinality
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6 The chromatic number of some Kneser graphs

larger than o/(I") and hence one has structural information on these color classes. This structural
information is sometimes enough to provide a lower bound on |C| and sometimes even suffices to
show that |C| = .

This approach was successfully applied for many Kneser graphs ¢/, o with 2] = 1 in [12| [13].
One of the most important results for |{2| = 1 is the following one.

Theorem 6.1.2 ([12}, Theorem 1.5]). Ifk > 2, and eitherq > 3 andn > 2k + 2, orq = 2
andn > 2k + 3, then the chromatic number of the q-Kneser graph is x(¢Kp41:k+1) = [n_lfﬂ].
Moreover, each color class of a minimum coloring is contained in a point-pencil and the base points of
these point-pencils are the points of a fixed subspace of dimensionn + 1 — k.

For || > 2, much less is known. Even the independence number of these graphs is only known in
a few cases. One recent result is the following.

Theorem 6.1.3 ([32, Theorem 3.1]). If'S is an independent set of the g-Kneser graph qI<,, 1 o, with
Q={1,2,...,n}, then

01,05 _-10,_o...020¢
q(n+1)/2 + 1

1S <

The proof of this result uses algebraic arguments and thus does not produce structural information
on cocliques that have fewer than this number of vertices. So this result only gives a lower bound
for the chromatic number. In contrast to this, the independence number as well as structural infor-
mation on large cocliques of ¢ K5 (5 4} has been given in [14]. For K541 {4,4+1} it has been given
for d = 2 in [11]] and for d = 3 in [94]].

This chapter is organized as follows. In Section we determine the optimal colorings of the
Kneser graph ¢, (2 43. In Section[6.3] we investigate the Kneser graph ¢/, (5 3). In Section[6.3.1]
we provide several examples for optimal colorings of this graph. In Section we consider
three points Py, P2, P3 and a set M of points in PG(4, q), q large, with M N (Py, Py, P3) = () and
|M| = cgq® for some positive constant ¢ < 1. We prove that, if for each of the three points P;, the
number of lines through this point meeting M is small, then there exists a solid S that contains at
least mq? points of M, where m is a constant. This will be a crucial tool in Section where
we determine the chromatic number of the Kneser graph ¢K, (3 3) for large values of ¢. Recently,
also the chromatic number of the Kneser graph ¢Ksq1,{q,a+1}, for d > 3, was investigated [48].
In Section[6.4] we give an overview of the main results.

6.2 The chromatic number of the Kneser graph ¢/5 (5 41 of
line-solid flags in PG(4, q)

Recall that a point-pencil F(P) = Fyy 43(P) is the set of all line-solid flags in PG(4, ), whose line
(and so solid) contains the point P. Note that | F(P)| = 0302.

Example 6.2.1. If S is a solid of PG(4, q), then {F(P) | P € S} is a covering of ¢K5,(2 4} with 03
independent sets.

This example shows that there exists a coloring of ¢ K, 2 41 with 65 color classes where each color
class is a subset of a point-pencil. Theorem[6.2.3|below implies that every coloring with at most 63
color classes has the same structure as Example For the proof of Theorem we use the
following result.
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6 The chromatic number of some Kneser graphs

Theorem 6.2.2 ([14, Theorem 1]). The independence number of qK.(2 4y is ag = 0302 and every
independent set of qKs,(3 4} that is not contained in a point-pencil has at most a; = 2¢* + 3¢> +
4¢% + 2q + 1 elements.

Theorem 6.2.3. Let ¢ > 3. Suppose that C is a covering of the vertices of qKs,(2 4y consisting
of ¢ + ¢*> + q + 1 maximal independent sets. Then C consists of all point-pencils with base point
contained in a given solid.

Proof. From 'Iheorem and using its notation, we have |F'| = ag or |F| < a; for each F' € C.
Moreover, |F| = ag implies F' = F(P) for some point P. Let M be the set of points P with
F(P) € C. Let L be the set of lines that contain at least one point of M. For L € L, we denote by
¢y, the number of points in M that are contained in L. By double counting the pairs (P, L), with
Pe MandL € L, we find

> e =|M]|os,

LeL

since every point is contained in 63 lines. Next, we double count all triples (P, P', L) € M x M x L
with L = (P, P’). Since any two distinct points of M span a line, we find

Y crler — 1) = |M|(M] 1),

Lel

For L € £L,wehavel < c; < q+1,and ¢; = g+ 1ifall points of L belong to M. It follows that

(@+1) ) (er —1) = [M|(IM] - 1),
LeLl

and so

_ MM 1)

o (6.1)

L] =D er =Y (e —1) < |M|63

LeLl Lel

with equality if and only if ¢;, € {1,q + 1} for all L € L. Since the number of solids through a
line is 2, the union of all sets F(P), with P € M, contains |L|0, flags of type {2,4}. If we put
x = 03 — | M|, then C contains z independent sets of cardinality at most a; and, hence, we have

Ur

FeC

_IM(M] - 1)

<[(|M
< (jan, - PIUTL

> 02 + xa;. (6.2)

Since the union of all independent sets in C is the set of all flags of type {2,4} and thus has cardi-
nality [g] 05, it follows that (use | M| = 03 — z and a1 = (2¢° + q + 1)6s)

0405 ((93 — 56)93((] + 1) — (93 — CU)(Gg — T — 1)

L q+1 S
- 0463 — (03 — x)(04 +a:)92 <x(2¢> +q+ 1),
q+1
N ng@quqm
q+1>0 g;(x+q4—(2q2+q+1)(q—|'1))§0
& z(z+q"—2¢° -3¢ —2¢—1) <0. ©3
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6 The chromatic number of some Kneser graphs

First, consider the case ¢ > 4. Then ¢* — 2¢® — 3¢> —2¢ — 1 > 0, and so implies z = 0 and
we have equality in (6.2), and so as well in (6.1). Hence, ¢, € {1,¢q+ 1} for all L € L. That is, each
L € L has the property that either one or all of its points belong to M. This implies that the union
of all points of M is itself a subspace. Since it contains |M| = ¢® + ¢* 4+ ¢+ 1 points, this subspace
has dimension 3 and we are done.

Now, suppose that ¢ = 3. Then gives z(x — 7) < 0, which shows that x < 7 and thus
|M| > 33.If ¢, < g holds for all L € L, then we could improve the bound by replacing g + 1

in the denominator by g¢:
5 M|(|M] -1
|:2:| 02 S <|M|93 — "(’q‘)> 92 + rai
q

LB _Tl?’x? n %x — 1690 > 0,

which gives a contradiction for z > 0. Hence, there exists some L € £ withc, = q+ 1 = 4.
Each of the remaining | M| — 4 > 29 points of M spans a plane with L. Since the number of planes
through L is 13, it follows that there exists a plane 7 (through L) that contains at least 4 +3 = 7
elements of M. Similarly, since |M| > 33 = 26 + 7, one of the four solids through 7 contains at
least 7 + {%] = 14 elements of M. Let 7 be a solid through 7 which contains at least ¢ > 14
elements of M. Then the number of lines, that contain one of these ¢ points is at most 130 + 27¢.
The first term is the total number of lines in 7, and the second term is the product of the number ¢
of points of M in 7 and the number of lines through such a point not in 7. We have equality only
if all 130 lines of 7 belong to L. If P € M, with P ¢ 7, then t of the 40 lines through P contain an
element of M that is contained in 7. It follows that

L] < 130 + 27t + (|M] — £)(40 — ¢).

The union of the independent sets F(P), with P € M, has size |£|f2. Since the remaining z
independent sets of C each contain at most a; flags, and since the total number of {2, 4}-flags is
B] 392, it follows that

B] 02(3) < |L£]62(3) + zay < (130 + 27t + (40 — z — t)(40 — ¢))02(3) + za;.
3

Since a; = 22 - 02(3), we can divide by 62(3) and find
0< (t—14)(t + z — 39) — 4z — 26. (6.4)

Since 14 < ¢t < |M| = 40 — z, it follows first that ¢ > 39 — x, thatis t = 40 — z = |M|. Then
gives 0 < —5x and, hence, x = 0, t = 40 and | M| = 40. This implies that C consists of the sets
F(P) for the 40 points P of 7. |

Remark 6.2.4. From Theorem|[6.2.3|and duality, it follows that the chromatic number of the Kneser
graph ¢K.(1 3} is 3. Moreover, for every color class C' of a minimum coloring, it holds that all
planes of the flags in C' are contained in a solid S¢, and all these solids S¢ contain the same fixed
point P.

6.3 The chromatic number of the Kneser graph ¢Ks.(» 3, of
line-plane flags in PG(4, q)

In this section, we will prove that, for large g, the chromatic number of the Kneser Graph ¢K 5,{2,3)
is 83 — q. More specifically, we will prove the following result.
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6 The chromatic number of some Kneser graphs

Theorem 6.3.1. Forq > 160-36°, the chromatic number of the Kneser graph qKs,(2,3) is e+ +1.
Up to duality, for each color class C' of a minimum coloring there is a unique point-pencil F' such that
F U C is independent, and the base points of these point-pencils are ¢> + ¢* + 1 distinct points of a
solid.

6.3.1 Colorings of the Kneser graph ¢/, 3

Recall that a flag of type {2, 3} corresponds to a line-plane flag of PG(4, q). Hence, it is a set {¢, 7}
of aline £ and a plane 7, with £ contained in 7. Two flags (¢, 7) and (¢, ') are adjacent in ¢ K5, (5 33
if and only if the flags are in general position in PG(4, ¢). This means [ N7’ = () = I’ N 7 and also
implies that m N 7’ is a point. Recall that an independent set of the Kneser graph is a set of line-
plane flags pairwise not in general position, or in short, an EKR set of line-plane flags. Thus, the
chromatic number of the Kneser graph ¢ K55 3) is the smallest number of EKR sets whose union
comprises all line-plane flags.

Point-pencils of line-plane flags are EKR sets. However, these are not maximal and are contained
in more than one maximal EKR set, as we shall see below. Note that the flags of type {d,d + 1}
in PG(2d, q) are self-dual, and that the dual of two flags in general position are flags that are in
general position too. Hence, there are maximal EKR sets that arise as the dual of the maximal EKR
sets that contain a point-pencil.

Example 6.3.2 (EKR sets). Let M be the set of all line-plane flags of PG(4, q). For point-line flags
(P, ), point-solid flags (P, S), and plane-solid flags (1, S), we define the EKR sets

F(P L)y ={(h,mr)e M| PechortCm},
F(P,S)={(h,r)e M|PechorPemCS},
F(S,P)={(h,mr)e M |mCSorPehcCS},
F(S,7)={(h,m)e M| mC SorhCr}.

Let F' be one of the examples above. In the first two cases we call F(P) = {(h,7) € M | P € h}
the generic part and '\ F(P) the special part of F. In the remaining two cases, we call F(S) =
{(h,7) € M | m C S} the generic part and F' \ F(S) the special part of F.

Note that examples 1 and 4 as well as 2 and 3 are each other’s dual. Also, all four examples have
cardinality
eo = 0a2(03 + ¢*),

and their special parts have cardinality ¢?f3. It was shown in [11] that these examples are the
largest EKR sets of line-plane flags in PG(4, ¢). We reformulate their result as follows.

Theorem 6.3.3 ([11, Proposition 2.1]). Let F be an EKR set of line-plane flags of PG(4, q). Then
| F| < eq and equality occurs if and only if F is one of the sets defined in Example[6.3.2

We will explain in the appendix (Section how the following stability result can be derived
from [[11].

Result 6.3.4. Every EKR set of line-plane flags of PG(4, q), which is not a subset of one of the sets
defined in Example[6.3.2, has cardinality at most

e1 =4¢* +9¢3 +4¢°> + ¢ + 1.

Example 6.3.5 (Coverings of ¢K5.(531). Let S be a solid of PG(4, q).
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6 The chromatic number of some Kneser graphs

1) Consider a set W of q points of S and suppose that there is a map v from the set of points in

S\ W to the set of lines of S such that P € v(P) forall P € S\ W and such that every line
of S that meets W lies in the image of v. Then § = {F(P,v(P)) | P € S\ W} is a set of EKR
sets whose union is the set of all line-plane flags of PG (4, q).

Proof. We show that every line-plane flag (I, 7) in PG(4, q) is covered by the set §. If (I, 7)
is a flag such that [ N .S contains a point P of S\ W, then (I,7) € F(P,v(P)). If (I,7)is a
flag such that I NS contains no point of S\ W, then [ N S is a point ) contained in . The
line l[p = 7 N S contains the point ) € W, and so this line is the image of v of a point P’.
Hence, v(P’) = ly, and so (I, ) is contained in the flag 7 (P’, v(P’)). This proves that every
line-plane flag is contained in an element of §. |

We provide examples of a set W and a map v satisfying these conditions:

(a) Suppose that W is a set of q points P, . .., P, which are contained in a common line { and
let Py be the last remaining point of {. For each plane 7 of S through ¢, fix a numbering
U(m), ..., Ly(m) of the lines of  through Py, different from (. Define the map v from the
set S\ W to the line-set of S byv(Py) = £ andv(P) = PP;,if P ¢ { and P € {;((P,0)).

(b) Suppose that W is a set of q points P, ..., P, in a plane 7. Furthermore, suppose that
there is a map v from w \ W to the set of lines in 7, such that every line in 7 through
a point of W is contained in the image of v. Then one can extend this map to S \ W as
follows: the q points in W meet at most q(q + 1) lines of m and thus there is at least one
line g C 7w which does not meet the set W. Let 7y, ...,y be the planes through g in S
different from 7 and, foralli € {1,...,q} and all P € 7; \ 7, set v(P) = PP,.

Obviously, one can define such a map v on a plane w \ W if W only spans a line therein,
because then the construction in[(a) can be used. However, one can also find such a map v
if W spans the plane m and we give a simple construction in the case where ¢ — 1 points
Py,...,P,_1 of W are contained in a common line {y and the last point P, of W satisfies
7 = (P, ly). Welet Qo and Q1 be the two remaining points of o and we fix a numbering
l1,...,Lq of the lines different from £y of ™ through Q, such that £, = QoP,. Then, for
alli € {1,...,qg— 1} and all P € £; \ {Qo}, we set v(P) = PP;. Furthermore, we set
v(Qo) = o, v(Q1) = Q1P and for all P € £, \ {Qo, Py}, we setv(P) = {,.

2) Finally, we give an example which uses both EKR sets with special part coming from a solid

104

and EKR sets with special part coming from a line, that is, EKR sets F (P, Z) and F(Q,!) for a
point-solid flag (P, Z) and a point-line flag (Q, 1), respectively.

Here, let W be again a set of q points Py, ..., P, of S, and suppose that these points only span
a line ¢ of S. Let Py be the last remaining point of {. For any plane m with{ C m C S, fix a
numbering (1(7), ..., Lq(7) of the lines of w through Py different from ¢ as well as a numbering
Si(m), ..., Sq(m) of the solids containing m, and different from S. Put

Fi(m) = (J{F(P,PP) | Py # P € ti(m)},
i=1

a(m) = | J{F (P, Si(m)) | Py # P € Li(m)}.
i=1

Now, let I1 be the set consisting of all planes of S that contain ¢ and for every subset R of 11, put

F(R) = {F(P,0)} U U1 (m) U Ba(m).
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6 The chromatic number of some Kneser graphs

Then, for all R C 11, the set §(R) consists of 05 — q EKR sets whose union is the set of all line-
plane flags. Note that for R = 11, this example §(11) coincides with the example described above

in i(a)}

Proof. We show that every line-plane flag (I, «) in PG(4, q) is covered by the set §(R). If
(I, ) is a flag such that [ N S contains a point P of S\ W, then (/, &) is contained in the
point-pencil F(P). This point-pencil is contained in F(FPy,¢) if P = Py. If P # P, then
F(P) is contained in an element of §1 ((P, £)) or in F2((P, ¢)) depending on whether (P, ¢)
is contained in R or not. If (I, «) is a flag such that [ N S contains no point of S \ W, then
[ NS is apoint P; contained in W, and the line [) = o N S contains this point. Now there
are two cases, depending on whether m = (¢, o) is contained in R or not. If 7 € R, then
(I,a) € F(lo N i, v(lp N¥¢;)), which is contained in §; (7). Suppose now that 7 ¢ R, and
let S; () be the solid through 7 spanned by m and «v. Then (I, ) € F(lp N¥¢;,S;(m)), which

is contained in §o (7). This proves that every line-plane flag is contained in an element of

s n

This list of examples is not a complete list of all colorings with 63 — ¢ colors. For example, one can
also find colorings by replacing all EKR sets in a coloring described above by their dual structure.
However, since there are examples of colorings with 63 — ¢ colors, we know that the chromatic
number of I is at most 3 — ¢ and the list above provides several examples of colorings of this size.
We will prove in Section that the chromatic number is in fact equal to 03 — ¢, provided q is
large enough.

6.3.2 A lemma on point sets

Lemma 6.3.6. Suppose that M is a set of points in PG(4, q), and that Py, Py, P3 are three non-
collinear points such that the plane m = (Py, Pa, P3) has no points in M. Let m, n and d be positive
real numbers such that the following hold:

e Each of the points Py, P, Ps lies on at most ng® lines that meet M,
. | M| = dg?,

e g>32mm,

Then there exists a solid S through 7 with |S 0 M| > mq>.

Proof. Let mj, 1 < j < q> + q, be the planes through the line P; P, different from 7, and, for
i€ {1,2}andj € {1,...,¢> + g}, let a;; be the number of lines of 7; through P; that meet M.
Then z; = ]77] N M| < ayjaz;. This implies that VT < (alj + ag;). Since each of P; and P, lies
on at most ng? lines that meet M, it follows that

1
ng® > B Z(au + ag;) > Z V5
J J

Put R = {j | z; > c¢*} withc = 4551—22. Then

nq >Z\ﬁ>\[ Z%f\[ (IM| = |Rlg*),

JER
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6 The chromatic number of some Kneser graphs

since the sum of x; over all j is | M| and since each plane 7, with j € R, meets M in at most ¢°
points. It follows that

|R|q* > M| — ng*V/cq.

Assume to the contrary that every solid through 7 meets M in at most mq? points. Then every

solid through 7 contains at most T?q—% planes 7;, with j € R. Hence, the number of solids through

7 that contain a plane 7;, with j € R, is at least %. This implies that P; lies on at least

lines that meet M. Hence,

Comparing this to the lower bound for | R|, we find

2 2
(M|~ ng*Veq)— < ng® = |M| < veng® + "k
m c
d mn’q?
= d@® < =¢*+16
¢ <500+ 16—
5
mn
= q= 32?7

in which the second implication follows since ¢ = %. This contradicts the hypothesis in the
statement of the lemma. [ ]

Remark 6.3.7. The restriction on ¢, imposed by this lemma, is the main reason why we can prove
Theorem only for very large values of g. The remaining arguments in the next section are valid
for smaller values of q.

6.3.3 The chromatic number of ¢K5 (5 3)

In this section we prove, for large values of g, that the chromatic number of ¢Kj5,( 3} is 03 — q.
Note that from Example [6.3.5] we already know a coloring with this many colors, so we only have
to show that one cannot do better.

Theorem 6.3.8. Let§ = {Fi,..., Fy,_,} be a multiset (so we allow F; = Fj fori # j) of 63 — q
EKR sets of line-plane flags of PG (4, q), ¢ > 160 - 365, whose union consists of all line-plane flags of
PG(4,q). Weput J = {1 < j <03 —q:|Fj| >ei}andl C J is the set of indices i such that the
generic part of F; is based on a point P;. We suppose the following:

1. Forj € J, theset F; is one of the EKR sets defined in Example which implies that | F;| = eg.
2. For distincti, j € J, the EKR sets I; and F; have distinct generic parts.

3. For at least }|.J| indices j € J, the generic part of F} is based on a point. Hence, |I| > %|.J|.

Then each F' € § has eq elements and is based on a point Pr and the points Pp, F' € §, are 3 — q
mutually distinct points of a solid.
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6 The chromatic number of some Kneser graphs

Note that in this theorem, we suppose that the sets F);, with j € J, are maximal EKR sets. The
proof of this theorem is carried out in Lemmas 6.3.20} In all these lemmas, we suppose that §
is as in the theorem and that ¢ > 160 - 36°. We note that Lemma is valid for all ¢ and Lemma

[6.3.10] requires only ¢ > 41.
Lemma 6.3.9. The number of all line-plane flags of PG(4, q) is equal to

51 [3
M : H = [§leo — ¢°02(2¢° + > + g + 1).

Lemma 6.3.10. Let S be a solid and let ¢ > 41. Denote by c; the number of indicesi € I with P; ¢ S
and by cg the number of EKR sets F € § with |F| < ej1. Then (|I| — c1) +c3 < 5¢2 orey +c3 < 4q°.

Proof. We have |I| > L|.J| = £(63 — ¢ — c3). We know that for all i € I the set F; is based on a
point P, and we set A = {a € I | P, € S}. For a € A, the set F,, contains 63 flags (¢, 7) with
P € ¢ C S. Since there are (¢> + 1)6 lines in S, there are at most (¢> + 1)602 flags (¢, w) with
¢ C S. It follows that

< |A|(eg — 63) + (¢* + 1)65. (6.5)

Jr

acA

Ifi € I'\ A, then for each a € A, the sets F; and F,, share the 05 line-plane flags (P; P,, 7). Different
values of a in A correspond to disjoint sets of 6, flags, and, hence, F; contains at least | A|6, flags
that are contained in Uye 4 F,. It follows that

Ur\U Fu

el acA

< [T\ Aleo — [A|T\ Alf,. (6.6)

Therefore, we have that

HHENE

acA
= |Fleo — *02(2¢° + > + ¢+ 1)

< |A|(eg — 03) + (¢® +1)65 + I\ Aleg — |A||I\ A6+ |J \ I]ep + c3e1
= |Al63 — (¢° + 1)65 + |A|(|T| = [A])B2 + c3(e0 — e1)

< @P02¢* +¢* +q+1).

_l’_

Ur\UF

el acA

+ UFZ'-F

i€\

U7

i¢J

The first implication follows by Lemmal6.3.9] and the inequalities and (6.6). The second impli-
cation follows since |§| =03 —q¢ = |A| + [T \ A| + |J \ I| + c3.

We use that |A| = |I| — ¢1, and eg — e1 > 02(¢® — 2¢> — 4q + 5) for ¢ > 3. If we divide both sides
by 65, then we have that

(] = c1)b2 + c1(JI] = e1) + es(q® — 2¢° — 49+ 5) < 2¢° + (2¢° + 1)6a. (6.7)
Assume the statement of the lemma is not true. Then

0<(c1+c3— 4q2)(]I| —c] +c3— 5q2). (6.8)
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If we add the right hand side of to the right hand side of (6.7), we find the following inequality.
(1] = 1)z + er([I] = e1) + e3(a” — 2¢* — 4g +5)
<2¢° + (2¢° + 1)02 + (c1 + 3 — 4¢°) (|| — e1 + ¢3 — 5¢7).

If we replace in this inequality |I| by & (63 —q —c3) + 2z with z = |I| — (63 — g — c3), and multiply
both sides with 2, we find that

(03 — q — c3 4+ 22)02 — 2¢109 + c1(03 — ¢ — 3+ 22) — 2¢% + 2c3(¢> — 2¢° — 4q +5)
<4¢° +2(2¢% + )02 + (c1 + c3 — 4¢°) (03 — g + 3 + 22 — 2¢; — 10¢°)
S26¢%+q+1—c3)z+ (P +8¢2 —9¢+8—c3)es +¢°
<38¢* +2¢° + g+ 1+ (2¢+2)cy. (6.9)
Since |I| > 1 (63 — g — c3), we have that z > 0. Furthermore, from , we have that
c3(q’ —2¢° —4g+5) < 2¢° + (24> + 1)02,

which implies that c3 < 3¢? for ¢ > 10. Hence, (¢> + 8¢*> — 9¢ + 8 — ¢c3)c3 > 0 as well as
2(5¢% + q+1—¢3)z > 0, so, for ¢ > 10, implies that

¢® <38¢" + 283 + g+ 1+ (204 2)cy.
As c; < |I| < |§| = 03 — g, this is a contradiction for ¢ > 41. [
Lemma 6.3.11. There exists a solid S such that
HFeF:|Fl<e}|+ {iel:P ¢ SY <4q”

Proof. Let c3 be the number of F' € § with |F'| # eg and thus |F| < e;. Then § contains || >
(03 — g — c3) EKR sets that are maximal EKR sets based on a point. Let these be G;,i = 1,..., |1,
let R; be the base point of G; and put

gi=|Gin|JG;
Jj=1
Then we have that
G| =ITleo =D gs. (6.10)
i€l el
We may assume that the sequence g1, ..., g/ is monotone increasing. We want to show that g,

for j = %q?’ +q? + 2q + 1 is less than 9¢?605. Suppose that this is not the case, then we would have
that ZLI:‘] gi > (|I| — j + 1)9¢02. We know that
+| | B+

bl =01,

i€l
= [Fleo — ®022¢° + ® +q+1)
< |I|eo—zgi+\J\I|eo+63el
iel
= Zgi +ez(eo —e1) < ¢°02(2¢° + > + g+ 1)
el
= (I -7+ 1)9q292 +c3(eg—e1) < q2c92(2q3 +¢+q+ 1).

Ur

i¢J
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The first implication follows again by Lemma and (6.10). The second implication follows since
I§| = 05 —q = |I| + |J \ I| + c3, and the third implication follows by the assumption that
I ,
S g > (1] = j + 1)9¢%02.
Using the lower bound for |I| > (63 — ¢ — ¢3), as well as eg — e1 > 02 (¢> — 2¢> — 4 + 5) for
qg>3,and j = iq?’ + ¢ + 2g + 1, we find that
L 1,

11 ,
(4q — 50 20+ 5 - 263) 9¢°0 + csb (¢° — 2¢* — 4g+5) < ¢*02(2¢° + ¢ + g+ 1)

1
& o3 (20° —13¢° — 8¢+ 10) < —¢° + 11¢* + 38¢° — 7¢°
= c3 <0.

The last implication is true for ¢ > 26. Since c3 > 0, we find a contradiction, and so our assumption
was false. Hence, we have that g; < 9¢°0 and, therefore, g; < 9¢%f, for all i < j. Now, let Q1,
@2 and Q3 be three non-collinear points in {R; : i € {j — ¢ — 1,...,5}} and let P be the set
of all points R;, with i < j — ¢ — 2, that do not lie in the plane 7 = (Q1, Q2, @3). Recall that
j= iqg’ +¢*+2¢+ 1. Then |P| > j—q—2— (6 —3) > %qg. Also, each of the points Q); is
contained in less than 9¢? lines that meet P, since every such line lies in 65 flags that are contained
in the union of the G;, with ¢ < j — ¢ — 2. Then we use Lemmawith M=P,n=9,d= i
and m = 5. Hence, since ¢ > 32";—5m = 160 - 36°, we find a solid that contains at least 5q2 points
of P. The statement follows now from Lemmal6.3.10 [

Remark 6.3.12. Note that there is precisely one solid that contains all but at most 4¢> points P;, i €
I: if there would be two such solids S1, S2, then the number of points P;, 7 € I, in 57 U Sy would
be at least 2(f3 — g — 4¢?) — 0. For ¢ > 9, this number of points is larger than the total number
03 — q of EKR sets F; in §, which gives a contradiction.

Notation 6.3.13. From now on, we denote by S the unique solid that contains all but at most 4¢° of
the points P;, with i € I, and we use the following notation:

e Co={F;|iel, PeS}.

«Ci={Filiel, P ¢S}

e Co={F;|ieJ\I}.

e Cs={F;|ie{l,...,05—q}\ J}.

e ¢; = |Cy| fori € {0,...,3}.

W={PeS|P+#P,Viecl}

o Let M be the set of all line-plane flags (I, 7) for which Il N S is a point which lies in W.

Lemma 6.3.14. We have
(a) Cop U C1 U Cs U Cs is a partition of §.
(b) c1 + c3 < 4¢°.
(c) [W|= 03— co.
(d) Every point of W lies in the plane of exactly ¢>0- flags of M.
(e) |M| = |W|q>05.
(f) c3 < 2q¢° + 6q for q > 22.
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Proof. Statement (a) is obvious from the notation introduced above. The choice of S implies state-
ment (b). Since no two members of § of size ey have the same generic part, we have |W| = |S\Cy| =
|S| —|Co| = 63 — co and thus statement (c). Furthermore, each point P € W is contained in ¢> lines
that meet S only in P and each such line lies in 05 planes. Hence, for every point P € W, exactly
q305 flags (¢, ) of M satisfy £ N S = P, which proves statements (d) and (e). Finally, statement (f)
follows from Lemma and g > 22:

1§leo — ¢?02(2¢3 + ¢* + ¢+ 1) < |J|eg + cze1
& czleg—e1) <026 + ¢ +q+1)
= 3 < 2¢*+ 6q. [ |

Lemma 6.3.15.
(a) Suppose that F' € Cy. Then the generic part of F' does not contain a flag of M.
(b) Suppose that F € Cy. Then |F N\ M| < |W |03 + ¢20.

(c) Suppose that ' € Cy, with base solid H. If H = S, then we have that |F N M| < ¢*0,. If
H # S, then |[FN M| <|HNW|¢*(qg+ 1) + ¢*6o.

Proof. (a) The flags of the generic part of F either have a line that is contained in S or that meets
S in the base point of F', which is not in W. Therefore these flags do not belong to M.

(b) We know that F' is based on a point P. The generic part of F' consists of all flags whose line
contains P. As P ¢ S, we see that the generic part of F’ has exactly |60 flags in M. The special
part of F has ¢%0; flags and thus at most this many flags of M.

(c) We know that F' is based on a solid H. The generic part of H consists of all flags whose plane
liesin H. Hence, if H = S, the generic part contains no flag of M, and if H # S, it contains exactly
|HNW|q?(q+1) flags of M. The special part of F' has g6 flags and thus at most this many flags
of M. |

Lemma 6.3.16. Suppose that z is an integer such that all except at most one plane of S have at most
z points in W. Then

\W\q?’eg <c (W] + q2)92 + Cg(zq2(q +1)+ q292) 4+ cse1 + s+ q3(q + 1)6s,

where s is the number of flags of M that are contained in the special part of F' for some EKR set F of
Co. If every plane of S has at most z points in W, then

(W02 <ci(IW| + ¢%)02 + ca(2¢*(q + 1) + ¢%02) + czer + s.

Proof. Each ofthe | M| = |W |¢>05 flags of M is contained in some member of § = CoUC; UC3UCS3.

Hence, |[W|q30, < Z?:o |(Upec, F') N M. If there exists a plane of S with more than z points in
W, then denote by 2’ its number of points in W. Otherwise put z’ = z. Since a plane of S lies in ¢
solids other than S, the preceding lemma shows that Upcc, F' and M share at most

(c2 — @)(2¢*(q + 1) + ¢*02) + q('¢*(q¢ + 1) + ¢°62)
=c(2¢*(q+ 1) + ¢*02) + (¢ — 2)¢* (¢ + 1)
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flags. Using this, together with the previous lemma and the fact that |F| < e; for F' € Cs, we find
that

Wit <|| J FlnMm|+|| J F|nM|+|| | F|nM|+|[ J F|nMm

FeCy FeCy FeCy FeCs
<> IFNM|+ > FNM|+ > |FnM|
FeCy FeCy FeCs
+ea(2°(g +1) + ¢°02) + (2 = 2)¢* (g + 1)
<s+er(W]+¢®)bs+ ca(2¢*(q + 1) + ¢202) + (2 — 2)@3 (¢ + 1) + c3ey.

Now we use 2/ — z < 05 to find the first assertion and 2’ — z = 0 to find the second assertion in
the statement of the lemma. [ |

Lemma 6.3.17. Let 7y and my be distinct planes of S. Then
[(m Um) "W g*(q+1) <6¢°(q+4) +3¢(IW] — ¢) (g + 1) (6.11)

Proof. Put W' = (w1 Ume) "W, and let M’ be the subset of M that consists of all flags of M whose
line meets S in a point of W’. Lemma shows that |M’| = |W’|q30s. Each flag of M’ lies
in at least one of the EKR sets of § = Cy U C7 U Cy U Cs. Hence, |M'| < dy + dy + da + d3, where
d; is the number of elements of M’ that lie in some member of C;.

For F' € C3, we have |FF'N M'| < |F| < e;. Hence, d3 < cge;.

If F € C, then |F| = ep and F is based on a point P ¢ S, so the flags of M’ that lie in the generic
part of F are precisely the |W’|0; flags whose line contains P and a point of W’. Since the special
part of F has ¢%0; flags, it follows that dy < 1 (|W’| + ¢%)6.

Consider F' € Cy. Then |F| = eg and F is based on a solid H. If H = S, then the lines of all
flags of the generic part of F' are contained in .S and hence F'N M’ = (). Now we consider the case
when H # S. Then the number of flags of M’ in the generic part of F is |H N W’|q?(q + 1). This
number is at most (2¢ + 1)¢%(g + 1), if the plane H N S is different from 71 and from 7o, and it is
W N 7q?(q + 1), if HN S = 7;. Since there are exactly g solids that meet .S in 71 and as many
that meet S in 7o, it follows that the number of flags of M’ that lie in the generic part of at least
one EKR set of (' is at most

g(|W nm| + W N ml)g®(g+ 1) + (c2 — 2¢)(2¢ + 1)g*(g + 1)
<q(IWnm|+ |Wnml)g*(qg+1) + c2(2g + 1)g* (g + 1).

The special part of each EKR set of C has ¢%0; flags and thus at most this many flags of M’. Using
(W Nmi| + |[W N < |[W|+ ¢+ 1, it follows that

do < q(IW'[+ g+ 1)g* (g + 1) + c2(2g + 1)¢* (¢ + 1) + c26°05.

Finally, we consider an EKR set F' of Cjy. Then |F| = eg and F is based on a point P. We know
from Lemma that only the special part T of F' can contribute to M’. For T, there are the
following possibilities:

+ There exists a line ¢ with P € £ and T consists of all flags whose plane contains ¢ and whose
line does not contain P. If / meets S only in P, then |T' N M'| = |W'|q. If £ is contained
in S, then |T N M’'| = |¢ N W'|g® which is at most 2¢> if P ¢ 7 U 72, and at most ¢* if
P € m Ums. Since [W'| < 2¢ 4 q + 1, it follows that |T'N M’| < ¢* if P € m Uy, and
TN M'| < q(2¢*> + g + 1) otherwise.
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« There exists a solid H with P € H and T consists of all line-plane flags (h,7) with P €
TCHandP ¢ h Then TNM =0if H=S,and |[TNM|=|HnW|¢*if H#S.
In the second case, this number is |W' N m;|¢? if H NS = m; for some i € {1,2}, and it
is at most (2¢ + 1)¢? if HN S ¢ {m, m2}. Note that H N S = 7; implies P € 7, so that
W’ Nm;| < ¢*+ qand hence |W' Nm;|q? < ¢3(q +1).

Summarizing, we see that [T N M’| < q(2¢> + ¢+ 1) if P ¢ m Umg, and [T N M'| < ¢®(q + 1) if
P € m; Uy, which proves
do < (co—2¢° —q— 1+ W )q2¢° + g+ 1) + (2¢° + ¢+ 1 = W)’ (¢ + 1)
=c0q2¢* + ¢+ 1) +2¢° — " = 2¢" —4¢® — 2¢° — g — W'|(¢" = ¢* — ¢* — q)
<cog2* + g+ 1) +2¢° — ¢ — |[W'|(¢* — ¢* — ¢® — q).
It follows that

W30y = |M'| < do + dy + do + d3
<coq2? +q+1)+2¢° — ¢ — [W'|(¢* —¢* —¢® — q)
+ (W +¢*)b2+ ¢(IW'| + g+ 1)g* (g + 1)
+ 220 + 1)*(q + 1) + c2¢*02 + csen

and simplifications show that
(W’lg*0r < [W|gba + ¢*(2¢° + 2q + 1) + coa(q® + 62)

+ 1 (W] + ¢®)02 + cag® (02 + 2¢> + 3¢+ 1) + czeq . (6.12)
=¢

We put § = ¢1 + c2 + c3, which also implies that cg = 3 — g — 4. Since |W’| < 2¢% + ¢+ 1, we
have that
€ <e1(3¢ + g+ 1)0 + c2g® (02 + 2¢° + 3¢ + 1) + czeq
=532 +q+1)0 — 23> +2¢ + 1) + c3(e1 — (32 + g + 1))
< 0(3¢% + g+ 1)02 + (2¢° + 6¢)(¢* + 5¢° — ¢* — q).

The last inequality follows from Lemma [6.3.14](f)]
Using this bound on &, as well as |[W’'| < ¢? + 02 and cg = 3 — ¢ — & on the right hand side of

inequality (6.12), we find that
(W'|q*01 < 6¢° +21¢° + 35¢" — 3¢° + 2¢ + 6(3¢* + 2¢° + 4> + ¢+ 1)
< 6¢° +24¢° + 6(3¢* + 3¢°)
= 6¢°(q +4) +3¢°0(q + 1).
Substituting § = |W| — ¢ in the last expression implies the statement. |
Lemma 6.3.18. We have cg > ¢> — 18¢ + 1 and thus |W| < ¢* + 19¢.

Proof. Let 71 and 7o be planes of S such that |m N W| > |me N W] > |7 N W| for every plane =
of S other than 7 and 3. Put z = |m2 N W|. The number s occurring in the assertion of Lemma
is at most coq?03, since the special part of each EKR set of C has cardinality ¢6,. Therefore,
Lemma shows that

|W!(q3 —c1)by < c0q20s + 1405 + cz(zqz(q +1)+ q2¢92) + czeq + q3(q +1)05.
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6 The chromatic number of some Kneser graphs

Since ¢y + ¢1 + ¢2 + ¢3 = 63 — g, the right hand side is equal to
(03 — )q?0s + cozq®(q + 1) + c3(er — ¢%02) + (¢ + 1)6s.
Using c3 < 2¢* + 6¢ from Lemma and the definition of e; implies

W|(g® — c1)02 < ¢" + 9¢° + 38¢° + 58¢" + 22¢® 4+ 9¢* + 6q + c22¢* (¢ + 1)
< q" 4 10¢° + c22¢*(q + 1).

The last inequality follows since ¢ > 40. We put 6 = ¢1 + ¢ + ¢3, such that [W| =03 —cop = d + ¢
and thus

(6 +q)(q® —c1)0 < q" +10¢° + 52¢%(q + 1). (6.13)
Now, Lemma [6.3.17| states
|(m1 Uma) N WG (g + 1) < 6¢" + 24¢° + 36(¢* + q)
and, since |(m; Uma) NW| > |my N W |+ |[me N W| — (¢ + 1) > 2z — ¢ — 1, this implies
22¢°(q+ 1) < 7q¢* + 26¢° + ¢* + 35(¢* + q) < 8¢* + 35(¢* + q). (6.14)

The last inequality uses ¢ > 27. Combining with and using ¢; < 442 results in
3
(6+9)(¢* — 4¢°)02 < ¢" +10¢° + 6 <4q4 + 500" + Q)>
2§ 3 o 6 5 2 o
& 0 2(q+1)+5(4q q62(q —4)) + ¢° +10g° — ¢“02(q¢ — 4) > 0. (6.15)

It is easy to verify that this inequality is not satisfied for § = ¢ + 18¢ nor for § = %qg — 7q>. Since
is a quadratic inequality in §, it follows that § does not lie in the interval [¢* + 18¢, %q?’ —7¢%.
However, we have 6 = 03 — ¢ — cp aswell as g + ¢1 = |I| > %(05 — q — c3). Furthermore, since
c1 + c3 < 4¢® by Lemma (b) this implies § < %q?’ — 7¢* for ¢ > 70. We conclude that
§ < ¢ + 18¢, and hence |W] < ¢ + 19¢. [ |

Lemma 6.3.19. Every plane of S has at most 10q points in W.

Proof. From Lemma and Lemma , it follows, for ¢ > 72, that

[(m Ume) "W | g*(q+1) < 6¢°(q+4) +3q¢(¢* + 18¢) (¢ + 1)
= |(mUm)NW|<9q¢+ 72 < 10q
= |m NW|<10gq,

for all planes m; (and 79 # 1) in S. |
Lemma 6.3.20. We have § = Cj.

Proof. As in the previous proofs, we put § = ¢; + ¢ + ¢3, which again implies |IW| = ¢ + 6 as well
as § = 03 — q — co. From Lemmas [6.3.18|and [6.3.19] we have |W| < ¢ + 19¢ and |7 N W| < 10q
for all planes 7 of S. Therefore, Lemma [6.3.15 shows that |[F' N M| < (2¢* + 199)6; for F € C,
and |[F N M| < 11¢* + 11¢> + ¢? for F' € C5. Hence, each of the EKR sets F' € Oy U (s satisfies
|F N M| < 12¢* for ¢ > 12. Since e; < 12¢*, the same holds for F' € Cj. Therefore, the total
contribution of all EKR sets in C; U Co U C3 to M is at most 126¢* = 12(|W| — ¢q)q*. Furthermore,
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6 The chromatic number of some Kneser graphs

the generic part of every EKR set in C is disjoint from M and thus it remains to consider the special
parts T'(F') of the EKR sets ' € Cy. In view of that we define

a=|{F €Cy:T(F)isbased onaline ¢ C S},

B =|{F € Cy:T(F) isbased on a solid H}|,

v=|{F € Cy:T(F)isbased onaline {  S}|.
Moreover, we let A be the set of lines £ of S such that F (P, ) € Cp for some point P of £ and we let
B be the set of all point-solid pairs (P, H) with (P, H) € Cpand H # S. Then a + 8 + v = ¢y,
|A] < avand |B| < . Recall that if F' € Cp is such that T'(F) is solid based with solid .S, then

T(F) does not contribute to M. Therefore, we find an upper bound on the number | M| = |W |¢>02
of flags of M:

Wlg?6; < 12(W| — q)g* + > _[enWig* + > |HNW|g* +~|Wq. (6.16)
leA (P,H)eB

Furthermore, since the product of two consecutive integers is non-negative we have

0> (IENnW|=1)(ltnW|-2)

Le A

=> nWenW]—1)=2) [(nW]|+2|4]
leA LeA

< |WI(IW[=1) =2 [enW|+2/A].

LeA
The last inequality follows from counting the triples (P, Py, 1), with P;, P, € W NI, P; # Py and
l € A, in two ways. Since o + 5+ v = 03 — |W| and |A| < «, we have |A| < 05 — |[W| -5 —~
and thus this equation implies

1
D OW < SIWI(IW]=3)+ 05— 5 — .
leA

Using this and | B| < 8 in (6.16), we find
1
L= Wlg* (2= 5(0W1=3)) < 120] - )" + (95 - )¢

+yWlig+ > (IHNW|—q)q*. (6.17)
(P,H)EB

Now, we first show that the coefficient of v in this inequality is negative, so that we may omit the
term in y therein. Since |W| < ¢? + 19¢, we have L > %|VV|q5 for ¢ > 52. Furthermore, Lemma
[6.3.19|shows |H N W| < 10q for all (P, H) € B and, since |B| + v < 3+~ < 3 — |W|, we find
that

YNWlg+ Y (HOW| = q)q® < y(q* +19¢°) + 9¢*|B| < (65 — [W])9¢”.
(P,H)eB

Using this as well as [W| < ¢* + 19g and L > £|W|q® in Equation , we have that
1
3IWla” <12(¢° +189)g" + 03¢° + (05 — [W[)9¢”
2

s || <qg + 9) < 12(¢* + 18¢)q + 10 63

= |W]| < 66q + 678.
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6 The chromatic number of some Kneser graphs

Hence, the coefficient |[IW|q — ¢3 of 7 in (6.17) is negative for ¢ > 76 and therefore the term in
can be omitted in the inequality. Doing that, replacing |W| by ¢ +  and simplifying we find that

1
(g+9)q <q2 + 5(q -0+ 5)) < 120¢° + O3q + Z(\H NW|—q). (6.18)
(P,H)EB

If 7 is a plane of S, then the number of (P, H) € B, with HN.S = 7, is at most 6 — |T N W|. Also,
if 1 and 7y are distinct planes of S, then

MmN W+ |mnW| < |[W|+|mNmnNW|<2¢+1+0. (6.19)
We claim that
1
D (HNW]—q) < 5(65—q =)0 +1). (6.20)
(P,H)EB

Since [B| < 63 — q — 4, this is clear if [H N W| — ¢ < 1(6 + 1) for all H € B. Hence, we
may assume that there exists a flag (Py, Hy) € B witha = [HoNW|— ¢ > (6 + 1). From
gtz =HynW| < |[W|=q+ 9, wefindx <. If (P,H) € B,with HN S = Hy N S, then
P € HyN S and P ¢ W and hence there are at most #3 — ¢ — 2 = ¢*> + 1 — x such points. If
(P,H) € B,with HN S # Hy N S, then (6.19) implies |[H NW|—¢<d+1— .

Now, if | B| > 2(q?+1—x), then for at most half of the elements of B, it holds that |[HNW|—¢q = ,
while for the other elements of B, we have that |H NTW|— ¢ < d + 1 — z. Hence, the average value
of |H N W| — q taken over all (P, H) € B isless than 3(z + (§ + 1 — x)) = (6 + 1) and then
follows from |B| < 03 — g — 6.

If, on the other hand, |B| < 2(¢?> + 1 — ), then |B| < 2¢? and since |H N W| — ¢ < x for all
(P,H) € B we find, using ¢ > 160 - 36° and § = |W| — q < ¢* + 18¢ from Lemma that

1 1
S (HNW| - q) < 2%z < 2% < 503 —q—0)0 < 5 (05 —q = 0)(+1).
(P,H)eB

We have handled all cases and thus is verified. Now, we may use the bound in Equation
to find

1 1
(g+9)q (q2 + 5((] -0+ 5)) < 126¢° + O3q + 5(93 —q—0)(0+1),

which is equivalent to

1 1 1
iéq(q2—25q—5+5)+§52§(q2—q+1)q+§

e 0qg—1)—6q(¢* —25¢+5) +2q(¢> —qg+1)+1>0. (6.21)

For ¢ > 73, this inequality is false for 6 = 3 and § = %qQ. Hence, this inequality is false for all
values of § between 3 and 3¢ Using § = |W| — ¢ < 3¢?, this implies § < 3 and thus § < 2, that
is, it remains to show § ¢ {1,2}.

First consider § = 2. Then Equation (6.18) shows that

1
5(3q3 —45¢° +49) <Y _(JHNW|—q).
(P,H)eB
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6 The chromatic number of some Kneser graphs

Since |B| < ¢p = 03 — g — d and since |[HNW| < |W| = g+ 2forall (P,H) € B, this implies
|[HNW| > q+1andthus |[HNW| =g+ 2= |W|for at least 5(¢* — 47¢*> + 4¢ + 2) elements
(P,H) € B. Note that |[HNW| = ¢+ 2 implies W C H, thatis, W C H N S. Therefore, W spans
a plane o of S. However, (P, H) € B with W C H implies P € H NS = o and this may happen
at most 0 — |W| = ¢* — 1 times, a contradiction for ¢ > 49.

Now, suppose that § = 1. Then Equation shows that

1
5(@* = 21¢° +20) <D ([HNW|~q)
(P,H)eB

and, since |H NW| < |W| = g+1forall (P, H) € B, this implies that there are 1 (¢ —21¢? +2q¢)
elements (P, H) € B with |[H N W/| > g and thus |H N W| = |W| = ¢ + 1. Now, if W spans a
plane o, then we have seen above that there are at most 5 — |W| = ¢? elements (P, H) € B with
W < H, a contradiction for ¢ > 24. Therefore, we may assume that W spans a line ¢, only. Hence,
finally, there exists only one EKR set F' in § \ Cy. Now, the special parts of the EKR sets of C do
not contain any flag (h, 7) with 7 NS = £ and therefore these ¢*0; flags must lie in F. This implies
that ' may not be a subset of a solid-based EKR set, nor may it be a subset of a point based EKR
set with point outside of S. Hence, we have |F| < e;.

Now, reconsider the set M of all |W|g®02 = (q + 1)¢®02 flags (h, 7) such that h N S is a point of
W. Each point P € S\ W is the base point of exactly one EKR set of Cp and we let S(P) be its
special part. Then M is a subset of the union of F and the sets S(P) with P € S\ W. The ¢*(¢+1)
points of S\ W are distributed in the ¢ + 1 planes of S through ¢. Consider such a plane 7 and let

e 7, be the number of points P € 7\ ¢ for which S(P) is based on a line that meets .S only in
Pa

e let a; be the number of points P € 7 \ £ for which S(P) is based on a line that is contained
in S, and

e let 3, be the number of pairs (P, H) € B with P € 7.

Then there are at most 7(q + 1)q + a,q® flags in M that lie in S(P) for some point P € 7 \ /
such that S(P) is based on a line. Now, consider the 3 pairs (P, H) € B with P € 7. The special
part S(P) of every such pair contains |H N ¢|q? pairs of M. If { € H, then this is ¢> and otherwise
it is ¢>(¢ + 1). For distinct (P;, Hy), (P2, Hy) € B with P;, P> € mand 7 C Hy = H, the ¢*
flags (g, 7) € M for which 7 NS = P, P> (and hence g NS = P; P, N g) lie in both S(P;, Hy) and
S(Py, Hy), so that the number of flags of M that lie in S(P») but not in S(P;) is at most ¢°. Since
there are ¢ solids through 7 different from 5, these arguments show that the union of the special
parts S(P) for the 3, points is at most ¢ - (¢ + 1)¢*> + (B — q)¢® = (B + 1)¢>. Therefore, since
Qx + Br + Vr equals the number ¢? of points of 7 \ £, we have that the union of the special parts
S(P) for all points P € 7 \ ¢ contains at most

Yalg+Da+axg® + (B + 1)¢* < (3 + an + Br)’ + ¢ = (¢ + 1)’
Since there are ¢ + 1 planes of S through /, it follows that
(a+1)g’0> < |F| + (a+ 1)(¢* + 1)¢°

which shows that |F| > (¢ + 1)¢*. This is a contradiction to |F| < e; for ¢ > 5. |
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6 The chromatic number of some Kneser graphs

The previous lemma concludes the proof of Theorem [6.3.8]

Proof of Theorem Consider a coloring of the Kneser graph ¢Ks, (3 3}, ¢ > 160 - 36°, with
t < 03 — q color classes C1,...,C;. Define C; = () for t < i < 03 — q. Each set C; is an EKR
set of line-plane flags of PG(4, q). If |C;| > ey, then let C; be a maximal EKR set containing C;;
it follows from Theorem and the appendix below that |C_’1| = eo and C; is one of the sets
defined in Example For each i, we now define a set F;. For each i, with |C;| < eq, define
F; = C;. Now consider an index ¢ with |C;| > ey. If there exists an index j < ¢ with |C}| > e; and
such that C; and C; have the same generic part, then let F; be the special part of C; (this implies
|F;| = ¢?02 < e1), and otherwise put F; = C;. Let J be the set of indices i with | F;| = eg. Consider
the multiset § = {F; | 1 < i < 03 — ¢}. Then each F; is an EKR set and the union of the F; is the
set of all line-plane flags.

Case 1. For at least %|J | indices i € J, the generic part of F; is based on a point. Then § satisfies the
hypotheses of Theorem The conclusion of this theorem implies that J = {1,2,...,03 — ¢},
that the generic part of all F; is based on a point, and that the base points are 3 — ¢ distinct points
of a solid. This implies that ¢t = 63 — ¢, that |C;| > e; and F; = C; for all i. Note that F; = C;
might not be uniquely determined by C;, however its base point is. This follows from the fact that
two maximal EKR sets based on distinct points (are easily seen to) have less than e; elements in
common and, hence, C; can not be contained in both. This proves 'Iheoremin this case.

Case 2. For less than %|J\, indices 7 € J the generic part of F; is based on a point. Then for more
than %\J | indices i, the generic part is based on a solid and we can apply the first case in the dual
space. This proves Theorem in this case.

6.3.4 Appendix

In [I1]], the authors investigate EKR sets of line-plane flags in PG(4, q). We adapt their notation in
this appendix and suppose that ¢ > 3. In the proof of their classification result, they consider EKR
sets C of line-plane flags in PG(4, ¢) which are not contained in one of the sets given in Example
For this, the authors distinguish several cases for the structure of such a set C, depending on
the number of red lines.

1. If there are 03 red lines, then the EKR set C must be one of the sets in Example[6.3.2] see Case
F in [[I1} Section 4.1].

2. Ifthere are 05 red lines through a point in a solid, then |C| < 03+¢2(¢*>—1)+2¢%(q+1)? < ey,
see Case E in [[11] Section 4.1].

3. If there are 65 red lines in a plane Ay, then there the authors do not provide an upper bound,
but only show that in this case, the sets cannot be contained in a set of Example see
Case D in [[11} Section 4.1]. In order to derive Result[6.3.4] we first have to provide an upper
bound for that case, too, and we shall do so below.

We are in the situation that there is one red plane Ay and all of its lines are red as well. If there
are more than ¢ + 1 red planes, then the arguments in the second paragraph of [11 Section
D] show that the number of elements in the EKR set is at most 9% + ¢ (q+ 1% +¢* + ¢,
which is smaller than e;. So here we consider the case that there are at most g red planes
apart from Ayp.

Note first that if A is a yellow plane, then A N Ay is a line (so (A, A) is a solid) and A has a
unique point p(A) which lies in Ay and such that a flag (L, A) isin C if and only if p(A) € L.
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The following holds and will be used several times below: if A; and Ay are yellow planes,
then

p(A1) € Az or p(Az) € Ay or (Ag, A1) = (Ao, A2). (6.22)

Now there are two possibilities.

« Suppose that for any two yellow planes A; and As with p(A;) = p(As) we have Ay N
Ay = Ao N Az. Then each point P = p(B), with B a yellow plane, corresponds to
a unique line [g = B N Ay. If there is a line [ C Ay such that [p is contained in
more than ¢ yellow planes, different from A, then for every other yellow plane C' with
p(C) # p(B), it holds that p(C') € ip or p(B) € lc, see (6.22). Hence, there are at
most (2 + 1)(¢? + q) yellow planes. If there is no line | C Ay contained in more than
q yellow planes, then there are at most ¢f2 yellow planes.

« Suppose that there is a point P and two yellow planes A; and As with Ag N A; #
Ap N Ay and p(A1) = p(Az) = P. Then each yellow plane A must satisfy P € A or
A C (Ag, A1) or A C (Ap, Az). The number of yellow planes is thus at most 2(¢* +
¢®> + q) + (¢ + 1)(¢* — q). Note that equality can occur only when the solids (A, A1)
and (Ag, Ag) are distinct.

In any case, the number of yellow planes is at most y = 3¢> + 2¢® + q. If Ag is the only red
plane, it follows that |C| < 03 + yq < 4¢* + 4¢> + 4¢% + 2q + 1. If Ag is not the only red
plane and there are ¢ other red planes A, then we treat these as the yellow planes above by
choosing for p(A) any point of AN Ag. Then the bound for |C| is almost the same except that
C’ § €1.

we have to add ¢ - ¢%, namely ¢? more flags for each of the ¢ red planes. Hence,

4. If there are at most ¢ + 1 red lines, then we use the proofs of Lemmas 4.1, 4.2 and 4.3 in [11]]
to find that |C| < 4¢* + 9¢% + 4¢® + ¢ + 1.

Hence, we find that the weakest of these upper bounds is the number e; = 4¢* +9¢> +4¢%> +q+1
and it is given in the general case of the proof of [11} Lemma 4.3].

6.4 The chromatic number of the Kneser graph ¢K5;,1.(3.4+1},d > 3

In this section, we give an overview of the methods and results proven in [48]. The details and
proofs appeared in the PhD thesis of dr. Daniel Werner [112]]. The results in this part are joint work
with prof. Klaus Metsch and dr. Daniel Werner.

In this section, we investigate the Kneser graph whose vertices are flags in PG(2d, ¢), such that
each flag contains a projective (d — 1)-space 7 and a projective d-space 7, with 7 C 7.

For this generalized chromatic number problem, we again used the strategy mentioned in Section
For this, we assume that we have constructed a coloring of size the chromatic number x and we
used a stability result (and conjecture) on the cocliques. The coclique number as well as structural
information on large cocliques of K541 {4,441} has been given for d = 2 in [11] and for d = 3 in
[94]. We used the results in [I1]] in the previous section, to show that X(qK57{273}) =@ +¢+1
for ¢ > 160 - 36°. The first aim in this project was to determine the chromatic number of ¢ 73,4}
for large q using the results of [94]. However, our approach in this project was able to deal with the
general case of the graphs K41 {4,4+1), for alld > 3.
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Recall that the set F(P) is a point-pencil of flags of PG(2d, q) of type {d,d + 1}. Dually, for
every hyperplane H in PG(2d, q), we denote by F'(H) the set of all flags of type {d, d + 1} whose
d-space is contained in H and call this set a dual point-pencil. Note that point-pencils and dual
point-pencils are cocliques of cardinality ~ qu_d_l but they are not maximal cocliques. For d = 2,
every maximal coclique containing a point-pencil or a dual point-pencil has cardinality 65(63 4 ¢2).
For d > 3 there are different maximal cocliques, and they do not all have the same size. However,
the structure of the large maximal cocliques can still be described quite precisely.

Example 6.4.1 (EKR sets).

1. For a point P and a set U of d-dimensional subspaces through P, such that for all 7, 7" € U we
have dim(r N 7') > 1, we define

FPU)={(r,7) e V(I') | PemorT € U}.

We again call {(mw,7) € F(P,U) | P € 7} the generic part and {(7,7) € F(P,U) | P ¢ 7}
the special part of F(P,U). We also say that F (P,U) is based on the point P and call P the
base point of F(P,U).

2. Dually, for a hyperplane H and a set £ of subspaces of dimension d — 1 in H with pairwise
non-empty intersection, we define

FH,E)={(r,7) e V() |TCHorme&}.

We call {(m,7) € F(H,E) | 7 C H} the generic part and {(7,7) € F(H,E) | 7 € H} the
special part of F(P,U). We also say that F(H, E) is based on the hyperplane H.

We continue with some examples of colorings.

Example 6.4.2 (coloring of ¢ K41 (44+1})- LetU C PG(2d, q) be a subspace of dimensiond+1,
consider a set W of q points of U and let L be the set of lines of U that meet W . Furthermore, suppose
there exists an injective map v from L to the point set {P € U|P ¢ W}, such that v(l) € [ for all
l € L. Let S be the set of all d-spaces through the line l. Then

{F(),8) | le LYU{F(P,0) [ PeU\ (v(L)UW)}
is a set of cocliques of K411 {4,a+1} wWhose union contains all vertices of (K34, 1 {d,d+1}-

Remark 6.4.3.  (a) Since there are 64,1 — q cocliques in the given coverings, we find

X(9Kaat1,{d,d+13) < ba+1 — g

(b) There are different possibilities for (I, v/) satisfying the required condition in Example
We describe an explicit example. Let I, . .., P, be the points of a line £ C U and set W =
{P1,..., P,}. For each plane 7 of U through /, fix a numbering hp(7), P € W, of the lines
different from ¢ of 7, containing Py. Define v by v(¢) = Py and v(1) = I N hyne((¢, 1)) for
[ € L'\ {¢}. This map v has the property that U = v(L) U W.

It is also possible to construct maps v satisfying U # v (L) U W, for example for odd ¢ > 5,
when W consists of ¢ points of a conic in a plane of U, but we omit the details.

(c) We can find different coverings in cocliques by replacing all cocliques of the coverings de-
scribed in Example[6.4.2|by their dual structure.

Recall that our strategy uses a stability result on the cocliques in the Kneser graph. Hence, we make
the following conjecture.
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Conjecture 6.4.4. For every integerd > 2, there is an integer p(d) such that every maximal coclique
of the Kneser graph qK3;11 (4,41} contains a point-pencil, a dual point-pencil, or has at most p(d) -

2
q® 92 elements.

This conjecture is true for d = 2, which was implicitly proven in [11]], see Section [6.3.4] and it is
true for d = 3, as is shown in [94].

Our main result is the following.
Theorem 6.4.5. If Conjecture[6.4.4 is true for some integer d > 3, then

qd+2 -1

X(9K2d11,{d,dr1y) = —q

qg—1

for sufficiently large q, depending on d and p(d). Moreover, if § is a family of this many maximal
cocliques that cover the vertex set, then — up to duality — there exists a (d + 1)-dimensional subspace
U in PG(2d, q) and an injective map v from § to the set of points of U such that F(u(C)) C C for
allC € §.

Since the conjecture is true for d = 3, we find the following corollary.

Corollary 6.4.6. Forq >3- 7' .25 we have X(¢K7 134)) = AP P+
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Cameron-Liebler sets
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7 Introduction

€€ The main application of Pure Mathematics is to make you happy. 99

—Hendrik Lenstra

In the first part of the thesis, we investigated intersection problems. In this part, we continue with
the research on Cameron-Liebler sets in different contexts. It will become clear that results on
intersection problems can be applied.

7.1 Definition

In [28], Cameron and Liebler introduced specific line classes in PG(3, ¢) when investigating the
orbits of the subgroups of the collineation group of PG(3, ¢). It is well known, by Block’s Lemma
(76| Section 1.6], that a collineation group of a finite projective space PG(n, ¢) has at least as many
orbits on lines as on points. Cameron and Liebler tried to determine which collineation groups have
equally many point and line orbits. From Lemma we know that these point and line orbits
form a tactical decomposition. More specifically, a symmetrical tactical decomposition, since the
number of point and line classes is the same.

We continue with some trivial examples of subgroups of G = PT'L(4, ¢), with equally many orbits
on the lines and points of PG(3, ¢).

Example 7.1.1. Consider a point P and a plane m in PG(3, q), with P ¢ .

1. Stabg(P) has two orbits on the points; namely P and PG(3, q) \ P, and has two orbits on the
lines, namely the lines containing P and the lines not containing P.

2. Stabg () has two orbits on the points; namely the points in 7 and the points not in 7, and has
two orbits on the lines, namely the lines contained in 7 and the lines not contained in 7.

3. Stabg({P,7}), with P ¢ m, has three orbits on the points; the point P, the points in m, the
points in PG(3, q) \ ({ P} U ), and has three orbits on the lines; the lines through P, the lines
in 7, the lines not in ™ and not through P.

Cameron and Liebler found that the line orbits of the subgroups with equally many orbits on lines
and points, fulfill the following (equivalent) combinatorial and algebraic properties.

Result 7.1.2 ([28, Proposition 3.1]). Let L be a set of lines in PG(3, q), with characteristic vector x
and let A be the point-line incidence matrix of PG(3, q). Then the following properties are equivalent.

1. x € im(A7T),
2. x € ker(A)*,

3. for every regulus R, we have that |[LNR| = |LNTR’

, with R’ the opposite regulus of R,

4. there is a number x such that |L N S| = x for every spread S,

123



7 Introduction

5. there is a number x: such that |£L N S| = x for every Desarguesian spread S.

A set of lines which satisfies one of these properties (and so all of them) was first called a special line
class by Cameron and Liebler, and was later called a Cameron-Liebler set of lines by other researchers.
The number x in the result above, is called the parameter of the Cameron-Liebler line set.

Hence, the line orbits of a collineation group of PG(3, ¢) which has the property that it has the
same number of orbits on the points as on the lines, are Cameron-Liebler line sets, see [28].

We will see later that the converse is not true, see Example 4, and Remark The origi-
nal aim was to classify the Cameron-Liebler sets, in order to find information on the collineation
groups with the ‘orbit’-property. Up to now, the Cameron-Liebler line sets in PG(3, ¢) are not yet
fully classified. On the other hand, the original group theoretic question, in PG(n, g), is solved by
Cameron, Bamberg and Penttila [27] 3.

Theorem 7.1.3. A subgroup G of PI'L(n, q), having equally many orbits on points and lines
1. stabilizes a hyperplane m and acts line-transitively on it, or (dually)
2. fixes a point P and acts line-transitively on the quotient space, or
3. is line-transitive. In this case, there are three possibilities.
e G contains PSL(n + 1, q),
« G = A7 <PGL(4,2),
e G is the normalizer in PGL(5, 2) of a Singer cyclic group of PG(4, 2).

The link between the group theoretical question and Cameron-Liebler sets, can be generalized to
other contexts. The lemma below follows from the ideas in Block’s Lemma [10]], and was given in
[110, Lemma 3.3.11].

Lemma 7.1.4. Let G be a group acting on two finite sets X and X' with orbits O1,0s, ..., O, in X
and orbits 01,05, ..., 0!, in X'. Suppose R C X x X' is a G-invariant relation with corresponding
(|X| x | X'|)-matrix A, defined over R.

1. The images AT x o, are linear combinations of the vectors X .
J

2. If A has full row rank, then m < m’, and if m = m/, then all characteristic vectors x o are
J

linear combinations of the vectors ATXOZ-, and so, xXor € im(AT).
J

Remark 7.1.5. The set of points and lines in PG(3, ¢) forms a 2-design, and hence, its incidence
matrix A has full row rank, see Result[I.1.5] So, the above lemma states that if the number of orbits
on the lines equals the number of orbits on the points, then for each line orbit y - it follows that
xor € im(AT). From Theorem (1), we know that this last property, y € im(A”), defines
Cameron-Liebler line sets in PG(3, q).

Note that Lemma gives a way to define and investigate Cameron-Liebler sets in other settings.

Penttila further investigated the Cameron-Liebler line sets in PG(3, ¢), and found more equivalent
definitions for them [99]. After a large number of results regarding these Cameron-Liebler sets of
lines in the projective space PG(3, ¢), Cameron-Liebler sets of k-spaces in PG(2k + 1, ¢q) [104],
and Cameron-Liebler line sets in PG(n, ¢) [51] were defined. Drudge generalized the concept of
Cameron-Liebler line sets in PG(3, ¢) to Cameron-Liebler line sets in PG(n, ¢). These line sets can
also be defined by many equivalent definitions, see Definition[7.1.8]
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Definition 7.1.6. A switching k-set in PG(n, q) is a partial k-spread R for which there exists a
partial k-spread R’ such that RN'R’ = (), and Upcr P = Uper/ P, in other words, R and R’ have
no common members and cover the same set of points in PG(n, ¢). We say that R and R’ form a
pair of conjugate switching k-sets.

Theorem 7.1.7 ([51, Theorem 3.2]). Let A be the point-line incidence matrix of PG(n, q). Let L
be a set of lines in PG(n, q), n > 3, with characteristic vector X, and x so that |L| = x6,_1. Then the
following properties are equivalent.

1. x € im(AT),
2. x € ker(A)*,
3. for every pair of conjugate switching 1-sets R and R', we have that |[LNR| = |LN R’

4. for every line {, the number of lines of L disjoint from { is (x — x(¢))q*0p_3,

5. for every line ¢, the number of lines of L, different from ¢, that intersect £ is x(q + 1) +
X(0)(q*0n—s — 1),

6. for every point P and k-space w, with P € T, it holds that

|star(P) N L| + —2=2—|line(x) N L| = = + -2 |pencil(P,x) N L].
2

Or—10k—2 f—

In addition, if n is odd, then the following conditions are also equivalent.
7. |L N S| = x for every line spread S in PG(n, q),
8. |L N S| = z for every Desarguesian line spread S in PG(n, q).
Ifn = 3, then the above conditions are also equivalent to:
9. for every pair of disjoint lines {1 and {2, there are x + q(x(¢1) + x(¢2)) lines meeting both.

Definition 7.1.8. A set £ of lines in PG(n, ¢) that fulfills one of the statements in Theorem
(and consequently all of them) is called a Cameron-Liebler set of lines in PG(n, q) with parameter
x.

Remark 7.1.9. Cameron-Liebler line sets in PG(n, ¢) correspond to tight sets of type 1, in the
Grassmann graph J,(n+1, 2), see Deﬁnition Recall that in this graph, the vertices are the lines
in PG(n, ¢) and two vertices are adjacent if the corresponding lines meet in a point. From statement
5. in Theorem it follows that a Cameron-Liebler line set £ in PG(n, q) is an intriguing set
with values y = x(q + 1) and v/ = x(q + 1) + ¢?6,,_3 — 1. By investigating the eigenvalues of the
Grassmann graph, it follows that y’ — y = X, with \ the largest eigenvalue of the graph. Hence, £
is also a tight set of type 1.

The examination of Cameron-Liebler sets in projective spaces started the motivation for defining
and investigating Cameron-Liebler sets of generators in polar spaces [36]], Cameron-Liebler classes
in finite sets [39] and Cameron-Liebler sets of k-spaces in PG(n, ¢) and in AG(n, q). Furthermore,
Cameron-Liebler sets can be introduced for any distance-regular graph. This has been done in the
past under various names: Boolean degree 1 functions [59]], completely regular codes of strength 0
and covering radius 1 [95], ... We refer to the introduction of [59] for an overview. Note that the
definitions do not always coincide, e.g. for polar spaces, see Chapter[10]and [35} 36]].

We have seen some algebraic, combinatorial and geometrical definitions for Cameron-Liebler sets.
The main question, independent of the context where Cameron-Liebler sets are investigated, is
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always the same: for which values of the parameter = do there exist Cameron-Liebler sets and which
examples correspond to a given parameter x? We will partially solve this question for Cameron-
Liebler sets of k-spaces in PG(n, q), see Chapter [8] and for Cameron-Liebler sets of generators
in polar spaces, see Chapter In Chapter [9] we mention the definition and several results of
Cameron-Liebler sets in AG(n, q).
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8 Cameron-Liebler sets of k-spaces in PG(n, q)

€C La géométrie est U'art du raisonnement correct @ partir de figures mal
dessinées. bb

—Henri Poincare

In this chapter, we investigate Cameron-Liebler sets of k-spaces in PG(n, ¢). The results in this
chapter are joint work with prof. Aart Blokhuis and dr. Maarten De Boeck, and appeared in [16]].
In Section[8.1] we list several equivalent definitions for these Cameron-Liebler sets, by generalizing
the known results about Cameron-Liebler line sets in PG(n, q), see [51]], and Cameron-Liebler sets
of k-spaces in PG(2k + 1, q), see [104]. In Section we make the link between these Cameron-
Liebler sets and Boolean degree one functions. Several properties of Cameron-Liebler sets are given
in Section[8.3] In the last section, we use these properties to prove the following classification result:
there is no Cameron-Liebler set of k-spaces in PG(n, ¢), n > 3k + 1, with parameter = such that

2 2
2<x< %ﬁcﬁ_T_T_i(q - 1)%_§+%\/q2 + q + 1, (see Theorem8.4.13).

8.1 The characterization theorem

Let Ay, be the collection of k-spaces in PG(n, ¢), for 0 < k < n, and let A be the incidence matrix
of the points and the k-spaces of PG(n, q): the rows of A are indexed by the points and the columns
by the k-spaces.

In this chapter, we will use the Grassmann scheme J,(n + 1,k + 1), see Example Recall
that there is an orthogonal decomposition Vo L V; L --- L Vg4 of RA2*% in maximal common
eigenspaces of Ag, A1,..., Axr1, see Result Consider the distance one relation R and let
V be the eigenspace corresponding to the eigenvalue P;; from Lemma Using this (classical)
ordering, we find the following lemma.

Lemma 8.1.1. For the Grassmann scheme Jy(n + 1,k + 1), we have that im(AT) = Vi L V; and
Vo = (4)-

Hence, this is well defined, with respect to the assumption on Vj and V} in Section[1.9 In the fol-
lowing lemmas and theorems, we denote the disjointness matrix Ay, 1 by K since the correspond-
ing graph is the g-Kneser graph K, 1.;+1. Kneser graphs also appeared in Chapter [6| where we
investigated the chromatic number of some generalized Kneser graphs.

Before we start with proving some equivalent definitions for a Cameron-Liebler set of k-spaces, we
give some lemmas and definitions that we will need in the characterization Theorem|8.1.6

Lemma 8.1.2 ([52]). Consider the Grassmann scheme Jy(n + 1,k + 1). The eigenvalue Pj; of the
distance-i relation for V; is given by:
min{j,k+1—i} . . ,
Pii= >, (-17* H [n S ‘7] [k - S] s+,

5 n—Fk—1 {
s=max{0,j—i}
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Lemma 8.1.3. If Py;,1 > 1, is the eigenvalue of A; corresponding to Vj;, then j = 1.

Proof. We need to prove that Pj; # Pj; for ¢ a prime power and j > 1. We will first introduce
¢i(j) = max{a | ¢*|Pj;}, which is the exponent of ¢ in the factorization of Pj;. Note that [{]
equals 1 modulo g and note that it is sufficient to show that ¢;(7), j > 1, is different from ¢;(1) for
all 7. By Lemma [8.1.2] we see that

i) =min {5 =)+ (7 °) I max(0.4 =) < s < mingik 411}

unless there are two or more terms with a power of ¢ with minimal exponent as factor and that
have zero as their sum. If s is the integer in {max{0, j — i},...,min{j,k + 1 — i}} closest to
j—i— 3 then f;;(s) = i(i+s—j) + (’3°) is minimal.

« If j <4, we see that f;;(s) is minimal for s = 0. Then we find ¢;(j) = 3% — (i + 3)j + i%.
We see that for a fixed 4, ¢;(k — 1) > ¢;(k), k < i. Note that the minimal value for f;;(s) is
reached for only one s.

« If j > i, we see that fj;(s) is minimal for s = j — i. Then we find ¢;(j) = (;) Again we
note that the minimal value for f;;(s) is reached for only one s.

We can conclude the following inequality for a given ¢ > 1:

$i(1) > $i(2) > -+ > ¢i(1) = di(i + 1) =--- = ¢i(k +1).
This implies the statement for ¢ # 1.

For i = 1, we have that

P =Py |
e i R TR HIA _””} S
& (" -D@-D+ (" -1)(" -

k—

=—(¢ -1 =1+ (" ijﬂ—lm

ot fq=g I
Sj=1Vj=n+1.

So, we can see that they are different if j # n + 1. This is always true since j € {1,...,k+ 1} and
k <n. [

Note that for j > 1, it was already known that | Pj;| < |P;|. This result was shown in [22| Propo-
sition 5.4(7)].

Lemma 8.1.4. Let 7 be a k-dimensional subspace in PG(n, q) with x, the characteristic vector of
the set {m}. If Z is the set of all k-spaces in PG(n, q) disjoint from m with characteristic vector X ,

then
o [n—k—1] (n] "
XZ'_qk+k{ L } ({k} j—-xw> € ker(A).

Proof. Let v, be the incidence vector of 7 with its positions corresponding to the points of PG(n, q).
Note that Ax; = v;. We have that Ay k2+k [” ]]: 1] (§ — vr) since Z is the set of all k-spaces
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L . . . . k2 —k—
disjoint from 7 and every point not in 7 is contained in ¢* +* [" ,’z 1]

Lemma|1.10.1). The lemma now follows from

k2+k TL—]C—]. n -t .
Xz — 4 i gl 7 Xx | € ker(A)
-1
& Axg ="k [“‘ Z‘l] (m Aj—Axw> : ]

Definition 8.1.5. An m-cover Sy, of k-spaces in PG(n, ¢) is a (multi-)set of k-spaces such that
every point in PG(n, ¢) is contained in precisely m elements of S,,.

k-spaces skew to 7 (see

Note that the 1-covers of k-spaces in PG(n,q) are the k-spreads in PG(n, q). Hence, 1-covers
only exist for (k + 1)|(n 4+ 1). For m > 1, there are some examples of m-covers known with
(k4 1)1 (n+1). A trivial example is the set of all lines in PG(4, ¢). It is easy to see that this is a
O3-cover of lines, withk +1=2{5=n+ 1.

We want to make a combination of a generalization of Theorem 3.2 in [51]] and Theorem 3.7 in
[104] to give several equivalent definitions for a Cameron-Liebler set of k-spaces in PG(n, q).

Theorem 8.1.6. Let L be a non-empty set of k-spaces in PG(n, q),n > 2k + 1, with characteristic

vector x, and x so that |L| = z [Z] . Then the following properties are equivalent.
1. x € im(A7T).
2. x € ker(A)*.

3. For every k-space m, the number of elements of L disjoint from 7 is (x — x (7)) ["_’,:_1} ¢t

qk+171 .. .
4. The vector Y — wﬁg is a vector in V.
5 x€WLlLW.
6. Foragiveni € {1,...,k+ 1} and any k-space 7, the number of elements of L, meeting 7 in a

(k — 1)-space is given by:

_ydftt- i h1 -y PR R
((:U 1)qk7i+1_1 +q o )q [ i1 ; ifrel
[n —k-1
X
1—1

k+1

i

pGY ifr ¢ L

7. for every pair of conjugate switching k-sets R and R', we have that |[L NR| = |LNR/|.
If PG(n, q) admits a k-spread, then the following properties are equivalent to the previous ones.
8. |LNS| =z for every k-spread S in PG(n, q).
9. |L N S| = x for every Desarguesian k-spread S in PG(n, q).
10. For everym € N, it holds that |L N S,,,| = mx for every m-cover of k-spaces Sy, in PG(n, q).

Proof. We first prove that properties 1, 2, 3,4, 5, 6 are equivalent by proving the following implica-
tions:

« 1 < 2: This follows since im(B7) = ker(B)* for every matrix B.
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+ 2 = 3: We assume that y € ker(A)*. Let 7 € A}, and Z the set of k-spaces disjoint from 7.
By Lemma|8.1.4) we know that

Xz — " [n B ,]: - 1} ([Z] 713’ — Xw) € ker(A).

Since x € ker(A)*, this implies

2 n—k—1 nl !
xZ'x—qH’“[ L }(M j-x—xw-x>=0

slzngl -k [P TETY ([’;]1 1 - x<7r>> -

n—k—l]

12N Ll = (@ — x(m)d* [ ’

Hence, this last equality proves that the number of elements of £, disjoint from 7 is (z —
X(m) g TR

—k—1
! kkH] q
. 2 — —1 ..
and, since by Lemma[1.10.1} we have Kj = any [Z#ﬂ, we see that v = y — :L‘qiij is

qn+17
an eigenvector of K:
k+1
q -1,
Kv=K (X - anﬂ_lﬂ)

k-1 B -
Ll Ve Y P

« 3 = 4: By expressing property 3 in vector notation, we find that Ky = (xj—x) [ ki t+k

k q”+1—1q E+1
k=17 e (. R
[ k }q (ﬂfﬂ—x—anﬂ_lﬂ
n—k—17 .2 kL _q |
[ (e
q -1

= P gp410 .
By Lemma(8.1.3} for ¢ = k + 1, we know that v € V;.
« 4 = 5: This follows since Vj = (), see Lemma|8.1.1]
« 5 = 1: This follows again from Lemma 8.1.1]

ktl_q . . o
+ 4 = 6: Denote x — zg,&ilii J by v. The matrix A; corresponds to the relation R;. This implies
that (A;x)r gives the number of k-spaces in £ that intersect 7 in a (k — 7)-space.
k+1 k+1

¢ =1, A
qn-i-li_lAiJ = Piv+ a7qn+17_1P0iJ

. . n—k—l k+1 i(i—1)+ n—k I{Z 2 _qu+1—1.
- i—1 i |9 i | ]i|? )\ X T =Y
qk+1—1 n—k k+1 32 .
gt — 1| i i |97

(A )
= (a1 s | O

Aix =Apv+a

+x
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([ In—k| |k 2 k+1]l [n—k—1 1)

AL )1 i i-1 |1 X

it Y Ll e | L N et S el WY SRR LS S P
qn+1_1 i—1 i qk—z‘+1_1 qi—l qk_i"‘l—l

_(n—k| k| 2 |k+1] n—k—=1| ;-1 n—k—1][k+1] 1.

_<[i][Jq [i ][i—l]q S P A

This proves the implication for every i € {1,...,k + 1}.

« 6 = 4: We follow the approach of [104, Lemma 3.5] where we look for an eigenvalue of A;

and we define 5; = x [’“Jlrl] [”161*1] qi(z‘—l)_

From property 6, we know that

k+1 n—=k
N i4 — 1\ -1y [n—k—1] [k
—l—<(1: 1)q"“_"‘*‘l—l—i_q g —1 )q i—1 il X

(k| [K] 2 [k+1][n—k—1] sy n—k—11[k+1] 1)
(U= L o e B [ s

= Pyux+5ig -

Then we can see that v; = x + Pr B_Z o; 7 is an eigenvector for A; with eigenvalue Py;:

s B
Py — Py Py — Py

Bi >
=P; +—3].
14 <X Pli _ POZ'J
Bi

By Lemma [8.1.3] we know that x + Pumej =xX—- xg:i%j e V.

A, <x + ) —Pix+ B +

We show that properties 8,9 and 10 are equivalent with the previous properties if PG(n, ¢) admits
a k-spread.

« 2 = 10: Let S;,, be an m-cover of k-spaces in PG(n, ¢) and let x,, be its characteristic vector.
Note that x,,,(7) = j if the ¢’th element is contained j times in S,,. Hence, X, doesn’t have
to be a {0, 1}—vector. Then we know that x,, — m ] e ker(A). Since x € ker(A)*, we

have that . )
n| . n|
0=x- (xm—m[k] g> — el —micl}]

so [LNSp| =m|L] [2]71 = muz.
« 10 = 8: A k-spread in PG(n, q) is an m-cover for m = 1.
+ 8 = 9: Trivial.

« 9 = 3: Suppose that PG(n, q) contains k-spreads, hence also Desarguesian k-spreads. We
know that the group PGL(n+ 1, q) acts transitively on the pairs of pairwise disjoint k-spaces.
Let n;, for ¢ = 1,2, be the number of Desarguesian k-spreads that contain ¢ fixed pairwise
disjoint k-spaces. This number only depends on i, and not on the chosen k-spaces, by the
above transitivity property.

Let 7 be a fixed k-space. The number of pairs (7', S), with S a Desarguesian k-spread that
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— n+1_ —k—
contains 7 and 7’ is equal to q(k‘H)2 [Z+If] N2 =MN1- (gk-kilfi - 1>, S0 % = gFk D) [n 11:; 1]-
By counting the number of pairs (7', S), with 7’ € £ and S a Desarguesian k-spread that
contains 7 and 7', we find that the number of k-spaces in £, disjoint from a fixed k-space T,

is given by (z — x(m)) 3t = (v — x(m))gF* D ["_'E_l]'

To end this proof, we show that property 7 is equivalent with the other properties.

132

« 2 = T: Let X, and x5, be the characteristic vectors of the pair of conjugate switching k-sets

R and R respectively. As R and R’ cover the same set of points, we find: x — X/ € ker(A).
This implies 0 = x-(Xg —Xgr/) = X'Xr—X Xgs» S0 that x-xz = [LNR] = [LNR| = X Xz

7 = 1: We first show that property 7 implies the other properties if n = 2k + 1. For any two
k-spreads S1, So, the sets S \ Sz and Sz \ S; form a pair of conjugate switching k-sets. So
LN (S1\S2)| =|L£N(S2\ S1)|, which implies that [L N S| = |[LNSq| = ¢

-1
Now we prove that this constant c equals x = |L| [Qk,j 1} . Letn;, for¢ = 0, 1, be the number
of k-spreads containing ¢ fixed pairwise disjoint k-spaces. This number only depends on ¢,
and not on the chosen k-spaces. The number of pairs (7, S), with S a k-spread that contains

2k+2] g?kt2-1 2k+1] .

m, is equal to [k+1 "ML= N0 T which implies that Z—(l’ = [ .

By counting the number of pairs (7, S), with S a k-spread that contains 7, and where 7 € L,

we find, that the number of k-spaces in LN S equals |£[]2 = L] [2’?1} '~ 4. This implies
property 8, and hence, property 1.

Now we prove that implication 7 = 1 also holds if n > 2k + 1. Given a subspace 7 in
PG(n, q), we will use the notation A‘T for the submatrix of A, where we only have the rows,
corresponding with the points of 7, and the columns corresponding with the k-spaces in 7.
We know that the matrix A has full rank by Result

Let ITbe a (2k+ 1)-dimensional subspace in PG(n, q). By property 7, we know that for every
two k-spreads R, R’ in II, we have [CNR| = |[LNR'| since R\ R’ and R’ \ R are conjugate
switching k-sets. This implies that x o € im (A?ﬁ) by the arguments above applied for

the (2k + 1)-space II. So, there is a linear combination of the rows of Ajr; equal to x o
This linear combination is unique since Ay has full row rank. Now we will show that the
linear combination of x . is uniquely defined by the vectors x £ with II varying over all
(2k + 1)-spaces in PG(n, q).

We show, for every two (2k + 1)-spaces I1, IT', that the coefficients of the row corresponding
to a point in IINII’ in the linear combination of o and in the linear combination of x i
are equal.

Suppose X oy = @11 +agry + - F@r e A amm and X gy = Orparin +
b+ b1 Tmt1 + -+ bsrs, where ry, .y, rand Ty, .o T, .., Ts ATE
the rows corresponding with the points of IT and II’, respectively. Note that we only look at
the columns corresponding with the k-spaces in IT and IT, respectively.

We now look at the space IINII', and at the corresponding columns in A. Recall that A
also has full row rank, so the linear combination that gives x £)(mnm) is unique, and equal
to the ones corresponding with IT and IT, restricted to IT N IT'. This proves that a; = b; for
[+ 1 < ¢ < m. Here we also used the fact that the entry in A corresponding with a point of

IT\ II' or II" \ I and a k-space in IT N IT' is zero.
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By using all (2k 4+ 1)-spaces, we see that x . is uniquely defined, and by construction we have
X € im(AT). Note that we only used that property 7 holds for conjugate switching k-sets
inside a (2k + 1)-dimensional subspace. [ |

Definition 8.1.7. A set L of k-spaces in PG(n, g) that fulfills one of the statements in Theorem
[8.1.6] (and consequently all of them) is called a Cameron-Liebler set of k-spaces in PG(n, q) with
parameter = = |L| [} }

Similar to Remark and by using statement 6. in Theorem[8.1.6] it can be seen that the Cameron-
Liebler sets of k-spaces in PG(n, q) correspond to the tight sets of type 1 in the Grassmann graph
Jon+1,k+1).

From Theorem|8.1.6|8, we know that the parameter of a Cameron-Liebler set of k-spaces in PG(n, q)
is always an integer if PG(n, q) admits a k-spread, and so, if k¥ + 1 is a divisor of n + 1. For
k+1 1 n+1, this is not always the case, while the parameter of Cameron-Liebler line sets in PG(3, q)
and the parameter of Cameron-Liebler sets of generators in polar spaces are always integers (see
[36, Theorem 4.8]).

Remark 8.1.8. The link between Cameron-Liebler sets of k-spaces in PG(n, ¢), and the original
group theoretical question of Cameron and Liebler follows from Lemma7.1.4] For this, we also use
that the set of points and k-spaces in PG(n, ¢) forms a 2-design, and so, the incidence matrix A
has full row rank, see Result So, we find that the orbits of a collineation group, with the same
number of orbits on the points and k-spaces, are Cameron-Liebler sets. The reverse statement is
not true: not every Cameron-Liebler set is an orbit of a collineation group with the ‘orbit’-property.
An example of such a Cameron-Liebler set is the union of the set of all k-spaces through a point P
and the set of all k-spaces in a hyperplane H, with P ¢ H.

We end this section with showing an extra property of Cameron-Liebler sets of k-spaces in PG(n, q).

Proposition 8.1.9. Let L be a Cameron-Liebler set of k-spaces in PG(n, q), then we find the following
equality for every j-dimensional subspace o and every i-dimensional subspace T, with « C T and
J<k<au:
n—j—1 k—j _ 1 n—j—1 n—j—1
q Z; i
& i ]f_k o 2] = [:jzl] e+ : ]
1)@ 1) [ k—j ] W]
Here [k]q, [k]™ and [k]], denote the set of all k-spaces through o, the set of all k-spaces in T and the set
of all k-spaces in T through «, respectively.

|[Kla N L] + Z| .

Proof. Let X[q)» X|7] and X[q,7] be the characteristic vectors of [k]a, [k]™ and [k]7,, respectively, and

defi
ernne . . [nkjjl] (qkfj _ 1)X - [ ki I]X [Z:j:ﬂ '
T e -y T RS
Since
[Z:j:}] for P ¢ o 0 forP ¢ T
A = J A =<
( XM)P { [Z:ﬂ for P € a, ( X[T])P m for P € T,
0 forP¢r

(AX[OM])p = [;:?:11] forPer\a

[;:jj] for P € «a,
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we can calculate (Av) ps for every point P’, and see that Av = 0. This implies that v € ker(A). Let
X be the characteristic vector of £. By Definition 2 in Theorem|8.1.6, we know that x € ker(A)*,
so, by calculating x - v, the lemma follows. [ |

For k = 1, K. Drudge showed in [51] that the property in Proposition[8.1.9)is not only a necessary,
but also a sufficient property for a Cameron-Liebler line set in PG(n, q). For £k > 1 we pose it as
an open problem to show that this property is also sufficient.

8.2 Boolean degree one functions

Another way to approach Cameron-Liebler sets of k-spaces in PG(n, q) is by the theory of Boolean
degree one functions. Boolean functions are {0, 1}-valued functions on a finite domain €. Each
Boolean function f on = {wj,ws,...,wy} corresponds to an n-dimensional {0, 1}-vector v,
such that the 7’th element of v is equal to f(w;). Furthermore, f also corresponds to a set L, such

that £; = {w € Q| f(w) = 1}.

Boolean functions can be described for several classical association schemes, including the Johnson
scheme, Grassmann scheme, and graphs from polar spaces, as well as for some other domains such
as permutation groups. In this section, we give the link between these functions and Cameron-
Liebler sets. For more information, we refer to [59].

In all settings, we have some form of coordinates: an element in {1, 2, ..., n} in the Johnson graph
J(n, k); a point in the Grassmann graph J,(n+1, k+1), or for most graphs related to polar spaces;
and, a transposition (ij) for the graphs derived from permutation groups. For a coordinate z, we
denote the characteristic function of z by x+: 21 (7) = 1 if the element z is contained in the object
7, and 7 (7) = 0 otherwise. Then, a Boolean degree one function is a {0, 1}-valued function on

the vertices that can be written as f = ¢+ . c;z .

We will go into more detail for the projective setting. Let Ay, be the set of all k-spaces in PG(n, q).
A point P € PG(n, q) induces a characteristic function P on Ay:

1 if P €
Vr € Ay PT(m) = ' i

0 if P¢m.
Note that this function corresponds with the vector A7y p, with  p the characteristic vector of the
point P, and A the point-k-space incidence matrix.

Definition 8.2.1. A Boolean degree one function on the set of k-spaces in PG(n, q) is a {0, 1}-
valued function of the form:

On
fidg—=Rimect+ > aP(m),
=1

with a;,c € Rand {P; | 1 <1i < 0,,} the set of points in PG(n, q).

Let L; = {m € Ag|f(w) = 1} be the set, corresponding to the Boolean degree one function f on
Ap. It is clear that the Boolean function f = P, with P a point in PG(n, q), is a Boolean degree
one function. Note that the set L7, with f = P, is precisely the point-pencil with vertex P. In
general, the sets L¢, with f a Boolean degree one function on the set of k-spaces in PG(n, ¢), are
precisely Cameron-Liebler sets of k-spaces in PG(n, q). For the proof of this theorem, we refer to
[89, Theorem 2.3.2].
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Theorem 8.2.2. Consider the projective space PG(n, q), then a set L is a Cameron-Liebler set of k-
spaces in PG(n, q) ifand only if L = L for some Boolean degree one function f on the set of k-spaces
inPG(n,q).

8.3 Properties of Cameron-Liebler sets of k-spaces in PG(n, q)
We start with some properties of Cameron-Liebler sets of k-spaces in PG(n, ¢) that can easily be
proved.

Lemma 8.3.1. Let £ and L' be two Cameron-Liebler sets of k-spaces in PG(n, q) with parameters x
and x' respectively, then the following statements are valid.

n+1_1
1.0<z< 3’““—1'

2. The set of all k-spaces in PG(n, q) not in L is a Cameron-Liebler set of k-spaces with parameter
n+1_1
Zk+71,1

— .
3. IfLNL =0, then LU L is a Cameron-Liebler set of k-spaces with parameter x + .
4. IfL' C L, then L\ L' is a Cameron-Liebler set of k-spaces with parameter v — z.

We continue with some examples of Cameron-Liebler sets of k-spaces in PG(n, q). We refer to
these examples as the trivial examples.

Example 8.3.2. Trivial examples of Cameron-Liebler sets of k-spaces in PG(n, q).
1. The empty set (parameter ().

2. The set of all k-spaces through a point P, so the point-pencil with vertex P (parameter 1). This
follows immediately from the theory of Boolean degree one functions.

3. The set of all k-spaces in a fixed hyperplane (parameter ‘31:;71&:11). Note that this parameter is not
an integer if k + 1 1 n + 1, or equivalently, if PG(n, q) does not contain a k-spread.

4. The union of all k-spaces through a point P, together with the set of k-spaces in a fixed hyper-
plane H, with P ¢ H (parameter x = 1 + %).

5. The complement of these four examples: these are Cameron-Liebler sets with parameter x =
n+1_ n+1_
Z,ﬁlii,x = Z’““f} — 1,z =¢""%andx = ¢" % — 1 respectively.

Remark 8.3.3. Example 4. is a Cameron-Liebler set £ in PG(n, ¢), but is not an orbit of k-spaces
of a symmetrical tactical decomposition in the collineation group. This was proven in [27,[96], and
follows from the following observation. If £ would arise from a symmetrical tactical decomposition
T, then, since P is the unique point of PG(n, ¢), such that through P there pass [Z] k-spaces of L,
we have that { P} must be a point class of 7. But, a k-space 7 € L contains either one or no points
of { P}, depending on whether P € 7 or not. Hence, £ cannot be a class of k-spaces of 7.

In [93], several properties of Cameron-Liebler sets of k-spaces in PG(2k + 1, q) were given. We
will first generalize some of these results to use them in Section 8.4
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Lemma 8.3.4. Let 7 and ' be two disjoint k-spaces in PG(n, q) with ¥ = (mw, '), let P be a point
inX \ (mUn') and let P’ be a point not in 3. Then the number of k-spaces disjoint from 7 and 7’
equals W (q,n, k), the number of k-spaces disjoint from m and 7’ through P equals Wx(q,n, k) and
the number of k-spaces disjoint from w and ' through P’ equals Ws(q, n, k).

Here, W(q,n, k), Wx(q,n, k), Ws(q,n, k) are given by:

i=—1
1 k ,
Ws(gq,n, k) = m Zm(qm’ k)(qz+1 —1)
1 k-1
Wslgn. k) = W > Wilg,n, k) (@ =g
i=—1
2 5 T 5 7 n i s .
Wigom ) = d €5 TR T (6F 94 = 1) i >0
i\q, 1, 2(k4+1)2 [n—2k—1 o
q [ } ifi =

Proof. To count the number of k-spaces 7", that are disjoint from 7 and 7'/, we first count the
number of possible intersections 7"/ N X.

We count the number of i-spaces in ¥, disjoint from 7 and 7, by counting ((Py, P, ..., P;),0;) in
two ways. Here o; is an i-space in X, disjoint from 7 and 7/, and the points Py, P, ..., P; form a
. 25 k—j+1l__1\2
basis of o;. For the ordered basis (P, Py, ..., P;) we have H;:o (g qil 1) possibilities since
. . 25 (o k—j+1_ 112
there are [2’?2] — 2[k+{+1] + ﬁj] = qj(qq%ll) possibilities for P; if Py, P1,...,P;_1 are
given. By a similar argument, we find that the number of ordered bases (Py, P, . .., P;) for a given

i i—j+l_ . . c
oiis [~ =) z U In this way we find that the number of i-spaces in ¥, disjoint from 7 and
7=0 qg—1

7', is given by:

; k—j+1_1 .
H;:O M H q] k—j+1 _ 1)2 B z+1 |:k —+ 1:| H k—j+1 _

Hi w gttt —1 - i+ 1
Jj=0 q—1

Now we count, for a given i-space o; in 3, the number of k-spaces 7" through o; such that 7/ NY =
;. This equals the number of (k — i — 1)-spaces in PG(n —i — 1, ¢), disjoint from a (2k — 7)-space,
and is equal to ¢(k—9)(2k—i+1) [”_k?_kz_ 1] by Lemma(1.10.1} By this lemma, we also see that the number
of k-spaces disjoint from ¥ is given by ¢(*+1)(2k+2) [n k:%f 1] This implies that W;(¢,n, k), —

i < k, is the number of k-spaces disjoint from 7 and 7/, and intersecting ¥ in an i-space.

Now we have enough information to count the number of k-spaces disjoint from 7 and 7':

W(g,n, k) = Z Wi(g,n, k) .

We use the same arguments to calculate Wy (g, n, k) and Ws (g, n, k). By double counting (P, 7”),
with 7" a k-space through P € ¥ disjoint from 7 and 7/, and double counting (P’, 7"), with 7"’ a
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k-space through P’ ¢ Y. disjoint from 7 and 7/, we find:

k
2k +2 kE+1
([ ) ]—2[ ) D Ws (g, n, k) = ;qu,nk [ } nd
k—1 .
n+1 2k 42 k+1 141
(U] mstwnn = Ewiwns- ([577] - [7])
This implies:

k
WZ(q7n>k) k—l—l_l QZWZ q,n, k H_l_l)
=0

1 k—1

:m Z Wi(g,n, k)(qk—H - qi—H) . L
i=—1

Ws(q,n, k)

From now on, we denote W;(q,n, k), Wx(q,n, k) and Ws (g, n, k) by W;, Wy, and Wy if the di-
mensions n, k and the field size q are clear from the context.

Lemma 8.3.5. Let L be a Cameron-Liebler set of k-spaces in PG(n, q) with parameter x.
1. For everym € L, there are s, elements of L meeting .

2. For skewn, 7' € L and a k-spread Sy in ¥ = (m,n'), there exist exactly da subspaces in L that
are skew to both ™ and ©' and there exist sy subspaces in L that meet both ™ and 7'.

Here, da, s1 and sy are given by:
dQ(Qa n, kaanO) = (WE - Wi)|$0 N E| —2Ws + IWE‘:
—k—-1
sa(aonboa) =a|}] = - TETg

k-

1
SQ(Qanaka'IaSO) :CL'|:Z:| —2(,17—1) |:n k :|qk2+k+d2(Q7n,kam7$0) 5

where W, and W, are given by Lemma(8.3.4

3. Define dy(q,n, k,z) = (z — 2)Wy, and sh(q,n, k,z) = z[}] — 2(z — 1)["7571} ¢ tF
dy(g,n,k,x). Ifn > 3k + 1, then |So N L| < x for every k-spread Sy in ¥.. Moreover we have
that da(q,n, k,x,Sy) < dy(q,n, k,x) and sa2(q,n, k,xz,So) < sH(q,n, k, x).

Proof. 1. This follows directly from Theorem (3) and |£| = z[}].

2. Let x and X, be the characteristic vectors of {7} and {7'}, respectively, and let Z be the
set of all k-spaces in PG(n, ¢) disjoint from 7 and 7/, and let x z be its characteristic vector.
Furthermore, let v, and v,/ be the incidence vectors of m and 7/, respectively, with their
positions corresponding to the points of PG(n, ¢). Note that Ax, = v, and Ax, = v. By
Lemma|8.3.4} we know the numbers Wy, and W of k-spaces disjoint from 7 and 7/, through
apoint P, if P € ¥ and P ¢ ¥ respectively. Let Sy be a k-spread in ¥ and let vy, be the

137



8 Cameron-Liebler sets of k-spaces in PG(n, q)

incidence vector of 3 (as a point set). We find:
AXZ = WE(UE — Ur — ?)Tr/) + Wg(] — Uz)
-1
n .
= Ws(Axs, — Axx — Axa) + Wy (L{J Aj — AX30>

n

-1
& xz—Wsxs, — Xr — X)) — W ([kz} j_X30> € ker(4).

We know that the characteristic vector x of £ is included in ker(A)*. This implies:

Xz X = Ws(xs, - x — x(m) = x(7)) + W (2 — x5, - X)
o 120 L] = Wy (|So N L] —2) + We(z — [So N £])
& |ZN L= Wy —Ws)|SoNL|—2Ws + Wy ,

which gives the formula for dy(q, n, k, z, Sp). The formula for s2(q, n, k, z,Sp) follows from
the inclusion-exclusion principle.

3. Suppose ¥ is a (2k + 1)-space in PG(n, ¢), and suppose Sy is a k-spread in ¥ such that

|So N L| > x. By property 1 in Theorem[8.1.6] we know that the characteristic vector x of £
can be written as ZPGPG(n,q) J:pr}'; for some zp € R where rp is the row of A corresponding
to the point P. Let . be the characteristic vector of the set {w} with m a k-space, then
Xr X =Y per@pequals 1if 7 € Land 0if 7 ¢ L. As x - j = |£| = z[}], we find that
ZPEPG(n,q) Irp = ZT.
If [So N L| > x, then x - x5, = > pex ®p > . From these observations, it follows that
D PEPGng\s TP = 2_pePG(ng) TP — D_pex TP is negative. Asn > 3k + 1, there exists
a k-space 7 in PG(n, ), disjoint from ¥, with x; - x = >_ p., 2 p negative, which gives the
contradiction.

It follows that |Sy N £| < x. Since this is true for every k-spread S in every (2k + 1)-space
in PG(n, ¢), the statement holds. |

In the remainder of this chapter, we will use the upper bound d; (g, n, k, ) and s (q, n, k, z) instead
of da(q,n, k,xz,Sp) and sa2(q, n, k, x, Sy) respectively, since they are independent of the chosen k-
spread So.

The following lemma is a generalization of Lemma 2.4 in [93].

Lemma 8.3.6. Let c,n, k be non-negative integers withn > 3k + 1 and

(c+1)s1 — <C;1>8’2 >wm :

then no Cameron-Liebler set of k-spaces in PG(n, q) with parameter x contains ¢ + 1 mutually skew
k-spaces.

Proof. Assume that PG(n, g) has a Cameron-Liebler set £ of k-spaces with parameter x that con-
tains ¢ + 1 mutually disjoint k-spaces mg, 71, ..., 7.. Lemma shows that 7; meets at least
s1(q,n,k,x) — is2(q,n,k,z) elements of L that are skew to 7y, m1,...,m—1. This implies that
z[b] = IL] = (c+1)s1 — 35 isa > (c+1)sy — Y ish which contradicts the assumption. W
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8.4 Classification results

In this section, we will list some classification results for Cameron-Liebler sets of k-spaces in
PG(n, q). We start with some known classification results for & = 1. For n = 3, Cameron and
Liebler proved that the sets in Example are the only examples of Cameron-Liebler line sets
with parameter equal to 0,1,2,¢?> — 1,¢% and ¢ + 1 [28]. They also conjectured that the only
Cameron-Liebler line sets in PG(3, ¢) are the trivial ones. This conjecture was disproven, and sev-
eral non-trivial examples of Cameron-Liebler sets are known now. In [26, (30, 31} 51| 57, 58] 63,

2 2
_ g+l _ g -1
=5 =5 and

, were given, and other classification results were discussed in [28] 62} (64,65} (911, [92] [103]].

constructions of non-trivial Cameron-Liebler line sets with parameter x

_ (g+1)?
T=""3

The strongest classification results are given in [64] [92]], the latter of which proves the following
result.

Theorem 8.4.1 ([92, Theorem 1.1]). There are no Cameron-Liebler line sets in PG(3, q) with pa-

rameter
q 2
2<r<qgi=— =q.
x_q\/; 34

In [64], Metsch and Gavrilyuk found a strong classification result, using a modular equality. This
result rules out roughly at least one half of all possible parameters z.

Theorem 8.4.2 ([64, Theorem 1.1]). Let L be a Cameron-Liebler line set with parameter x in
PG(3, q). Then for every plane m and every point P of PG(3, q) it holds that

<§> +nn—z)=0 mod (g +1).

Here, n is the number of lines of L in the plane 7, and through the point P respectively.

Regarding the Cameron-Liebler sets of k-spaces in PG(2k + 1, ¢), the most important classification
result is described in [93].

Theorem 8.4.3 ([93]]). There does not exist a Cameron-Liebler set of planes in PG(5, q) with pa-
rameter x satisfying 2 < x < 4. For k > 3, there exists a positive integer qo with the following
properties. If q is a prime power satisfying ¢ > qo and k < qlogq — q — 1, then PG(2k + 1, q) has

-Li - i q
no Cameron-Liebler sets of k-spaces with parameter x for2 <z < 2.

Moreover, for ¢ € {2,3,4,5}, a complete classification is known for Cameron-Liebler sets of k-
spaces in PG(n, q), see [59]. There, the authors show that the only Cameron-Liebler sets in this
context are the trivial Cameron-Liebler sets, independent of the values of k and n.

Now we continue with several new classification results for Cameron-Liebler sets of k-spaces
in PG(n,q). In the following lemma, we start with the classification for the parameters = €
J0,1[U]1, 2]

Lemma 8.4.4. There are no Cameron-Liebler sets of k-spaces in PG(n, q) with parameter x € |0, 1]
and ifn > 3k + 2, then there are no Cameron-Liebler sets of k-spaces with parameter x € |1, 2].

Proof. Suppose there is a Cameron-Liebler set £ of k-spaces with parameter = € |0, 1[. Then L is
not the empty set, so suppose m € L. By property 3 in Theorem|8.1.6] we find that the number of
k-spaces in L disjoint from 7 is negative, which gives the contradiction.

Suppose there is a Cameron-Liebler set £ of k-spaces with parameter x € ]1,2[ in PG(n, q), n >
3k + 2. By property 3 in Theorem we know that there are at least two disjoint k-spaces
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m,n" € L. By Lemma(8.3.5(2, 3), we know that there are dy < d, elements of L disjoint from 7 and
7', Since d}, is negative for = €]1, 2[, we find a contradiction. ]

We continue with a classification result for Cameron-Liebler sets of k-spaces with parameter z = 1,
where we will use the Erdos-Ko-Rado result from Theorem|[2.0.3] for ¢ = 0.

Theorem 8.4.5. Let L be a Cameron-Liebler set of k-spaces with parameter x = 1 in PG(n,q),
n > 2k + 1. Then L is a point-pencil orn = 2k + 1 and L is the set of all k-spaces in a hyperplane of
PG(2k + 1, q).

Proof. The theorem follows immediately from Theorem since, by Theorem M(?)), we know
that £ is a family of pairwise intersecting k-spaces of size |}|. |

We continue this section by showing that there are no Cameron-Liebler sets of k-spaces in PG(n, q),
k2 _3k_3

n 2
n > 3k + 2, with parameter 2 < x < %ﬁqffffffﬂq — 1)%7§+%\/q2 + ¢ + 1. For this
classification result, we will use the Hilton-Milner theorem for projective spaces, see Theorem

n 2 c 2
To simplify the notations, we denote qi_%_%_% (g — 1)%_5“'% V@* +q+1by f(g,n, k).
Recall that the set of all k-spaces in a hyperplane in PG(n, ¢) is a Cameron-Liebler set of k-spaces

with parameter x = 22;7];:11 (see Example [8.3.213) and note that f(q,n,k) € O(+/¢*%F) while
nfk_l _ _
Zkﬂ,l c O(qn 2k 1)_

Lemma 8.4.6. Forn > 2k + 2, we have

n n—k—1 24k
W
W[ s

[n—k—l

Ifalso k > 2, then

2 1.2 2 2
. :|qk+k>ank+ank 1+ank 2‘

Proof. The first inequality follows since m is the number of k-spaces through a fixed point in

PG(n,q), ["_],:_1] qk2+k is the number of k-spaces through a fixed point disjoint from a given k-
space not through that point (see Lemma(1.10.1), and W is the number of k-spaces through a fixed
point and disjoint from two given k-spaces not through that point.

The second inequality, for £k > 2,n > 2k + 2, follows from the calculations below, in which we
define Hi:g g(i) =1, fork = 2.

n—k—1 qk2+k _ ]‘71:[3 qnfkflfi -1 qn72k+1 -1 ' qn72k -1 qk2+k
k -1 qg—1 -1

=0
ok _ _ Y YN 9k L2
> q(n 2k—1)(k 2)(qn 2k +qn 2k—1 +qn 2k 2)qn 2k 2qk +k
2 2 2
— anfk + anfk -1 + anfk -2 ) ]

Notation 8.4.7. We denote A(q,n, k) = ["_Z_l]qk2+k and C(q,n. k) = [}] — [”_Z_l]qk2+k.
Then, according to Lemma|8.3.5, we can write

si(g,n, k,x) = zC(q,n, k) + Ag,n, k) and
Sé(Qu n, k,CC) = JJC((],TL, k) + (2 - x)A(Q7na k) + (‘T - Q)WE

We denote A(q,n, k) and C(q,n, k) by A and C if g,n and k are clear from the context.
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Lemma 8.4.8. Ifn > 2k + 1 and q > 3, then
C
WZ A - 5

Proof. First, using the definition of Wy, as given in Lemma , we find

k
1 : 2 32 i o 2/{ —1|1k+1
_ i+1 2k*+ k42— -3ik k j+1
Wy = (F1 = 1)2 27 :(q —1)g 22 [ — :| [2 4 1] |:| -

31 71 i 2k_1 k ' i
2k2+kZ 3k|: . :| |:l:| H(qk j+1 _1)_

j=1
Here, the final product is considered 1 if i = 0 (the ‘empty’ product). Now, using the definitions of
A and C asin Notatlon“ 8.4.7| the inequality stated above can be written as:

oy [ [ <3 e

=1
For k = 1, this reduces to

3ln—3 3In—2] 5 1fn g—1
-1 - = &= — >
q[l]Jrq(q )< 2[1}1 51 5 =0,

which is true for all ¢ > 2. So, we will from now on assume that k& > 2.

Repeatedly applying the left equality in from Result we find that [}] = i [n_:_l] +
K o @™ [T, so inequality can be rewritten as

k-1

ke 22 i g [ =2k = 1) [K] 17, 5jet Lo gfn—i—1

@Y g P N 1 (Canaatt VR 2D Sl R
i=0 j=1 i=0

k

We now apply Lemmal(1.10.4{on the right hand side of this inequality and we see that it is equivalent
with

k i k )
2 32 i s |n—2k—1]k . 1 iklm—t—1
(D DU 3k[ ki ]M 11« j+1_1)+2zqk{ ko1 ]
i=1 0

j=1 i=

i(i—1)
2

Now, we note that H;Zl(qk_j“‘l —1) < ¢ Dk+H)- (¢"="1 — 1) for i > 1. So, in order to
prove (8.2), it is sufficient to show that the following inequality is valid:
k

1o~ g [n—i—1 2 2 n—2k—1][k
1 e R . (k—i)2  (k—i)(k—i—1)—1/ k—i+1 _ 4R —
22(1 [ k—1 }—q Z(q e (a 1)) k—i ||
k2+k (k—i)(k—i—1)—1 [ = 2k = 1| [k
> [ Nl
_ op2ookyr (N 2k —1 gk Yk—i-1)—1|" — 2k = 1] 1k
— 1 [ k-1 Zq k—i L]

(8.3)
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Applying Lemmaml on the left hand side in (8.3), we find that
—1—1 q —1
72 zk|: - ]_q(klnkzq klnk) o ) (8.4)
Now applying Lemma|1.10.2]4 on the first term of the right hand side in (8.3), we find that

ok2—hs1 |2k —11TR) 1 e 1 D)y @ — 1
q [ ko1 |12\t )e 1 (¢+1)q 1

(8.5)
From (8.4) and (8.5), it follows that in order to prove (8.3), it is sufficient to show that the following

inequality is valid:

-1+ (¢ -1) e dFza,

This statement is clearly true. |
Lemma 8.4.9. Ifx < %f(q,n, k) andn > 2k + 2, then % > /222

Proof. We want to prove that

s e ()

We first look at the case k > 2. Given a k-space 7 in PG(n — 1, ¢), the number of (k — 1)-spaces
meeting 7 equals [Z] - ["7]];71} qk2‘H€ by Lemma We know that this number is smaller than
the product of the number of points ) € 7 and the number of (k — 1)-spaces through Q. This

implies that
n| n_k_lqk2+k§ E+1||n—-1
k k 1 k—1

qk‘+1 -1 ' (qn—l o 1) . (qn—k’-i-l o 1)

q—1 (¢t =1)-(¢—1)
nkfﬁfnJrM%»l

< 4 .
(¢- 175

From this computation and the assumption on z, it follows that

2
n n—k—1 nk—E-—n+3k 41 .
e e Vi R = gt )

ﬁ_
F (q—1)=z72+
k
where the final inequality is given by Lemma [8.4.6| (which we can apply since k > 2).

9

Now we look at the case £ = 1. We have to prove that

-2 -2 n—2_1
" @ > v2a? e 7 &= qti > V222 .
1 1 1 g2 —1

By the assumption on z, it is sufficient to prove that

qn—2 o

¢ —1

which is clearly true since n > 4. |

> flgn1)?=¢""@-1) & ¢ P+¢"P-¢""—¢>0,
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8 Cameron-Liebler sets of k-spaces in PG(n, q)

Lemma 8.4.10. Let L be a Cameron-Liebler set of k-spaces in PG(n, q), n > 3k + 2, with parameter
2<x< %ﬂf(q, n, k), then L cannot contain L%xJ mutually disjoint k-spaces.

Proof. We apply Lemma withc+ 1= L%xJ and have to show that
3 3
VJ 51— (b;J)sg > x[Z] .
Using Notation and Lemma 8.4.8| we see that it is sufficient to prove that

f’xJ (#C + A) — 2(A +O)

2
113 3 C
—— | = —z| —1 —(z—2)A A - —=
1 [37] ([3] 1) (ro-e-2a+e-n(a-F)) >0
3 3 113 3 T
& A(LQ:BJ—:L‘>>C<3:—{2;UJ$+2{2xJ <{2xJ—1> (2—1-1)) .
From Lemma we know that % > v/222. Hence, it is sufficient to prove that

(2] =) 35 o [2a] e 2 2] (|2 1) G) 00

for all admissible z. We denote 3z — L% | by &. Then, 0 < & < 1. We rewrite as

(G ea)vmoa (B oot () (Bee 1) (20

o _<x—|—2>€2 (( 4/2)z? —|—:c—2> (8\4/5—9)563—{—12.752—435

>0. (8.7)

4 16
The nontrivial zero of the quadratic function f(¢) = — (££2) 2 + (

than 1 for any z, so f(¢) > f(1) for any ¢ € [0, 1] regardless of x. So, to prove (8.7), it is sufficient
to prove

4452 .
w> € is smaller

which is clearly true for x > 2. |
Lemma 8.4.11. [f2 <z < %ﬂf(q,n, k) andn > 2k + 2 and g > 3, then

g$_2[ I }q —(2x—3>3’2>x[k] —x{ i }q and

%x—Q k 2 k k

Proof. To prove the first inequality, we rewrite it using Notation

a1 <3$_3> (2C + (2= 2)A + (z — )W) > 2C" .

Sz —2 2
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8 Cameron-Liebler sets of k-spaces in PG(n, q)

Using Lemma [8.4.8| we see that it is sufficient to prove

r—1

3
A>C(Z22+2-3) .
%a:—2 (4ng v )

From Lemma [8.4.9] we know that 2 > +/2x2. Hence, it is sufficient to prove that
C p

—1 13
< V2r? > §$2+$—3 & \%—9 22— V2t + = —-6>0.
3

Using a computer algebra package, we find that the last inequality is valid for all x > 2.

To prove the second inequality for k£ > 2, it is sufficient to prove that

o 1R S Ed i R Cat

k

e rteeon (][ e e v e

=0
whereby we applied repeatedly the left equality in from Result[1.10.3] We immediately see that
k

2 ln—1—1 n—k—1 o B
(Jc—l)zqzk[ U } >qk2[ o ] S Rk o 242 o kL
i=0

For k = 1, we prove the second inequality directly. Note that s, = = + 2¢. The inequality reduces
to

-1 ¢ ?-1 3
’ 1 2—<x—3>(x+2q)>q2+q+l

3p—2 q-—1 2
r—1 ¢ ?2-1 3

& §x—2.qq—1 q2>§x2+3(q—1)x+q2—5q+1. (8.8)
2

Recall that 2 < z < %ﬂf(q, n,1) = %q%\/q3 -1< an_Q. We look at the left hand side of
and find

r—1 ¢ 2%2-1 2 2 -1
o e ()
sr—2 g—1 3 3Bzx—-4)) q¢-—-1

S (24 2 1
379z-1)) ¢q-1 1

gqn—Q_l 5 ) qn—2_1

2
q + — g —1
3 g—1 9<q722_1) q—1 ( )
2¢"%2 -1, 2 ( -2
= - — 2 1 ]_
3 -1 ¢ tole® + (g +1)

For the right hand side of (8.8), we find that

3 3 — n-2
§x2+3(q—1)x+q2—5q+1<7q” (®—=1)+3(g—1)g z +¢*—5q+1

2v/2
-2

3. ne2
<54 (@ —1)+3(g—1)g 2 +¢*—5g+1.
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8 Cameron-Liebler sets of k-spaces in PG(n, q)

So, to prove (8.8), it is sufficient to prove that

2¢q" 2 -1 2/ n-2 3 n—
ggajff+§@ﬁf+gw+nziwﬁwﬁﬂym@fnff+f—m+1
2 . 5., 2¢"*—-1 3 w2 (25 29 a7 7

o 2 n—-1_ Y n-2 “4 2 2 n—=5 _ ey 2y 2 ag—>0.
34 67 T3 -1 T3t 72 (g1 9) T+tgl 5=

(8.9)

For n = 4, 5, we can check this to be true for all ¢ > 3 using computer algebra software. For n > 6,
we rewrite as follows:

5 o q% [ n2 2¢" 4 -1
—(q—3)¢" 2 —(7 —50) L
e =3+ o (e 3T 4
29L—2 2 47 3n_5 7
- _ - Z ——]>0.
+(9q2 q>+9q+<2q 9 >0

Here each of the terms in the left hand side is positive for ¢ > 3 since n > 6, which proves the
second inequality in the statement for £ = 1. |

Lemma 8.4.12. If L is a Cameron-Liebler set of k-spaces in PG(n,q), n > 3k + 2 and q¢ > 3, with
parameter2 < x < %f(q, n, k), then L contains a point-pencil.

Proof. Let m be a k-space in £ and let ¢ be the maximal number of elements of £ that are pairwise
disjoint. By Theorem 3), there are (z — 1) [nfllzfl} qk2+k k-spaces in £ disjoint from 7. Within
this collection of k-spaces, we find at most ¢ — 1 spaces 01,09, ..., 0.1 that are pairwise disjoint.

By Lemma c—1< L%xJ — 2. By the pigeonhole principle, we find an index ¢ so that o; meets

e O e qual,z [ gk

this collection of k-spaces disjoint from 7 and meeting o; in at least a point by F;.

elements of £ that are skew to m. We denote

at least

Now we want to show that F; contains a family of pairwise intersecting subspaces. For any o; with
j # i, we find at most 3’2 elements that meet 0; and o;. In this way, we find that there are at least

_ —— 2 _ Iy 2
L%zle—Q [" ],z 1] T —(c—2)sh > %Iz_12 [n ,’: 1] gtk — (%ZL‘ — 3) sh elements of £ that meet o;,

are disjoint from 7 and that are disjoint from o for all j # i. We denote this subset of 7; C L by
JF!. This collection F; of k-spaces is a set of pairwise intersecting k-spaces: if two elements «, 3 in
F! would be disjoint, then ({071, ...,0.-1}\{0i})U{e, B, 7} would be a collection of c+1 pairwise
disjoint elements of £, which is impossible since we supposed that c is the size of a maximal set
of pairwise disjoint k-spaces in £. By Lemma|8.4.11| we have %9”;;12 [”_’,:_1} qk2+k — (%x — 3) sh >
e [n—llj—l] g**+k 4+ gF+l since 2 < 1 < 8%/if(q, n, k). This implies that Npc 7 I is not empty
by Theorem let P be a point contained in Ng¢ F . We conclude that F/ is a part of the
point-pencil through P.

We conclude by showing that £ contains the whole point-pencil through P. If v ¢ L is a k-space
through P, then v meets at least 2= [”_]]:_1] qF Ttk — (%x — 3) sh > xm — x["_ll:_l} qFTF

3

5T—2
elements of 7] C L, where the inequality follows from Lemma [8.4.11] This contradicts Theorem
B.1.6l3. ]

Theorem 8.4.13. There are no Cameron-Liebler sets of k-spaces in PG(n, q),n > 3k +2 and q > 3,
2 2
with parameter2 < x < %ﬂq%—%—%—%(q — DT @ g+ L

145



8 Cameron-Liebler sets of k-spaces in PG(n, q)

Proof. We prove this result using induction on z. By Lemma Im we know that £ contains the
point-pencil [P]; through a point P. By Lemma [8.3.1(4), £ \ [P]) is a Cameron-Liebler set of
k-spaces with parameter (x — 1), which by the induction hypothesis (in case x — 1 > 2) or by
Lemma([8.4.4(in case 1 < 2 —1 < 2) does not exist, or which is a point-pencil (in case z —1 = 1) by
Theorem(8.4.5] In the former case, there is an immediate contradiction; in the latter case, £ contains
two disjoint point-pencils of k-spaces, a contradiction. |

Remark 8.4.14. We cannot compare this classification result with classification results already
known, for Cameron-Liebler sets of k-spaces in PG(2k + 1, ¢q), k > 1, since the parameters n and
k of these spaces do not fulfill the condition “n > 3k + 2” in Theorem|[8.4.13] For ¢ € {2,3,4,5},a
complete classification is known for Cameron-Liebler sets of k-spaces in PG(n, q), see [59]. There,
the authors show that the only Cameron-Liebler sets in this context are the trivial Cameron-Liebler
sets, independent of the values of k and n. Hence, for small values of q this result is stronger than
the classification result in the previous theorem.
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9 Cameron-Liebler sets of k-spaces in AG(n, q)

€€ You know, people think mathematics is complicated.
Mathematics is the simple bit. It’s the stuff we can understand.
It’s cats that are complicated. I mean, what is it in those little molecules and
stuff that make one cat behave differently than another, or that make a cat?
And how do you define a cat?
I have no idea. bb

—John Conway

In this section, we give a short overview of the results proven in [46] and [44]. The results in this
part are joint work with dr. Ferdinand Ihringer, Jonathan Mannaert, prof. Leo Storme and prof.
Andrea Svob.

Similar to the definition of Cameron-Liebler sets of k-spaces in PG(n, ¢), we have the following
definition in the affine context.

Definition 9.0.1. A set £ of k-spaces in AG(n, q) is a Cameron-Liebler set of k-spaces of parameter
x in AG(n, q) if and only if every k-spread in AG(n, ¢) has x elements in common with L.

In contrast to k-spreads in PG(n, ¢), we note that there exist k-spreads in AG(n, q), for every
k < n, which implies that the definition above is well defined. An example of an affine k-spread
in AG(n, q) is the following. Embed AG(n, ¢) in the projective space PG(n, ¢), and let H be the
hyperplane at infinity. Consider a (k — 1)-space 7 in H and let .S, be the set of all k-spaces through
7. The set of all affine k-spaces corresponding to the elements of .S, restricted to AG(n, q), is a
k-spread in this affine space.

There is a strong link between Cameron-Liebler sets of k-spaces in PG(n, ¢) and AG(n, q).

Theorem 9.0.2. Let L be a Cameron-Liebler set of k-spaces with parameter x in PG(n, q) which
does not contain k-spaces in some hyperplane H. Then L is a Cameron-Liebler set of k-spaces with
parameter x of AG(n,q) = PG(n,q) \ H.

If L is a Cameron-Liebler set of k-spaces of AG(n, q) with parameter x, then L is a Cameron-Liebler
set of k-spaces of PG(n, q) with parameter x in the projective closure PG(n, q) of AG(n, q).

Using the link between PG(n, ¢) and AG(n, ¢), it was possible to give several equivalent definitions
for Cameron-Liebler sets of k-spaces in AG(n, ¢). A second consequence of this link, is that the
classification result for Cameron-Liebler sets of k-spaces in PG(n, ¢) (Theorem |[8.4.13) implies the
following result.

Theorem 9.0.3. There are no Cameron-Liebler sets of k-spaces in AG(n,q), n > 3k + 2 and q > 3,
with parameter 2 < x < Siﬂqif%*%*%(q — 1)%*%% P +q+1

For k = 1,n = 3, we also find a classification result, using a modular equality in the affine context,
similar to Theorem
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9 Cameron-Liebler sets of k-spaces in AG(n, q)

Theorem 9.0.4. Let L be a Cameron-Liebler line set in AG(3, q) with parameter x, then the following
equation holds:

z(r—1)=0 mod 2(q + 1).

We also found a non-trivial Cameron-Liebler line example £, in AG(3, ¢) with parameter x = qQT_l.

This example could be derived from a non-trivial Cameron-Liebler line example £, in PG(3, q)
[31, 58], since in this example, there is a (hyper)plane that contains no elements of £,.
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10 Cameron-Liebler sets of generators in finite

classical polar spaces

€€ Isaac Newton zag een appel, en dacht Zie ik dat goed?’
Het is niet wat het is, het is wat je d’r mee doet. 9

—Bart Peeters, Het is niet wat het is

The results in this chapter are joint work with dr. Maarten De Boeck and appeared in [35].

10.1 Introduction

We investigate Cameron-Liebler sets in finite classical polar spaces. The finite classical polar spaces
are the hyperbolic quadrics QT (2d — 1, q), the parabolic quadrics Q(2d, q), the elliptic quadrics
Q™ (2d + 1, q), the Hermitian polar spaces H(2d — 1,¢?) and H(2d, ¢), and the symplectic polar
spaces W (2d — 1, q), with ¢ a prime power. For more information on these polar spaces, we refer
to Section[L5

Here we study the sets of generators defined by the following definition, with A the incidence
matrix of points and generators. We call these sets degree one Cameron-Liebler sets.

Definition 10.1.1. A degree one Cameron-Liebler set of generators in a finite classical polar space
P is a set of generators in P, with characteristic vector  such that xy € im(AT).

This definition corresponds with the definition of Boolean degree one functions for generators in
polar spaces. In Section[8.2] we introduced Boolean degree one functions in projective spaces. Anal-
ogously, they can be defined in polar spaces, by replacing the set Ay of k-spaces in PG(n, q), by
the set of generators in a polar space P. Similarly, for generators, their definition corresponds to
the fact that the corresponding characteristic vector lies in Vy L Vi, which are eigenspaces of the
related association scheme. In [36], M. De Boeck, M. Rodgers, L. Storme and A. Svob introduced
Cameron-Liebler sets of generators in the finite classical polar spaces. In this article, Cameron-
Liebler sets of generators in the polar spaces are defined by the disjointness-definition and the au-
thors give several equivalent definitions for these Cameron-Liebler sets. Note that this definition
is the polar-space-equivalent for the disjointness-definition in the projective context, see Theorem
[8.1.6]3. Furthermore, this definition for polar spaces does not require that the parameter z is an
integer, but it is proved in [36, Theorem 4.8] that x € N.

Definition 10.1.2 ([36]]). Let P be a finite classical polar space with parameter e¢ and rank d. A
set L of generators in P is a Cameron-Liebler set of generators in P, with parameter z, if and
only if for every generator 7 in P, the number of elements of £, disjoint from 7, equals (z —
x(m)gl"z ),

Using association scheme notation we can interpret the previous definition as follows. The char-
acteristic vector of a Cameron-Liebler set is contained in Vp L W, with W the eigenspace of the
disjointness matrix A, corresponding to a specific eigenvalue. It can be seen that W always contains
V1, but it does not necessarily coincide with V;. Hence, for some polar spaces, Cameron-Liebler sets
and degree one Cameron-Liebler sets will coincide, but for others not.
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10 Cameron-Liebler sets of generators in finite classical polar spaces

Type I Type 11 Type 111
Q (2d+1,q) Qt(2d—1,q),deven | Q(4n +2,q)
Q(2d,q), d even W(4n +1,q)

Q*(2d —1,q),d odd

W(2d —1,q), d even

H(2d —1,q), q square
H(2d,q), q square

Table 10.1: Three types of polar spaces

In this chapter, we consider three different types of polar spaces, see Table Type I and 11
correspond with type I and I1 respectively, defined in [36], while type 111 corresponds with the
union of type 1] and IV in [36], as we handle the symplectic polar spaces W (4n + 1, ¢), for both
q odd and q even, in the same way. Definition and Definition are equivalent for the
polar spaces of type I by [36, Theorem 3.7, Theorem 3.15]. For the polar spaces of type I/, we can
consider the (degree one) Cameron-Liebler sets of one class of generators; we see that Cameron-
Liebler sets and degree one Cameron-Liebler sets coincide when we only consider one class (see
[36, Theorem 3.16]). For the polar spaces of type 111, this equivalence no longer applies and for
these polar spaces, any degree one Cameron-Liebler set is also a regular Cameron-Liebler set, but
not vice versa.

In Table[10.2] we give an overview of properties that we will prove throughout this chapter. For this,
we distinguish between sufficient properties, necessary properties and characteristic properties or
definitions, for Cameron-Liebler sets and for degree one Cameron-Liebler sets for polar spaces of
type I11. Note that a characteristic property is both necessary and sufficient. In the last column,
also the reference to the corresponding result is given.

Suppose in this table that £ is a set of generators in the polar space P of type 111, with characteristic
vector . Suppose also that 7 is a generator in P, not necessarily in L.

’ Property ‘ CL | degree one CL
x €Vl V. S | C (Theorem|10.1.5
vr € P,[{r € L]|dim(r N7) =d —i— 1} = (10.1), for 0 <i < d S | C (Theorem|10.2.1
VreP:{reLllrnm =0} = (x— X(ﬂ'))q(;) C | N (Theorem|10.2.1
X — ngil j is an eigenvector of Ay with eigenvalue —q(g). C | N (Lemmal10.2.3]2)
If P admits a spread, then |£ N S| = z, V spread S of P. C | N (Lemma|10.2.3(3)

Table 10.2: Overview of the sufficient (S), necessary (/N) and characterising (C') properties.

Recall that Cameron-Liebler sets were originally introduced by a group-theoretical argument, see
Section Note that for a polar space P, we cannot use Lemma [7.1.4] to find a group-theoretical
definition for degree one Cameron-Liebler sets of generators in P. This follows from the fact that
the incidence matrix A does not have full row rank, see [23, Theorem 9.4.3].

In Section we discuss several properties of the eigenvalues of the association scheme for
generators of finite classical polar spaces. In Section we give an overview of the equivalent
definitions and several properties of degree one Cameron-Liebler sets in polar spaces. In Section
we give an equivalent definition for Cameron-Liebler sets in the hyperbolic quadrics QT (2d —
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10 Cameron-Liebler sets of generators in finite classical polar spaces

1,q), d even. In Section[10.4] we prove some classification results for degree one Cameron-Liebler
sets, in particular in the polar spaces W (5, ¢) and Q(6, q). We end this chapter with a new, non-
trivial example of a Cameron-Liebler set of planes in Q7 (5, ¢), described in Section m

10.1.1 The association scheme for generators in polar spaces

Let P be a finite classical polar space of rank d and let 2 be its set of generators. The relations R;
on ( are defined as follows: (7, 7") € R, if and only if dim(r N 7") = d — i — 1, for generators
m, 7 € Q, withi =0, ..., d. We define A; as the adjacency matrix of the relation R;. By the theory
of association schemes, we know that there is an orthogonal decomposition Vy L V; L --- L V;of
R in common eigenspaces of Ay, A1, ..., Ag. Consider the distance one relation R, and let V; be
the eigenspace corresponding to the eigenvalue Pj; from Lemmal[10.1.3] Although there are several
association schemes linked to a polar space, in this chapter, we will refer to the association scheme
defined above as the association scheme of a polar space.

Lemma 10.1.3 ([110, Theorem 4.3.6]). In the association scheme of a polar space over IF, of rank
d and parameter e, the eigenvalue Pj; of the relation R; corresponding to the subspace V; is given by:

min{j,d—i}

= j+s J d_j elits—i)+ (I8 4 (i+s—3
e 3 (077 otz
s=max{0,j—1

Before we start with investigating the Cameron-Liebler sets of generators in finite classical polar
spaces, we give an important lemma about the eigenvalues P;;.

Lemma 10.1.4. In the association scheme of polar spaces, the eigenvalue Py; of A; corresponds only
with the eigenspace V1 fori # 0, that is, Py; # Pj;,Vj # 1, except in the following cases.

1. The hyperbolic quadrics Q*(2d — 1,q). Here P1; = Py_1; fori even, so Py; also corresponds
with Vy_1, for every relation R;, i even.

2. The parabolic quadrics Q(4n + 2, q) and the symplectic spaces W (4n + 1,q). Here Pj = Pyq,
so P14 also corresponds with Vy for the disjointness relation R 4.

Proof. We need to prove, given a fixed ¢ # 0 and j # 1, that P;; # Pj;, except for the two cases
described in the statement of the lemma. For j = 0 and for all 7 # 0, it is easy to calculate that
Py; # Py;, so we may suppose that j > 1.

For i = 1, we can directly compare the eigenvalues P11 and P;;.

— p. d—1 e _ _d_j e_.j
e N e a1

P s (@' =1 - +1+ (¢ —1)¢°
qg—1 B qg—1
d—j+e—1 1 j—1 1N=0
< (q +1)(q )=0.

Since j > 1, the last equation gives a contradiction for any q.
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For i > 2, we introduce ¢;(j) = max{k || ¢*|P;;}, the exponent of ¢ in Pj;. If Pj;; = 0, we put
¢i(j) = oo. We will show that ¢;(j) is different from ¢;(1) for most values of i and j. For j = 1,
we find that

Py =— [z: ﬂ g('2))re=D [d R 1} ga)rei — o (73)+eli-1) ([d; 1] g1 [d - 1D '

) 1—1
We can see that ¢;(1) = (151) +e(i—1),sincei—1+e > land [j] =1 (mod ¢)forall0 < b < a.

In Lemma we see that ¢;(j) depends on the last factor of every term in the sum. To find

- . j—z itz—j

¢i(7), we first need to find all integer values z such that qe(H'Z_]H(J 2T 5 a factor of every
term in the sum, or equivalently, such that fj; : Z — Z : s — e(i +s — j) + (]55) + (H;_])
reaches its minimum for such a value z. So for most cases, we have that ¢;(j) = fi;(2), but in some
cases it occurs that two values of z correspond with opposite terms with factor ¢%:(). These cases,
we have to investigate separately.
We can check that z is the unique integer or one of two integers in [max{0, j—i}, ..., min{j,d—i}]
closest to j — § — 5. Since @ > 2, we have three possibilities for the value of z, as we always have
joi<i-3-5<j

«z=0ifj—:—-£<0,

cze{j—b-Ct -t if0<j-i-<t<d—i

o P i e .

cz=d—iifj—45—-5>d—1
Now we handle these three cases.

o Ifj — % — 5 < 0, we see that f}; is minimal for the integer z = 0.

We note that in this case there is only 1 value of s, namely 0, for which the corresponding
term is divisible by ¢%() but not by ¢% /)1, This is important to exclude the case where 2
terms with factor ¢%(9) would be each others opposite.

We find that ¢;(j) = f;:(0) = (;) + (j —i)(j — e), and since ¢;(1) = (*3") + e(i — 1), the
values ¢;(j) and ¢;(1) are equal ifand only if j = 1V j = i + e — 1. We only have to check
the latter case, and recall that j — % — % < 0. It follows that ¢ + e < 2, a contradiction since
we supposed i > 2.

«IfO<j— % — 5 < d — i, we see that f;; is minimal for the integer z closest to j — % —

]l

In Table we list the different cases depending on e and the parity of 7. Note that we have
to check, for e = 0,7 odd, for e = 1,7 even, and for e = 2,7 odd, that the two values of z
do not correspond with two opposite terms with factor ¢?:(). By calculating and taking into
account the conditions 0 < j — % — g < d—1, we find out that those cases do not correspond

with two opposite terms, except in the following cases:

- e:(),j:%landiodd,

- ezl,j:%—i—l,i:%andieven,

- 6:2’]:%+2’l:%andlodd
In these cases, P;; = 0, s0 ¢;(j) = oo # ¢;(1).

Moreover, for every e, i and j > 1, ¢;(j) = fij(2) is independent of j, see the fifth column
in Table In the last column, we give the values of i for which ¢;(j) = ¢i(1). As we
supposed ¢ > 2, we see that we have to check the eigenvalues for i = 2 if e € {0, %, 1} and
fori = 3 if e = 0 in detail.



e | z i(J) = fji(2) ¢i(1) S
Q" (2d - 1,q)
eSS W | @
odd i-Es {004 o == )
H(2d — 1, q), with ¢ square
, | even j— % i(izl) (i—21)2 2}
P odd joi-l iti-1) (-0 0
Q(2d,q), W(2d — 1,q), withd Z 0 mod 4
) even j—i-3+1 % i(igl) 2}
odd j—i—3 — i(i;l) 0
Q(2d,q), W(2d —1,q), withd =0 mod 4
even, i # % j— % - % + % % i(igl) 2}
e o RN s
odd j— % _% z’221 i(igl) 0
H(2d, q), with ¢q square
5 | Ve j=3-1 % 127_1 0
Clew g [t =
Q™ (2d +1,q), withd # 2 mod 4
e i JEeio e |
odd jog-1+y | EHED G
Q (2d+1,q), withd =2 mod 4
even j—%_l %4_%_1 w 0
2 |oddi#d |j-i-1+4 | (=1)(+2) 0
e d

Table 10.3: For 0 < j —

i_
2

£ <d—i,withS={i>2]¢i(j) = ¢i(1)}.
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- Casei=2ande € {0,1,1}:
Py = Py
e e e e
(P ) O [ G L

Fore = % and e = 1, we see that the right and left hand side of the last equation are different
modulo g, since j > 1. So we can assume e = 0.

P12 = Pj
o W oD@ (@ -DETT oY @ - D@ - )
(*=1)(¢g—1) (*-1(q-1) (g—1(g—1)
(@ =) -1)
(¢*—1)(g—1)

o A3 2de21 g 21
& gl =D —1) =0,

Since j > 1, we see that Pjg = P}, if and only if j = d — 1. This corresponds with the first
exception in the lemma with ¢ = 2.

o oo Be -
o e BB B e

Since the right and left hand side of the last equation are different modulo ¢, we see that P35 #
Pjs for j > 1. Recall that [§] =1 (mod q).

« If 5 — % — § > d — i, we see that f;; is minimal for the integer 2 = d — i. Remark again
that there is only one value of s for which the corresponding term is divisible by ¢%() but
not by ¢?:()+1, This excludes the case where 2 terms with factor ¢%(/) would be each others
opposite.

We find that ¢;(j) = fji(d—i)=(j—e—d+1)(j —d+i—1) + (151) +e(i— 1), and we
know that ¢;(1) = (151) + e(i — 1). These two values ¢;(j) and ¢;(1) are equal if and only
ifj=e+d—1lorj=d—i+1.

— Suppose j =d+e—1. Asj,d € Z, we know thate € Z. Ife = 2,then j = d+ 1 > d,
a contradiction. For e = 1, we find that P;; = Py; if and only if ¢ = d and d odd. This
corresponds to the polar spaces Q(4n+2,¢) and W (4n+1,q). Fore = 0and j = d—1,
we find that P; = P;_;; for 7 even. This corresponds to the exception for the polar
spaces QT (2d — 1,q) and i even.

— Suppose j =d — ¢+ 1. Since j — % — 5§ > d — i, we know that i + e < 2, which gives
a contradiction as we supposed ¢ > 2. [ |

We continue with well-known theorems, linked to the Bose-Mesner algebra of the association
scheme, that will be useful in the following sections (see Result [1.9.3). The first theorem follows
from [36, Theorem 2.14].

154



10 Cameron-Liebler sets of generators in finite classical polar spaces

Theorem 10.1.5. Let P be a finite classical polar space of rank d and parameter e, and let 2 be the
set of all generators of P. Consider the eigenspace decomposition R* = Vy L. Vi L --- L V; related
to the association scheme, and using the classical order. Let A be the point-generator incidence matrix
of P, then im(AT) = Vo L V4 and Vi = (j).

The following theorem was already proved in [40l Proposition 3.7] from a different point of view.
The ideas are already present in [2| Lemma 2] and [110, Lemma 2.1.3]. For the sake of completeness,
we add a proof below.

Theorem 10.1.6. Let R; be a relation of an association scheme on the set ) with adjacency matrix
A; and let L C () be a set, with characteristic vector , such that for any w € €2, we have that

ajifre L

Hz € L|(z,7) € Ri}| = {& frd L

Then oi; — B; = P is an eigenvalue of A; and v; = x + Pfjgmj € V with V the eigenspace of A; for
the eigenvalue P.

The eigenspace V' in the previous theorem can be seen as the direct sum of several eigenspaces of
the association scheme. Note that an association scheme is not necessary in this theorem, a regular
relation suffices. Furthermore, the set £, described in this theorem, is an intriguing set in the graph

I' = (2, R;), see Definition[1.7.7]

Proof. We show that v; = x + 5=5—j, with P = a; — 3, is an eigenvector for the matrix A; with

P—Fy;
eigenvalue P:
Ai (x+ LJ' :aiX‘i‘ﬂi(j_X)‘i‘LPOij
P — Py, P — Py
Bi .
=P —j.
<X TP
Soweﬁndthatx—%—P_B}'DOijGV. |

10.2 Degree one Cameron-Liebler sets

In this section, we investigate the degree one Cameron-Liebler sets and give an equivalent defini-
tion. Every degree one Cameron-Liebler set £ has a parameter =, which can be defined as

_ L]
180 (ge + 1)

For now it is clear that x € Q, but, in Lemma [10.4.1| we will prove that x € N.

Using Lemma|10.1.4/and Theorem [10.1.6] we can give a new equivalent definition for these degree
one Cameron-Liebler sets of generators in polar spaces. The following theorem is an extension of
Lemma 4.9 in [36]].

Theorem 10.2.1. Let P be a finite classical polar space, of rank d with parameter e, let L be a set
of generators of P and i be an integer with 1 < ¢ < d. If L is a degree one Cameron-Liebler set
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of generators in P, with parameter x, then the number of elements of L meeting a generator 7 in a
(d — i — 1)-space equals

(= [i23] raer [T e

’ [Cf: 11] (2 +ne if7 ¢ L

(10.1)

Moreover, if this property holds for a polar space P and an integer ¢ such that
e iisodd forP =Q%(2d —1,q),
e i#dforP=Q(2d,q) orP =W (2d — 1, q) both with d odd or
e ¢ is arbitrary otherwise,

then L is a degree one Cameron-Liebler set with parameter x.

Proof. Consider first a degree one Cameron-Liebler set £ of generators in the polar space P with
characteristic vector x. As x € V L Vi, we have x = v + aj for some v € V] and some a € R.
Since |L£] = (j,x) = x]_[f:_g(q”e + 1), we find that a = Mfﬂ, hence y = qurfi,lHj + v.
Recall that the matrix A; is the incidence matrix of the relation R;, which describes whether the
dimension of the intersection of two generators equals d — ¢ — 1 or not. This implies that the vector
A;x, on the position corresponding to a generator 7, gives the number of generators in £, meeting
mina (d —i — 1)-space. We have

X
Az’X = A;v+ 7 1Aij = Puv+ . Poij

X
d+e—1+ d+e—1_|_1

= (|17 = [t Yo e 4] e

7 qd+€7 1 + 1 7

_ ([d; 1} g@)+ei _ {‘Z - 11] q(i21)+e<m>) (X _ qd+j«’1+1])

o d Dteis
T H qa) )

=1 i1 ol A J
(i_l)-‘re(’i—l) d - 1 i+e—1 - d - 1
+q\ 2 i q i—1 X

- (o (47 o))

which proves the first implication.

For the proof of the other implication, suppose that L is a set of generators in P with the property
described in the statement of the theorem. We apply Theorem|[10.1.6|with (2 the set of all generators
in P, R; the relation {(7, 7")| dim(r N7’) =d — i — 1}, and

o = <(:c 1) B: 11] + gited {d; 1]) (2 HG-e,

Bi = |:d o 11:| q(igl)‘i‘(i—l)e'

7 —

As a; — B; = Py;, we find that v; = x + Puﬁj o; j € V1, for the admissible values of ¢, by Lemma

10.1.4f Hence, by Definition [10.1.1} £ is a degree one Cameron-Liebler set in P. [ |
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Remark 10.2.2. This definition is also a new equivalent definition for Cameron-Liebler sets of gen-
erators in polar spaces of type I, as for these polar spaces, degree one Cameron-Liebler sets and
Cameron-Liebler sets coincide.

In the following lemma, we give some properties of degree one Cameron-Liebler sets in a polar
space.

Lemma 10.2.3. Let L be a degree one Cameron-Liebler set of generators in a polar space P and let x
£]

=21 again by x. Then L has the following properties:

be the characteristic vector of L. Denote

1. X:ﬁj—’—’UWlthUEVl,

2. x — qd++1+1j is an eigenvector with eigenvalue Py; for all adjacency matrices A; in the asso-
ciation scheme,

3. if P admits a spread, then |L N S| = x for every spread S of P.

Proof. The first property follows from the first part of the proof of Theorem The second
property follows from the first property since x — qdﬂxfhﬂ je V.

Consider now a spread S in P with characteristic vector x g and let A be the point-generator inci-
dence matrix of P. Since x € im(A”) = ker(A)* and by [36, Lemma 3.6(i), m = 1], which gives

that u = yg — m Jj € ker(A), we find, by taking the inner product of v and Y, that
1=0
1£018] = (xs,x) i) ]
= \Xs, X) = — ; yX) = — - =x.
[T (=t + 1) [T (@t + 1)

We also give some properties of degree one Cameron-Liebler sets of generators in polar spaces that
can easily be proved. They are similar to the properties for Cameron-Liebler sets of k-spaces in
PG(n, q), see Lemma|[8.3.1]

Lemma 10.2.4. Let £ and L' be two degree one Cameron-Liebler sets of generators in a polar space
P with parameters x and x’ respectively, then the following statements are valid.

1L 0<za <qgtlte41,
2. |L = 21922 (¢ +1).

3. The set of all generators in the polar space P not in L is a degree one Cameron-Liebler set of
generators in P with parameter ¢ ~17¢ + 1 — z.

4. IfLNL =0, then LUL' is a degree one Cameron-Liebler set of generators in P with parameter
x+ .

5 IfL C L', then L\ L' is a degree one Cameron-Liebler set of generators in P with parameter
/
x—a.

Lemma 10.2.5 ([59, Lemma 2.3]). Let P be a polar space of rank d and let P' be a polar space,
embedded in P with the same rank d. If L is a degree one Cameron-Liebler set in P, then the restriction
of L to P’ is again a degree one Cameron-Liebler set.
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Note that Theorem does not hold for some values of ¢, dependent on the polar space P,
since for these cases, we cannot apply Lemma|10.1.4] We will now show that there are examples of
generator sets that admit the property of Theorem for the non-admitted values of ¢, but that
are not degree one Cameron-Liebler sets. These are however Cameron-Liebler sets in the sense of
[36]].

Example 10.2.6. By investigating [36, Example 4.6], we find an example of a Cameron-Liebler set
in a polar space of type 111 with d = 3, that is not a degree one Cameron-Liebler set: a base-plane. A
base-plane in a polar space P of rank 3 with base the plane 7 is the set of all planes in P, intersecting
7 in at least a line.

Let P be a polar space of type I11 of rank 3, so P = W (5,q) or P = Q(6,q). Let 7 be a plane and
let L be the base-plane with base . This set L is a Cameron-Liebler set in P, but not a degree one
Cameron-Liebler set. This follows from Theorem with ¢ = 1: The number of generators of L,
meeting a plane o of L in a line, depends on whether o equals T or not. As those two numbers, for
a = 7 and o # 7 are different, the property in Theorem[10.2.1 does not hold. This implies that the set
L is not a degree one Cameron-Liebler set. By similar arguments, we can also use Theorem|[10.2.1 with
i = 2, to show that a base-plane is not a degree one Cameron-Liebler set. However, the equalities for
i = 3 in Theorem[10.2.1 hold.

Example 10.2.7. A hyperbolic class is the set of all generators of one class of a hyperbolic quadric
Q1 (4n + 1, q) embedded in a polar space P with P = Q(4n + 2,q) or P = W(4n + 1,q), q even.
We know that this set is a Cameron-Liebler set, see [36, Remark 3.25], but we can prove that this set
is not a degree one Cameron-Liebler set, by considering im(B”), where B is the incidence matrix of
hyperbolic classes and generators. Every hyperbolic class corresponds to a row in the matrix B. If the
characteristic vectors of all hyperbolic classes would lie in Vo L Vi, then im(BT) C Vy L V4. This
gives a contradiction sinceim(BT) =V, L Vi 1 Vg by [36 Lemma 3.26].

Note that for the polar spaces W (4n + 1,q), q odd, we do not have Example[10.2.7 as there is no
hyperbolic quadric Q* (4n + 1, q) embedded in these symplectic polar spaces.

In the previous remark, we found that one class of a hyperbolic quadric Q* (4n + 1, ¢) embedded
ina Q(4n + 2,q) or W(4n + 1, q), q even, is not a degree one Cameron-Liebler set. In the next
example, we show that an embedded hyperbolic quadric, that is, taking both hyperbolic classes, is
a degree one Cameron-Liebler set in the polar spaces Q(4n + 2, q) and W (4n + 1, q), q even.

Example 10.2.8 ([36, Example 4.4]). Consider a polar space P, with P = Q(4n + 2,q) or P =
W (4n+1,q), q even. By Lemmal[10.2.5 we know that the set of generators in an embedded hyperbolic
quadric Q" (4n + 1, q) is a degree one Cameron-Liebler set, and hence, also a Cameron-Liebler set.

’ Example ‘ CL ‘ degree one CL ‘
All generators of P. X X
Point-pencil. X X
Base-plane for d = 3 (defined in Examplello.z.él). X
Hyperbolic class (defined in Example |10.2.7[). X
Embedded hyperbolic quadric (defined in Example |10.2.8[). X X

Table 10.4: Examples of Cameron-Liebler and degree one Cameron-Liebler sets.
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10.3 Polar spaces Q1 (2d — 1, q), d even

In the previous section, we introduced degree one Cameron-Liebler sets while in this section we
consider Cameron-Liebler sets defined with the ‘disjointness-definition’ (Definition[10.1.2). We fo-
cus on Cameron-Liebler sets contained in one class of generators in the polar spaces Q1 (2d — 1, q),
d even. These Cameron-Liebler sets were introduced in [36, Section 3] and are defined in only one
class of generators, in contrast to the (degree one) Cameron-Liebler sets in other polar spaces.

Recall, from Example that the generators of a hyperbolic quadric Q" (2d —1, ¢) can be divided
in two classes such that for any two generators 7 and 7’ we have dim(r N 7’) =1 (mod 2) if and
only if 7 and 7’ belong to the same class. By restricting the classical association scheme of the
hyperbolic quadric Q" (2d — 1, ) to the even relations, we define an association scheme for one
class of generators. For more information, see [36, Remark 2.18 and Lemma 3.12]. Let R; and A;
be Ro; and Ay; respectively, restricted to the rows and columns corresponding to the generators of
this class. Let V}’ be V; L V4_;, also restricted to the subspace corresponding to these generators.

For the polar spaces Q1 (2d — 1, q), d even, we thus have the relations R}, i = 0, ..., %, and the
eigenspaces V}’ ,J=20,..., %l. For this association scheme on one class of generators, we give the

analogue of Lemma (10.1.4

Lemma 10.3.1. The eigenvalue P o; of A, = As; corresponds only with the eigenspace V{ = Vi L
Vi_1 for the classical polar spaces QT (2d — 1, q), d even.

Proof. This lemma follows from Lemma as for the hyperbolic quadrics Q1 (2d — 1,q) we
found that Py, = Py_1 i, for k even. This implies that the eigenvalue P; 9; corresponds with V7 L
Vi_1. [ |

Here again, we find a new equivalent definition.

Theorem 10.3.2. Let G be a class of generators of the hyperbolic quadric Q*(2d — 1, q) of even rank
d and let L be a set of generators of G. The set L is a Cameron-Liebler set of generators in G if and
only if for every generator 7 in G, the number of elements of L meeting 7 in a (d— 2i — 1)-space equals

<($ -1 [de__ﬂ + ¢! [d;i 1]) #=E= i e L

d—1 )i
(2¢—1)(i—1) :
x[%_l}q ifm ¢ L.

Proof. Let L be a set of generators in G with the property described in the theorem, then the first
implication is a direct application of Theorem with Q the set of all generators in G, R; the
relation R, = {(m,7")| dim(r N7’) =d — 2i — 1}, and

d—1 i fd—1 1)
e (eafi ey e

A= eicne-n
@”E—Jq '

As a; — B; = P 2;, we find that v; = x + ﬁj € V{, hence x € Vj L V{ and, by [36, Lemma

—Po,2i
3.15], we know that y € im(AT). Now it follows from [36] Definition 3.16(iv)] that £ is a (degree
one) Cameron-Liebler set of G. The other implication is [36, Lemma 4.10]. |
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10.4 Classification results

We try to use the ideas from the classification results for Cameron-Liebler sets of polar spaces of
type I and the polar spaces Q1 (2d — 1, q), d even, in [36] Section 6], to find classification results
for degree one Cameron-Liebler sets in polar spaces.

We start with a lemma that proves that the parameter x is always an integer.

Recall from the first part of this thesis that an Erdos-Ko-Rado (EKR) set of k-spaces is a set of
k-spaces which are pairwise not disjoint (see Chapter [2).

Lemma 10.4.1. If L is a degree one Cameron-Liebler set in a polar space P with parameter x, then
x eN.

Proof. For all polar spaces, except the hyperbolic quadrics Q" (2d — 1, q), d even, we refer to [36}
Lemma 4.8].

Suppose that £ is a degree one Cameron-Liebler set in P = Q1 (2d — 1, q), d even, with parameter
2. Then L is also a Cameron-Liebler set in P with parameter x. If 2; and 2 are the two classes of
generators in P, then £N 2y and £ N {2y are Cameron-Liebler sets of 2; and (25 with parameter z,
by [36} Theorem 3.20]. Hence, x is the parameter of a Cameron-Liebler set in one class of generators
of QT (2d — 1,q), d even. This implies, by [36, Lemma 4.8], that € N. [ |

Now we continue with a classification result for degree one Cameron-Liebler sets with parameter
1 in all polar spaces.

Theorem 10.4.2. A degree one Cameron-Liebler set in a polar space P of rank d with parameter 1 is
a point-pencil.

Proof. For the polar spaces of type I and /11, the theorem follows from [36] Theorem 6.4] as any
degree one Cameron-Liebler set is a Cameron-Liebler set and since a base-plane and a hyperbolic
class, are no degree one Cameron-Liebler sets (see Remark10.2.6/and Remark [10.2.7).

Let £ be a degree one Cameron-Liebler set with parameter 1 in a polar space P of type 1. Then,
P is the hyperbolic quadric Q* (4n — 1, q) with 1 and 5 the two classes of generators. By [36]
Theorem 3.20], we know that £ N Q; and £ N )y are Cameron-Liebler sets in {21, {25 respectively,
with parameter 1. Using [36] Theorem 6.4], we see that £ N §2; is a point-pencil or a base-solid if
n = 2 fori = 1,2. A base-solid is the set of all 3-spaces intersecting a fixed 3-space (the base) in
precisely a plane. Note that all elements of the base-solid belong to a different class of the hyperbolic
quadric than the base itself.

Ifn = 2,s0d = 4, and L N Q1 or L N s is a base-solid with base 7, then there are at least
(g+1)(g?+1) elements of £ meeting 7 in a plane. This contradicts Theorem|[10.2.1] whether 7 € £
or not. So we find, for all n > 1, that £ N Q; and £ N (2 are both point-pencils with vertex v; and
v respectively. Now we show that v; = vo. Suppose v; # vy. Consider a generator o € Q9 \ £
through v;. Then « intersects 645 generators of LN € in a (d — 2)-space through v;. This gives a
contradiction with Theorem [10.2.1} which proves that v; = vy. Hence, L is a point-pencil through
V1 = V2. [ |

The classification result in [36, Theorem 6.7] for polar spaces of type [ is also valid for degree one
Cameron-Liebler sets in all polar spaces.
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Theorem 10.4.3. Let P be a finite classical polar space of rank d and parameter e, and let L be a
degree one Cameron-Liebler set of P with parameter . If v < ¢! + 1, then L is the union of x
point-pencils whose vertices are pairwise non-collinear orx = q¢°~! + 1 and L is the set of generators
in an embedded polar space of rank d and with parameter e — 1.

Proof. In Lemma 6.5, Theorem 6.6 and Theorem 6.7 of [36]], the authors use [36, Lemma 4.9] to
prove the classification result. We can use the same proof since we can apply Theorem(10.2.1]instead
of [36l Lemma 4.9]. [ |

Note that the last possibility corresponds to an embedded hyperbolic quadric Q™ (2d — 1,¢q) if
P = Q(2d,q) or P = W(2d — 1,q) with g even. For P = H(2d,q), the Hermitian variety
H(2d — 1, q) can be embedded, and for P = @~ (2d + 1, ), the parabolic quadric (2d, ¢) and,
for ¢ even W(2d — 1, q), can be embedded. If P = W (4n + 1, q) with ¢ odd, then P admits no
embedded polar space with rank n and parameter e — 1 = 0.

For the symplectic polar space W (5, ¢) and the parabolic quadric Q(6, q), we give a stronger clas-
sification result. Recall that the polar spaces W (5, ¢) and (6, q) are isomorphic for g even, see
Remark [1.5.7] We start with some lemmas.

Lemma 10.4.4. Let L be a degree one Cameron-Liebler set of generators (planes) in W (5, q) orQ(6, q)
with parameter x.

1. For everym € L, there are s1 elements of L meeting 7 (including ).

2. For skew mt,n’ € L, there exist exactly dy subspaces in L that are skew to both m and 7’ and
there exist sy subspaces in L that meet both m and 7'

Here, da, s1 and sy are given by:

da(g,2) = (z — 2)¢°(¢ — 1)
si(gz) =a(@+ g+ 1) — (2 -1)¢* =+ 2 +q+1)
sa(q, ) = x(> + 1)(q+ 1) — 2(z — 1)¢* + da(q, ).

Proof. Let P be the polar space W (5, ¢) or Q(6,q), hence d = 3 and e = 1.
1. This follows directly from Theorem[10.2.1} for i = d and |£| = z(¢? + 1)(g + 1).

2. Let x and X, be the characteristic vectors of {7} and {7'}, respectively. Let Z be the set
of all planes in P disjoint from 7 and 7, and let x z be its characteristic vector. Furthermore,
let v; and v, be the incidence vectors of 7 and 7', respectively, with their positions corre-
sponding to the points of P. Note that Ax, = v, and Ax = vp.

The number of planes through a point P ¢ 7 U 7’ and disjoint from 7 and 7’ is the number
of lines in P, disjoint from the lines corresponding to 7 and 7. By [80, Corollary 19], this
number equals ¢?(¢ — 1), and we find:

Axz = qz(q — 1) —vr —vg)

e i e A
= =) (4G ~ v )

< Xz — q2(q -1) (W — X — X7r’> € ker(A).

161



10 Cameron-Liebler sets of generators in finite classical polar spaces

We know that the characteristic vector y of £ is included in ker(A)*. This implies:

Xz X= q2(q —1) <(qg_|_11)z<q+1) —x(m) - X(W,)>

& [ZNL)=(x—2)¢*(qg—1)

which gives the formula for da(g, z). The formula for sy(g, x) follows from the inclusion-
exclusion principle. [ |

In the following lemma, corollary and theorem, we will use s1, s2, do to denote the values s1(q, x),
s2(q, x), d2(q, x) if the field size ¢ and the parameter x are clear from the context. For the definition
of these values, we refer to the previous lemma.

The following lemma is a generalization of Lemma 2.4 in [93]. Note that we used a similar lemma
to find classification results in the projective context, see Lemma8.3.6]

Lemma 10.4.5. Ifc is a non-negative integer such that

(c+1)s; — <C; 1>52 > Jc(q2 +1)(g+1),

then no degree one Cameron-Liebler set of generators in W (5, q) or Q(6, q) with parameter x contains
¢ + 1 mutually skew generators.

Proof. Let P be the polar space W (5, q) or Q(6, q) and assume that P has a degree one Cameron-
Liebler set £ of generators with parameter = that contains ¢ + 1 mutually disjoint subspaces
T0, 1, - - -, Te. Lemma[10.4.4 shows that 7r;, meets at least s1(g,2) — i - s2(q, ) elements of £
that are skew to 7o, 71, ..., m—1. Hence, z(¢> + 1)(¢ + 1) = |£] > (¢ + 1)s1 — > ;_ is2 which
contradicts the assumption. |

Corollary 10.4.6. A degree one Cameron-Liebler set of generators in W (5, q) or Q(6,q) with pa-
P 3
rameter2 < x < &/ 2q2 — @ + % contains at most x pairwise disjointgenerators.

Proof. Let L be a degree one Cameron-Liebler set of generators in W (5, q) or Q(6, ¢) with parame-

ter x. Using Lemmal10.4.5/fore = 1,d = 3, ¢ = z, we find that ifq?’—ng:—I—q_g—lJ:Q—%lx?’ > 0, then

L contains at most x pairwise disjoint generators. Since f,(z) = ¢ —¢*z— %xz (r—1) is decreas-
3

ing on [1, +-00[, we find that it is sufficient that f, <\3/ 2¢° — @ + %) > 0, as we only consider

the values of z in {2, ce2¢% — @ + é] It can be checked that f, (\3/ 2¢% — @ + %) >0
forall ¢ > 2. [ ]

Theorem 10.4.7. A degree one Cameron-Liebler set L of generators in W (5,q) or Q(6,q) with
parameter2 < x < W — @ + % is the union of  embedded hyperbolic quadrics Q" (5, q), that
pairwise have no plane in common, and x — 2« point-pencils whose vertices are pairwise non-collinear
and not contained in the o hyperbolic quadrics Q* (5, q). For the polar space Q(6, q) or W (5, q) with
q even, a € {0, ..., | 5|}, for the polar space W (5, q) with q odd, ov = 0.

Proof. Let P be the polar space W (5, q) or Q(6, ¢) and L be a degree one Cameron-Liebler set in P.
Note that the generators in these polar spaces are planes. By Corollary[10.4.6] there are ¢ pairwise
disjoint planes my, 73, . . ., 7, with ¢ < «, in L. Let S; be the set of planes in £ intersecting 7; and
not intersecting 7; for all j # . By Lemma there are, for a fixed 7, at least s — (¢ — 1)s2 >
s1—(x—1)sg = ¢® — (x — 2)¢® — (2* — 22)(q + 1) planes in S;. As S; is an EKR set by Corollary
S; has to be a part of a point-pencil (PP), a base plane (BP) or one class of an embedded
hyperbolic quadric Q" (5, ¢) (CEHQ). Note that if P is W (5, ¢), with ¢ odd, then PP cannot contain
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10 Cameron-Liebler sets of generators in finite classical polar spaces

a CEHQ, so for this polar space, the only possibilities are a PP or BP, by [33| Theorem 4.9 and 4.17].
Using Theorem [10.2.1] we can prove that if the set S; is a part of a PP, BP or CEHQ, then £ has to
contain all planes of this PP, BP or CEHQ. We show this for the case where the set of planes forms
a part of a PP. So assume .5; is a subset of the point-pencil with vertex P, and there is a plane y ¢ L
through P. This would imply that v meets at least ¢* — (z — 2)¢? — (22 — 22)(q + 1) planes in £
non-trivially. This gives a contradiction by Theorem[10.2.1]for i = 1 and i = 2, as v ¢ £ intersects
precisely x(¢®> + ¢ + 1) < ¢ — (z — 2)¢*> — (2% — 2x)(qg + 1) planes of £ in a point or in a line.
This argument also works for the BP and CEHQ, so we can conclude that if £ contains an S; which
is a part of a PP, BP or CEHQ, then £ has to contain the whole PP, BP or CEHQ respectively, which
we will call £;.

Remark first that £ cannot contain a BP with base 7 as then 7 € L intersects ¢° + ¢ + ¢ >
q* 4+ q + = — 1 planes of £ in a line, which gives a contradiction with Theorem This implies
that all sets £; are PP’s or CEHQ’s. Now we show that every two sets of planes £; and £; are
disjoint. Suppose first that £; and £; are two PP’s with vertices P; and P; respectively, that have
at least a plane in common. Then there are at most ¢ + 1 planes in £; N £; and let 3 be one of
them. Now we see that 3 meets at least 2(¢> + ¢*> + ¢ + 1) — (¢ + 1) elements of £ non-trivially,
contradicting Theorem If £; and £, are two CEHQ’s or a CEHQ and a PP that have at least
a plane in common, then we can use the same arguments as above: In both cases, there are at most
q+1planes in £;NL;, which implies that a plane 8 € £;NL; meets atleast 2(¢>+¢*+q+1)—(g+1)
elements of £ non-trivially, contradicting Theorem 10.2.1]

Now we know that £ contains the disjoint union of ¢ < x sets £; of planes, where every set is a PP
or CEHQ. As the number of planes in a PP or CEHQ equals (¢? + 1)(¢ + 1), and the total number
of planes in £ equals z(¢® + 1)(¢ + 1) (see Lemma 2)), we see that £ equals the union of =
sets £; such that any two sets have no plane in common.

To finish this proof, we want to show that the only possible composition of £ consists of PP’s and
embedded hyperbolic quadrics. If £ contains one class of an embedded hyperbolic quadric, then
L also contains the other class of this hyperbolic quadric. This also follows from Theorem
suppose L contains only one class of an embedded hyperbolic quadric and let 7 be a plane of the
other class of this embedded hyperbolic quadric. Then we can show that 7 is also a plane of L: we
know that 7 meets ¢> + ¢ + 1 planes of the hyperbolic quadric in a line, so at least so many planes
of £, in a line. But if 7 ¢ L, then, by Theorem , 7 can only meet x < W planes of £ in a
line, a contradiction.

This implies that £ has to be the union of point-pencils and embedded hyperbolic quadrics that
pairwise have no plane in common. Note that two point-pencils have no plane in common if the
corresponding vertices are non-collinear. As there exists a partial ovoid of size ¢ + 1 in P, we
can find x pairwise disjoint point-pencils. Note that for ¢ odd and P = W (5, q), there are no
embedded hyperbolic quadrics, so in this case L is the union of x point-pencils with non-collinear
vertices. We end the proof by showing that, for P = Q(6, q) or P = W (5, q) and ¢ even, there exist
embedded hyperbolic quadrics in P that have no plane in common. It suffices to show this only for
P = Q(6, q), by the connection between Q(6, q) and W (5, q) for g even. Consider two embedded
hyperbolic quadrics Q" (5, q) in Q(6, q), that intersect in a parabolic quadric (4, q). These two
hyperbolic quadrics have no planes in common as the generators of Q)(4, q) are lines. Note that
the union of embedded hyperbolic quadrics that pairwise have no plane in common, together with
the union of point-pencils with non-collinear vertices not contained in the embedded hyperbolic
quadrics, is a degree one Cameron-Liebler set by Lemmal[10.2.4(4), as a point-pencil is a degree one
Cameron-Liebler set and for P # W (5, ¢) or ¢ even, an embedded hyperbolic quadric of the same
rank is also a degree one Cameron-Liebler set. |
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10 Cameron-Liebler sets of generators in finite classical polar spaces

This theorem agrees with Conjecture 5.1.3 in [59], as this conjecture says that every degree one
Cameron-Liebler set in a finite classical polar space, with rank d sufficiently large, is the union of
non-degenerate hyperplane sections and point-pencils that pairwise have no generator in common.

Remark 10.4.8. Recall that the union of point-pencils and embedded hyperbolic quadrics, that pair-
wise have no plane in common, is also an example of a degree one Cameron-Liebler set of generators

in the other polar spaces of type 1] (see Lemma[10.2.4/and Example[10.2.8).

We also note that we could not generalize this classification result to other classical polar spaces, as
for these polar spaces, there is not enough information known about large EKR sets in these polar
spaces. For the polar spaces Q (4n + 1, q), there are some EKR results in [34]. Since in this case,
the large examples of EKR sets have much more elements than the largest known Cameron-Liebler
sets, we cannot use these results.

10.5 New example of a degree one Cameron-Liebler set in Q* (5, q)

In this section, we give an example of a degree one Cameron-Liebler set of generators in Q" (5, q),
q = p" odd, found by dr. Maarten De Boeck, prof. Morgan Rodgers and myself. To explain the
construction of the example, we use the Klein correspondence between the lines of PG(3, ¢) and
the points of Q" (5, ¢), see Section[1.5] Recall that the generators of Q™ (5, ) are planes which can
be divided into two classes (see Remark|[l.5.6), the Latin planes and the Greek planes. More precisely,
by the Klein correspondence, the points of a Latin plane in Q7 (5, ¢) correspond to the set of lines
through a fixed point in PG(3, ¢), and the points of a Greek plane in Q™ (5, ¢) correspond to the
set of lines in a fixed plane in PG(3, ).

Consider the hyperbolic quadric Q = Q" (3, ¢) in PG(3, q), defined by the equation xgx1 +zow3 =
0. The lines of @ correspond to the set of points of two conics C' U C” in Q* (5, q), such that for the
planes a = (C) and o/ = (C"), it holds that o’ is the image of o under the polarity of Q" (5, q).

Every point P € PG(3,q) gives rise to a Latin plane 7/ and a Greek plane 71'5 in Q" (5,q): the
points of /" correspond to all the lines through P in PG(3, ¢), and the points of 71'5 correspond
to the all lines in the plane P+. Here, L is the polarity related to the quadric @ in PG(3, ), with
corresponding matrix:

o O = O
oS O O
o O O
O = O O

Definition 10.5.1. A point P(zg, z1, 2, x3) € PG(3, q) is a square point if xox1 + 23 is a square
different from 0 in F,. A point P(zq, z1, 22, x3) € PG(3, ¢) is a non-square point if zoz1 + x2x3 is
a non-square in [,.

Now we can partition the set of planes in Q" (5, ¢) into the following sets.

« 8§ = {nf’| P is a square point } Sy = {775|P is a square point }
< NS, = {ﬂ'lp\P is a non-square point} « NS, = {W;D’P is a non-square point}
L o= {xf|Peq) c 0, = {aP < Q)
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It is known that a 2-secant to @) in PG(3, ¢), ¢ odd, contains % square points and qg—l non-square
points. A line disjoint from ) in PG(3, ¢) contains % square points and qgil non-square points.
For a tangent line ¢ to (), there are two possibilities; ¢ contains ¢ square points, or ¢ contains ¢
non-square points, see [[72, Table 15.5(c)]. In the first case, ¢ is a square tangent line. In the latter
case, ¢ is a non-square tangent line.

We partition the set of points in QT (5, ¢) into the following sets.
« The set X)g of points in Q" (5, q) corresponding to the square tangent lines to Q.
« The set X} yg of points in Q (5, q) corresponding to the non-square tangent lines to Q.
« The set X; of points in Q" (5, q) corresponding to the 2-secants to Q.
« The set X of points in Q" (5, q) corresponding to the lines disjoint from Q.
« The set X, = C' U’ of points in QT (5, ¢) corresponding to the lines of Q.
We present two lemmas that will be useful in the remainder of the construction.

Lemma 10.5.2. Ifl is a square tangent line to Q in PG(3, q), then I is a square tangent line ifq = 1
mod 4, and I is a non-square tangent line if ¢ = 3 mod 4. Ifl is a non-square tangent line to @
in PG(3, q), then I+ is a non-square tangent line ifg = 1 mod 4, and |- is a square tangent line if
g =3 mod 4.

Proof. Consider a tangent line [ to () in PG(3,¢). Since the orthogonal group PGO, (4, q) of
Q7 (3,q) acts transitively on the points of @ = Q1 (3,q) (see [74, Theorem 22.6.4]), we may
suppose that [ contains the point (1,0,0,0) of @, and so ! = ((1,0,0,0), (0,0, 1,t)), for a fixed
t € F, \ {0}. Note that [ is a square tangent line if and only if ¢ is a square in F,. By using
the matrix A of the polarity |, we find that 7{; ¢ ,0)(Q) is the plane defined by x1 = 0, while
T(0,0,1,t)(Q) is the plane defined by tx3 + x3 = 0. The intersection of these two planes gives that
I+ = ((1,0,0,0),(0,0,1,—t)). The lemma follows since [ is a square line if and only if — is a
square in [Fy, and —1 is a square [F if and only if ¢ = 1 mod 4. |

Lemma 10.5.3. Ifl is a bisecant to QQ in PG(3, q), then I+ is also a bisecant to Q). Furthermore, if |
is a line skew to Q in PG(3, q), then I+ is also skew to Q.

Proof. Note that for a bisecant [ to ), we have that [ N Q is a hyperbolic quadric Q* (1, q). For a
line [ skew to (), we have that [ N @) is empty and is equal to Q™ (1, ¢). The lemma follows now
from [74, Theorem 22.7.2]. [ |

In the following proposition, we prove that the partitions { X} g, X1 ng, X2, Xy, X } and
{81,84, NS§,NS4, 01,04} form a point-tactical decomposition.

Proposition 10.5.4. The partition of the points {X15, X1ns, Xo, Xo, Xoo } and the partition of the
planes {S;, Sg, NS1, NS4, 01,04} of QT (5,q) give a point-tactical decomposition with matrix By
ifg =1 mod 4 and the matrix B3 if ¢ =3 mod 4.

S S, NS NS, 0O 0,

q q 0 0 1 1 Xis

0 0 q q 1 1| Auws

B, = ‘E—i qi % % 2 2 X,
qT qT % % 0 0 Yo

0 0 0 0 g+1 q+1 Voo

165



10 Cameron-Liebler sets of generators in finite classical polar spaces

S S, NS NS, @) o,

q 0 0 q 1 1 Y s

0 q q 0 1 1 Xins
By = q;Qi % q;gi q;?i 2 2 Y,

0 0 0 0 qg+1 qg+1;) x.

Proof. We find these matrices by using the Klein correspondence and so, we will prove the lemma
using the lines of PG(3, ¢) instead of the points of Q™ (5, ¢). This includes that we will use point-
pencils of lines and the lines in fixed planes of PG(3, q), instead of the planes in Q" (5, ).

We start with the case ¢ =1 mod 4.

The first row of Bj follows by investigating a square tangent line  to @ in PG(3, ¢). Since [ contains
q square points, and no non-square points, [ is contained in ¢ point-pencils with vertex a square
point, and [ is contained in no point-pencils with vertex a non-square point. This explains the first
and third element in the first row. For the second and fourth element, ¢ and 0, in the first row,
we have that | C R* <= R € I+, with R € PG(3,q). From Lemma we find that I+
is a square tangent line, and so that there are ¢ possibilities for R if R is a square point, and no
possibilities for R if R is a non-square point. The line / contains one point P € () and so it is
contained in one point-pencil with vertex in Q and [ is contained in one plane P~. This gives the
last two elements of the first row. The second row of B; follows from analogous arguments.

For the third row in By, we consider a bisecant [ to ) in PG(3, ¢). The first and third element of this
row follow since [ contains q;21 square points and % non-square points. Hence, [ is contained in
q—1 . . . . q—1 . . . .

45~ point-pencils with vertex a square point, and “5= point-pencils with vertex a non-square point.
For the second and the fourth element of the third row, we use the fact that ] € R+ < R e[+,
and that [ is also a bisecant, see Lemma [10.5.3] Hence, [ contains % square points and qg—l
non-square points. The last two elements of the row follow since [ contains two points P;, P> € ().
Hence, [ is contained in the point-pencils through P and P, and ! is contained in the planes P?f

and Pj-, with P3 and Py the two points of () on I+

For the fourth row in By, we consider a line [ skew to @ in PG(3, ¢). The first and third element of
this row follow since [ contains % square points and q;—l non-square points. Hence, [ is contained
in % point-pencils with vertex a square point, and q;r—l point-pencils with vertex a non-square
point. For the second and the fourth element, we again use the fact that ] € R+ <= R € [+,
and that [+ is also skew to Q, see Lemma Hence, [+ contains % square points and q;r—l
non-square points. The last two elements of the row follow since [ contains no points in Q).

The last row of B; follows since a line [ of () is contained in ¢ + 1 tangent planes and in ¢ 4 1
point-pencils with vertex a point of /.

The proof for ¢ = 3 mod 4 is analogous. |
Theorem 10.5.5. Let q be an odd prime power.

o The sets S; U Sy, NS UNS, and O; U Oy are degree one Cameron-Liebler sets of planes in
Q* (5, q), with parameter @, @ and q + 1 respectively, forq =1 mod 4.

e The sets S UNSy, Sg UNS; and O; U Oy are degree one Cameron-Liebler sets of planes in

2(q=1) alg=1) and q + 1 respectively, forq = 3 mod 4.

+ .
Q7 (5,q), with parameter T4~ , 55
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Proof. We prove this theorem for ¢ = 3 mod 4. The proof for ¢ =1 mod 4 is analogous.

From the previous proposition, and from Lemma1.8.2] we find the following equations. Here, A is
the point-plane incidence matrix of Q7 (5, ).

ATx1s = qxs, + axws, + X0, + X0,

ATx1ns = axs, + oxvs, + xo, + X0,
qg—1
Alyo = 5 (s +xs, +xws +s,) +2(xo; +xo,)

ATy = (¢ + D(xo, + x0,)-

After some calculations, we find:

3g+1 q—1 1
Xs; T XNS, = AT < )XIS + a(q X1NS — qX2>

2q(g+1 2q(q+1) +1
qg—1 3g+1 1 >
+ = A" + -—
X8y T XNS, <2q(q+1)Xls Qq(q+1)X1NS q_|_1X2
L7
Xo, + X0, = o 1A Xoo-

The sets §; UNS,, S; UNS; and O; U O, are contained in the image of AT, and so they are
degree one Cameron-Liebler sets of planes in Q7 (5, ¢), for ¢ = 3 mod 4. The parameters of the
Cameron-Liebler sets follow immediately from their size, see Lemma|[10.2.4

Analogously, we find that the sets S;US, NS;UN'S,; and O;UQO, are degree one Cameron-Liebler
sets of planes in Q1 (5, ¢), forg =1 mod 4. |

Remark 10.5.6. Note that the Cameron-Liebler sets O; U O, are the union of ¢ + 1 point-pencils,
whose points are the elements of the conic C'. Moreover, this set is also the set of point-pencils
whose points are the elements of the conic C’. Hence, this example is a well known Cameron-
Liebler set. The other determined Cameron-Liebler sets in Theorem[10.5.5|are new examples, in the
sense that they are not a union of point-pencils.

Proposition 10.5.7. The sets S;USy, and NS;UN'S,, forq =1 mod 4, and the sets S{UN'S; and
SgUN'S,, forq =3 mod 4 are not the union of point-pencils whose points are pairwise non-collinear.

Proof. We prove this proposition for the set £L = §; U S, if ¢ = 1 mod 4. The proofs for the
other cases are analogous. Suppose from the contrary that £ consists of point-pencils. Since the
parameter of L is @, L must consist of this many point-pencils. Let P be the base point of
one of these point-pencils. By investigating the sum of the first two columns of the matrix B; in
Proposition [10.5.4) we find that P contains 2¢, 0, ¢ — 1, ¢ + 1 or 0 elements of £ for P contained
in X15, X1ns, X2, Xp, or X, respectively. Hence, we find in any case that £ cannot contain all

planes of QT (5, ¢) through P, which gives the contradiction. [
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Linear Sets
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1 1 Translation hyperovals and F;—linear sets of pseudoregulus
type

€C Idon’t believe that life is linear. I think of it as circles - concentric circles that
connect. b))

—Michelle Williams

In this last part, we discuss a research project on linear sets. dr. Geertrui Van de Voorde and I
investigated point sets defined by translation hyperovals in the André/Bruck-Bose representation.
The results in this chapter are based on [49].

We show that the affine point sets of translation hyperovals in the André/Bruck-Bose plane rep-
resentation of PG(2, ¢*) are precisely those that have a scattered Fo-linear set of pseudoregulus
type in PG(2k — 1, q) as set of directions. This correspondence is used to generalise the results of
Barwick and Jackson who provided a characterisation of translation hyperovals in PG(2, ¢?), see

[7].

11.1 Introduction

Recall, from Section that a translation hyperoval in PG(2, ¢) is a hyperoval H such that there
exists a bisecant ¢ of H with the property that the group of elations with axis ¢ acts transitively on
the points of H not on /.

In [7], Barwick and Jackson provided a characterisation of translation hyperovals in PG (2, ¢?): they
considered a set C of points in PG(4, q), q even, with certain combinatorial properties with respect
to the planes of PG(4,q) (see Section for details). They proved that the set C’ of directions
determined by the points of C has the property that every line intersects C’ in 0,1,3 or ¢ — 1
points. They then used this to construct a Desarguesian line spread S in PG(3, ¢), such that in the
corresponding André/Bruck-Bose plane P(S) = PG(2, ¢?), the points corresponding to C form a
translation hyperoval. This extended the work done in [8]], where the same authors gave a similar
characterisation of André/Bruck-Bose representation of conics for ¢ odd.

We will generalise the combinatorial characterisation provided by Barwick and Jackson for trans-
lation hyperovals in PG(2, ¢*),Vk > 2. In order to do this, we elaborate on the correspondence
between translation hyperovals and linear sets (see e.g. [[79]82]]).

11.1.1 Linear sets

Linear sets are a central object in finite geometry and have been studied intensively, mainly due to
the connection with other objects such as semifield planes, blocking sets, and more recently, MRD
codes (see e.g. [83,[86][100]).
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11 Translation hyperovals and Fo—linear sets of pseudoregulus type

Let V' be an r-dimensional vector space over Fyn, let {2 be the projective space PG(V) = PG(r —
1,q"). A set T is said to be an Fy-linear set of 2 of rank ¢ if it is defined by the non-zero vectors of
an [F;-vector subspace U of V' of vector dimension ¢, i.e.

T = Ly = {(ur,. Ju € U\ {0}}.

By field reduction, the point set of PG(r — 1, ¢™) corresponds to a set D of (n — 1)-dimensional
subspaces of PG(rn — 1, ¢), which partitions the point set of PG(rn — 1, ¢). These subspaces form
a Desarguesian (n — 1)-spread in PG(rn — 1,q). Using coordinates, we see that a point P =

(x0,21,...,Tr—1)gn € PG(r — 1,¢") corresponds to the set {(axg, ax1,...,ax,—1)4la € Fgn}
in PG(rn — 1, ¢). Note that we have used r coordinates from F», defined up to IF4-scalar multiple,
to define points of PG(rn — 1, ¢), and the set {(axo, ax1,...,az,—1)4|a € Fgn} consists of qq__ll

different points forming an (n — 1)-dimensional space over F,. Hence, we find that D is given by
the set of (n — 1)-spaces

{(azg, azy,...,az,_1)4la € Fgn} forall (xg, x1,...,20-1) € V(r,¢").

Note that these coordinates for points in PG(rn — 1, g) can be transformed into the usual coor-
dinates consisting of rn elements of I, by representing the elements of F;» as the n coordinates
with respect to a fixed basis of Fyn over F,,.

We also have a more geometric perspective on the notion of a linear set; namely, an [F-linear set
of rank ¢ is a set 1" of points of PG(r — 1, ¢") for which there exists a subspace 7 of (projective)
dimension ¢ — 1 in PG(rn — 1, ¢) such that the points of 7" correspond to the elements of D that
have a non-empty intersection with 7. For more on this approach to linear sets, we refer to [86].
If the subspace 7 intersects each spread element in at most a point, then 7 is called scattered with
respect to D and the associated linear set is called a scattered linear set.

Note that if 7 is (n — 1)-dimensional and scattered, then the associated IF,-linear set has rank n and
has exactly qqi—_ll points, and conversely. We will make use of the following bound on the rank of a
scattered linear set.

Result 11.1.1 ([17, Theorem 4.3]). The rank of a scattered F;-linear set in PG(r — 1, ¢") is at most
rn/2.

A maximum scattered linear set is a scattered Fy-linear set in PG(r — 1,¢") with rank rn/2. In
this project we work with maximum scattered linear sets to which a geometric structure, called
pseudoregulus, can be associated. These linear sets were introduced by G. Marino, O. Polverino and
R. Trombetti in [90] and were generalized by M. Lavrauw and G. Van de Voorde in [85]. The name
pseudoregulus originates from the geometrical construction of Freeman [61]]. For more information,
we refer to [50, [87].

Definition 11.1.2. Let S be a scattered F-linear set of PG(2k — 1, ¢") of rank kn, where n, k > 2.
We say that S is of pseudoregulus type if

nk

1. there existm = qqn:11 pairwise disjoint lines of PG(2k — 1, ¢"), say s1, S2, . . ., Sm, such that
n—1
\Sﬂsi\:q Vi=1,...,m,
qg—1

2. there exist exactly two (k — 1)-dimensional subspaces 77 and T5 of PG(2k — 1, ¢") disjoint
from S such that T; N's; # () foreachi =1,...,mand j = 1,2.
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The set of lines s;, 7 = 1,...,m, is called the pseudoregulus of PG(2k — 1, ¢") associated with the
linear set S and we refer to T} and 75 as transversal spaces to this pseudoregulus. Since a maximum
scattered linear set spans the whole space, we see that the transversal spaces are disjoint.

For n = 3, it is known that every maximum scattered linear set of Il = PG(2k —1,¢3),k > 2,1is of
pseudoregulus type, and they are all equivalent under the collineation group of II, see [[84][85] 90]].

More in general, we need the following result of [87]. Applied to Fa-linear sets, this gives us the
following result.

Result 11.1.3 ([87, Theorem 3.12]). Each Fy-linear set of PG(2k — 1, q), q even, of pseudoregulus
type, is of the form L, ; with

Lys = { (. pf (), lu € Uo}

with p € I, Uy, U the k-dimensional vector spaces corresponding to the transversal spaces T, T
and with f : Uy — Us an invertible semi-linear map with companion automorphism o € Aut(F,),
Fiz(o) ={0,1}.

Note that in the previous result, PG(2k — 1, q) is identified with PG(V), V' = Uy @ U and a
point, corresponding to a vector v = vg + Voo € Uy ® Uso, has coordinates (vg, Voo )q-

11.1.2 The Barlotti-Cofman and André/Bruck-Bose constructions

We start with introducing the André/Bruck-Bose construction (see [1}24]). Let H, be a hyperplane
in PG(2k, q) and let S be a (k — 1)-spread in Ho,. Let P be the set of affine points, together with
the ¢* + 1 spread elements of S. Let £ be the set of k-spaces in PG(2k, ¢) meeting H, in an
element of S, together with the hyperplane at infinity H.. The incidence structure (P, L, I),
with I the natural incidence relation, is isomorphic to a projective plane of order ¢*, which is
called the André/Bruck-Bose plane, corresponding with the spread S. The André/Bruck-Bose plane
corresponding to a spread S is Desarguesian if and only if the spread § is Desarguesian.

Hoo = PG(2k —1,q)
\\ sh 5‘/2 sh
A ABB
\\ )
\\ . I
)

PG(2k,q

$1,82,83 € S’
Sis (k — 1)-spread in Hoo

In this chapter, we will switch between the three different representations of a projective plane
PG(2,¢"), ¢ = 2". Using the André/Bruck-Bose correspondence, we can, on the one hand, model
this plane as a subset of points and k-spaces in PG(2k, ¢), determined by a (k — 1)-spread in a
specific hyperplane H, of PG(2k, q), which we define as the hyperplane at infinity of PG(2k, ).
On the other hand, we can see it as a subset of points and hk-spaces of PG(2hk,2) determined
by a (hk — 1)-spread in a specific hyperplane H., of PG(2kh, 2), which we call the hyperplane at
infinity of PG(2kh, 2). We can switch between the PG(2k, g)-setting and the PG(2hk, 2)-setting
by the Barlotti-Cofman correspondence, which is a natural generalization of the André/Bruck-Bose
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11 Translation hyperovals and Fo—linear sets of pseudoregulus type

correspondence. Note that in this chapter, we use the ~-symbol for the subspaces in PG(2hk, 2).
This is in contrast with the “-symbol in Chapters [4] and [9} used for the projective extension of an
affine space.

The Barlotti-Cofman representation of the projective space PG (2k, 2") in PG(2hk, 2) is defined as
follows (see [4]). Let S’ be a Desarguesian (h — 1)-spread in PG(2hk — 1,2). Embed PG(2hk —
1,2) as the hyperplane H, at infinity in PG(2hk, 2). Consider the following incidence structure
P(S) = (P, L, I), where incidence is natural:

« The set P of points consists of the 22hk affine points P; in PG(2hk, 2) (i.e. the points not in
H) together with elements of the (h — 1)-spread S’ in Hy.

« The set £ of lines consists of the following two sets of subspaces in PG(2hk, 2).
— The set of h-spaces spanned by an element of S’ and an affine point of PG(2hk, 2).
— The set of (2h — 1)-spaces in Hy spanned by two different elements of S’.

This incidence structure (P, £, I) is isomorphic to PG(2k,2"), and let H., be the hyperplane
containing all points corresponding with the (h — 1)-spread S’. We use the notation P for the
affine point of PG(2k, 2") (i.e. a point not contained in H,) which corresponds to the affine point
Pe PG(2hk,2). A point, say R in Ho, corresponds to the element S’(R) of the (h — 1)-spread
S’ in H.

Ho = PG(2kh — 1,2) H,, = PG(2k — 1,2")
BC
‘ s

PG(2kh,2) PG(2k,2")

51, 82,83 € X,
S'isa (h — 1)-spread in Hy,

As already mentioned above, we will work in the following three projective spaces:

« The 2k-dimensional projective space ¥, = PG(2k, q), ¢ = 2", h > 2, with the (2k—1)-space
at infinity called H .

« The projective plane IT » = PG(2, ¢"), ¢ = 2", with line at infinity called /... Given a
Desarguesian (k — 1)-spread S in Ho, in Wy, the plane IT « is obtained by the André-Bruck-
Bose construction using S.

« The 2hk-dimensional projective space Ay = PG(2hk,2), with the (2hk — 1)-space H., at
infinity. Note that a Desarguesian (h — 1)-spread S’ in Ho gives rise to the Barlotti-Cofman
representation of W,. Also vice versa, the Barlotti-Cofman representation of ¥, defines a
Desarguesian (h — 1)-spread S’ in H.,. Moreover, if S is the (k — 1)-spread in H, in v,
such that I« is the corresponding projective plane, the Andre-Bruck-Bose representation of
IT . in Ay gives rise to a Desarguesian (hk — 1)-spread Sin Ho, such that &' is a subspread

of S.
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11 Translation hyperovals and Fo—linear sets of pseudoregulus type

11.1.3 Main theorem

In this chapter, we prove the following Main Theorem. A consequence of this result is the general-
ization of the characterization of translation hyperovals in PG(2, ¢?) in [7].

Consider ¥, = PG(2k, ¢) and the hyperplane Hy, of PG(2k, ¢). Recall that a point of PG(2k, q)
is called affine if it is not contained in H,,. Likewise, a line is called affine if it is not contained in
H,. Let Py, P, be affine points, then the point P P, N H is the direction determined by the line
PP If Q is a set of affine points, then the directions determined by Q are all points of H, that
appear as the direction of a line F; P}, for some P;, P; € Q.

Theorem 11.1.4. Let O be a set oqu affine points in PG(2k, q), ¢ = oh h >4k > 2, determining
a set D of ¢* — 1 directions in the hyperplane at infinity Ho, = PG(2k — 1,q). Suppose that every
line has 0, 1, 3 or ¢ — 1 points in common with the point set D. Then

(1) D is an Fy-linear set of pseudoregulus type.

(2) There exists a Desarguesian spread S in H, such that, in the André/Bruck-Bose plane P(S) =
PG(2,¢*), with H,, corresponding to the line I, the points of Q together with 2 extra points
on {so, form a translation hyperoval in PG(2, ¢*).

Vice versa, via the André/Bruck-Bose construction, the set of affine points of a translation hyperoval
in PG(2,q%), ¢ > 4,k > 2, corresponds to a set Q of ¢* affine points in PG(2k, q) whose set of
determined directions D is an Fo-linear set of pseudoregulus type. Consequently, every line meets D
in0,1,3 orq — 1 points.

Note that we work with a set of affine points in PG(2k, q) whose set of directions is a scattered
linear set with specific properties. Using this, we can make the link with translation hyperovals in
the André/Bruck-Bose-plane PG (2, ¢*). For this, we used the ideas found by V. Jha, N.L. Johnson
and M. Lavrauw in [[79,82], in which a scattered (k — 1)-space 77, with respect to a (k — 1)-spread
S in the hyperplane at infinity Ho, = PG(2k — 1,2) C PG(2k,2) was used. Since 7y contains
2% — 1 points and since |S| = 2¥ + 1, it follows that there are two spread elements s1, so disjoint
from 7p. Let I be a k-space in PG(2k, 2), with II N Hy, = 7g, then it can be proven that the
affine points of II, together with s; and s9, correspond to the points of a translation hyperoval in
the André/Bruck-Bose-plane, using the spread S.

This idea is also used in several other papers. For example, in [5], the authors gave an explicit
construction of infinite families of maximal scattered linear sets in PG(n — 1,¢'),t > 4 even. For
q = 2, they used a similar technique to find complete caps in AG(n, 2) of size 2% . We will use a
similar idea in this chapter to generalize the results in [7]].

11.2 The proof of the main theorem

From now on, we consider a set Q satisfying the conditions of Theorem[11.1.4}
« Qisasetof qk affine points in PG(2k, q), ¢ = oh h >4,k > 2;
« D, the set of directions determined by Q at the hyperplane at infinity H., has size ¢* — 1;

+ Every line has 0, 1, 3 or ¢ — 1 points in common with the point set D.
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11.2.1 The (¢ — 1)-secants to D are disjoint

Definition 11.2.1. A 0-point in H, is a point P ¢ D such that P is contained in at least one
(¢ — 1)-secant to D.

From Proposition|11.2.5} it will follow that a 0-point is contained in precisely one (¢ — 1)-secant to
D. We first start with two lemmas.

Lemma 11.2.2. No three points of Q are collinear.

Proof. Let [ be an affine line in PG(2k, ¢) containing 3 < ¢t < ¢ points of Q, and let P’ = [ N H.
A point P; € Q \ [ determines a plane a; = (P;,[) such that the line [; = a; N Hy is a (¢ — 1)-
secant: the lines through P; and a point of | N Q determine ¢ > 3 directions of D on the line [,
different from the point P’ € D. So [ contains more than three points of D, showing that [; is a
(¢ — 1)-secant. Furthermore, the plane «; contains at most ¢ affine points of Q, as every affine line
in « through a 0-point of /; contains at most one element of Q.

This implies that each of the ¢* — ¢ points of Q \ I define a plane o, with a N Hy, a (¢ — 1)-secant,
and so that « contains at most ¢ — ¢ points of Q \ I. This shows that the number of such planes

«; through [, and hence the number of (¢ — 1)-secants through P, is at least %. This gives that
there are at least 1 + %(q —2) > ¢* — 1 points of D, a contradiction since ¢ > 2. |

Lemma 11.2.3. Let~y be a plane in PG(2k, q) containing 4 points Py, P», P3 and Py of Q, such that
PPN P3Py ¢ QU D. Then ~y meets Hy, in a (¢ — 1)-secant to D.

Proof. By Lemma no three points of Py, P, P3, Py are collinear. Since PP, N P3Py ¢ D,
we see that P P» and P3P, define two different directions in H,. The lines containing two of the
four points Pi, P5, P3 and Py determine at least 4 directions on the line v N H,. The statement
follows since a line contains 0, 1, 3 or ¢ — 1 points of D. [ |

Corollary 11.2.4. Let Py be a point in Q. Then, all directions in D are determined by the lines Py P;
with P; € Q\ {Py}.

Proof. From Lemma it follows that two lines Py P; and Py P;j, P; # Pj, are different, and so,
determine different points at infinity. The corollary follows since |D| = ¢* — 1, which is equal to
the number of points P; € Q, different from Fp. [ |

Proposition 11.2.5. Every two (¢ — 1)-secants to D are disjoint.

Proof. Consider a point Py € Q. Then, by Corollary all directions in D are determined by
the lines PyP; with P, € Q \ {Py}. Let P/ denote the direction of the line Py P;, that is, the point
Py P; N Hy. We see that a line through a point P/ € D contains 0 or 2 points of Q.

Let [, and [3 be two lines, both containing ¢ — 1 points of D, with P’ = [, Nlg. Let @ = (P, la)
and 8 = (P, lg) and let { Po, P2} and {Pyg, Pog} be the 0-points in [, and l3. Note that P’ may
be amongst these points. It follows from the argument above that there are precisely ¢ points in
a N Q and that the affine points of Q in a together with the two points Pj,, P, form a hyperoval
H,. Similarly, we find a hyperoval Hg in .

We first suppose that P’ € D. This implies that there is a point P # Py of Q on the line PyP'.
Note that P and P are contained in H, N Hpg.

Consider a point R € [,, different from P’, P, Poo. Then R € D and through R, there are %
bisecants to H,, # l,. One of these bisecants contains P and another one contains Fy. Since ¢ > §,
there exists a bisecant to H,, through R which intersects the line Py P in a point Ry ¢ { P, P, P'}.
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Through Ry, there are % — 2 bisecants r; to Hg, different from the lines Ry P, RoPi3 and RoP»g.
Let s Nlg = R;,i = 1,...,4 — 2. A plane (R, 7;) contains two lines, r; and m = RRy, both
containing two points of @ and r; N m = Ry ¢ Q. Hence, by Lemmal11.2.3] we find that every line
RR;isa (g —1)-secant to D.

So the number of (¢ — 1)-secants of the form RR; is 4 — 2, and the total number of 0-points on
these lines is 2(2 — 2) = ¢ — 4. Let Q2 be the set of these 0-points. We call a (< 3)-secant in (l,, 1)
a line with at most 3 points of D. A line through P’ in (l,, (3) intersects all lines RR;. The ¢ — 4
points of  lie on the ¢ — 1 lines through P’ different from [, and l. Since every line RR; contains
precisely two 0-points, we find that for ¢ > 8 there are at most 3 (< 3)-secants through P’: if there
are at least four (< 3)-secants through P’ in (I, l3), then the number of 0-points of 2 on each of
these lines is at least 4 — 2 — 2, as we supposed that P’ € D. This implies that there would be at
least 4(4 — 4) > ¢ — 4 0-points in , which gives a contradiction for ¢ > 16.

Now we distinguish different cases depending on the number of (< 3)-secants through P’. In each
of the cases we will show that there exist at least two (< 3)-secants [y, [2 in (ln, ), and a point
X ¢ D not on these lines. This leads to a contradiction since there are at least ¢ + 1 — 7 lines
through X, both intersecting /; and [ in a point not in D, and not through /; N l5. These lines
contain at least 3 points not in D so they have to be (< 3)-secants. But this implies that there are
at least 1 + (¢ — 6)(q¢ — 3) = ¢*> — 9¢ + 19 points in (l4,g), not contained in D. On the other
hand, there are at most three (< 3)-secants through P’ and the other lines through P’ contain two
0-points. This implies that there are at most 3¢ + 2(q — 2) = 5q — 4 < ¢> — 9q + 19 points in
(la, 1), not contained in D. This gives a contradiction for ¢ > 16.

It remains to show that in every case there exist at least two (< 3)-secants and a point X ¢ D, not
on these lines.

« Suppose first that there are two or three (< 3)-secants through P’. These lines are different
from I, so they do not contain the point Pj,. Then X = Pj, ¢ D is a point not on the
(< 3)-secants.

« Suppose there is a unique (< 3)-secant [ through P’. Then every other line through P’
contains two 0-points. Suppose first that there exists a 0-point P; so that Pj, P, N1 ¢ D.
Then I’ = Py, P contains 3 points not in D, so I’ is a (< 3)-secant. Note that P, # Py, as
otherwise P1,P1 Nl =1,NIl= P € D.Hence, X = P5, ¢ D is not contained in [ U .

If there is no point P; so that P;,P; N1 ¢ D, then all 2¢ — 4 0-points on the (¢ — 1)-secants
through P’, different from [, lg, lie on at most 2 lines PP and P, with P, P, €
DnNI\{P'}. But then P;, P, and P;, P> are (< 3)-secants. Note that these lines are different
from [, and so, they do not contain P»,. Hence, we may take X = P,

« Suppose all lines through P’ are (¢ — 1)-secants with I" the corresponding set of 2q + 2 0-
points. Let G € I" and consider the ¢ + 1 lines through G in (I, I3). The 2¢ + 1 other points
of I lie on these lines and since every line contains 2 or at least ¢ — 2 points not in D, we
find that through G there is at least one (< 3)-secant /1. Consider now a point G’ € I"\ /.
Through this point there is also a (< 3)-secant l5. The lines /1 U [y contain at most 2q + 1
points of I, so there is at least one 0-point X not contained in these two lines.

This shows that two (¢ — 1)-secants cannot meet in a point P’ of D. Suppose now that P’ ¢ D. As
above, we find for a given point R € D N,, at least % — 2 (q — 1)-secants RR;, different from /.
But by the previous part, we know that there are no two (¢ — 1)-secants through a point R € D.
As 4 — 2 > 2, we find a contradiction. [ |

We now deduce a corollary that will be useful later.
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Corollary 11.2.6. A (¢ — 1)-secant and a 3-secant to D in H, cannot have a 0-point in common.

Proof. Let I, be a 3-secant to D, [z be a (¢ — 1)-secant to D, and P’ = [, N lg be a 0-point. Pick
Py € Qandlet o = (P, lo) and 8 = (P, lg). The points of Q U D in « form a Fano plane: let
P!, i =1,2,3, be the three points of D on the line /,, and let P;, i = 1,2, 3, be the corresponding
aﬂine points of Q so that PyP; N l, = P/. Since there are only three directions Pj, P, P of D
in o, we find that { P, Ps, Py }.{P1, P2, P4} and { P», Ps, P|} are triples of collinear points. Since
also {P], Py, Pi} and { Py, P;, P/}, i = 1,2, 3, are triples of collinear points, we find that the points
{Py, P\, P, P3, P|, P}, P}} define a Fano plane PG(2,2). Let Ry be the point P{ P» N P’ P,. Note
that Ry ¢ Q. As the points of Q in  form a g-arc, we know that there are at least two lines Rg R
and RoRs in 3, with Ry, Ry € lg N D, such that both lines contain 2 points of Q. By Lemma
we see that the lines P| R and P| Ry are both (¢ — 1)-secants through P{. This gives a contradiction

by Proposition (11.2.5 |

11.2.2 The set D of directions in H, is a linear set

Recall that we use the notation P for the affine point in Ag, corresponding to the affine point
P € ¥,. Let S’ be the (h — 1)-spread in the hyperplane H of PG(2hk,2) corresponding to the
points of the hyperplane H, of ¥,. We use the notation S’(P’) for the element of S’ corresponding
to the point P’ € H,.,. We will now show that D is an Fy-linear set in H, by showing that its
points correspond to spread elements in Hoo intersecting some fixed (hk — 1)-subspace of He

Let Q QUD, 9= Q U D with Q the union of the points P with P € @, and D the directions
in H. determined by the points of Q.

Lemma 11.2.7. Let Py, P;, P, € Q and P! = POP NHy,i=1,2. IfP1P2 is a 3-secant to D, then
the plane in PG(2hk, 2) spanned by Py, Py and P, is contained in 2.

Proof. Since P|Pj is not a (¢ — 1)-secant, we know that there is a unique point P # P|, Py in
P{PjN D, and a point P; € Q such that P; € PyP;. Let « be the plane spanned by the points
Py, Py and P,. Asa N D = {P], Py, Py}, we find that { P, P3, Py}, {P1, P>, Py} and {P», P3, P }
are triples of collinear points. As in the proof of Corollary[11.2.6] we find that these points define
a Fano plane PG(2,2). We claim that the corresponding points Py, P, Py and P; lie in a plane
in PG(2hk, 2). Suppose these points are not contained in a plane in PG(2hk;, 2), then they span
a 3-space f3. Since P{ = PyP; N PaPs, P0P1 meets S’(Pl) in a point, say Ay. Similarly, P, P;3
meets S’(P]) in a point, say B;. Since Po,Pl, Py, P3 span a 3-space, A; # Bj. Similarly, the
points As = P0P2 NS’ (Pj) and By = PPN S'(Pj) are different and span the line A5 Bs. But
now A; By € S’(Pl) and AyBy € S’(PQ) are two lines in the plane 8 N Ho, so they intersect, a
contradiction since the spread elements S’(P[) and S'(Py) are disjoint. |

Theorem 11.2.8. The set D is an Fy-linear set.

Proof. We prove, by induction on ¢ € {2,...,hk}, that there exists a ¢t-space  contained in 2

such that the points in H, corresponding to the spread elements intersecting 8 N H., are not all
contained in a single (¢ — 1)-secant.

For the induction basis ¢ = 2, we use Lemma 7, and so, we have the following property: if By,
Py and P; are three points in Q such that the lme at infinity of the plane spanned by these points
corresponds to a 3-secant in ¥, then we know that all points of <P0, P, P2> are included in 2.
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Now we suppose that there is a t-space 3, with § C 2. By the induction hypothesis, we may
assume that the points in H,, corresponding to the spread elements intersecting 5 N Ho, are not
all contained in a single (¢ — 1)-secant.

If t = hk, then our proof is finished, so assume that ¢ < hk. This implies that there exists a point
GeQ\pB. Let G be the corresponding point in Q in PG(2k, ¢), and let v = (5, G). We show that
every point X iny \ 3 is a point of 2. Suppose first that X is a point at infinity of 7 \ /3, then the
line X G contains an affine point Y of B, as [ is a hyperplane of v. But since G and Y are points of
Q we find that X € D C 9.

Suppose now that X is an affine point in v\ 3, and let X be the corresponding point in PG(2k;, g).
As the field size in PG(2hF, 2) is 2, the line X G contains 1 extra point Y. This point has to lie in
and in the hyperplane at infinity, so Y € B NHeyo. Let [y be aline through Y in B corresponding to a
3-secant, which exists since we have seen that not all points corresponding to points of 3N H are
contained in one single (¢ — 1)-secant. The plane spanned by G and [; is contained in . 2 by Lemma
| and hence, since X lies on the line Y G which is contained in this plane, X € 2. This implies
that v € 2. We can repeat this argument until we find that D is a hk- -space in PG(2hk,2). W

Note that D is a scattered linear set since |D| = ¢* — 1 = 2" — 1 = | PG(hk — 1,2)|. As D has
rank hk, we find that D is maximum scattered.

Remark 11.2.9. In Lemmal(11.2.5] we showed that the (¢ —1)-secants to D were disjoint. In Theorem
11.2.8] we have used this to show that D is a maximum scattered [F2-linear set. The fact that (¢ —1)-
secants to a maximum scattered [Fo-linear set are disjoint, is well-known (see e.g. [87, Proposition
3.2]).

11.2.3 The set D is an [5-linear set of pseudoregulus type

The proof that D is of pseudoregulus type, is based on some ideas of [85, Lemma 5 and Lemma 7].
Lemma 11.2.10. There are L— patrwzse disjoint (¢ — 1)-secants to D in PG(2k — 1,q),q > 4.

Proof. Let K be the (hk — 1)—dimensional subspace in PG(2hk — 1,2) defining the [Fa-linear set
D and let S’ be the (h — 1)-spread that corresponds to the point set of PG(2k — 1, q). For every
hk-space Y through K in PG(2hk — 1,2), we find at least one element of S’ that intersects YV’
in a line since D is maximum scattered. Every line [, through a point of K, such that [/ lies in an
element of S’, defines a hk-space through K, and the number of hk-spaces through K is 2"% — 1.
This implies that there are on average 2"~ — 1 > 2 lines contained in different spread elements of

S’ in a hk-space through K in PG(2hk — 1,2).

Take a hk-space Y through K with at least two lines contained in spread elements, and let S and
S be two elements of S’ that intersect Y in the lines y; and yo respectively. The (2h — 1)-space
(S1,S2) intersects K in at least a plane, as y; and y2 span a 3-space. But this implies that the line
[ in PG(2k — 1, q), corresponding with (57, S2) contains at least 7 points of D. This implies that
lisa (g — 1)-secant of D, and that (S, S2) intersects K in a (h — 1)-space v as a (b — 1)-space
contains 2" — 1 = ¢ — 1 points. Consider now the h-space f = Y N (S, S3) through a. Since
all of the 2" 4+ 1 (h — 1)-spaces of S’ in (S1, S) intersect 3 in a point or a line, we find that there
are precisely 2h=1 _ 1 elements of S, meeting 3, and so Y, in a line. Hence, this proves that a
hk-space Y through K, containing at least 2 lines 1, y2 in S7, S2 respectively, contains at least
2/=1 _1 lines y; in different spread elements of S’. Now we prove, by contradiction, that Y cannot
contain more lines y; contained in a spread element. Suppose Y contains another line g C Sp with
So € &', then yy ¢ (S1, S2). Repeating the previous argument for y; and y, shows that there are
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two (2h — 1)-spaces (S1, .S2) and (Sp, S1), both meeting K in a (h — 1)-space and so, there are two
(¢ — 1)-secants through P; € H, the point corresponding to the spread element 5. This gives a
contradiction by Proposition

Since the average number of lines contained in a spread element in a hk-space through K is 2"~! —
1 > 2, we find that every hk-space through K contains exactly 2"~! —1 lines contained in a spread
element. In particular, every line y; C S;, with S; € S’ and y; through a point of K, defines a hk-
space through K, and so a (¢ — 1)-secant. So we find that every point in D is contained in at least
one (g — 1)-secant. As we already proved that two (¢ — 1)-secants are disjoint (see Lemma|[11.2.5),

we find qq]i—_ll pairwise disjoint (¢ — 1)-secants in PG(2k — 1, q). |

We will first show that the linear set is of pseudoregulus type when k = 2. To prove this, we begin
with a lemma.

Lemma 11.2.11. Assume that k = 2. Let [ be a line in H, through two 0-points, not on the same
(¢ — 1)-secant, then | contains no points of D.

Proof. Letl; and [ be two (¢ —1)-secants in H. Let [ be a line through a 0-point of /; and through
a 0-point of 5. Recall that [; and [ are disjoint by Proposition[11.2.5] Every two points A, B, A € 1,
B € Iy, define a third point in D on the line AB. Hence we find, since |D| = ¢ — 1, that every
point P € D \ {l1,l2} is uniquely defined as a third point on a line, defined by two points A and
B of D in [; and l5 respectively.

Now suppose that [ contains a point X € D. Then X lies on a unique line [, intersecting [ and I3
in precisely one point. But then /1 and /5 lie in a plane spanned by [ and I’, a contradiction since [y

and [, are disjoint by Proposition[11.2.5] [ |
Proposition 11.2.12. Assume thatk = 2. The (q—1)-secants to D inPG(3, q) form a pseudoregulus.

Proof. By Lemma it is sufficient to prove that there exist 2 lines in PG(3, ¢) that have a
point in common with all (¢ — 1)-secants to D. Consider three (¢ — 1)-secants [y, l2 and I3 and let
P, Q; € 1, i = 1,2, 3, be the corresponding 0-points. Let [y be the unique line through P; that
intersects I3 and /3 both in a point, say Ra = lg Nl and R3 = [y N I3 respectively. By Proposition
and Corollary [11.2.6] Ry and R3 cannot both belong to Q, so suppose Ry is a 0-point of Iy
(wlo.g. Ra = P,). We see that l[j = P P is a line through two 0-points, so R3 is also a 0-point
by Corollary [11.2.11} w.lo.g. R3 = P3. By the same argument, we see that @, Q2 and Q3 are

contained in a line, say [.

Now we want to show that every other (¢— 1)-secant has a 0-point in common with both lp and /.
Consider a (¢ — 1)-secant Iy, different from [y, lo, I3, with O-points P4 and (4. Consider now again
the unique line m through Pj that intersects /; and [ in a point. By the previous arguments, m has
to contain a 0-point of /1 and a 0-point of I3, so m = lp, m = loo, m = PiQ2 or m = Q1 P>. We
will show that only the first two possibilities can occur, which then proves that every other 0-point
lies on lg or l. Suppose to the contrary that m = P;Q2 Py (the case m = (1 P> Py is completely
analogous). Then the unique line through 4, meeting /1 and Iy, is the line Q1 P». Consider now
the unique line m’ through P, meeting I and I3 in a point. As we supposed that m # [y and
m # ls, we see that Py cannot lie on these lines, so m’ contains the points Py, P2, Q3 or the
points Py, (Q2, P3. In the former case, both lines /g and [, are contained in the plane spanned by
m’ = PyQ3P, and m = P; Q2 P,. This implies that the disjoint lines /; and /5 are contained in this
plane, a contradiction. If m’ = P;P3Q2, then m and m/ both contain P4 and @3 but intersect [ in
different points, a contradiction. We conclude that Py, and analogously P}, is contained in the line
lg or loo. [ |
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11 Translation hyperovals and Fo—linear sets of pseudoregulus type

Using the previous proposition, we will prove that for all k, the Fa-linear set D in PG(2k — 1, q) is
of pseudoregulus type.

Theorem 11.2.13. The (¢ — 1)-secants to D in PG(2k — 1, q) form a pseudoregulus.

Proof. By Lemmait is sufficient to prove that there exist two (k —1)-spaces in PG(2k—1, q)

that both have a point in common with all (¢ — 1)-secants to D.

Consider a (¢ — 1)-secant Iy, and let Py and P be the 0-points on ly. Let /; be a (¢ — 1)-secant,
different from /. The lines [y and /; span a 3-space v and since D is a scattered Fo-linear set, v N D
is also a scattered Fa-linear set. Since y contains 2(q — 1) points of D on the lines I;, [y and (¢ — 1)
points of D defined in a unique way as a third point on the line A1 Ay, with A1 € [y, Ay € [;, we
have that |[D N ~y| = ¢? — 1, and hence it is a maximum scattered linear set. By Theorem
we find that v N D is of pseudoregulus type. This means that it has transversal lines, say m; and
m,,, where Py lies on m; and P} lies on m. This holds for every (¢ — 1)-secant /;. The number of

k
(¢ — 1)-secants to D, which are mutually disjoint, is exactly qqfll, see Lemma|(11.2.10| and so, the

k_ k_ k_qg 4. .
number of 0-points is exactly 2(1(]_—11. There are qqfll —-1= qq_—lq lines ; different from {g, and each
such line /; defines a line m; full of 0-points. Since this line m; contains g points different from F,
k—1
q —1

we have proven that a 0-point Py lies on lines full of 0-points (call such lines 0-lines). Every

q—1
(¢ — 1)-secant [; also contains a 0-point P/ on a line m}, hence every 0-point P, is contained in

k— . . . . .
qq_—ll lines containing precisely one other 0-point.

Let A and A’ be the set of all points on the lines m; and m/, respectively. Then we will show that
AU A’ is the union of two disjoint (k — 1)-spaces.

Consider a line containing two 0-points P;, P», with [} and I the (¢ — 1)-secants through P, P».
Then, as seen before, the intersection of the 3-space spanned by [y and Il with D is a linear set of
pseudoregulus type, and hence the line P, P» contains 2 or ¢ + 1 0-points. This shows that every
line in PG(2k —1, q) intersects AUA’ in 0, 1, 2 or ¢+ 1 points. This in turn implies that a plane with
three O-lines only contains 0-points. Consider now a point P3 on a 0-line through Py, and consider
a 0-line m # Py Ps through P;. If m contains a point Py # P; such that P4 P, is a 0-line through
Py, then we see that the plane (P, m) only contains 0-points. In the other case, m contains at least
two 0-points on O-lines through P{. In this case, all the points in the plane (P}, m) are O-points,
and hence the line P3P} is a O-line, a contradiction. So we find that every 0-line through a 0-point
of A is contained in A. Since every point of A lies on qkq__ll_ L 0-lines, and A contains % 0-points,
we find that every 2 points of A are contained in a 0-line of A. The same argument works for the set

A'. This shows that A forms a subspace and likewise A’ forms a subspace. Since |A| = |A’| = %,
these subspaces are (k — 1)-dimensional. [

11.2.4 There exists a suitable Desarguesian (k — 1)-spread S in PG(2k — 1, q)

Consider the scattered linear set D C H, of pseudoregulus type. Let Tj and Tt be the transversal

(k —1)-spaces to the pseudoregulus defined by D found in Theorem|11.2.13] Now we want to show
that there exists a Desarguesian (k — 1)-spread S in PG(2k — 1, ¢) such that Ty, 7o € S and such
that every other (k — 1)-space of S has precisely one point in common with D.

Lemma 11.2.14. There exists a Desarguesian (k—1)-spread S inPG(2k—1, q), suchthatTy, T € S
and such that every other element of S has precisely one point in common with D.
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11 Translation hyperovals and Fo—linear sets of pseudoregulus type

Proof. We prove this lemma using the representation of Result in which we consider Uy, U,
as F k. By [87, Theorem 3.7] we find that the linear sets L, y and L , are equivalent if and only
ifop = 03:1, where o7 and o, are the field automorphisms associated with f and g respectively.

Hence, up to equivalence, we may suppose that p = land f : Fp — For 1t — 2 ged(i, hk) = 1.

It follows that D is equivalent to the set of points P, with
P, = (u,u?) Ju € Fr.
q a

The transversal spaces T and T, are the point sets Ty = {(u,0)|u € sz} and T, = {(0,u)|u €
]F*k: }-
q

Consider now the set Sy of (k — 1)-spaces T, u € FZ’“ with

T, = {(au,auT) |a e F;k} . (11.1)
q

We will show that the set S = So U {70, T} is a (k — 1)-spread of PG(2k — 1, ¢). Suppose that
P =T, NT,,, for some u,us ¢ {0,00}, then there exist elements o, s € sz,u € F*, such
that

iu; = pour
a1u = UO2U
201 2t—1 2
with ¢ € . This implies that uy =" = u; ~ or (Z—;) = . Hence, {1 € Fyi N Fyne which is

Fy since ged(i, hk) = 1. Since uj,ug € sz, this implies that u; = ug, and that T;,, = T},,. In
particular, we see that T,, # T, for u # u’' € sz' Since Ty and T, are distinct from T, for all
u € Iy, we obtain that S| = ¢* + 1.

We will now show that T, N Ty = () for all u € sz. IfP=T,NTp,u ¢ {0,00} for some u € sz,
then P = (u/,0), with v/ € F?, and

ou = pu
au? =0
for some p € Fj and o € F;k. The second equality gives a contradiction since u # 0 # «. Hence,

T, N Ty = 0. It follows from a similar argument that 7;, N T,, = (). This shows that S is a spread
which is Desarguesian as seen in Subsection [11.1.1 |

Remark 11.2.15. In [87, Theorem 3.11(i)], a geometric construction of the Desarguesian spread,

found in Lemma (11.2.14] using indicator sets, is given.

11.2.5 The point set O defines a translation hyperoval in the André/Bruck-Bose
plane P(S)

The Desarguesian spread S found in Lemma defines the projective plane P(S) = Il » =
PG (2, ¢*) by the André/Bruck-Bose construction. The transversal (k — 1)-spaces Ty, T, € S to the

pseudoregulus associated with D correspond to points Py, Py, contained in the line ¢, at infinity
of PG(2, ¢").
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11 Translation hyperovals and Fo—linear sets of pseudoregulus type

Theorem 11.2.16. The set Q, together with Ty and T, defines a translation hyperoval in 11 =
PG(2,4").

Proof. Let A be the set of points in I x corresponding to the point set Q of ¥,. Recall that Tp
corresponds to a point Fy and T, to a point Py, contained in the line ¢, of Ik We first show
that every line in PG(2, ¢*) contains at most 2 points of the set H = A U Py U Px.

« The line ¢, at infinity only contains the points Py and Px.

« Consider a line | # £, through P, in PG(2, ¢*). This line corresponds to a k-space through
Ty in PG(2k, q). As Py € 1 N H, we have to show that this k-space contains at most one
affine point of Q. If this space would contain 2 (or more) affine points X1, X2 € O, then they
would define a direction of D at infinity in 7p. But this is impossible as Tj has no points of
D. This argument also works for the lines through P,,, different from /¢,

« Consider a line [ through a point P;, i ¢ {0,00}, at infinity. This point P; corresponds
to an element 7; € S that intersects the pseudoregulus D in a unique point X;. The line [
corresponds to a k-space y in PG(2k, q) through T;. Suppose that v contains at least 3 points
from Q, say X, Y, Z. By Lemma[11.2.2] these points are not collinear, hence they determine
at least two different points of D which are contained in 7;, a contradiction by the choice of
S, see Lemma This proves that v contains at most two points of Q, which implies
that the line [ contains at most two points of A.

Since H has size ¢* + 2, it follows that # is a hyperoval.

Finally consider the group G of elations in PG(2hk, 2) with axis the hyperplane at infinity Hy

Since the points of Q form a subspace, we see that G acts trans1t1vely on the points of Q. Every
element of G induces an element of the group G of elations in PG(2, ¢*) with axis the line Py Px.
Hence, G’ acts transitively on the points of A in PG(2,¢*). This shows that  is a translation
hyperoval. |

11.2.6 Every translation hyperoval defines a linear set of pseudoregulus type

In this section, we show that the vice versa part of Theorem|11.1.4/holds.

Proposition 11.2.17. Via the André/Bruck-Bose construction, the set of affine points of a translation
hyperoval inPG(2, ¢*), ¢ = 2", where h, k > 2 corresponds to a set Q of ¢* affine points in PG(2k, q)
whose set of determined directions D is an [Fy-linear set of pseudoregulus type.

Proof. Consider a translation hyperoval H of PG(2, ¢*). Without loss of generality we may sup-
pose that H = {(1,¢,%) x|t € Fye} U {(0,1,0),(0,0,1),.} with ged(i, hk) = 1. Let lo =
((0,1,0) 4%, (0,0,1) ) be the line at infinity. The set of affine points of H corresponds to the set
of points H' = {(1,¢,t*), € F, ® Foe @ F |t € Fue} in PG(2F, ) (for more information about
the use of these coordinates for H and H’, see [[105]]). The determined directions in the hyperplane
at inﬁnity H : Xo = 0 have coordinates (0,t; — t2,t2 — t;) where t1,t3 € Fr. So the set

= {(0,u,u? ) lu € Fu} is precisely the set of directions determined by the points of H. By
Result we find that this set of directions D is an Fa-linear set of pseudoregulus type in the
hyperplane Heo. |

We will now show that every line in PG(2k — 1, q) intersects the points of the linear set D in0,1,3
or ¢ — 1 points.
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Proposition 11.2.18. Let D be the set of points of an Fo-linear set of pseudoregulus type in PG (2k —
1,9),q = 2" h > 2,k > 2. Then every line of PG(2k — 1, q) meets D in0,1,3 orq — 1 points.

Proof. We use the representation of Result for the points of D. Let Ry = (u1, f(u1))q and
Ry = (ua, f(u2))g, u1,u2 € Uy, be two points of D not on the same line of the pseudoregulus, so
the vectors (u;) and (ug) in V' (k, ¢) are not an F,-multiple (in short <u1) # (u2)q). Recall that f
is an invertible semi-linear map with automorphism o € Aut(F,), Fiz(c) = {0,1}. A third point
R3 = (u3, f(u3))q € D is contained in Ry Ry if and only if there are i, A E [F, such that

{u1 + Auo = pus
(u1) + Af(u2) = pf(us)

{ (u1)+ X7 f(u2) = p f(us)
flur) + Af(ug) = pf(us)
{f 1 +)\Uf uz) = f(u3)

(A7 — = (1% — p) f(us)
{f uy + /\U2 = f(pus)
f((

Lo

s

(3
o0

i3

A=X"Nug) = f((p—po  u)
1+ /\U2 = pus
= (n—p us

3

As Ry and R3 lie on different (¢ — 1)-secants to D, we have that Ry # Rj3 and so, (u2)q # (u3)g-
It follows that A — A\ = p— pu° = 0,s0 A\, pu € Fiz(c) = {0,1}. We find that there is only
one solution of this system, such that Ry # R3 (i.e. (u1)q # (u3)q), namely when A = p = 1.

Hence, given two points R;, Ro in D, there is a unique point R3 € D N Ry Ry, different from Ry
and Rs. [ |

11.3 The generalisation of a characterisation of Barwick and
Jackson

Using Theorem[11.1.4} we are now able to generalise the following result of Barwick-Jackson which
concerns translation hyperovals in PG(2, ¢?) ([7]).

Result 11.3.1 ([[7, Theorem 1.2]). Consider PG(4, q), q even, ¢ > 2, with the hyperplane at infinity
denoted by Y.o,. Let C be a set of > affine points, called C-points and consider a set of planes called
C-planes which satisfies the following:

(A1) Each C-plane meetsC in a q-arc.

(A2) Any two distinct C-points lie in a unique C-plane.

(A3) The affine points that are not in C lie on exactly one C-plane.

(A4) Every plane which meets C in at least 3 points either meets C in 4 points or is a C-plane.

Then there exists a Desarguesian spread S in ¥, such that in the Bruck-Bose plane P(S) = PG(2, ¢°),
the C-points, together with 2 extra points on {w., form a translation hyperoval in PG(2, ¢?).
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Remark 11.3.2. At two different points, the proofs of [7] are inherently linked to the fact that they
are dealing with hyperovals in PG(2, ¢?). In [7, Lemma 4.1] the authors show the existence of a
design which is isomorphic to an affine plane, of which they later need to use the parallel classes.
In [7, Theorem 4.11], they use the Klein correspondence to represent lines in PG(3, ¢) in PG(5, q).
Both techniques cannot be extended in a straightforward way to ¢*, k > 2.

The following Proposition shows that a set of C-planes as defined by Barwick and Jackson in [7]
(using PG(2k, ¢) instead of PG(4, ¢)) satisfies the conditions of Theorem|[11.1.4]

Proposition 11.3.3. Consider PG(2k, q), q even, ¢ > 2, with the hyperplane at infinity denoted
by Huo. Let C be a set of ¢* affine points, called C-points and consider a set of planes called C-planes
which satisfies the following:

(A1) Each C-plane meets C in a q-arc.

(A2) Any two distinct C-points lie in a unique C-plane.

(A3) The affine points that are not in C lie on exactly one C-plane.

(A4) Every plane which meets C in at least 3 points either meets C in 4 points or is a C-plane.

Then C determines a set of ¢* — 1 directions D in Ho, such that every line of H.., meets D in0,1,3
or q — 1 points.

Proof. Note that all C-points are affine. Since every two C-points lie on a C-plane which meets C in
a g-arc, we have that no three C-points are collinear.

Let Py be a C-point and let Dy be the set of points of the form PyP; N Hy,, where P; # Py is a
point of C. We first show that every line meets Dy in 0,1,3 or ¢ — 1 points. Let M be a line of
Ho, containing 2 points of Dy, say R| = PyR1 N Hoo, R, = PyR2 N H, where Ry, Ry € C.
Then (M, Py) contains at least 3 points of C, and hence, by (A4), either it is a C-plane or it contains
exactly 4 points of C. If (M, P) is a C-plane, it contains ¢ points of C forming a g-arc, and hence,
M contains ¢ — 1 points of Dy. Now suppose that (M, Py) contains exactly 4 C-points, then M
contains 3 points of D.

Now let P; # P, be a point of C and let D; be the set of points of the form P} P; N H,, where
P; # P is apoint of C. We claim that Dy = D;. Let P{ = PyP; N Hoo. We see that P{ € Do N D;.
Consider a point P; # Pj in Dy, then PyP, N Hy, = P for some P, € C. Consider the plane
7w = (Py, P, P3).

Suppose first that 7 is not a C-plane, then, by (A4), ™ contains exactly one extra point, say P of
C. The lines PyP; and P, P; lie in 7 and hence, meet in a point Q). By (A2), there is a C-plane
through Py Py, and likewise, there is a C-plane p’ through P> Ps. Since 7 is not a C-plane, 1 and
' are two distinct C-planes through Q. By (A3) this implies that @ is a point of H,,. Likewise,
PyP> N Py Ps and Py P3N Py P; are points of H,. It follows that Dg N = D N 7. This argument
shows that for all points R # P € Dy such that (FPy, Py, R) is not a C-plane, we have that R € D;.
Now Py Py lies on a unique C-plane, say v. Let v N Hy, = L, then we have shown that (P, Pi, R)
is not a C-plane as long as R € Hy, is not on L. We conclude that Dy \ L = Dy \ L.

Now assume that Dy # D; and let X be a point in D which is not contained in Dy. Then X € L
and P; X contains a point Y # P} € C. Consider a point Pi € Dy, not on L, then P; P; contains a
point Py # Py of C. Since P; € D1 \ L, P; € Dy so the line P; Py contains a point P5 # P; of C.

The plane (Py, Py, X) is not a C-plane since otherwise, the points P; and Y of C would lie in two
different C-planes. This implies that (P;, Py, X), which contains the C-points P, Py, Y, contains
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11 Translation hyperovals and Fo—linear sets of pseudoregulus type

exactly one extra point of C, say Ps. Denote Py Ps N Hy, by P;. We see that there are exactly 3
points of D; on the line P; X, namely P, X and P,

Now P} is a point of D1, not on L, so P} € Dy. Hence, there is a point S # Py € C on the line
PP,

If (Py, P}, Py) is not a C-plane, then, since it contains Py, P5, S of C, it contains precisely 3 points
of Dy at infinity. These are the points P}, P; and one other point, say 7', which needs to be different
from X by our assumption that X ¢ Dy. That implies that 7" is not on L, and hence, T € D;. This
is a contradiction since we have seen that the only points of D; on P;X are P;, X and P;. Now
if (Py, Ps, Po) is a C-plane, we find ¢ — 1 points of Dy on P; X, all of them are not on L. Hence,
we find ¢ — 1 points of D1 on P; X, not on L. This is again a contradiction since P; X has only the
points P; and P of D; not on L.

This proves our claim that Dy = D;. Since P, was chosen arbitrarily, different from Py, and
Do = D1, we find that the set D of directions determined by C is precisely the set Dy. The statement
now follows from the fact that a line meets Dy in 0, 1, 3 or ¢ — 1 points. |

Proposition [11.3.3| shows that the set C satisfies the criteria of Theorem [11.1.4] Hence, we find the
following generalisation of Result|11.3.1

Theorem 11.3.4. Consider PG(2k, q), q even, g > 2, with the hyperplane at infinity denoted by H.
Let C be a set of ¢* affine points, called C-points, and consider a set of planes, called C-planes, which
satisfies the following:

(A1) Each C-plane meetsC in a q-arc.

(A2) Any two distinct C-points lie in a unique C-plane.

(A3) The affine points that are not in C lie on exactly one C-plane.

(A4) Every plane which meets C in at least 3 points either meets C in 4 points or is a C-plane.

Then there exists a Desarguesian spread S in H., such that in the Bruck-Bose plane P(S) = PG(2, ¢*),
the C-points, together with 2 extra points on {w, form a translation hyperoval in PG(2, ¢*).
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A English summary

€C I guess ice cream is one of those things that are beyond imagination. 99

—Lucy Maud Montgomery

In this chapter, we give a short summary on the most important concepts and results in this thesis.
For more details, and for the proofs of the results, we refer to the chapters above.

This thesis consist of three large parts. The first part handles several intersection problems in projec-
tive and affine geometries. In the second part, we discuss Cameron-Liebler sets in affine, projective
and polar spaces. The last part concerns translation hyperovals in PG(4, ¢), ¢ even, for which we
use linear sets.

A.1 Introduction

Before we start with the first main part, we give a short introduction. In Chapter [1.1|several inci-
dence geometries are defined. The most commonly used incidence geometry in this thesis is the
projective space PG(n, ) of dimension n over the field F, with ¢ elements, ¢ a prime power. This is
the geometry of subspaces of an (n + 1)-dimensional vector space over the same field. The projec-
tive dimension of a subspace in PG(n, ¢) is the vector dimension of the corresponding vector space,
minus one. In this thesis, we only work with projective dimensions. Subspaces of dimension k are
also called k-spaces. The number of points in an n-dimensional projective space is 8,, = qn;_ll_ L
while the number of k-spaces in an n-dimensional projective space is given by the Gaussian bino-

mial coefficient [Ziﬂ .

An affine space AG(n, q) is the incidence geometry obtained from a projective space PG(n, ¢), by
removing an (n — 1)—dimensional space, or hyperplane H, together with all its incident subspaces.
This hyperplane is also called the hyperplane at infinity.

The finite classical polar spaces are incidence geometries embedded in a projective space PG(n, q).
They consist of the totally isotropic subspaces of a vector space V(n + 1;¢), with respect to a
quadratic, symplectic or Hermitian form, and are equipped with the natural incidence relation.

A.2 Intersection problems

The first main part of this thesis handles intersection problems. In this part, we discuss the classifica-
tion of several (large) families of subspaces in projective and affine spaces, that meet pre-established
conditions.
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A.2.1 Sets of k-spaces pairwise intersecting in at least a (k — 2)-space

In this first research project, large families of k-spaces, pairwise intersecting in at least a (k —
2)-space in PG(n, q), are studied. The largest set is a (k — 2)-pencil. This is the set of k-spaces
containing a fixed (k — 2)-space. This was proven for general t-spaces by P. Frankl and R M. Wilson.

Theorem A.2.1. [[60, Theorem 1] Lett and k be integers, with 0 <t < k. Let S be a set of k-spaces
in PG(n, q), pairwise intersecting in at least a t-space.

(i) Ifn > 2k + 1, then |S| < [Z:ﬂ Equality holds if and only if S is the set of all the k-spaces,
containing a fixed t-space of PG(n, q), orn = 2k + 1 and S is the set of all the k-spaces in a
fixed (2k — t)-space.

(i) If 2k — t < n < 2k, then |S| < [Zk,:jl} Equality holds if and only if S is the set of all the
k-spaces in a fixed (2k — t)-space.

In this thesis, the case t = k — 2 is studied. We classify the ten largest maximal examples of sets
of k-spaces pairwise intersecting in at least a (k — 2)-space. For figures of the examples below, we
refer to Chapter 3]

Example A.2.2. Examples of maximal sets S of k-spaces in PG(n, q) pairwise intersecting in at least
a (k — 2)-space.

(1) (k — 2)-pencil: the set S is the set of all k-spaces that contain a fixed (k — 2)-space. Then
‘S| _ [n—l;-&-?] )

(79) Star: there exists a k-space ¢ such that S contains all k-spaces that have at least a (k — 1)-space
in common with (. Then |S| = q0r0,—r—1 + 1.

(17) Generalized Hilton-Milner example: there exists a (k + 1)-space v and a (k — 2)-space m C v
such that S consists of all k-spaces in v, together with all k-spaces of PG(n, q), not in v, through
7 that intersect v in a (k — 1)-space. Then |S| = 011 + ¢*(¢*> + ¢+ 1)0,_p_2.

(tv) There exists a (k + 2)-space p, a k-space « C p and a (k — 2)-space m C « so that S contains
all k-spaces in p that meet o in a (k — 1)-space not through w, all k-spaces in p through T,
and all k-spaces in PG(n, q), not in p, that contain a (k — 1)-space of o through 7. Then
S| =(a+ Db +¢*(g+ D)2 +q" —q

(v) Thereisa (k+2)-space p, and a (k — 1)-space oo C p such that S contains all k-spaces in p that
meet «v in at least a (k — 2)-space, and all k-spaces in PG(n, q), not in p, through «.. Note that
all k-spaces in PG (n, q) through o are contained in S. Then |S| = 0,,_j. + ¢*(¢*> + ¢+ 1)0_1.

(vi) There are two (k + 2)-spaces p1, p2 intersecting in a (k + 1)-space o = p1 N pa. There are two
(k—1)-spacesma, mp C o withmaNmp the (k—2)-space \, there is a point Pap € a\(ma,TB),
and let Ao, Ap C A be two different (k — 3)-spaces. Then S contains

all k-spaces in «,

— all k-spaces of PG(n, q) through (Pap, \), not in p1 and not in pa.

— all k-spaces in p1, not in «, through Pap and a (k — 2)-space in w4 through A 4,
— all k-spaces in py, not in «, through Pap and a (k — 2)-space in mp through \p,
— all k-spaces in po, not in «, through Pap and a (k — 2)-space in 7 4 through A,
— all k-spaces in pa, not in «, through Pap and a (k — 2)-space in wp through \ 4.
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Then |S| = 0, + ¢*0 1 + 4q°.

(vii) Thereis a (k — 3)-space vy contained in all k-spaces of S. In the quotient space PG(n, q)/~, the
set of planes corresponding to the elements of S is the set of planes of example V111 in |33]: Let
U be an (n — k + 2)-space, disjoint from 7, in PG(n, q). Consider two solids o1 and o9 in U,
intersecting in a line l. Take the points P| and P> onl. Then S is the set containing all k-spaces
through (7, 1), all k-spaces through (v, Py) that contain a line in 01 and a line in oo skew to -y,
and all k-spaces through (~, Py) in (7, 01) or in {y,72). Then |S| = 0,_1, + ¢* + 2¢3 + 3¢°.

(viii) Thereis a (k — 3)-space y contained in all k-spaces of S. In the quotient space PG(n, q) /7, the
set of planes corresponding to the elements of S is the set of planes of example 1.X in [33]: Let
U be an (n — k + 2)-space, disjoint from v, in PG(n, q), and let | be a line and o a solid skew
to l, both in ¥. Denote (I, o) by p. Let P, and P> be two points on | and let R, and Rz be a
regulus and its opposite regulus in o. Then S is the set containing all k-spaces through (~y,1),
all k-spaces through (-, P1) in the (k + 1)-space generated by v, and a fixed line of R1, and
all k-spaces through (v, P) in the (k 4 1)-space generated by ~y,l and a fixed line of Ro. Then
S| = 0n_ + 2¢% + 24>

(iz) Thereis a (k — 3)-space 7y contained in all k-spaces of S. In the quotient space PG(n, q)/~, the
set of planes corresponding to the elements of S is the set of planes of example VI 1 in [33]: Let
U be an (n — k + 2)-space, disjoint from ~y in PG(n, q) and let p be a 5-space in V. Consider a
line l and a 3-space o disjoint from [. Choose three points Py, Pa, P3 onl and choose four non-

coplanar points Q1, Qa, Q3, Q4 ino. Denotely = Q1Q2, 11 = Q3Qu, la = Q1Q3, Iz = Q2Qu,
I3 = Q1Q4, and I3 = Q2Q3. Then S is the set containing all k-spaces through (v,1) and all
k-spaces through (v, P;) in (7,1, 1;) orin (7,1,1;),i = 1,2, 3. Then |S| = 0,,_x, + 6¢>.

(x) S is the set of all k-spaces contained in a fixed (k + 2)-space p. Then |S| = [kJZFB]

Main Theorem A.2.3. LetS be a maximal set of k-spaces pairwise intersecting in at least a (k —2)-
space in PG(n,q), n > 2k, k > 3. Let

(k) = 3¢* +6¢° + 5> +q+1 ifk=3,g>20rk=4,qg=2
4 Opr1 + ¢ +2¢% +3¢% else.

If|S| > f(k,q), then S is one of the families described in Example[A.2.3 Note that forn > 2k + 1,
the examples (i) — (ix) are stated in decreasing order of the sizes.

A.2.2 Hilton-Milner problems in PG(n, ¢) and AG(n, q)

As already mentioned above, we know that the largest set of k-spaces, pairwise intersecting in a
t-space in PG(n,q), n > 2k + 1 is a t-pencil. This example is often called the trivial example.
Guo and Xu proved that the largest set of k-spaces pairwise intersecting in a t-space in AG(n, q),
n > 2k +t + 2 is t-pencil as well, see [69]. In Chapter [4| the two largest non-trivial examples of
k-spaces pairwise intersecting in at least a ¢-space, in both PG(n, ¢) and AG(n, q) are classified
for n > 2k 4+t + 3 and q > 3. For this, we suppose that k > ¢ + 1.

We start with examples of ¢-intersecting sets in the projective setting.

Example A.2.4. Suppose k >t + 1 and let~y be a (t + 2)-space in PG(n,q),n > 2k —t + 1. Let S
be the set of all k-spaces in PG(n, q), meeting v in at least a (t + 1)-space.
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Example A.2.5. Letd beat-space,t < k—1,inPG(n,q),n > 2k—t+1, and let§ be a (k+1)-space
inPG(n,q) witho C . Let Sy be the set of all k-spaces in €. Let So be the set of all k-spaces through
0 and meeting £ in at least a (t + 1)-space. Let S be the union of the sets S1 and S5.

Note that these examples correspond to Examples[A.2.2(ii) and (iii) respectively for t = k — 2.
These are the largest non-trivial examples of ¢-intersecting sets of k-spaces in PG(n, q).

Theorem A.2.6. Let S, be a maximal set of k-spaces, pairwise intersecting in at least a t-space in
PG(n,q), k> t+2,t > 1, withq > 3, andn > 2k +t + 3. If S, is not a t-pencil, then

Op1 — Opy + [} 1] — gt DE=O [ M) ifle > 2t 4 2
’SP’ < 0 n—t—17 _ [n—t-2 n—t—2 ifk < 2t + 2 '
t+2 - [kftfl] [k7t72] + [kfth] ifk <2t +2.
Equality occurs if and only if S, is Example[A.2.4 for k < 2t + 2 or Example[A.2.5 for k > 2t + 3.

Now we give two examples of large ¢-intersecting sets of k-spaces in AG(n, ¢). For an affine space «
we denote the projective extension of @ by &, and let Ho, = PG(n, ¢) \ AG(n, q) be the hyperplane
at infinity.

Example A.2.7. Suppose k > t + 1. Let v be an affine (t + 2)-space in AG(n,q), and let R
be a set of ;11 affine (t + 1)-spaces in ~y such that for every two distinct elements 01,02 € R,
01N Hy # 62 N Hy. Note that every two different elements of R meet in an affine t-space. Let S be
the set of all k-spaces in AG(n, q), containing v or meeting ~y in an element of R.

Example A.2.8. Let0 be at-space, k > t+ 1, in AG(n,q), and let £ be a (k + 1)-space in AG(n, q)
with§ C &. Let S1 be a maximal set of affine k-spaces in &, such that for any two elements 7y, o of
S1, 1 N Heo # T2 N Hoo, and such that for every m; € Sy: 5N H ,@ 1. Let Sy be the set of all
k-spaces through 0 and meeting £ in at least a (t + 1)-space. Let S be the union of the sets S1 and Ss.

We find that the largest non-trivial ¢-intersecting sets in AG(n, q) arise from one of these two
examples; which one depends on whether & > 2t + 2 or not.

Theorem A.2.9. Let S, be a maximal set of k-spaces, pairwise intersecting in at least a t-space in
AG(n,q),k>t+2,t> 1, withq > 3,andn > 2k +t + 3. If S, is not a t-pencil, then
5.l < {9k——0kt4—[2‘ﬂ — gD [ k1] > 9t 4 1
al = —t—1 —t—2 —t—2 :
Ot - ([Z—t—l] - [Z—t—2]) + [R2] ifk <2t+1.

Equality occurs if and only if S, is Example[A.2.7 for k < 2t + 1 or Example[A.2.§ for k > 2t + 2.

A.2.3 The Sunflower bound

In the previous sections, we investigate subspaces pairwise intersecting in at least a subspace of a
certain dimension. In Chapter [5| we investigate sets of k-spaces in PG(n, q) pairwise intersecting
in precisely a point. More generally, a (k + 1,¢ + 1)-SCID is a set of k-spaces, pairwise intersecting
in exactly a t-space. An example of such a SCID is the set .S of k-spaces, such that for each 7,7 € S
it holds that m N 7 = ~, for a t-space ~. This example is a sunflower with vertex ~y. The Sunflower
bound states that if the number of elements in a (k + 1,¢ + 1)-SCID S surpasses the Sunflower
bound, then S must be a sunflower.

Theorem A.2.10. [56, Theorem 1] A (k + 1,t 4+ 1)-SCID S in PG(n, q), is a sunflower if

E+1 _ t+1\ 2 k+1 41
\5>(qq_f>+<qq_f>+1
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In Chapter [5| we improve this bound for ¥ > 3and ¢ > 7. For kK = 1 and k = 2, a complete
classification is known: every (k + 1, k)-SCID is a sunflower or consists of all k-spaces in a fixed
(k + 1)-space. For the classification of (3, 1)-SCIDs, we refer to [9].

Theorem A.2.11. A (k + 1,1)-SCID in PG(n, q), k > 3,q > 7, with more than F,07 elements is a
sunflower. Here we use

with

Cq=1———

Vi 24

In particular, we have that a (k + 1,1)-SCID in PG(n, q), with more than (% + % -3 ) 03

elements is a sunflower.

A.2.4 The chromatic number of some ¢g-Kneser graphs

A flag in PG(n, q) is a set F' of non-trivial subspaces of PG(n, q) (that is, different from () and
PG(n, q)) such that for all &, 5 € F one has o C  or § C a. The subset {dim(«a) +1 | a € F'},
where we use the projective dimension, is called the type of F' and it is a subset of {1,2,...,n}.
Two flags F' and G are in general position if « N 5 = 0 or («, 8) = PG(n,q) for all « € F and
B € Gq.

For 1 C {1,2,...,n} the g-Kneser graph ¢K,, 1. is the graph whose vertices are all flags of type
Q of PG(n, q) with two vertices adjacent when the corresponding flags are in general position. We
are interested in the chromatic number of these graphs.

For any point P € PG(n,q), we define the set F(P) as the set of all flags F' of type Q C
{2,3,...,n} for which F' U {P} is a flag. We call Fq(P) the point-pencil (of flags of type ()
with base point P.

We determine the chromatic number of the graphs ¢K75.q for Q = {2,4} and ¢ # 2, and for
qK2q11;{d,a+1}> With d > 2 and g very large.

We used the independence number as well as structural information on large cocliques of ¢ K53 4}
(see [14]), and of ¢K9441,{d,a+1} (see [11] for d = 2 and [94] for d = 3). For d > 4, no structural
information on large cocliques is known yet, and so, in this case, we need an extra assumption, see
Conjecture We could prove the following results.

Theorem A.2.12. For q > 3 the chromatic number of the Kneser graph qKs.( 4y is /3. Moreover,
each color class of a minimum coloring is contained in a unique point-pencil and the base points of the
obtained points-pencil are the points in a fixed solid.

Theorem A.2.13. Forq > 160-36°, the chromatic number of the Kneser graph qKs5,2,3) is CHP+1.
Up to duality, for each color class C' of a minimum coloring there is a unique point-pencil F' such that
F U C is independent, and the base points of these point-pencils are ¢> + ¢* + 1 distinct points of a
solid.
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Theorem A.2.14. Forq > 3 - 7% . 250 the chromatic number of the Kneser graph qK7,(34) is
q* + ¢ + ¢* + 1. Up to duality, for each color class C' of a minimum coloring there is a unique point-
pencil F' such that FUC is independent, and the base points of these point-pencils are ¢* +q> +q¢> + 1
distinct points of a solid.

Conjecture A.2.15. Forevery integerd > 4 there is an integer p(d) such that every maximal coclique
of the Kneser graph qK34,1 {4,4+1) contains a point-pencil, the dual of a point-pencil, or has at most
p(d) - q¥ 42 elements.

Theorem A.2.16. If Conjecture[A.2.15|is true for some integer d > 4, then

X(qK2q41,{d,d+1}) = Oda+1 —

for sufficiently large q, depending on d and p(d). Moreover, if § is a family of this many maximal
cocliques that cover the vertex set, then — up to duality — there exists a (d + 1)-dimensional subspace
U inPG(2d, q) and an injective map i from § to set of points of U such that the point-pencil F (j1(C'))
is contained in C' forall C € §.

A.3 Cameron-Liebler sets

In the second part of the thesis, Cameron-Liebler sets in different contexts are investigated. The cen-
tral thread in this part can be summarized into two questions: What are the equivalent definitions
for these sets, and for which parameters x do there exists Cameron-Liebler sets? We investigate
both questions in projective, affine and polar spaces.

A.3.1 Cameron-Liebler sets of k-spaces in PG(n, q)

We investigate Cameron-Liebler sets of k-spaces in PG(n, ¢). For this, we list several equivalent
definitions for these Cameron-Liebler sets, by generalizing the known results about Cameron-
Liebler line sets in PG(n, ¢), see [51], and Cameron-Liebler sets of k-spaces in PG(2k + 1,q),
see [[104].

Let A be the incidence matrix of the points and the k-spaces of PG(n, q): the rows of A are indexed
by the points and the columns by the k-spaces. Let V;, 0 < ¢ < k, be the eigenspaces of the related
Grassmann scheme, using the classical ordering (see Subsection [10.1.1).

Theorem A.3.1. Let L be a non-empty set of k-spaces in PG(n, q),n > 2k + 1, with characteristic

vector X, and x so that |L| = © [n} . Then the following properties are equivalent.

k
1. x € im(AT).
2. x € ker(A)*.
3. For every k-space 7, the number of elements of L disjoint from 7 is (x — x (7)) [n_]]:_l} gy

k+1 1

4. The vector x — xgw%_lj is a vector in V7.

5 x€eVy L V.
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6. Foragiveni € {1,...,k+ 1} and any k-space 7, the number of elements of L, meeting 7 in a
(k — i)-space is given by:

k+1_q i -1\ atieny [P — k=1 [k )
<($_1)q27¢+1_1+qqq¢_1 )q( 1)[ i ]L] ifrel
[n—k—l
T

k+1

1

. g ifr ¢ L
1—1

7. for every pair of conjugate switching k-sets R and R', we have that |[L NR| = |LNR/|.
IfPG(n, q) admits a k-spread, then the following properties are equivalent to the previous ones.

8. |LNS| =z for every k-spread S in PG(n, q).

9. |L N S| = x for every Desarguesian k-spread S in PG(n, q).

Definition A.3.2. A set L of k-spaces in PG(n, ¢) that fulfills one of the statements in Theorem
(and consequently all of them) is called a Cameron-Liebler set of k-spaces in PG(n, q) with

parameter z = |L|[}] .

Using the information we get from the equivalent definitions, together with some more properties
that we derived, we found classification results for Cameron-Liebler sets of k-spaces in PG(n, q).
First note that a Cameron-Liebler set of k-spaces with parameter 0 is the empty set.
In the following lemma we start with the classification for the parameters x € |0, 2|.

Lemma A.3.3. There are no Cameron-Liebler sets of k-spaces in PG(n, q) with parameter xz € |0, 1],
and if n > 3k + 2, then there are no Cameron-Liebler sets of k-spaces with parameter x € |1,2[. Let
L be a Cameron-Liebler set of k-spaces with parameter v = 1 in PG(n,q),n > 2k + 1. Then L is a
point-pencil orn = 2k + 1 and L is the set of all k-spaces in a hyperplane of PG(2k + 1, q).

We end with the main classification result of this project.

Theorem A.3.4. There are no Cameron-Liebler sets of k-spaces in PG(n, q), n > 3k +2 and q > 3,
n 2 2
with parameter 2 < x < %ﬂ(ﬂ*%*%*%(q — 1)%*%% P +q+1

A.3.2 Cameron-Liebler sets of k-spaces in AG(n, q)

In Section|4.4.3| we give an overview of the most important (equivalent) definition and classification
results for Cameron-Liebler sets in affine spaces, proven in [46] and [44]]. Similar to the definition
of Cameron-Liebler sets of k-spaces in PG(n, ¢), we have the following definition in the affine
context.

Definition A.3.5. A set L of k-spaces in AG(n, ¢q) is a Cameron-Liebler set of k-spaces of param-
eter z in AG(n, q) if every k-spread in AG(n, ¢) has = elements in common with L.

In contrast to k-spreads in PG(n, q), we note that there exist k-spreads in AG(n, q), for every
n > k, which implies that the definition above is well defined.

Due to the immediate link between PG(n,q) and AG(n,q), it is possible to classify Cameron-
Liebler sets in AG(n, q), by using the ideas for the same research project in projective spaces.

Theorem A.3.6. There are no Cameron-Liebler sets of k-spaces in AG(n, q), n > 3k +2 and q > 3,
2 2
with parameter2 < x < %ﬂq%—%—%—%(q — DT @ g+ L
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A.3.3 Degree one Cameron-Liebler sets in finite classical polar spaces

We study the sets of generators defined by the following definition, where A is the incidence matrix
of points and generators.

Definition A.3.7. A degree one Cameron-Liebler set of generators in a finite classical polar space
P is a set of generators in P, with characteristic vector Y, such that y € im(AT). The parameter x
L
H?;(?(lqlﬂﬂ)'
This definition coincides with the definition of Boolean degree one functions for generators in po-
lar spaces, given in [59] by Y. Filmus and F. Ihringer. Their definition corresponds to the fact that
the corresponding characteristic vector lies in V5 L V;, which are eigenspaces of the related asso-
ciation scheme (see Subsection [10.1.1). In [36], M. De Boeck, M. Rodgers, L. Storme and A. Svob
introduced Cameron-Liebler sets of generators in the finite classical polar spaces. In this article,
Cameron-Liebler sets of generators in the polar spaces are defined by the disjointness-definition and
the authors give several equivalent definitions for these Cameron-Liebler sets. Note that this def-
inition is the polar-space-equivalent for the disjointness-definition in the projective context, see

Theorem[A3.1]3.

Definition A.3.8 ([36l]). Let P be a finite classical polar space with parameter e and rank d. A set
L of generators in P is a Cameron-Liebler set of generators in P, with parameter z, if and only if for

every generator 7 in P, the number of elements of £, disjoint from 7 equals (m—x(ﬂ))q(dgl)%(d*l).

of a Cameron-Liebler set £ in the polar space P of rank d and parameter e is equal to

Using association scheme notation we can interpret the previous definition as follows. The char-
acteristic vector of a Cameron-Liebler set is contained in Vy L W, with W the eigenspace of the
disjointness matrix Ay corresponding to a specific eigenvalue. It can be seen that W always con-
tains V7, but it does not necessarily coincide with V. Hence, every degree one Cameron-Liebler set
is a Cameron-Liebler set, and for some polar spaces Cameron-Liebler sets and degree one Cameron-
Liebler sets will coincide, but for others this will not be the case.

Note that we defined degree one Cameron-Liebler sets in an algebraic way. In general, Cameron-
Liebler sets in different contexts can often be defined by using both algebraic and combinatorial
definitions. For these degree one Cameron-Liebler sets, we also found that this is possible, and we
could give an equivalent combinatorial definition.

Theorem A.3.9. Let P be a finite classical polar space, of rank d with parameter e, let L be a set
of generators of P and i be an integer with 1 < ¢ < d. If L is a degree one Cameron-Liebler set
of generators in P, with parameter x, then the number of elements of L meeting a generator 7 in a
(d — 1 — 1)-space equals

(e Dy e [T e

| (A1)
v [C'l - 1] gl'2))+=e Ifrg L.

Moreover, if this property holds for a polar space P and an integer i such that
e iisodd forP =Q%(2d —1,q), or
e i#dforP=Q(2d,q) orP =W (2d — 1, q) both with d odd, or
e i is arbitrary otherwise,

then L is a degree one Cameron-Liebler set with parameter x.
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Apart from these definitions, we also investigated for which values of the parameter x there exists
degree one Cameron-Liebler sets. For degree one Cameron-Liebler sets in W (5, ¢) and Q(6, q) we
found the following classification result.

Theorem A.3.10. A degree one Cameron-Liebler set L of generators in W (5,q) or Q(6,q) with
parameter2 < x < W - @ + % is the union of o embedded hyperbolic quadrics Q% (5, q), that
pairwise have no plane in common, and x — 2« point-pencils whose vertices are pairwise non-collinear
and not contained in the o hyperbolic quadrics Q™ (5, q). For the polar space Q(6, q) or W (5, q) with
q even, a € {0, ..., | 5|}, for the polar space W (5, q) with q odd, o = 0.

A.3.4 New example of a degree one Cameron-Liebler set of generators in Q" (5, ¢)

We give an example of a new, non-trivial Cameron-Liebler set of generators in Q" (5, q), ¢ odd.
To explain the construction of the example, we use the Klein correspondence between the lines of

PG(3, q) and the points of Q1 (5, q).

Consider the hyperbolic quadric Q@ = Q™ (3, ¢) in PG(3, q), defined by the equation xox1 + 273 =
0. The lines of ) correspond to the set of points of two conics C U C” in QT (5, ¢), such that for the
planes a = (C') and o/ = (C"), it holds that o’ is the image of « under the polarity of Q" (5, q).

Every point P € PG(3, q) gives rise to a Latin plane 7/ and a Greek plane 71'5 in Q1 (5,q): the
points of ﬂ'lP corresponds to all lines through P in PG(3, ¢), and the points of 7'('5 corresponds to
all lines in the plane P~. Here, L is the polarity related to the quadric Q in PG(3, q).

Definition A.3.11. A point P(xg, x1,x2,x3) € PG(3, q) is a square point if zox1+x2x3 is a square
different from 0 in Fy. A point P(xq, z1, 22, 23) € PG(3, q) is a non-square point if xox1 + xox3 is
a non-square in .

Now we can partition the set of planes in QT (5, ¢) into the following sets.

- S = {nl’|P is a square point } « Sg = {W;D’P is a square point }
« NS = {7rlP|P is a non-square point} « NS, = {775|P is a non-square point}
-Ol:{wlP|P€Q} -(99:{775|P6Q}

For a tangent line ¢ to (), there are two possibilities; ¢ contains ¢ square points, or ¢ contains ¢
non-square points, see [72] Table 15.5(c)]. In the first case £ is a square tangent line. In the later case,
¢ is a non-square tangent line.

We partition the set of points in @ (5, ¢) into the following sets.
« The set X)g of points in Q" (5, q) corresponding to the square tangent lines to Q.
« The set X} g of points in Q7 (5, ¢) corresponding to the non-square tangent lines to Q.
« The set Xs of points in Q7 (5, q) corresponding to the 2-secants to Q.
« The set X of points in Q" (5, q) corresponding to the lines disjoint from Q.
« The set X, = C U C’ of points in QT (5, q) corresponding to the lines of Q.

We could prove that the partitions { X} g, X1 ng, X2, Xp, X} and
{81,849, NS, NS4, 01,04} form a point-tactical decomposition. By grouping the right partition
classes together, we found new Cameron-Liebler sets in Q7 (5, q).
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Theorem A.3.12. Let q be an odd prime power.

o The sets S, U S, and NS; U NS, are degree one Cameron-Liebler sets of planes in Q™ (5, q),

with parameter @, @ and q + 1 respectively, forq =1 mod 4.

e The sets S; UNS, and S; U N'S; are degree one Cameron-Liebler sets of planes in Q" (5, q),

q(g—1) q(g=1)
2 3

with parameter =5 and q + 1 respectively, forq = 3 mod 4.

A.4 Linear sets

In the last part of this thesis, we discuss a research project about translation hyperovals and Fo-
linear sets. We give a link between the affine points of a translation hyperoval in PG(2, ¢*) and
the set of points of a scattered Fa-linear set of pseudoregulus type in PG(2k — 1, ¢), seen as a set
of directions. For this, we used the Barlotti-Cofman construction, which is a generalization of the
André/Bruck-Bose construction.

The original aim of this research project was to generalize the following result of Barwick and
Jackson.

Result A.4.1 ([[7, Theorem 1.2]). Consider PG(4,q), q even, ¢ > 2, with the hyperplane at infinity
denoted by Y. Let C be a set of ¢* affine points, called C-points and consider a set of planes called
C-planes which satisfies the following properties.

(A1) Each C-plane meetsC in a q-arc.

(A2) Any two distinct C-points lie in a unique C-plane.

(A3) The affine points that are not in C lie on exactly one C-plane.

(A4) Every plane which meets C in at least 3 points either meets C in 4 points or is a C-plane.

Then there exists a Desarguesian spread S in Yo, such that in the André/Bruck-Bose plane P(S)

PG (2, q?), the C-points, together with 2 extra points on {«, form a translation hyperoval in PG(2, ¢?).

In the search for a generalisation, we examined a collection C' of ¢* affine points in PG(2k,q),q
even, ¢ > 2, with similar combinatorial properties. The techniques used by Barwick and Jackson
in the proof of the above result were not generalizable. Hence, we had to look for new techniques,
including the use of linear sets, more specifically, those of pseudoregulus type. We were able to
prove the following result.

Theorem A.4.2. Let Q be a set oqu affine points in PG(2k, q), ¢ = oh h >4, k> 2, determining
a set D of ¢* — 1 directions in the hyperplane at infinity Ho, = PG(2k — 1,q). Suppose that every
line has 0, 1, 3 or ¢ — 1 points in common with the point set D. Then

(1) D is an Fo-linear set of pseudoregulus type.

(2) There exists a Desarguesian spread S in H, such that, in the André/Bruck-Bose plane P(S) =
PG(2,¢"), with H., corresponding to the line |, the points of Q together with 2 extra points
on lso, form a translation hyperoval in PG(2, ¢%).

Vice versa, via the André/Bruck-Bose construction, the set of affine points of a translation hyperoval
in PG(2,q"), ¢ > 4,k > 2, corresponds to a set Q of ¢* affine points in PG(2k, q) whose set of
determined directions D is an Fy-linear set of pseudoregulus type. Consequently, every line meets D
in0,1,3 orq — 1 points.
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A English summary

An immediate corollary of this theorem is the generalization of Result

Theorem A.4.3. Consider PG(2k,q), q even, ¢ > 2, with the hyperplane at infinity denoted by ¥...

Let C be a set of ¢* affine points, called C-points and consider a set of planes called C-planes which
satisfies the following properties.

(A1) Each C-plane meets C in a q-arc.

(A2) Any two distinct C-points lie in a unique C-plane.

(A3) The affine points that are not in C lie on exactly one C-plane.

(A4) Every plane which meets C in at least 3 points either meets C in 4 points or is a C-plane.

Then there exists a Desarguesian spread S in Yoo such that in the André/Bruck-Bose plane P(S) =
PG(2, ¢*), the C-points, together with 2 extra points on (o, form a translation hyperoval in PG (2, ¢*).
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€C  Wiskunde is als zuurstof; als het er is, merk je het niet.
Als het er niet zou zijn, merk je dat je niet zonder kunt. b))

—Lex Schrijver

In deze Nederlandstalige samenvatting geven we een kort overzicht van de belangrijkste begrippen
en resulaten uit deze thesis. Voor meer details en de bewijzen van de resultaten, verwijzen we naar
bovenstaande Engelstalige hoofdstukken.

Deze thesis bestaat uit drie delen. In het eerste deel bespreken we verschillende intersectieproble-
men in projectieve en affiene ruimten. In het tweede deel worden Cameron-Lieblerverzamelingen
in affiene, projectieve en polaire ruimten besproken. Het laatste deel van deze thesis gaat over
translatiehyperovalen in PG(4, ¢), ¢ even, waarbij we gebruik maken van lineaire verzamelingen.

B.1 Inleiding

Voordat we starten met het eerste grote deel, geven we een korte inleiding. In Hoofdstuk[1.1worden
incidentiemeetkundes gedefinieerd. De meest gebruikte incidentiemeetkunde in deze thesis is de
projectieve ruimte PG(n, ¢) van dimensie n over het veld F, met g elementen, ¢ een priemmacht.
Dit is de meetkunde van de deelruimten van een (n + 1)-dimensionale vectorruimte over hetzelfde
veld. De projectieve dimensie van een deelruimte in PG(n, q) is de vectoriéle dimensie van de
overeenkomstige vectorruimte min één. In deze thesis werken we steeds met projectieve dimensies
en deelruimten van dimensie £ worden ook k-ruimten genoemd. Het aantal punten in een n-ruimte

n+1l_q . . . .
4 1 en het aantal k-ruimten in een n-ruimte wordt gegeven door de Gaussische

n+1
fari R

is gelijk aan 6,, =

binomiaalcoéfficient [

Een affiene ruimte AG(n, q) is de incidentiemeetkunde die men verkrijgt door in een projectieve
ruimte PG(n, ¢) een (n — 1)—ruimte, of hypervlak H, samen met alle incidente deelruimten te
verwijderen. Dit hypervlak wordt ook het hypervlak op oneindig genoemd.

De eindige klassieke polaire ruimten zijn incidentiemeetkundes, ingebed in een projectieve ruimte
PG(n,q). Ze bestaan uit de totaal isotrope deelruimten van een vectorruimte V' (n + 1;¢), met
betrekking tot een kwadratische, symplectische of Hermitische vorm, en zijn voorzien van de
natuurlijke incidentierelatie.

B.2 Intersectie problemen

Het eerste deel van deze thesis gaat over intersectie problemen. In dit gedeelte bespreken we de clas-
sificatie van verschillende (grote) verzamelingen van deelruimten in projectieve en affiene ruimten,
die voldoen aan voorop opgestelde voorwaarden betreffende hun paarsgewijze doorsnede.
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B.2.1 Verzamelingen van k-ruimten die paarsgewijs snijden in een (k — 2)-ruimte

In dit eerste onderzoeksproject werden grote verzamelingen van k-ruimten, die paarsgewijs snijden
in minstens een (kK — 2)-ruimte in PG(n, ¢) bestudeerd. Het grootste voorbeeld hiervan is een
(k — 2)-bundel, of de verzameling van k-ruimten die een vaste (k — 2)-ruimte bevatten. Dit werd
bewezen, voor algemene ¢-ruimten door P. Frankl en R.M. Wilson.

Stelling B.2.1 ([60, Theorem 1]). Zijk ent gehele getallen, met0 < t < k, en zij S een verzameling
van k-ruimten in PG(n, q), paarsgewijs snijdend in minstens een t-ruimte.

(i) Alsn > 2k + 1, dan geldt er dat |S| < [Z:ﬂ Gelijkheid geldt enkel en alleen in het geval dat
S de verzameling is van alle k-ruimten die een vaste t-ruimte bevatten, of n = 2k + 1, en S is
de verzameling van alle k-ruimten in een vaste (2k — t)-ruimte.

(ii) Als2k —t < n < 2k, dan geldt er dat |S| < Fk}:jl]. Gelijkheid geldt enkel en alleen in het

geval dat S de verzameling is van alle k-ruimten in een vaste (2k — t)-ruimte.

In deze thesis wordt het geval ¢ = k — 2 behandeld. Hierin worden de tien grootste maximale
voorbeelden, van k-ruimten paarsgewijs snijdend in minstens een (k — 2)-ruimte besproken. Voor
figuren van onderstaande voorbeelden verwijzen we naar Hoofdstuk 3]

Voorbeeld B.2.2. Voorbeelden van maximale verzamelingen S van k-ruimten in PG(n, q) paars-
gewijs snijdend in een (k — 2)-ruimte.

(1) (k — 2)-bundel: de verzameling S van alle k-ruimten die een vaste (k — 2)-ruimte bevatten.
Dan is |S| = ["_§+2].

(79) Ster: er bestaat een k-ruimte ¢ zodat S alle k-ruimten bevat die minstens een (k — 1)-ruimte
gemeen hebben met (. Dan is |S| = 030, —k—1 + 1.

(7i1) Veralgemeend Hilton-Milner voorbeeld: er bestaat een (k + 1)-ruimte v en een (k — 2)-ruimte
m C v zodat S bestaat uit alle k-ruimten in v, samen met alle k-ruimten door 7 die v snijden
in minstens een (k — 1)-ruimte. Dan is |S| = 041 + ¢*(¢*> + ¢ + 1)0,_p_o.

(iv) Er bestaat een (k + 2)-ruimte p, een k-ruimte « C p en een (k — 2)-ruimte m C «, zodat S alle
k-ruimten in p bevat die « snijden in een (k — 1)-ruimten niet door 7, alle k-ruimten in p door
m, en alle k-ruimten in PG(n, q), niet in p, die een (k — 1)-ruimte van « door m bevatten. Dan
is|S| = (¢4 1)0n—k+ (g + 1)0k—2+ ¢* — q.

(v) Er bestaat een (k + 2)-ruimte p, en een (k — 1)-ruimte o« C p zodat S alle k-ruimten van
p bevat die v snijden in minstens een (k — 2)-ruimte, en alle k-ruimten in PG(n, q), door «
en niet in p. Merk op dat alle k-ruimten in PG(n, q) door a bevat zijn in S. Dan is |S| =
On—i +a°(@* + g+ 1)0k—1.

(vi) Er bestaan twee (k + 2)-ruimten py, p2, snijdend in een (k + 1)-ruimte oo = p1 N p2. Daarnaast
zijn er twee (k — 1)-ruimten w4, mp C o met w4 N wp gelijk aan de (k — 2)-ruimte \, en een
punt Pap € a\ (ma,mp). Stel Aa, \p C X gelijk aan twee verschillende (k — 3)-ruimten. Dan
bevat S de volgende elementen

— alle k-ruimten in «,
— alle k-ruimten van PG(n, q) door (Pap, \), maar niet bevat in p; of pa.
— alle k-ruimten in py, niet in c, door het punt Pop en een (k — 2)-ruimte in 74 door A 4,

— alle k-ruimten in py, niet in c, door het punt Pop en een (k — 2)-ruimte in mp door \p,
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— alle k-ruimten in pa, niet in «, door het punt Psp en een (k — 2)-ruimte in 74 door Ap,
— alle k-ruimten in po, niet in «, door het punt Pap een een (k — 2)-ruimte in g door A 4.
Danis |S| = 0, + ¢*0x_1 + 4¢°>.

(vii) Erbestaat een (k—3)-ruimte~y bevat in alle k-ruimten van S. In de quotiéntruimte PG(n, q) /7,
is de verzameling van vlakken, komende van de elementen van S, de verzameling van de vlakken
van voorbeeld V111 in [33]: beschouw een (n — k + 2)-ruimte ¥, scheef aan vy, in PG(n, q).
Beschouw twee drie-ruimten o1 en oy in U, sijdend in een rechte l. Neem twee punten P en Py
opl. Dan is S de verzameling van alle k-ruimten door (y, 1), alle k-ruimten door (v, Py) die een
rechte in o1 en een rechte in oo scheef aan +y bevatten, en alle k-ruimten door (7, P2) in (v, 01)
of in (7, 02). Dan is |S| = 0,,_r + ¢* + 2¢> + 3¢>.

(viii) Erbestaat een (k—3)-ruimte-y bevat in alle k-ruimten van S. In de quotiéntruimte PG(n, q) /7,
is de verzameling van vlakken, komende van de elementen van S, de verzameling van de vlakken
van voorbeeld I X in [33]: Beschouw een (n — k + 2)-ruimte U, scheef aan y, in PG(n, q), en
beschouw een rechte | en een drie-ruimte o scheef aan I, en beide bevat in V. Stel p = (I, 0).
Beschouw twee punten P; en Py op [, en beschouw een regulus R en zijn tegenovergestelde
regulus Ry in 0. Dan is S de verzameling van alle k-ruimten door (v, 1), alle k-ruimten door
(7, P1) in de (k+1)-ruimte opgespannen door -y, | en een vaste rechte van R1, en alle k-ruimten
door (7, P3) in de (k + 1)-ruimte opgespannen door ~y,l en een vaste rechte van Ry. Dan is
S| = On—k +2¢° + 2¢°.

(iz) Erbestaat een (k—3)-ruimte~y bevat in alle k-ruimten van S. In de quotiéntruimte PG(n, q) /7,
is de verzameling van vlakken, komende van de elementen van S, de verzameling van de vlakken
van voorbeeld V11 in [33]: Zij ¥ een (n — k + 2)-ruimte, disjunct aan v in PG(n, q) en zij p
een 5-ruimte in W. Beschouw een rechte | en een 3-ruimte o, disjunct aan l. Kies drie punten
Py, Po, P opl en kies vier niet-coplanaire punten QQ1, Q2, 3, Q4 in 0. Stel i = (Q1Q2,
I =Q3Q4 1 = Q1Q3, 1o = Q2Qu4, 13 = Q1Q4, enlz = Q2Q3. Dan is S de verzameling van
alle k-ruimten door (y,1) en alle k-ruimten door (y, P;) in (v,1,1;) of in {v,1,1;),i = 1,2,3.
Dan is |S| = 0, + 64>.

k+3] )

(z) S is de verzameling van alle k-ruimten in een vaste (k + 2)-ruimte p. Dan is |S| = "7

Hoofdstelling B.2.3. Zij S een maximale verzameling van k-ruimten, paarsgewijs snijdend in
minstens een (k — 2)-ruimte in PG(n,q),n > 2k, k > 3. Zij

Flkoq) = 3¢ +64° +5¢° +q+1 alsk=3,qg>20fk=4,q=2,
’ Oki1 +q* +2¢° + 3¢ anders.

Als|S| > f(k,q), dan is S één van de verzamelingen beschreven in Voorbeeld[B.2.2 Merk op dat voor
n > 2k + 1, de voorbeelden (i) — (ix) vermeld staan in dalende volgorde van grootte.

B.2.2 Hilton-Milner problemen in PG(n, ¢) en AG(n,q)

Zoals hierboven reeds vermeld, is het geweten dat het grootste voorbeeld van k-ruimten, paars-
gewijs snijden in een ¢t-ruimte in PG(n, q), n > 2k + 1 een t-bundel is. Dit voorbeeld wordt soms
ook het triviale voorbeeld genoemd. Guo en Xu bewezen dat het grootste voorbeeld voor k-ruimten
paarsgewijs snijdend in een t-ruimte in AG(n, q), n > 2k + t + 2 ook een t-bundel is, zie [69]. In
hoofstuk [4 worden de twee grootste niet-triviale voorbeelden van k-ruimten, paarsgewijs snijdend
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in een t-ruimte, in zowel PG(n, ¢q) als AG(n, q) geclassificeerd voor n > 2k +t + 2 en q > 3.
Hierbij veronderstellen we dat k& > .

We starten met ¢-snijdende verzamelingen in een projectieve setting.

Voorbeeld B.2.4. ZijI" een (t + 2)-ruimte in PG(n,q), n > 2k —t + 1. Stel S gelijk aan de
verzameling van alle k-ruimten in PG(n, q), die I snijden in minstens een (t + 1)-ruimte.

Voorbeeld B.2.5. Zij § een t-ruimte in PG(n,q), n > 2k —t + 1, en zij  een (k + 1)-ruimte in
PG(n,q) met§ C . Zij S1 de verzameling van alle k-ruimten in . Zij So de verzameling van alle
k-ruimten door ¢ die & snijden in minstens een (t + 1)-ruimte. De verzameling S is de unie van de
verzamelingen S en Ss.

Merk op dat bovenstaande voorbeelden, voor ¢t = k — 2 overeenkomen met Voorbeeld [B.2.2(i7) en
(7i7) respectievelijk. Deze voorbeelden zijn de grootste niet-triviale voorbeelden van t-snijdende
veramelingen van k-ruimten in PG(n, q).

Stelling B.2.6. Zij S, een maximale verzameling van k-ruimten, paarsgewijs snijdend in minstens
een t-ruimte in PG(n,q),k > t+2,t > 1, metq > 3,enn > 2k +t+ 3. Als Sy verschillend is van
een t-bundel, dan is

e ol e
pl —= n—t—1 n—t—2 n—t—2 :

Oz - ([0 — [03)) + [ als b < 2 +2.
Gelijkheid geldt als en slechts als S, gelijk is aan Voorbeeld[B.2.4 voor k < 2t + 2 of Voorbeeld[B.2.5
voor k > 2t + 3.

Nu geven we twee voorbeelden van grote ¢-snijdende verzamelingen van k-ruimten in AG(n, q).
Voor een affiene ruimte v noteren we de projectieve uitbreiding van « als &, en stel vervolgens

H,, = PG(n,q) \ AG(n, q) gelijk aan het hypervlak op oneindig.

Voorbeeld B.2.7. ZijT" een affiene (t + 2)-ruimte in AG(n, q), en zij R een verzameling van 0,1
affiene (t + 1)-ruimten in I' zodat voor elke twee verschillende elementen 01,09 € R, 61 N Hoo #
09 N Hoo. Merk op dat elke twee verschillende elementen van R snijden in een affiene t-ruimte. Dan is
S de verzameling van alle k-ruimten in AG(n, q), dieI' bevatten of I snijden in een element van R.

Voorbeeld B.2.8. Zij § een t-ruimte in AG(n, q), en zij & een (k + 1)-ruimte in AG(n, q) metd C &.
Stel S1 een maximale verzameling van affiene k-ruimten in £, zodat voor elke twee elementen 1y, o
van S1, T N Hoo # 72 N Hyo, en zodat voor elke my € Sy: 5N H QZ 1. Stel So de verzameling
van alle k-ruimten door 0 die £ snijden in minstens een affiene (t + 1)-ruimte. Dan is S de unie van
de twee verzamelingen S en Ss.

We vinden dat de grootste niet triviale voorbeelden van t¢-snijdende verzamelingen in AG(n, q)
komen van bovenstaande voorbeelden.

Stelling B.2.9. Zij S, een maximale verzameling van k-ruimten, paarsgewijs snijdend in minstens
eent-ruimte in AG(n,q), k >t+2,t > 1, metq > 3, enn > 2k +t + 3. Als S, verschillend is van
een t-bundel, dan is
5l < Ok — O + [ — g tFDE=D [V ET alsk > 2t 41
UV (N - L)+ ) ask<2tt L,
Gelijkheid geldt als en slechts als S, gelijk is aan Voorbeeld[B.2.7 voor k < 2t + 1 of Voorbeeld[B.2.§
voor k > 2t + 2.
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B.2.3 De Zonnebloemgrens

In de vorige hoofdstukken bestudeerden we deelruimten paarsgewijs snijdend in minstens een deel-
ruimte van een zeker dimensie. In Hoofdstuk[5|worden verzamelingen S van k-ruimten in PG(n, q)
onderzocht, met de eigenschap dat de elementen van S paarsgewijs snijden in precies een punt.
Meer algemeen is een (k + 1,¢ + 1)-SCID een verzameling van k-ruimten, paargeswijs snijdend
in precies een t-ruimte in PG(n,q). Een voorbeeld van zo een SCID is de verzameling S van
k-ruimten, zodat voor elke 7,7 € S er geldt dat # N 7 = « voor een vaste t-ruimte . Dit voor-
beeld is een zonnebloem met centrum . De Zonnebloemgrens stelt dat, als het aantal elementen van
(k+1,t+ 1)-SCID S, deze grens overschrijdt, dan moet S een zonnebloem zijn.

Stelling B.2.10 ([56, Theorem 1]). Een (k + 1,t + 1)-SCID S in PG(n, q), is een zonnebloem als
k+1 _ t+1\ 2 k+1 _ 41
s> (CTmdTY T (o
q—1 q—1

In Hoofdstuk [5| wordt bewezen dat deze grens, voor ¢ = 0, kan verbeterd worden voor k£ > 3 en
g > 7. Voor k = 1en k = 2, is er een complete classificatie gekend: Elke (k + 1, k)-SCID is
een zonnebloem of bestaat uit alle k-ruimten in een vaste (k + 1)-ruimte. Voor de classificatie van
(3,1)-SCID’s, verwijzen we naar [9].

Stelling B.2.11. Een verzameling an k-ruimten in PG(n, q), k > 3,q > 7, die paarsgewijs snijden
in precies een punt, met meer dan Fqﬁz elementen is een zonnebloem. Hierbij gebruiken we

1({B, 1 1 B,\* 1
Fo=- | —-—y/{-—=L) 4B, (5 -1
2\ ¢ q c2 cz

met
5 1)? Cq 1+¢q4
By=(1-¢g)" (1-¢cg— = l—cg——)|1—cqg— q,
q q
1 1
cg=1——— :
Vi o 294
In het bijzonder vinden we dat een dergelijke verzameling met meer dan <% + %\/@ - %) 02 ele-

menten een zonnebloem is.

B.2.4 Het chromatisch getal van enkele ¢-Kneser grafen

Een viag in PG(n, q) is een verzameling F' van niet-triviale deelruimten van PG(n, ¢) (dus, deel-
ruimten verschillend van () en PG(n, q)) zodat voor alle o, 8 € F er geldt dat & C 5 of 8 C . De
deelverzameling {dim(«) + 1 | a € F'}, waarbij we gebruik maken van de projectieve dimensie,
wordt het type van F' genoemd, en is bevat in {1,2,...,n}. Twee vlaggen I en G zijn in algemene
positie als a N 3 = O of (a, B) = PG(n, q) vooralle« € Fen 3 € G.

Voor 2 C {1,2,...,n} is de g-Knesergraaf ¢/, 1. de graaf waarin de toppen overeenkomen met
de vlaggen van type 2 in PG(n, ¢), en waarin twee toppen zijn adjacent, als de overeenkomstige
vlaggen in algemene positie zijn. Wij zijn geinteresseerd in het chromatisch getal van deze grafen.
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Voor een punt P € PG(n, q), definiéren we de verzameling F(P) als de verzameling van alle
vlaggen F van type Q@ C {2,3,...,n} waarvoor F' U {P} ook een vlag is. We noemen deze
verzameling Fo(P) de punt-bundel (van vlaggen van type (2) met basispunt P.

We bepaalden het chromatisch getal van de grafen ¢K5.q voor 8 = {2,4} en ¢ # 2, en voor
qK2q41,{d,d+1}> met d > 2 en g heel groot.

We gebruikten het cokliekgetal, samen met structurele informatie over grote coklieken van ¢ K, (5 4}
en qKy441,{d,d+1}> ¢ = 2. Deze structurele informatie is te vinden in de Hilton-Milner type resul-
taten in [[14] voor ¢Ks,(9 4}, in [11] voor ¢Koq1 (g,d+1}> met d = 2 enin [94] voor ¢Koq 11 {4,a+1}
metd = 3. Voord > 4is er geen structurele informatie gekend over grote coklieken in ¢K41 1 {4,441}
Daarom nemen we, in dit geval, een extra assumptie aan, zie Vermoeden We vonden de vol-
gende resultaten.

Stelling B.2.12. Voor ¢ > 3 is het chromatisch getal van de Knesergraaf qKs.(3 4y gelijk aan 0s.
Daarnaast is elke kleurklasse van een minimale kleuring bevat in een punt-bundel. De basispunten
van deze punt-bundels zijn de punten van een drie-ruimte.

Stelling B.2.13. Voorq > 160 - 36°, is het chromatisch getal van de Knesergraaf qKs.( 3y gelijk aan
03 — q. Op dualiteit na, is er voor elke kleurklasse van een minimale kleuring een unieke punt-bundel
F, zodat F'U C' een cokliek is. De basispunten van deze punt-bundels zijn 05 — q verschillende punten
van een drie-ruimte.

Stelling B.2.14. Voorq > 3 - 71° - 2°0_ is het chromatisch getal van de Knesergraaf qK7.(3 4y gelijk
aan 04 — q. Op dualiteit na, is er voor elke kleurklasse van een minimale kleuring een unieke punt-
bundel F', zodat F' U C een cokliek is. De basispunten van deze punt-bundels zijn 04 — q verschillende
punten van een vier-ruimte.

Vermoeden B.2.15. Voor elk natuurlijk getal d > 4 bestaat er een p(d) € N, zodat elke maxi-
male cokliek van de Knesergraaf qKoq1 (a,4+1} een punt-bundel, het duale van een punt-bundel, of

hoogstns p(d) - ¢*" +2=2 elementen bevat.

Stelling B.2.16. Als Vermoeden|[B.2.15 waar is voor een zeker natuurlijk getal d > 4, dan is

X(9K2d11,{d,d+1}) = ba+1 —

voor q voldoende groot, afhankelijk van d en p(d). Bijkomend, als § een familie is van dit aantal
maximale coklieken die de volledige toppenverzameling bedekt, dan bestaat er — op dualiteit na — een
(d+1)-ruimte U in PG(2d, q) en een injectieve afbeelding p van § naar een verzameling van punten

van U, zodat de punt-bundel F (11(C)) bevat is in C voor alle C' € §.

B.3 Cameron-Lieblerverzamelingen

In het tweede deel van deze thesis worden Cameron-Lieblerveramelingen, in verschillende con-
texten onderzocht. De rode draad in dit deel kan samengevat worden met twee centrale vragen;
wat zijn de equivalent definities voor deze verzamelingen, en voor welke parameters = bestaan er
Cameron-Lieblerverzamelingen? We onderzoeken beide vragen in projectieve, affiene en polaire
ruimten.
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B.3.1 Cameron-Liebler k-ruimten in PG(n, q)

We onderzoeken Cameron-Lieblerverzamelingen van k-ruimten in PG(n, ¢). Hiervoor lijsten we
verschillende equivalente definities op voor deze verzamelingen, door de gekende resultaten voor
Cameron-Liebler rechte verzamelingen in PG(n, q), zie [51], en Cameron-Lieblerverzamelingen
van k-ruimten PG(2k + 1, q), zie [104], te veralgemenen.

Zij A de incidentiematrix van de punten en k-ruimten van PG(n, q): de rijen van A zijn gelabeld
door de punten, en de kolommen door de k-ruimten. Zij V;, 0 < ¢ < k, de eigenruimten van het
bijhorende Grassmannschema, in de klassieke ordening, zie Hoofdstuk[10.1.1

Stelling B.3.1. Zij L een niet-ledige verzameling van k-ruimten in PG(n,q),n > 2k + 1, met
n

karakteristieke vector x, en x zodat |L| = x { P

} . Dan zijn de volgende eigenschappen equivalent.

1. x € im(A7T).
2. x € ker(A)*.

n—k—l] qk2+k.

3. Voor elke k-ruimte is het aantal elementen van L scheef aan gelijk aan (z—x(m)) [~}

gFti-1 . . .
4. De vector x — T 1] Is een vector in V1.
5 x€WLlW.

6. Voor een gegeveni € {1,...,k + 1} en een k-ruimte 7, is het aantal elementen van L, die
snijden in een (k — i)-ruimte, gegeven door:

kt+1_ iqn—h— i) I —k—=1] |k
((x_l)qg—iﬂ,ll +4q qqi_ll)q( 1)[ ] [z] alsme L

1 —1
[n—k—l
T

E+1

]

, AGY) alsm & L
1—1

7. Voor elk paar van toegevoegde omwisselende k-verzamelingen R en R/, geldt er dat |[L N R| =
ILNTR.

Als er k-spreads bestaan in PG(n, q), dan zijn de volgende eigenschappen equivalent aan de vorige.
8. |LNS| =z voor elke k-spread S in PG(n, q).
9. |£L N S| = x voor elke Desarguesiaanse k-spread S in PG(n, q).
Definitie B.3.2. Een verzameling £ van k-ruimten in PG(n, ¢) die voldoet aan één van de eigen-
schappen in Stelling (en dus aan ze allemaal) wordt een Cameron-Lieblerverzameling van k-

ruimten in PG(n, q) genoemd, met parameter x = |L| [z] -1

Gebruik makend van de informatie uit de equivalente definities, samen met enkele extra eigen-
schappen, vonden we verschillende classificatieresultaten voor Cameron-Lieblerverzamelingen van
k-ruimten in PG(n, ¢). Merk op dat een Cameron-Lieblerverzameling van k-ruimten met param-
eter 0 gelijk is aan de ledige verzameling.

In het volgende lemma geven we de classificatie van de parameters x € |0, 2|.
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Lemma B.3.3. Er bestaat geen Cameron-Lieblerverzameling van k-ruimten in PG(n, q) met param-
eterx €10, 1], en voorn > 3k+2, bestaan er ook geen Cameron-Lieblerverzamelingen van k-ruimten
met parameter © € |1,2[. Zij L een Cameron-Lieblerverzameling van k-ruimten met parameter x = 1
in PG(n,q),n > 2k + 1. Dan is L een punt-bundel, of n = 2k + 1 en L is de verzameling van alle
k-ruimten in een hypervlak van PG(2k + 1, q).

We eindigen met het belangrijkste classificatieresultaat uit dit project.

Stelling B.3.4. Er bestaan geen Cameron-Lieblerverzamelingen van k-ruimten in PG(n,q), n >
n 2 p 2
3k +2enq > 3, met parameter2 < x < siﬁqif%*%*%(q — 1)%*§+%, /@ +q+ 1.

B.3.2 Cameron-Liebler k-ruimten in AG(n, q)

In Hoofdstuk [4.4.3] geven we een overzicht van de belangrijkste (equivalente) definities en classi-
ficatieresultaten voor Cameron-Lieblerverzamelingen in affiene ruimten. De resultaten in dit hoofd-
stuk werden bewezen in [46]] en [[44]. Vergelijkbaar met de definitie van Cameron-Lieblerverzamelingen
van k-ruimten in PG(n, ¢), kunnen we Cameron-Lieblerverzamelingen in AG(n, ¢) als volgt definiéren.

Definitie B.3.5. Een verzameling £ van k-ruimten in AG(n, q) is een Cameron-Lieblerverzameling
van k-ruimten in AG(n, q) met parameter x als en slechts als elke k-spread in AG(n, ¢) x elementen
gemeen heeft met L.

In tegenstelling tot k-spreads in PG(n, ¢) zien we dat er k-spreads bestaan in AG(n, ¢), voor elke
n > k, wat impliceert dat de bovenstaande definitie goed gedefinieerd is.

Door het onmiddellijke verband tussen PG(n, ¢) en AG(n, q) is het mogelijk om Cameron-Lieblerverzamelingen
in AG(n, q) te classificeren, door gebruik te maken van de ideeén voor hetzelfde onderzoeksproject
in projectieve ruimten.

Stelling B.3.6. Er bestaan geen Cameron-Lieblerverzamelingen van k-ruimten in AG(n,q), n >
n 2 2
3k +2enq > 3, met parameter2 < x < %qi‘%_%_%(q — 1)%‘%4'%, /g2 4+ q+ 1.

B.3.3 Cameron-Lieblerverzamelingen van graad één in eindige klassieke polaire
ruimten

In dit hoofdstuk bestuderen we Cameron-Lieblerverzamelingen van graad één, van generatoren in
eindige klassieke polaire ruimten. De matrix A is de incidentiematrix van punten en generatoren.

Definitie B.3.7. Een Cameron-Lieblerverzameling van graad één van generatoren in een eindige
klassieke polaire ruimte P is een verzameling van generatoren in P, met karakteristieke vector x
zodat x € im(AT).

Deze definitie kan gelinkt worden aan de definitie van een Boolean degree one functie voor gen-
eratoren in polaire ruimten, zie [59)]. De definitie in dit artikel komt overeen met het feit dat de
karakteristieke vector van de verzameling gelegen is in V5 L Vj. Dit zijn de eigenruimten van
het bijhorende associatie schema (zie Sectie . In [36], M. De Boeck, M. Rodgers, L. Storme en
A. Svob introduceerden Cameron-Lieblerverzamelingen van generatoren in eindige klassieke po-
laire ruimten. In dit artikel, worden Cameron-Lieblerverzamelingen van generatoren in een polaire
ruimte gedefinieerd door de disjunctheidsdefinitie. Daarbij geven de auteurs verschillende equiv-
alente definities voor deze verzamelingen. Merk op dat deze definitie de polaire-ruimte-versie is
voor de disjunctheidsdefinitie in de projectieve context, zie Stelling [B.3.1] 3.
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Definitie B.3.8 ([36]]). Zij P een eindige klassieke polaire ruimte met parameter e en rang d. Een
verzameling £ van generatoren in P is een Cameron-Lieblerverzameling van generatoren in P,
met parameter x, als en slechts als voor elke generator 7 in P, het aantal elementen van £, disjunct
aan 7 is gelijk aan (x — X(ﬂ'))q(d;)"'e(d_l).

We kunnen deze definitie, gebruik makend van de notatie van associatie schema’s, als volgt in-
terpreteren. De karakteristieke vector van een Cameron-Lieblerverzameling is bevat in V 1L W,
met W de eigenruimte van de disjunctie matrix A4, horende bij een specificke eigenwaarde. Men
kan inzien dat V; steeds bevat is in W, maar het is er niet steeds aan gelijk. Hieruit volgt dat elke
Cameron-Lieblerverzameling van graad één ook een Cameron-Lieblerverzameling is.

Elke Cameron-Lieblerverzameling van graad één is dus een Cameron-Lieblerverzameling, en voor
sommige polaire ruimten vallen Cameron-Lieblerverzamelingen en Cameron-Lieblerverzamelingen
van graad één samen, maar voor andere zal dit niet het geval zijn.

Merk op dat we Cameron-Lieblerverzamelingen van graad één op een algebraische manier gedefini-
eerd hebben. Over het algemeen kunnen Cameron-Lieblerverzamelingen, in verschillende contex-
ten, gedefinieerd worden door zowel algebraische als combinatorische definities te gebruiken. Voor
deze Cameron-Lieblerverzamelingen van graad één vonden we ook dat dit mogelijk is, en vonden
we een equivalente combinatorische definitie.

Stelling B.3.9. Zij P een eindige klassieke polaire ruimte, van rang d met parameter e, zij L een
verzameling van generatoren van P en i een natuurlijk getal met 1 < i < d. Als L een Cameron-
Lieblerverzameling van graad één, van generatoren in P is, met parameter x, dan is het aantal ele-
menten van L dat een generator 7 snijdt in een (d — i — 1)-ruimte gelijk aan

<($ 1 [Zl: ﬂ terr [d; 1D (2D gl e L

Bovendien, als deze eigenschap geldt voor een polaire ruimte P en een geheel getal i zo dat
* i is oneven voor P = QT (2d — 1, q),
e i # dvoorP =Q(2d,q) of P =W (2d — 1,q), beide met d oneven of
e ¢ is willekeurig in de andere gevallen,

dan is L een Cameron-Lieblerverzameling van graad één met parameter x.

Verder onderzochten we ook voor welke waarden van de parameter x er een Cameron-Lieblerverzameling
van graad één bestaat. Voor Cameron-Lieblerverzamelingen van graad één in W (5, q) en Q(6, q)
vonden we het volgende classificatieresultaat.

Stelling B.3.10. Een Cameron-Lieblerverzameling L van graad één van generatoren in W (5, q) of
Q(6, q) met parameter2 < x < W— @—I—é is de unie van o ingebedde hyperbolische kwadrieken
Q% (5, q), die paarsgewijs geen enkel viak gemeen hebben, en x — 2 punt-bundels waarvan de basis-
punten paarsgewijs niet-collineair zijn en niet bevat in de o hyperbolische kwadrieken Q™ (5, q). Voor
de polaire ruimte Q(6,q) of W (5, q) met q even, a € {0,..., | 5]}, voor de polaire ruimte W (5, q)
met q oneven, o = 0.
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B.3.4 Nieuw voorbeeld van een Cameron-Lieblerverzameling van graad één van
generatoren in Q7 (5, q)

We geven een voorbeeld van een nieuwe, niet-triviale Cameron-Lieblerverzameling van genera-
toren in Q1 (5, ¢), ¢ oneven. Om de constructie van het voorbeeld uit te leggen, maken we gebruik
van de Klein-correspondentie tussen de rechten van Q" (3, ¢) en de punten van Q* (5, ).

Beschouw de hyperbolische kwadriek Q@ = Q1 (3, q) in PG(3, ¢), gedefinieerd door de vergelijking
xox1 + z2x3 = 0. De rechten van () corresponderen met de puntenverzameling van twee kegels
CuUC" in Q% (5,q), zo dat voor de vlakken o = (C) en o/ = (C”) geldt dat o’ het beeld is van «
onder de polariteit van Q" (5, q).

Elk punt P € PG(3, q) geeft aanleiding tot een Latijns vlak /" en een Grieks vlak 71'5 in Q7 (5,q):

de punten van 7/ corresponderen met alle rechten door P in PG(3, ¢), en de punten van 775 cor-

responderen met alle rechten in het vlak P. Hierbij is L de polariteit gerelateerd aan de kwadriek
Q@ in PG(3,q).

Definitie B.3.11. Een punt P(xg,x1,x2,23) € PG(3,q) is een kwadraatpunt als zox1 + xows
een kwadraat verschillend van 0 is in Fy. Een punt P(zg,z1,22,23) € PG(3,q) is een niet-
kwadraatpunt als xox1 + x223 een niet-kwadraat is in .

Nu kunnen we de verzameling vlakken in QT (5, ¢) verdelen in de volgende verzamelingen.

« § = {7rlP|P is een kwadraatpunt} o Sy = {71'5|P is een kwadraatpunt}
« NS = {ﬂ'lp | P is een niet-kwadraatpunt} « NS, = {W;D |P is een niet—kwadraatpunt}
-OZZ{WZP]PGQ} -(99:{7r§|P€Q}

Voor een raaklijn £ aan () zijn er twee mogelijkheden; ¢ bevat ¢ kwadraatpunten, of ¢ bevat ¢ niet-
kwadraatpunten, zie [[72] Tabel 15.5(c)]. In het eerste geval is £ een kwadraatraaklijn. In het tweede
geval is £ een niet-kwadraatraaklijn.

We verdelen de punten in Q™ (5, ¢) op in de volgende verzamelingen.

« De verzameling X g van punten in Q" (5, ¢) die overeenkomen met de kwadraatraaklijnen
aan Q).

« De verzameling X} y g van punten in Q" (5, ¢) die overeenkomen met de niet-kwadraatraaklijnen
aan Q.

« De verzameling X van punten in Q" (5, ¢) die overeenkomen met de twee-secanten aan Q.

« De verzameling Xy van punten in Q* (5, q) die overeenkomen met de rechten disjunct aan

0.

« De verzameling X, = C'U C’ van punten in Q" (5, ¢) die overeenkomen met de rechten in

Q.

We konden aantonen dat de partities { X1 g, X1 ng, X2, Xp, X } en {S;, Sy, NS;, NSy, O, Oy} een
punt-tactische decompositie vormen. Door de juiste partitieklassen te groeperen, vinden we nieuwe
Cameron-Lieblerverzamelingen in QT (5, q).

Stelling B.3.12. Zij q een oneven priemmacht.
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e De verzamelingen S; U Sy, en NS; UN'S, zijn Cameron-Lieblerverzamelingen van graad één

van vlakken in Q7 (5,q), met parameter @, @

mod 4.

en q + 1 respectievelijk, voor ¢ = 1

e De verzamelingen S; UNS, en S; U N'S; zijn Cameron-Lieblerverzamelingen van graad één

van vlakken in Q" (5,q), met parameter @, @

mod 4.

en q + 1 respectievelijk, voor ¢ = 3

B.4 Lineaire verzamelingen

In het laatste deel van deze thesis bespreken we een onderzoeksproject over translatiehyperovalen
en [y-lineaire verzamelingen. We geven een verband tussen de affiene punten van een trans-
latiehyperovaal in PG(2, ¢*) en de puntenverzameling van een geschatterde Fa-lineaire verzamel-
ing van het pseudoregulustype in PG(2k — 1, ¢), gezien al een verzameling van richtingen. Hier-
voor gebruikten we de Barlotti-Cofman constructie, die een veralgemening is van de André/Bruck-
Boseconstructie.

Het oorspronkelijke doel van dit onderzoeksproject was om het volgende resultaat van Barwick en
Jackson te veralgemenen.

Resultaat B.4.1 ([7, Theorem 1.2]). Beschouw PG(4,q), q even, ¢ > 2, met het hyperviak op
oneindig, aangeduid door Y. Zij C' een verzameling van q° affiene punten, genaamd C-punten en
beschouw een verzameling vlakken, genaamd C-vlakken, die voldoet aan de volgende eigenschappen.

(A1) Elk C-vlak snijdt C in een q-boog.
(A2) Elke twee verschillende C-punten liggen in een uniek C-vlak.
(A3) De affiene punten, niet in C, liggen op precies één C-vlak.

(A4) Elk vilak dat minstens 3 punten van C bevat, bevat precies 4 punten van C of is een C-viak.

o~

Dan bestaat er een Desarguesiaanse spread S in Yoo zodat dat in het André/Bruck-Bose vlak P(S)
PG(2, ¢%) deC-punten samen met 2 extra punten op £, een translatiehyperovaal vormen in PG(2, ¢%).

Bij de zoektocht naar een veralgemening onderzochten we een verzameling C van ¢* affiene punten
in PG(2k, q), q even, ¢ > 2, met gelijkaardige combinatorische eigenschappen. De technieken die
Barwick en Jackson gebruikten in het bewijs van bovenstaand resultaat waren niet veralgemeen-
baar. Daardoor zijn we op zoek gegaan naar andere technieken, waaronder het gebruik van lineaire
verzamelingen, in het bijzonder deze van pseudoregulustype. Tijdens dit onderzoek konden we het
volgende belangrijke resultaat bewijzen.

Stelling B.4.2. Zij Q een verzameling van qk affiene punten in PG(2k, q), ¢ = oh h >4,k > 2, die
een verzameling D van ¢ — 1 richtingen in het hypervlak op oneindig H,, = PG(2k —1, q) bepaalt.
Stel dat elke rechte 0, 1, 3 of ¢ — 1 punten gemeen heeft met de puntenverzameling D. Dan geldt het
volgende.

(1) D is een Fy-lineaire verzameling van het pseudoregulustype.

(2) Er bestaat een Desarguesiaanse spread S in H., zodanig dat in het André/Bruck-Bose viak
P(S) = PG(2,q*), met Hy, corresponderend met de rechte |, de punten van Q samen met 2
extra punten op {~, een translatiehyperovaal vormen in PG(2, ¢*).
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Omgekeerd komt, via de André/Bruck-Boseconstructie, de verzameling affiene punten van een trans-
latiehyperovaal in PG(2,q%), ¢ > 4,k > 2, overeen met een verzameling Q van ¢* affiene punten
in PG(2k, q) waarvan de verzameling bepaalde richtingen D een Fo-lineaire verzameling is van het
pseudoregulustype. Bijgevolg bevat elke rechte 0,1,3 of ¢ — 1 punten van D.

Een onmiddelijk gevolg van deze stelling is de veralgemening van Resultaat[B.4.1]

Stelling B.4.3. Beschouw PG(2k, q), q even, ¢ > 2, met het hypervlak op oneindig, aangeduid door
Yeo. Zij C een verzameling van ¢* affiene punten, genaamd C-punten en beschouw een verzameling
vlakken, genaamd C-vlakken, die voldoet aan de volgende eigenschappen.

(A1) Elk C-vlak snijdt C in een q-boog.

(A2) Elke twee verschillende C-punten liggen in een uniek C-vlak.

(A3) De affiene punten, niet in C, zijn bevat in precies één C-vlak.

(A4) Elke viak dat minstens 3 punten bevat van C, bevat precies 4 punten van C of is een C-vlak.

Dan bestaat er een Desarguesiaanse spread S in Yo, zodanig dat in het André/Bruck-Bose vlak P(S)

PG (2, ¢*) deC-punten samen met 2 extra punten op £, een translatiehyperovaal vormen in PG (2, ¢¥).
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