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Abstract. In this article we study the class of distributions in
one variable that have distributional lateral limits at every point,
but which have no Dirac delta functions or derivatives at any point,
the “distributionally regulated functions.” We also consider the re-
lated class where Dirac delta functions are allowed. We prove sev-
eral results on the boundary behavior of functions of two variables
F (x, y) , x ∈ R, y > 0, with F (x, 0+) = f (x) distributionally, both
near points where the distributional point value exists and points
where the lateral distributional limits exist. We give very general
formulas for the jumps, in terms of F, and related functions. We
prove that the set of singular points of a distributionally regulated
function is always countable at the most. We also characterize the
Fourier transforms of tempered distributionally regulated functions
in two ways.

1. Introduction

The theory of distributions is one of the most powerful tools available
in Applied Mathematics. Ever since their introduction, distributions
have shown their usefulness; actually, this was true even before their
formal introduction [23]. Many textbooks cover the theory and appli-
cations of distributions [5, 14, 19, 20, 30, 38].

There are several approaches to the theory of distributions, but in all
of them one quickly learns that distributions do not have point values,
as functions do, despite the fact that they are sometimes called gener-
alized “functions.” Interestingly, many common objects in analysis do
not have point values, even though they are referred as “functions”:
If f ∈ L1 (R) , what is f (0)? Recall that the elements of L1 (R) are
equivalence classes of functions equal almost everywhere, and thus one
may change the values on any set of measure zero, as {0} for instance,
without changing the element of L1 (R) .

In a seminal work,  Lojasiewicz [21] was the first to give a satis-
factory definition of the value of a distribution at a point, which when
applied at points where the distribution is locally equal to a continuous
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function gives the usual value, but can also be applied in more compli-
cated situations. The notion of point value in the sense of  Lojasiewicz
has been shown to be very useful in several areas, such as abelian and
tauberian results for integral transforms [24, 27, 31, 36], spectral expan-
sions [14, 32], the boundary behavior of solutions of partial differential
equations [11, 33], or the summability of cardinal series [34, 35]. It is
remarkable that there is a characterization of the Fourier series of dis-
tributions having a value at a point [8], while no corresponding results
are known for other notions of value. The notion of distributional point
value of  Lojasiewicz has been generalized in several directions, as the
idea of distributionally bounded distributions [5], and especially the
theory of distributional asymptotic expansions developed by several
authors [14, 28, 31].

In [21],  Lojasiewicz also introduced and studied the class of distri-
butions that have a value at every point. As he showed, these distri-
butions deserve to be called “functions” since the function given by its
values is a well-defined measurable function, and the correspondence
between the distributions with values at every point and the function
of its values is a bijection. Although there is a notion, that of regular
distribution, that appears to apply exactly to those distributions that
correspond to functions, it is fair to say that the distributions intro-
duced by  Lojasiewicz, even if not “regular,” are objects that one would
call “functions.”

The aim of this article is to introduce and study a generalization of
the  Lojasiewicz functions, namely the distributionally regulated func-
tions, which are those distributions that have a distributional lateral
limit at every point without having Dirac delta functions or derivatives
at any point. We also consider the related class of distributionally
regulated functions with delta functions, which are those distributions
that have a distributional lateral limit at every point; we show that in
this case the set of points where there are delta functions is countable
at the most. If f is a distributionally regulated function (without delta
functions), with lateral limits f (x+) and f (x−) at each x ∈ R then we
introduce the function

(1.1) f̃ (x) =
f (x+) + f (x−)

2
.

The function f̃ is a well-defined measurable function, and the corre-

spondence f ↔ f̃ is one-to-one and onto. Therefore, it is justified to

identify the distribution f and the function f̃ , and call f a “function.”
When f is a distributionally regulated function with delta functions,

then f̃ captures the ordinary function part of f, and f − f̃ is a singular



REGULATED FUNCTIONS 3

distribution that consists of sums of Dirac delta functions and deriva-
tives on some countable at the most set. The distributionally regulated
functions also generalize the classical regulated functions, which are
those functions that have ordinary lateral limits at every point [6]. The
classical regulated functions play a role in many areas of mathematics
such as conformal mapping theory [29], in the description of curves
by their radius of curvature [12] and the application of these ideas to
the study of crystals [37], and in the study of theories of integration
more general than the Lebesgue integral, a subject that has received
increased attention in recent years [1, 17]. Actually,  Lojasiewicz proved
that there is a descriptive integral that can be defined for distributions
that have a value at every point, and as it is easy to see, this integral is
also defined for distributionally regulated functions. For this integral
one has

(1.2) 〈f (x) , φ (x)〉 =

∫ ∞

−∞
f̃ (x)φ (x) dx ,

for any test function φ ∈ D (R) .
The article is organized as follows. In Section 2 we give some prelim-

inary notions on distributions, point values and the Cesàro behavior of
distributions. Distributionally regulated functions are defined in Sec-
tion 3. The next section introduces the φ−transform, a function of two
variables F (x, y) , x ∈ R, y > 0, that satisfies F (x, 0+) = f (x) distri-
butionally and that allows us to study the local behavior of a distribu-
tion f. In sections 4 and 5 we consider the pointwise boundary behavior
of F (x, y) as (x, y) approaches the point (x0, 0) in the cases when the
distributional value f (x0) exists and when just the distributional limits
f

(
x±0

)
exist. We give several formulas for the distributional jumps of

f in terms of the φ−transform and related functions; these formulas
are very general versions of the jump formulas initially given by Fejér
[15], [39, 9.11] and by Lukács [22], [39, Thm. 8.13] for the ordinary
jumps of a Fourier series, and recently generalized by Móricz [25], [11].
Our formulas apply to distributions with arbitrary support, that do
not need to be periodic, and are given not only in terms of conjugate
harmonic functions but in terms of more general solutions of partial
differential equations, as follows from the results of Section 7.

In Section 6 we show that the set of singular points of a distribution-
ally regulated function, namely where the lateral limits do not coincide,
or where there are delta functions, is countable at the most; this re-
sult is easily proved for classical regulated functions, but a new proof
is required in this case. In Section 7 we show that the φ−transform
is many times the solution of a partial differential equation, such as
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the Laplace equation or the heat equation, and therefore our results
become results on the boundary behavior of solutions of partial differ-
ential equations. Finally, in Section 8 we provide two characterizations
of the Fourier transform of tempered distributionally regulated func-
tions. One is in terms of the existence of the limits of integrals of

the type lims→∞
∫ as

−s
f̂ (u) e−iuxdu, in the Cesàro sense, for a > 0, the

other in terms of the decomposition of the distribution f̂ (u) in terms
of boundary values of analytic functions from the upper and lower half
planes.

2. Preliminaries

In this section we explain the spaces of test functions and distribu-
tions needed in this paper. We also give a summary of the notion of
Cesàro behavior of a distribution at infinity [9] and at a point [14, 21].
All of our functions and distributions are over one dimensional spaces.

The spaces of test functionsD, E , and S and the corresponding spaces
of distributions D′, E ′, and S ′ are well-known [19, 20, 30]. In general
[38] we call a topological vector space A a space of test functions if
D ⊂ A ⊂ E , the inclusions being continuous, and if the derivative
d/dx is a continuous operator of A. Another useful space, particularly
in the study of distributional asymptotic expansions [14, 28, 31], is K′,
dual of K. A smooth function φ belongs to K if there is a constant γ
such that φ(k)(x) = O(|x|γ−k) as |x| → ∞ for k = 0, 1, 2, . . . , that is, if
φ(x) = O(|x|γ) strongly. The space K is formed by the so-called GLS
symbols [18]; the topology of K is given by the canonical seminorms.
The space K′ plays a fundamental role in the theory of summability of
distributional evaluations [9]. The elements of K′ are exactly the gener-
alized functions that decay very rapidly at infinity in the distributional
sense or, equivalently, in the Cesàro sense.

The Cesàro behavior of a distribution at infinity is studied by using
the order symbols O(xα) and o(xα) in the Cesàro sense. If f ∈ D′(R)
and α ∈ R \ {−1,−2,−3, . . .}, we say that f(x) = O(xα) as x→∞ in
the Cesàro sense and write

(2.1) f(x) = O(xα) (C) , as x→∞ ,

if there exists N ∈ N such that every primitive F of order N of f, i.e.,
F (N) = f, is an ordinary function for large arguments and satisfies the
ordinary order relation

(2.2) F (x) = p(x) +O(xα+N) , as x→∞ ,
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for a suitable polynomial p of degree N − 1 at the most. When the
value of N is important we use the notation

(2.3) f(x) = O(xα) (C, N) , as x→∞ .

A similar definition applies to the little o symbol. The definitions
when x → −∞ are clear. One can also consider the case when α =
−1,−2,−3, . . . [14, Def. 6.3.1].

The equivalent notations f(x) = O(x−∞) and f(x) = o(x−∞) mean
that f(x) = O(x−β) for each β > 0. It is shown in [9], [14, Thm. 6.7.1]
that a distribution f ∈ D′ is of rapid decay at ±∞ in the (C) sense,

(2.4) f(x) = O(|x|−∞) (C) as |x| → ∞ ,

if and only if f ∈ K′. Functions like sinx, J0(x), or x2eix belong to K′
and thus are “distributionally small.” The space K′ is a distributional
analogue of the space S of rapidly decreasing smooth functions [14,
Section 2.9].

These ideas can be readily extended to the study of the local behavior
of generalized functions [14, 31]. Actually,  Lojasiewicz [21] defined the
value of distribution f ∈ D′(R) at the point x0 as the limit

(2.5) f(x0) = lim
ε→0

f(x0 + εx) ,

if the limit exists in D′(R), that is, if

(2.6) lim
ε→0

〈f(x0 + εx), φ(x)〉 = f(x0)

∫ ∞

−∞
φ(x) dx ,

for each φ ∈ D(R). It was shown by  Lojasiewicz [21] that the existence
of the distributional point value γ = f (x0) is equivalent to the existence
of n ∈ N, and a primitive of order n of f, that is F (n) = f, which is
continuous near x = x0 and satisfies

(2.7) lim
x→x0

n!F (x)

(x− x0)
n = γ .

For example the generalized function f(x) = sin (1/x) is oscillatory
near x = 0, however, it is easy to see that f(0) exists and equals 0.

More generally, one could try to look for a representation of the form

(2.8) f(x0 + εx) ∼ εδg(x) , as ε→ 0 ,

in the space D′(R), where g is non-null. One can then show that
g has to be homogeneous of order δ. When f(x0 + εx) = o

(
εδ

)
, as

ε → 0+ , because of equivalencies similar to (2.7), we sometimes write
f(x0 + x) = o

(
xβ

)
(C), as x→ 0+ [14, Thm. 6.9.1].
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If we consider the limit of f (x0 + εx) in D′(R \ {0}), then we ob-
tain the concept of the distributional limit of f(x) at x = x0. Thus
limx→x0 f(x) = L distributionally if

(2.9) lim
ε→0

〈f(x0 + εx), φ(x)〉 = L

∫ ∞

−∞
φ(x) dx , φ ∈ D(R \ {0}) .

Notice that the distributional limit limx→x0 f(x) can be defined for
f ∈ D′(R\{x0}). If the point value f(x0) exists distributionally then the
distributional limit limx→x0 f(x) exists and equals f(x0). On the other
hand, if limx→x0 f(x) = L distributionally then there exist constants
a0, . . . , an such that f(x) = f0(x) +

∑n
j=0 ajδ

(j)(x − x0), where the

distributional point value f0(x0) exists and equals L.
We may also consider lateral limits. We say that the distributional

lateral value f(x+
0 ) exists if f(x+

0 ) = limε→0+ f(x0 + εx) in D′(0,∞),
that is,

(2.10) lim
ε→0+

〈f(x0 + εx), φ(x)〉 = f(x+
0 )

∫ ∞

0

φ(x) dx , φ ∈ D(0,∞) .

Similar definitions apply to f(x−0 ). Notice that the distributional limit
limx→x0 f(x) exists if and only if the distributional lateral limits f(x−0 )
and f(x+

0 ) exist and coincide.

3. Regulated Functions

In his pioneering work,  Lojasiewicz [21] introduced and studied the
distributions that have a distributional point value at every point. He
proved that if one considers the function having those distributional
values as values, then this function is measurable and in a very pre-
cise sense, the distribution corresponds to the function. It is com-
mon usage to call a distribution “regular” if it arises from a locally
Lebesgue integrable function. The functions studied by  Lojasiewicz
are more general instances of what one should call “regular” distribu-
tions, namely those arising from a function by integration. However, in
general, the functions that arise from the distributional point values are
many times not locally integrable in the sense of Lebesgue; sometimes
they are locally integrable with respect to more general integration
processes such as the Denjoy-Perron-Henstock integral, as the function
f1 (x) = x−1 sinx−1, x 6= 0, f1 (0) = 0, but sometimes they are not, as
the function f2 (x) = x−2 sin x−1, x 6= 0, f2 (0) = 0.

In this article we shall study a somewhat bigger class, that of the
distributionally regulated functions. The definition is as follows.
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Definition. A distribution f ∈ D′ (R) is called a distributionally regu-
lated function if at each point x0 ∈ R both distributional lateral limits
f

(
x±0

)
exist and f has no Dirac delta functions at x = x0. We say that

f is a distributionally regulated function with delta functions if at each
point x0 ∈ R both distributional lateral limits f

(
x±0

)
exist.

It will follow from our study that a distribution that is a distribu-
tionally regulated function actually corresponds to an actual function,
the function given by the distributional point value f (x0) , which is
defined whenever f

(
x+

0

)
= f

(
x−0

)
, an equation that holds for all x0

except for those of an exceptional set that is countable at the most.
On the other hand a distributionally regulated function with delta

functions is a distribution, and the name “function” is used in the way
the name function is used for the Dirac delta function.

Sometimes we shall refer to distributionally regulated functions as
“distributionally regulated functions without delta functions.”

The distributionally regulated functions that have no distributional
jump at any point are the functions studied in [21], and therefore we
shall call them  Lojasiewicz functions.

Our definitions were given for a distribution f ∈ D′ (R) , defined
over the whole real line. However, one can consider any of these no-
tions over finite intervals in the obvious way, namely, a distribution is,
say, a distributionally regulated function over the interval (a, b) if its
distributional lateral limits exist at each point, and no delta functions
are present.

It is worth to point out that the classical regulated functions are
those classical functions that have lateral limits at every point. They
are precisely the uniform limits of step functions [6]. Observe that
the classical analogue of the  Lojasiewicz functions are the continuous
functions.

Example. If a, b, c, d are constants, and H is the Heaviside function,
then

(3.1) f0 (x) =

(
a+ b sin

1

x

)
H (x) +

(
c+ d sin

1

x

)
H (−x) ,

is a distributionally regulated function; it is not a classical regulated
function and it is not a function of bounded variation. One can use
some condensation of singularities technique to obtain examples that
show this behavior not only at x = 0 but over a dense set. For instance,
if {ωn}∞n=0 is dense in R, and if

∑∞
n=0 |an| <∞, then

(3.2) f1 (x) =
∞∑

n=0

anf0 (x− ωn) ,
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is a distributionally regulated function with distributional jumps at the
points x = ωn. Similarly, if q > 1, the function

(3.3) f2 (x) =
∞∑

n=1

f0 (sinnx)

nq
,

is continuous at all the irrational points and has distributional jump
discontinuities at each rational number.

4. The φ−transform

Our main tool to study the local behavior of distributions is the
φ−transform, a function of two variables that we now define.

Let φ ∈ D (R) be a fixed test function that satisfies

(4.1)

∫ ∞

−∞
φ (x) dx = 1 .

If f ∈ D′ (R) we introduce the function of two variables F = Fφ {f}
by the formula

(4.2) F (x, y) = 〈f (x+ yξ) , φ (ξ)〉 , x ∈ R, y > 0 ,

the distributional evaluation with respect to the variable ξ. We call F
the φ−transform of f.

The φ−transform can also be defined if φ does not belong to D (R)
as long as we consider only distributions f of a more restricted class.
Indeed, we can consider the case when φ ∈ A (R) and f ∈ A′ (R) for
any suitable space of test functions A (R) , such as S (R) , K (R) , or
E (R) . Observe that we assume (4.1) in every case.

Our first result shows that f (x) is the distributional boundary value
of F (x, y) as y → 0.

Theorem 1. If f ∈ D′ (R) and F is its φ−transform defined by (4.2)
then

(4.3) lim
y→0

F (x, y) = f (x) ,

distributionally in the space D′ (R) , that is,

(4.4) lim
y→0

〈F (x, y) , ψ (x)〉 = 〈f (x) , ψ (x)〉 , ∀ψ ∈ D (R) .

Proof. If ψ ∈ D (R) then

(4.5) 〈F (x, y) , ψ (x)〉 = 〈Ψ (yξ) , φ (ξ)〉 ,
where

(4.6) Ψ (z) = 〈f (x) , ψ (x− z)〉 ,
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is a smooth function of z. Therefore, Ψ (0) exists in the ordinary sense
and consequently in the distributional sense of  Lojasiewicz. Hence,

(4.7) lim
y→0

〈Ψ (yξ) , φ (ξ)〉 = Ψ (0) = 〈f (x) , ψ (x)〉 ,

and (4.4) follows. �

The result will also hold when f ∈ E ′ (R) and φ ∈ E (R) if φ ∈ L1 (R) .
In that case (4.7) follows from the Lebesgue dominated convergence
theorem, since Ψ would belong to D (R) . Another case when f (x) is
the distributional boundary value of F (x, y) as y → 0 is if

(4.8) f (x) = O
(
|x|β

)
(C) , as |x| → ∞ ,

(4.9) φ (x) = O (|x|α) , strongly as |x| → ∞ ,

and

(4.10) α < −1 , α + β < −1 ,

as follows from [11, Theorem 1]. It is true in particular if f ∈ S ′ (R)
and φ ∈ S (R) .

For future reference, we say that if f ∈ D′ (R) and φ ∈ D (R) we are
in Case I. If (4.8), (4.9), and (4.10) are satisfied, we say that we are in
Case II. When f ∈ S ′ (R) and φ ∈ S (R) we say that we are in Case
III. Most of our results will hold in any of these three cases. However,
the results are usually false when we just assume that f ∈ E ′ (R) and
φ ∈ E (R) .

Theorem 2. Suppose

(4.11) f (x0) = γ ,

distributionally. In any of the cases I, II, or III, we have

(4.12) lim
(x,y)→(x0,0)

F (x, y) = γ ,

in any sector y ≥ m |x− x0| for any m > 0.

Proof. Let us show that if |x1| ≤ 1/m then limε→0+ F (x0 + εx1, ε) = γ.
Indeed, if φ ∈ D (R) , then

F (x0 + εx1, ε) = 〈f (x0 + εx1 + εξ) , φ (ξ)〉
= 〈f (x0 + εω) , φ (ω − x1)〉
= 〈f (x0 + εω) , φx1 (ω)〉 ,

where φx1 (ω) = φ (ω − x1) also belongs to D (R) and
∫∞
−∞ φx1 (ω) dω =

1. Thus (4.12) follows. The limit is uniform with respect to x1 for
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|x1| ≤ 1/m since {φx1 : |x1| ≤ 1/m} is a compact set in D (R) . The
proof in cases II and III is similar. �

Angular convergence of F (x, y) to γ = f (x0) is obtained when the
distributional point value exists. On the other hand, the radial limit,
limy→0+ F (x0, y) exists under weaker hypothesis.

Theorem 3. Suppose case I, II, or III holds, and the test function φ
is even. Let χx0 (s) = (f (x0 + s) + f (x0 − s)) /2. If

(4.13) χx0 (0) = γ ,

distributionally, then

(4.14) lim
y→0+

F (x0, y) = γ .

Proof. The fact that φ is even yields

lim
y→0+

F (x0, y) = lim
y→0+

〈f (x0 + yξ) , φ (ξ)〉

= lim
y→0+

〈f (x0 + yξ) , (φ (ξ) + φ (−ξ)) /2〉

= lim
y→0+

〈χx0 (yξ) , φ (ξ)〉

= γ ,

as required. �

Remark. The above result does not hold if f ∈ E ′ (R) and φ ∈ E (R) .
Indeed, if

(4.15) φ (x) =
3 sin x3

πx
,

then φ ∈ E and
∫∞
−∞ φ (x) dx = 1. If f (x) = δ (x) , then

(4.16) F (x, y) =

(
3

πx

)
sin

(
x

y

)3

.

If x0 6= 0 then f (x0) = 0 but not even the radial limit limy→0+ F (x0, y)
exists.

Suppose now that the distribution f ∈ D′ (R) has lateral distribu-
tional limits f

(
x±0

)
= γ± as x → x0 from the right and from the left,

respectively, and no delta functions at x = x0. This means that for
each ψ ∈ D (R) ,

(4.17) lim
ε→0+

〈f (x0 + εξ) , ψ (ξ)〉 = γ−

∫ 0

−∞
ψ (ξ) dξ + γ+

∫ ∞

0

ψ (ξ) dξ .

Then we have the ensuing result.
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Theorem 4. Suppose case I, II, or III holds and f satisfies (4.17).
Then for each θ ∈ (0, π) there exits α = α (θ) ∈ [0, 1] such that

(4.18) lim
(x,y)→(x0,0)

(x,y)∈lθ

F (x, y) = α (θ) γ+ + (1− α (θ)) γ− ,

where lθ is the line y = tan θ (x− x0) .
In cases II or III, limθ→0 α (θ) = 1, limθ→π α (θ) = 0. In case I

actually there exist θ0, θ1 ∈ (0, π) such that α (θ) = 1 for θ ≤ θ0 while
α (θ) = 0 for θ ≥ θ1.

When φ is even then α (π/2) = 1/2.

Proof. The limit of F (x, y) as (x, y) → (x0, 0) along lθ is given as

lim
ε→0+

〈f (x0 + ε cos θ + ε sin θ ξ) , φ (ξ)〉 = lim
ε→0+

〈f (x0 + εω) , φθ (ω)〉

= γ−

∫ 0

−∞
φθ (ω) dω + γ+

∫ ∞

0

φθ (ξ) dω ,

where

(4.19) φθ (ω) =
1

sin θ
φ

(
ω − cos θ

sin θ

)
.

The result follows by taking

(4.20) α (θ) =

∫ ∞

0

φθ (ω) dω =

∫ ∞

− cot θ

φ (ω) dω ,

which has the stated properties. �

Remark. If f
(
x±0

)
= γ± exist distributionally, then f (x) = f0 (x) +

m∑
j=0

cjδ
(j) (x− x0) where f0 has no delta functions at x = x0. It follows

that

(4.21) F (x, y) = F0 (x, y) +
m∑

j=0

cj
yj+1

φ(j)

(
x0 − x

y

)
.

Therefore (4.18) is still valid for the finite part of the limit:

(4.22) F.p. lim
(x,y)→(x0,0)

(x,y)∈lθ

F (x, y) = α (θ) γ+ + (1− α (θ)) γ− .

Remark. If φ is even and f
(
x±0

)
= γ± exist distributionally while f

has no delta functions at x = x0 then (4.18) shows that the radial limit
limy→0+ F (x0, y) exists and equals (γ+ + γ−) /2. However, Theorem 3
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is a stronger result, since the lateral limits may not exist if χx0 (s) has
the distributional limit γ at s = 0. More generally, if

(4.23) lim
s→0+

χx0 (s) = γ ,

distributionally, then

(4.24) F.p. lim
y→0+

F (x0, y) = γ .

Remark. If f is a distributionally regulated function with delta func-
tions then the finite part limit F.p. limy→0+ F (x, y) exists for each
x ∈ R, and equals

(
f

(
x+

0

)
+ f

(
x−0

))
/2. It will follow from the results

of Section 6 that the set of points where the limit is not an ordinary
limit is countable at the most. If f is a distributionally regulated func-
tion without delta functions then the limit is an ordinary limit for each
x ∈ R. On the other hand, if f is a distributionally regulated function
without delta functions then lim(x,y)→(x0,0),(x,y)∈l F (x, y) exists for each
non-horizontal line l, the set of points where the limit is not indepen-
dent of l is countable at the most, while if f is a  Lojasiewicz function
then the limit is independent of l for each x0 ∈ R.

5. Limits and Jumps

Suppose f ∈ D′ (R) is such that the lateral limits f
(
x±0

)
= γ± exist

distributionally. In this section we consider certain formulas for the
jump d = [f ]x=x0

= γ+ − γ− in terms of the radial limits of some
functions related to F (x, y) .

Let us start with the case when f does not have delta functions at
x = x0. Observe that sometimes we shall use the notation F,x or F,y

for the partial derivatives ∂F/∂x and ∂F/∂y, respectively.

Theorem 5. Let f be a distribution and φ a test function that satisfies
(4.1). Suppose case I, II, or III holds. Suppose the distributional lateral
limits f

(
x±0

)
= γ± exist and f has no delta functions at x = x0. Let

d = γ+ − γ− be the jump of f at x = x0 and let ν = φ (0) . Then

(5.1) lim
y→0+

yF,x (x0, y) = νd .

Proof. The hypotheses yield the asymptotic formula

(5.2) f (x0 + εx) = γ+H (x) + γ−H (−x) + o (1) , ε→ 0+,

in the space D′ (R) , where H is the Heaviside function. Since distri-
butional expansions can be differentiated, we obtain

(5.3) f ′ (x0 + εx) =
d

ε
δ (x) + o

(
1

ε

)
, ε→ 0+.
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Observe now that F,x is precisely the φ−representation of f ′ (x) . Thus
(5.3) yields

(5.4) F,x (x0, y) =
dφ (0)

y
+ o

(
1

y

)
, y → 0+,

and (5.1) follows. �

If we just assume that the distributional lateral limits f
(
x±0

)
= γ±

exist, then f may have delta functions at x = x0 and thus the formula
(5.1) can be modified by using the finite part of the limit:

(5.5) F.p. lim
y→0+

yF,x (x0, y) = νd .

Actually, to obtain (5.5) and in particular (5.1) there is no need to
assume that the distributional lateral limits f

(
x±0

)
exist; it is enough

to suppose that the symmetric jump function

(5.6) ψx0 (s) =
f (x0 + s)− f (x0 − s)

2
,

has a distributional limit as s→ 0.

Theorem 6. Let f be a distribution and φ a test function that satisfies
(4.1). Suppose case I, II, or III holds. Suppose

(5.7) ψx0

(
0+

)
=
d

2
,

distributionally. If φ is even then

(5.8) F.p. lim
y→0+

y
∂F

∂x
(x0, y) = νd .

When ψx0 (s) does not have delta functions at s = 0 then (5.8) is an
ordinary limit.

Proof. Indeed, the result follows by applying (5.5) or (5.1) to Ψ (x, y) ,
the φ−representation of ψx0 (x) and by observing that

F,x (x0, y) = 〈f ′ (x0 + yξ) , φ (ξ)〉
= 〈f ′ (x0 + yξ) , (φ (ξ) + φ (−ξ))/2〉
= 〈(f ′ (x0 + yξ)− f ′ (x0 + yξ))/2, φ (ξ)〉
=

〈
ψ′x0

(yξ) , φ (ξ)
〉

= Ψ,x (0, y) ,

since ψx0 (0+) = d/2. �
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Another formula for the jump is given in terms of logarithmic aver-

ages. Observe that in case II, that is f (x) = O
(
|x|β

)
(C) , as |x| → ∞,

and φ (x) = O (|x|α) strongly as |x| → ∞, we need to assume not only
that α < −1 and α + β < −1, but also that β < 0.

Theorem 7. Let f be a distribution and φ a test function that satisfies
(4.1). Suppose case I or case II with β < 0 holds. If ψx0 (0+) = d/2,
then

(5.9) F.p. lim
y→0+

1

ln y

〈
f (x0 + yξ) ,

φ (ξ)− φ (0)

ξ

〉
= νd .

Proof. Observe that the condition β < 0, or case I, guarantee that the
Cesàro evaluation 〈f (x0 + yξ) , ρ (ξ)〉 , where ρ (ξ) = (φ (ξ)− φ (0)) /ξ
is well-defined. Notice also that if f

(
x±0

)
= γ± exist and f has no

delta functions at x = x0 then one may argue that 〈f (x0 + yξ) , ρ (ξ)〉
approaches γ−

∫ 0

−∞ ρ (ξ) dξ + γ+

∫∞
0
ρ (ξ) dξ as y → 0+; however, both

integrals diverge:
∣∣∣∫ 0

−∞ ρ (ξ) dξ
∣∣∣ =

∣∣∫∞
0
ρ (ξ) dξ

∣∣ = ∞.

On the other hand,

∂

∂y

〈
f (x0 + yξ) ,

φ (ξ)− φ (0)

ξ

〉
=

〈
ξf ′ (x0 + yξ) ,

φ (ξ)− φ (0)

ξ

〉
= 〈f ′ (x0 + yξ) , φ (ξ)− φ (0)〉
= 〈f ′ (x0 + yξ) , φ (ξ)〉

=
∂F

∂x
(x0, y) .

Thus we may use L’Hôpital rule to obtain

F.p. lim
y→0+

1

ln y

〈
f (x0 + yξ) ,

φ (ξ)− φ (0)

ξ

〉
= F.p. lim

y→0+
y
∂F

∂x
(x0, y)

= νd ,

as required. �

Remark. The function F̃ (x, y) = 〈f (x+ yξ) , (φ (ξ)− φ (0)) /ξ〉 is a
type of “conjugate” function to the φ−transform F (x, y) . Actually if

φ (x) = π−1(1 +x2)−1 then F (x, y) is a harmonic function and F̃ (x, y)
is precisely its harmonic conjugate.

Example. Let us consider the distributional behavior of the distribu-
tion fα, α > 0, given by the nonharmonic series

(5.10) fα (x) =
∞∑

n=1

sinnαx

n
,
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as x → 0. Observe that fα (x) = O
(
|x|−∞

)
(C) as |x| → ∞. Let us

consider the conjugate function F̃ (x, y) with φ (x) = π−1(1 + x2)−1 as
in the remark above. Then

(5.11) F̃ (x, y) =
∞∑

n=1

e−nαy cosnαx

n
,

and thus F̃ (0, y) ∼ (1/α) ln y, since
∑

nα≤N 1/n ∼ (1/α) lnN as N →
∞, and it follows that νd = 1/α, or d = π/α, since φ (0) = 1/π.
Therefore, since fα is odd, we obtain the distributional lateral limits

(5.12) fα

(
0+

)
=

π

2α
, fα

(
0−

)
=
−π
2α

.

Observe that this is easy to see for α = 1 from the well-known formula

(5.13) f1 (x) =
π − x

2
, 0 < x < π ,

and for α = 1/2 from the formula

(5.14) f1/2 (x) = π +
∞∑

j=0

(−1)j ζ (1/2− j)x2j+1

(2j + 1)!
, x > 0 ,

obtained by Boersma [3] when solving a problem proposed by Glasser
[16]; see also [7]. It is not hard to see that if α > 1 then (5.12) are not
ordinary limits, since fα is unbounded as x→ 0.

6. The Number of Singularities

In this section we show that if f is a distributionally regulated func-
tion, with or without delta functions, then the distributional point
value f (x) exists for all x save for those of an exceptional set which is
countable at the most.

The corresponding result for ordinary regulated functions is well-
known, and actually very easy to prove. Indeed, if f (x) is a regulated
function in some interval I then for any λ > 0 the set Sλ consisting
of the points x where |f (x+)− f (x−)| ≥ λ is discreet in I, since at an
accumulation point of Sλ at least one of the lateral limits cannot exist.
Thus Sλ is countable at the most, and hence so is S =

⋃
λ>0 Sλ =⋃∞

n=1 S1/n. When f is a regulated function of bounded variation, then
one can even bound the nλ (K) , the number of elements of Sλ ∩K for
any compact interval K by nλ ≤ V/λ, where V is the total variation
of f over K.

This argument does not work if f is distributionally regulated, since
in that case the set Sλ could have limit points, as the next example
shows.
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Example. Let us consider the function f with support in [0,∞) with
derivative

(6.1) f ′ (x) =
∞∑

n=1

(−1)n nqδ

(
x− 1

n

)
(C) ,

where q ∈ R. Then f is a distributionally regulated function, constant
in all the intervals (1/ (n+ 1) , 1/n) for n ∈ N, and in (−∞, 0) where
it vanishes. The set of points where f has a non-zero jump is exactly
S = {1/n : n ∈ N}. In particular, 0 /∈ S, since the function has the dis-
tributional point value f (0) = 0. If q > 0 then Sλ = S for λ ≤ 1, and
thus 0 is an accumulation point of Sλ. Actually, we may replace the se-
quence {(−1)n nq}∞n=1 by any distributionally small sequence {cn}∞n=1 ,
that is, a sequence with the property that

∑∞
n=1 cnδ (x− n) belongs to

K′ (R) [14, Section 5.4] and still obtain that f (0) = 0. Indeed,

〈f ′ (εx) , φ (x)〉 =

〈
∞∑

n=1

cnδ (εx− 1/n) , φ (x)

〉

=
∞∑

n=1

cn
ε
φ

(
1

εn

)

=
∞∑

n=1

ncnτ (εn)

= o (ε∞) as ε→ 0+ ,

where τ (x) = (1/x)φ (1/x) belongs to K (R) if φ ∈ D (R) , and where
all series are considered in the Cesàro sense. Hence f is “distribution-
ally smooth” at x = 0 since it follows that f (m) (0) = 0 ∀m ≥ 0.

We have the following result on the number of singularities of a
distributionally regulated function.

Theorem 8. Let f ∈ D′ (R) be distributionally regulated, with or with-
out delta functions. Let

(6.2) S = {x ∈ R : f (x) does not exist distributionally} .
Then S is countable at the most.

Proof. Let us consider first the set S0 of those elements of S where
f does not have delta functions. Then if x0 ∈ S0 it follows that
f

(
x+

0

)
6= f

(
x−0

)
. Let φ ∈ D (R) that satisfies (4.1), and let F (x, y) be

the φ−representation of f. There exists θ ∈ (0, π/2) such that

(6.3) lim
x→x±0

F (x, tan θ |x− x0|) = f
(
x±0

)
, ∀x0 ∈ R .
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Let U0 = {(r,∞) : r ∈ Q}∪ {(−∞, r) : r ∈ Q} and let U = {(I+, I−) ∈
U0 × U0 : I+ ∩ I− = ∅}. If x0 ∈ S0 then there exists (I+, I−) ∈ U and
n ∈ N such that

(6.4) F (x, tan θ (x− x0)) ∈ I+ for x0 < x < x0 + 1/n ,

(6.5) F (x, tan θ (x0 − x)) ∈ I− for x0 − 1/n < x < x0 .

For fixed (I+, I−) ∈ U and fixed n ∈ N the family of intervals (x0 −
1/n, x0 + 1/n), where x0 ∈ S0 satisfies (6.4) and (6.5) is pairwise
disjoint and, consequently, there is an at most countable number of
such intervals. Hence

(6.6) S0 =
⋃

(I+,I−)∈U

∞⋃
n=1

{x0 ∈ R : x0 satisfies (6.4) and (6.5)} ,

is also countable at the most.
The analysis at points where f has delta functions of a given order

follows by integrating f a suitable number of times. Indeed, let SN be
the set of points of S where f has no delta function of order greater than
N. Let F be a primitive of f of order N + 1, i.e., F (N+1) (x) = f (x) .
Then F is also a distributionally regulated function, and SN \SN−1 is
exactly the set of points where F has a jump but no delta functions;
hence SN \SN−1 is countable at the most, and thus so is SN . It follows
that S is countable at the most. �

7. Boundary Behavior of Solutions of Partial
Differential Equations

The results of the previous sections apply to general distributions
and test functions. When the test function φ is of certain special forms,
however, the φ−transform becomes a particular solution of a partial
differential equation, and those results become results on the boundary
behavior of solutions of partial differential equations.

Suppose first that φ = φ1 where

(7.1) φ1 (x) =
p (x)

q (x)
,

p and q are polynomials, α = deg q − deg p ≥ 2, q does not have real
zeros, and

∫∞
−∞ φ1 (x) dx = 1. Let

(7.2) q (x) =
n∑

k=0

akx
k.



18 JASSON VINDAS AND RICARDO ESTRADA

Then if f ∈ D′ (R) satisfies the estimate f (x) = O
(
|x|β

)
(C) , |x| →

∞, where α + β < −1, then the φ−transform

(7.3) F1 (x, y) = 〈f (x+ yξ) , φ1 (ξ)〉 , x ∈ R, y > 0 ,

is a solution of the partial differential equation

(7.4)
n∑

k=0

an−k
∂nF

∂xk∂yn−k
= 0 ,

with F (x, 0+) = f (x) distributionally, since

n∑
k=0

an−k
∂nF

∂xk∂yn−k
=

n∑
k=0

an−k

〈
f (n) (x+ yξ) ξn−k, φ1 (ξ)

〉
=

〈
f (n) (x+ yξ) q (ξ) , φ1 (ξ)

〉
=

〈
f (n) (x+ yξ) , p (ξ)

〉
= 0 .

In the particular case when q (x) = x2 + 1, p (x) = 1/π, we obtain

(7.5) φ2 (x) =
1

π (x2 + 1)
,

and F2 (x, y) is the Poisson “integral” of f, which in case f (x) =

O
(
|x|β

)
(C) , |x| → ∞, for some β < 1, is the harmonic function with

F2 (x, 0+) = f (x) distributionally that satisfies F2 (x, y) = O
(
|x|β

)
(C) , |x| → ∞, for each fixed y > 0. Observe that

(7.6) F2 (x, y) =
y

π

∫ ∞

−∞

f (ξ) dξ

(x− ξ)2 + y2
,

if f is locally integrable.
Let us now take φ = ϕν where its Fourier transform is given by

(7.7) ϕ̂ν (u) = e−uν

,

where ν = 2p is an even positive integer. Alternatively, ϕν is the only
solution in S of the ordinary differential equation

(7.8) ϕ(ν−1) (ξ) = (−1)p ξ

ν
ϕ (ξ) ,

with
∫∞
−∞ ϕ (ξ) dξ = 1. Then if f ∈ S ′ (R) , and F is the φ−transform

corresponding to ϕν , the function

(7.9) Gν (x, t) = F
(
x, t1/ν

)
, x ∈ R, t > 0 ,
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is a solution of the initial value problem

∂G

∂t
= (−1)p−1 ∂

νG

∂xν
,(7.10)

G
(
x, 0+

)
= f (x) , distributionally.

In particular, if ν = 2, then

(7.11) ϕ̂ν (u) = e−u2

, ϕν (ξ) =
1

2
√
π
e−ξ2/4,

andG2 (x, t) is the solution of the heat equationG,t = G,xx that satisfies
G (x, 0+) = f (x) , distributionally, and with G (x, t) ∈ S ′ (R) for each
fixed t > 0. If f is a locally integrable function then G2 (x, t) takes the
familiar form

(7.12) G2 (x, t) =
1

2
√
πt

∫ ∞

−∞
f (ξ) e−

(ξ−x)2

4t dξ .

If the distributional value f (x0) = γ exists, then F1 (x, y) , and in
particular F2 (x, y) , satisfies that F1 (x, y) → γ as (x, y) → (x0, 0)
in any sector y ≥ m |x− x0| for m > 0. Also Gν (x, t) → γ in any
region of the type t ≥ m (x− x0)

ν for m > 0. Actually, if χx0 (s) =
(f (x0 + s) + f (x0 − s)) /2, and the distributional value χx0 (0) = γ
exists, then F1 (x0, y) → γ as y → 0+ and Gν (x0, t) → γ as t → 0+.
If instead of the existence of the distributional value one just has the
existence of the distributional limit f

(
x±0

)
= γ, then the finite part of

the limit of F1 (x, y) as (x, y) → (x0, 0) in any sector y ≥ m |x− x0|
exist and equals γ; similarly, one obtains the existence of the finite part
of the limits in the other cases.

Remark. In principle one can take a test function in (7.1) with deg q−
deg p = 1. For example, we can take φ (x) = (2πi)−1 (x∓ i)−1 , but the
results will not hold, since in this case the φ−transform becomes the
analytic representation, which obeys different rules [13, Chapter 6];
actually not even Theorem 1 holds for the analytic representation.

It is interesting to observe that if f is almost periodic or periodic,
then

(7.13) f (x) =
∞∑

n=−∞

ane
iαnx,

where αn → ±∞ as n→ ±∞. It follows that

(7.14) F (x, y) =
∞∑

n=−∞

ane
iαnxφ̂ (αny) ,
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so that in particular

(7.15) F2 (x, y) =
∞∑

n=−∞

ane
iαnxe−|αn|y =

∞∑
n=−∞

ane
iαnxr|αn|,

where r = e−y → 1− as y → 0+. The study of the behavior of the
φ−transform in this case becomes the study of the series (7.13) in the
Abel sense. Also

(7.16) Gν (x, t) =
∞∑

n=−∞

ane
iαnxe−|αn|νt.

The problem of finding the (ordinary) jumps of a Fourier series was
first solved by Fejér [15] in terms of the partial sums of the series, and
was later consider by Zygmund [39, 9.11, Chapter III, pg. 108] in terms
of the Abel-Poisson means of the Fourier series. A different formula
using logarithmic means was given by Lukács [22], [39, Thm. 8.13], and
recently studied in terms of the Abel-Poisson means by Móricz [25] for
point values of the first order and for general distributional point values
in [11]. The theorems 6 and 7 provide very general results of the Fejér
and Lukács type, respectively, for a general test function φ (which
provides many different types of summability means, such as (7.15) or
(7.16)) and not only for Fourier series, but also for nonharmonic series
and actually for any distribution.

8. The Fourier Transform of Regulated Functions

In this section we shall characterize the Fourier transform of distri-
butionally regulated functions, with or without delta functions. We
first start with some comments on distributional evaluations and the
notation used for them.

Let f ∈ D′ (R) with support bounded on the left. If φ ∈ E (R) then
the evaluation 〈f (x) , φ (x)〉 will not be defined, in general. We say
that the evaluation exists in the Cesàro sense and equals L, written as

(8.1) 〈f (x) , φ (x)〉 = L (C) ,

if g (x) = L + o (1) (C) as x → ∞, where g is the primitive of fφ
with support bounded on the left. A similar definition applies if supp f
is bounded on the right. Observe that if f is locally integrable with
supp f ⊂ [a,∞) then (8.1) means that

(8.2)

∫ ∞

a

f (x)φ (x) dx = L (C) ,
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while if f (x) =
∑∞

n=0 anδ (x− n) then (8.1) tells us that

(8.3)
∞∑

n=0

anφ (n) = L (C) .

In the general case when the support of f extends to both −∞ and
+∞, there are various different but related notions of evaluations in the
Cesàro sense (or in any other summability sense, in fact). If f admits a
representation of the form f = f1+f2, with supp f1 bounded on the left
and supp f2 bounded on the right, such that 〈fj (x) , φ (x)〉 = Lj (C)
exist, then we say that the (C) evaluation 〈f (x) , φ (x)〉 (C) exists and
equals L = L1 + L2. This is clearly independent of the decomposition.
The notation (8.1) is used in this situation.

It happens many times that 〈f (x) , φ (x)〉 (C) does not exist, but the
symmetric limit, limx→∞ {g (x)− g (−x)} = L, where g is any primi-
tive of fφ, exists in the (C) sense. Then we say that the evaluation
〈f (x) , φ (x)〉 exists in the principal value Cesàro sense, and write

(8.4) p.v. 〈f (x) , φ (x)〉 = L (C) .

Observe that p.v.
∑∞

n=−∞ anφ (n) = L (C) if and only if
∑N

−N anφ (n)

→ L (C) as N →∞ while p.v.
∫∞
−∞ f (x)φ (x) dx = L (C) if and only

if
∫ A

−A
f (x)φ (x) dx → L (C) as A→∞.

An intermediate notion, very useful for our purposes, is the following.
If there exists k such that

(8.5) lim
x→∞

{g (ax)− g (−x)} = L (C, k) , ∀a > 0 ,

we say that the distributional evaluation exists in the e.v. Cesàro sense
and write

(8.6) e.v. 〈f (x) , φ (x)〉 = L (C, k) ,

or just e.v. 〈f (x) , φ (x)〉 = L (C) if there is no need to call the attention
to the value of k; observe, however, that the same value of k works for
all a > 0.

Clearly (8.1) =⇒ (8.6) =⇒ (8.4), but the converse implications do
not hold. For example, p.v. 〈x, 1〉 = 0 (no (C) needed), but e.v. 〈x, 1〉
(C) does not exist. Furthermore,

(8.7) e.v.

〈
∞∑

n=−∞
|n|≥2

δ (x− n)

n ln |n|
, 1

〉
= 0 ,

with no (C) needed, but the Cesàro evaluation does not exist in the
sense of (8.1).
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Our next aim is to characterize the Fourier transforms of distribu-
tions that have a jump discontinuity at a point. The characterization
of the Fourier series of those periodic distributions that have a distri-
butional point value was given in [8]: if f (θ) =

∑∞
n=−∞ ane

inθ in the
space D′ (R) then

(8.8) f (θ0) = γ , distributionally ,

if and only if there exists k such that

(8.9) lim
x→∞

∑
−x≤n≤ax

ane
inθ0 = γ (C, k) , ∀a > 0 .

We shall show that a similar result holds for Fourier transforms.

Lemma 1. Let f ∈ S ′ (R) . If x0 ∈ R then

(8.10) f (x0) = γ , distributionally ,

if and only if

(8.11) lim
λ→∞

λf̂ (λu) e−iλux0 = 2πγδ (u) ,

in the space S ′ (R) .

Proof. Indeed,

f (x0) = γ , dist. ⇐⇒ lim
ε→0

f (x0 + εx) = γ

⇔ lim
ε→0

F {f (x0 + εx) ; u} = 2πγδ (u)

⇔ lim
λ→∞

λf̂ (λu) e−iλux0 = 2πγδ (u) ,

as required. �

In what follows we use the notation spec f = supp f̂ for the spectrum
of f. The next lemma follows from the ideas of [14, Section 6.5]; see
also [36].

Lemma 2. Let f ∈ S ′ (R) . Suppose spec f is bounded on the left or
on the right. Then f (x0) = γ, distributionally, if and only if

(8.12)
〈
f̂ (u) , e−iux0

〉
= 2πγ (C) .

Our next lemma considers the case of a distribution that vanishes
on a whole interval.

Lemma 3. Let f ∈ S ′ (R) . Suppose f (x) = 0 for x0− η < x < x0 + η.
Then f admits a decomposition f = f+ − f− with f± ∈ S ′ (R) , where
spec f+ is bounded on the right, spec f− is bounded on the left, and
where the distributional point values f± (x0) = ±µ both exist.
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Proof. If f ∈ D′ (R) then [4, Theorem 3.14], [26] there exists a sec-
tionally analytic function F (z) defined for z ∈ C \ R such that the
distributional limits

(8.13) f± (x) = F (x± i0) = lim
y→0

F (x± iy) ,

exist distributionally and f = f+−f−. When f ∈ S ′ (R) we can choose
the function F in such a way that both f± ∈ S ′ (R) [13, Section 6.4];

actually if f (x) = O
(
|x|β

)
(C) as x → ∞ for some β < 0, then we

may take

(8.14) F (z) =
1

2πi

〈
f (x) ,

1

x− z

〉
(C) .

In general F is not unique, but an arbitrary polynomial can be added
at will.

It is clear that spec f+ ⊂ (−∞, 0] while spec f− ⊂ [0,∞).
It remains to show that the distributional point values f± (x0) exist.

But since f (x) = 0 for x0 − η < x < x0 + η it follows [2, Section
5.8] that F is analytic across this interval, and thus f± (x) are actually
real analytic functions for x0 − η < x < x0 + η and thus f± (x0) are
well-defined ordinary values. �

We are now ready to give the characterization of the Fourier trans-
forms of tempered distributions that have a distributional point value.

Theorem 9. Let f ∈ S ′ (R) . If x0 ∈ R then

(8.15) f (x0) = γ , distributionally ,

if and only if

(8.16) e.v.
〈
f̂ (u) , e−iux0

〉
= 2πγ (C) ,

which in case f̂ is locally integrable means that

(8.17) e.v.

∫ ∞

−∞
f̂ (u) e−iux0du = 2πγ (C) .

Proof. Choose any number η with 0 < η < π. There exists a distribu-
tion f1 of period 2π such that f (x) = f1 (x) for x0 − η < x < x0 + η.
This means, because of the Lemma 3, that f = f1 + f2 where f2 sat-

isfies e.v.
〈
f̂2 (u) , e−iux0

〉
= 0 (C) , and thus the result would be true

if it is true for periodic distributions of period 2π, but this exactly the
equivalence of (8.8) and (8.9) proved in [8]. �
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We now proceed to the case of tempered distributions that have
distributional lateral limits at a point.

Theorem 10. Let f ∈ S ′ (R) . If x0 ∈ R then the distributional lateral
limits f

(
x±0

)
= γ± exist and f has no Dirac delta function at x = x0

if and only if there exists k such that whenever g (u) is a primitive of

f̂ (u) e−iux0 then the Cesàro limit

(8.18) lim
u→∞

(g (au)− g (−u)) = Ix0 (a) (C, k) ,

exists ∀a > 0. If this is the case then

(8.19) Ix0 (a) = π (γ+ + γ−) + i (γ+ − γ−) ln a .

Proof. Suppose that the distributional lateral limits f
(
x±0

)
= γ± exist

and f has no Dirac delta function at x = x0. Let us write f = f1 +
f2 where f1 (x) = f (x) − (d/2) sgn (x− x0) , d = γ+ − γ−. Thus for
f = f1, the quantity Ix0,f1 (a) exists and equals π (γ+ + γ−) since the
distributional point value f1 (x0) exists and equals (γ+ + γ−) /2, and
therefore

(8.20) e.v.
〈
f̂1 (u) , e−iux0

〉
= π (γ+ + γ−) (C) .

On the other hand,

(8.21) f̂2 (u) = (γ+ − γ−) ieiux0p.v.

(
1

u

)
,

where p.v. (1/u) is the usual principal value regularization of the non
integrable function 1/u. Then

Ix0,f2 (a) = lim
s→∞

p.v.

∫ as

−s

f̂2 (u) e−iux0du

= lim
s→∞

p.v.

∫ as

−s

(γ+ − γ−) i
du

u

= (γ+ − γ−) i ln a ,

and (8.18) and (8.19) follow.
Conversely, suppose that Ix0 (a) exists for each a > 0. Clearly Ix0 (a)

is a measurable function of a. Then an easy computation shows that
Ix0 (a) satisfies the functional equation

(8.22) Ix0 (ab) = Ix0 (a) + Ix0 (b)− Ix0 (1) .

While this functional equation has many solutions, constructed using a
suitable Hamel basis, an analysis that can be traced back to Sierpinski
shows that the only measurable solutions are

(8.23) Ix0 (a) = Ix0 (1) + ω ln a ,
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for some constant ω. Writing f = f1 +f2, f2 (x) = −i(ω/2) sgn (x− x0)
yields that the distributional value f1 (x0) exists and equals Ix0 (1) /(2π)
since

(8.24) e.v.
〈
f̂1 (u) , e−iux0

〉
= Ix0 (1) (C) .

Hence the distributional lateral limits f
(
x±0

)
exist and equal

(8.25) γ± =
Ix0 (1)

2π
∓ iω

2
,

which is equivalent to (8.19). �

Observe in particular that if f̂ is locally integrable, then the dis-
tributional lateral limits f

(
x±0

)
= γ± exist and f has no Dirac delta

function at x = x0 if and only if ∃k such that ∀a > 0,
(8.26)

lim
s→∞

∫ as

−s

f̂ (u) e−iux0du = π (γ+ + γ−) + i (γ+ − γ−) ln a (C, k) .

In case f is periodic of period 2π with Fourier series

(8.27) f (x) =
∞∑

n=−∞

ane
inx ,

then the condition becomes

(8.28) lim
N→∞

∑
−aN≤n≤N

ane
inx0 =

γ+ + γ−
2

+
i

2π
(γ+ − γ−) ln a (C, k) .

We obtain the following characterization of the Fourier transforms
of distributionally regulated functions.

Theorem 11. Let f ∈ S ′ (R) . The distribution f is a distribution-
ally regulated function with delta functions if and only if ∀x0 ∈ R, the

distribution f̂ (u) e−iux0 admits the decomposition

(8.29) f̂ (u) e−iux0 = px0 (u) + g′x0
(u) ,

where px0 (u) is a polynomial and where for some k

(8.30) lim
u→∞

(g (au)− g (−u)) = Ix0 (a) (C, k) ,

exists ∀a > 0. The distribution f is a distributionally regulated function
(without delta functions) if px0 (u) = 0 for each x0 ∈ R; if also Ix0 (a)
is a constant function of a for each x0 ∈ R then f is a  Lojasiewicz
function.

In any case, the set of points x0 where px0 (u) 6= 0 is countable, as is
countable the set of points x0 where Ix0 (a) is not a constant function
of a.
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We now give another characterization of distributions having lateral
limits based on a decomposition in terms of boundary limits of analytic
functions from the upper and lower half planes. Observe that only
principal value Cesàro evaluations are needed in the following theorem.

Theorem 12. Let f ∈ S ′ (R) . Let x0 ∈ R. Then the distributional
lateral limits f

(
x±0

)
= γ± exist and f has no Dirac delta function at

x = x0 if and only if

(8.31) f̂ (u) e−iux0 = Hx0 (u+ i0) +Hx0 (u− i0) ,

where Hx0 (z) is analytic for z ∈ C\R, the distributional boundary dis-
tributions Hx0 (u± i0) belong to S ′ (R) and the principal value Cesàro
evaluations

(8.32) p.v. 〈Hx0 (u± i0) , 1〉 = ν± (C) ,

both exist. In this case ν± = πγ±.

Proof. If the distributional lateral limits f
(
x±0

)
= γ± exist and f has no

Dirac delta function at x = x0 we can write f = f++f− where f± do not
have delta functions at x = x0, supp f+ ⊂ [x0,∞), supp f− ⊂ (−∞, x0],
f+

(
x+

0

)
= γ+, and f−

(
x−0

)
= γ−. Then we define

(8.33) Hx0 (z) =


〈
f+ (x) , eiz(x−x0)

〉
, <e z > 0 ,〈

f− (x) , eiz(x−x0)
〉
, <e z < 0 ,

so that Hx0 (u± i0) = f̂± (u) , and consequently

(8.34) p.v. 〈Hx0 (u± i0) , 1〉 = πγ± (C) .

Conversely, if (8.31) holds, then f = f+ + f− where

(8.35) f± (x) = F−1
{
eiux0Hx0 (u± i0) , x

}
.

But this implies that supp f+ ⊂ [x0,∞), while supp f− ⊂ (−∞, x0].
Then (8.32) yields that the even parts of f± have the distributional
values γ±/2 at x = x0. But since the distributions f± vanish on one
side of x0, it follows that the distributional lateral limits exist and no
delta function is present. �

We immediately obtain the ensuing result.

Theorem 13. Let f ∈ S ′ (R) . The distribution f is a distribution-
ally regulated function with delta functions if and only if ∀x0 ∈ R, the

distribution f̂ (u) e−iux0 admits the decomposition

(8.36) f̂ (u) e−iux0 = px0 (u) +Hx0 (u+ i0) +Hx0 (u− i0) ,
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where px0 (u) is a polynomial and where Hx0 (z) is analytic for z ∈ C\R,
the distributional boundary distributions Hx0 (u± i0) belong to S ′ (R)
and the principal value Cesàro evaluations

(8.37) p.v. 〈Hx0 (u± i0) , 1〉 = ν± (C) ,

both exist. The distribution f is a distributionally regulated function
(without delta functions) if px0 (u) = 0 for each x0 ∈ R; if also ν+ = ν−
for each x0 ∈ R then f is a  Lojasiewicz function.

In any case the set of points x0 ∈ R where px0 (u) 6= 0 is countable,
as is countable the set of points where ν+ 6= ν−.

One can use these ideas to prove that if the distributional lateral
limits of a distribution that is the boundary value of an analytic func-
tion from the upper or lower half plane exist, then they must coincide
[10].
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Stanković, B., Pap, E., Pilipović, S., and Vladimirov, V.S., Plenum Press, New
York, 1988; 349-357.



REGULATED FUNCTIONS 29

[36] Wawak, R., On the value of a distribution at a point, in Generalized Functions,
Convergence Structures, and Their Applications, edited by Stanković, B., Pap,
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