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Abstract. By a regularization at the origin is meant an extension to
Rn of a suitable distribution initially defined off the origin. We study the
regularizations of distributions when the generalized functions to be reg-
ularized have prescribed asymptotic properties. A complete description
of the asymptotic properties of the regularizations is obtained.

1. Introduction

Regularization of distributions refers to the problem of extending distri-
butions which are a priori defined on a smaller set. Typically, this situation
arises when one constructs distributions out of functions (or generalized
functions) which have mild singularities at a point [10, 9]. This is a very im-
portant subject for both theoretical mathematics and mathematical physics.

In quantum field theory [3], regularization is also known as renormaliza-
tion. The fundamental problem is often to find a suitable regularization in
such a way it be consistent with the experimental considerations. Scaling
asymptotic properties of distributions have shown to have a valuable role in
this respect, they bring new insights into the problem [1, 23, 24]. On the
other hand, the relationship between regularizations and asymptotic prop-
erties of distributions is also of importance from the point of view of pure
mathematics, for instance, in areas such as singular integral equations [8],
the study of boundary properties of holomorphic functions [5], or in Taube-
rian theory for integral transforms [4, 12, 13, 22, 23]. In fact, as shown in
recent studies [4, 11, 22], the asymptotic analysis of various integral trans-
forms may be completely reduced to the study of asymptotic properties of
regularizations of distributions; this is the case for the Laplace and wavelet
transforms.

In this article we study the regularizations at the origin when the dis-
tribution to be regularized possesses prescribed quasiasymptotic properties
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[9, 12, 23] at either the origin itself or infinity. Our aim is to provide a full
description of the asymptotic properties of the regularizations. We empha-
size that such a problem is essentially a Tauberian one and may be restated
in terms of Mellin convolution type integral transforms: quasiasymptotic
behavior is nothing but knowledge of asymptotic information over (Mellin)
convolution transforms for all kernels in a Schwartz space of test functions.
Recently, this problem has been investigated in [5, 18, 19, 20, 22]; we shall
give extensions of those results, and in particular we provide more detailed
asymptotic information for critical degrees than that from [5]. We shall con-
sider distributions with values in a Banach space. The main results of this
paper are presented in Section 3.

2. Notation and Preliminaries

The space E always denotes a fixed, but arbitrary, Banach space with
norm ‖ · ‖. If h : R+ 7→ E and T : R+ 7→ R+, we write h(λ) = o(T (λ)) if
‖h(λ)‖ = o(T (λ)), and similarly for the big O landau symbol; let v ∈ E,
we write h(λ) ∼ T (λ)v if h(λ) = T (λ)v + o(T (λ)). Let m ∈ Nn, we use the
notation ϕ(m) = (∂|m|/∂xm)ϕ.

2.1. Spaces of Distributions. The Schwartz spaces [14] of smooth com-
pactly supported and rapidly decreasing test functions are denoted by D(Rn)
and S(Rn). We denote by D0(Rn) ⊂ D(Rn) and S0(Rn) ⊂ S(Rn) the closed
subspaces consisting of those functions vanishing at the origin together with
all their partial derivatives of any order; we provide them with the relative
topologies inhered from D(Rn) and S(Rn), respectively.

Let A(Rn) be a topological vector space of test function over Rn. We de-
note by A′(Rn, E) = Lb(A(Rn), E), the space of continuous linear mappings
from A(Rn) to E with the topology of uniform convergence over bounded
subsets of A(Rn). We will mostly have A = D,S,D0, or S0. For vector-
valued distributions, we refer to [17]. If f ∈ A(Rn) is a scalar generalized
function and v ∈ E, we denote by fv ∈ A′(Rn, E) the E-valued generalized
function given by 〈f(x)v, ϕ(x)〉 = 〈f(x), ϕ(x)〉v.

Observe that [6, 9] (see also [7]) the elements of D0′(Rn, E) are precisely
those distributions defined on Rn \ {0} which admit extensions to Rn, while
the elements of S0′(Rn, E) are those distributions of slow growth at infinity
defined on Rn\{0} and having extensions to Rn as tempered E-valued distri-
butions. So, if f0 ∈ S0′(Rn, E) (resp. D0′(Rn, E)), there exists f ∈ S ′(Rn, E)
(resp. D′(Rn, E)) such that 〈f0, ϕ〉 = 〈f , ϕ〉, for each ϕ ∈ S0(Rn) (resp.
D0(Rn)). Any f satisfying such a property is called a regularization at the
origin of f0 (in short: regularization), in accordance with the classical termi-
nology for regularizing divergent integrals [10, 9]. Naturally, regularizations
are not unique and two of them may differ by a distribution concentrated
at the origin, that is, a finite sum of the form

∑
|m|≤l δ

(m)vm, where δ is the
Dirac delta (scalar) distribution.
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2.2. Quasiasymptotics. The quasiasymptotics [9, 12, 23] measure the as-
ymptotic behavior of a distribution by asymptotic comparison with Kara-
mata regularly varying functions. Recall a measurable real valued function,
defined and positive on an interval (0, A] (resp. [A,∞)), is called slowly
varying [2, 15] at the origin (resp. at infinity) if

lim
λ→0+

L(aλ)
L(λ)

= 1
(

resp. lim
λ→∞

L(aλ)
L(λ)

= 1
)

, for each a > 0.

In the next definition A(Rn) is assumed to be a space of test functions on
which the dilation is a continuous operator; we are mainly concerned with
the cases A = D,S,D0,S0.

Definition 2.1. Let f ∈ A′(Rn, E) and let L be slowly varying at the origin
(resp. at infinity). We say that:
(i) f is quasiasymptotically bounded of degree α ∈ R at the origin (resp. at
infinity) with respect to L in A′(Rn, E) if for each test function ϕ ∈ A(Rn)

sup
λ≤1

1
λαL(λ)

‖〈f (λx) , ϕ(x)〉‖ < ∞

(
resp. sup

1≤λ

)
.

We write: f (λx) = O (λαL(λ)) in A′(Rn, E) as λ → 0+ (resp. λ → ∞).
(ii) f has quasiasymptotic behavior of degree α ∈ R at the origin (resp. at
infinity) with respect to L in A′(Rn, E) if there exists g ∈ A′(Rn, E) such
that for each test function ϕ ∈ A(Rn) the following limit holds with respect
to the norm of E

lim
λ→0+

1
λαL(λ)

〈f (λx) , ϕ(x)〉 = 〈g(x), ϕ(x)〉 ∈ E

(
resp. lim

λ→∞

)
.

In such a case we write,

(1) f (λx) = λαL(λ)g(x) + o (λαL(λ)) in A′(Rn, E)

as λ → 0+ (resp. λ →∞).

We will also use the notation f(λx) ∼ λαL(λ)g(x) for (1). In [5] distribu-
tions having quasiasymptotic behavior at infinity are called asymptotically
homogeneous generalized functions.

If A = S or D in (ii) of Definition 2.1, it is easy to show [9, 12, 23] that g
must be homogeneous with degree of homogeneity α, i.e., g(ax) = aαg(x),
for all a ∈ R+. We refer to the paper by Drozhzhinov and Zavialov [5] for an
excellent presentation of the theory of multidimensional homogeneous dis-
tributions, we remark that their results are valid for E-valued distributions
too.

Suppose that f0,g0 ∈ S0′(Rn, E) satisfy f0 (λx) ∼ λαL(λ)g0(x) in the
space S0′(Rn, E). Then g0 must be homogeneous of degree α over S0(Rn).
Suppose now that α /∈ −n−N, applying [5, Thm. 3.1, Cor. 3.2], we conclude
the existence of a unique regularization at the origin g ∈ S ′(Rn, E) which
is homogeneous of degree α. The case α = −n − p, p ∈ N, is slightly
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different; from [5, Cor. 3.3], we obtain a regularization g which is associate
homogeneous of order 1 and degree −n− p over S(Rn) (cf. [9, p. 74], [10],
[16]); specifically, there are vm ∈ E, |m| = p, such that

(2) g(ax) = a−n−pg(x) + a−n−p log a
∑
|m|=p

δ(m)(x)vm, for each a > 0.

Of course, the same considerations are true for D0′(Rn, E).

2.3. Asymptotically and Associate Asymptotically Homogeneous
Functions. The functions to be introduced here will appear naturally in
Section 3. The terminology in the scalar-valued case is from [18, 19, 20, 21]
(see also de Haan theory in [2]), we remark these classes of functions have
already shown to be a tool of great importance in the study of asymp-
totic properties of one-dimensional distributions. We list some of their basic
properties in Section 4 (Lemma 4.3).

Definition 2.2. Let c : (0, A) → E (resp. (A,∞) → E ), A > 0, be
a continuous E-valued function and let L be slowly varying at the origin
(resp. at infinity). We say that:
(i) c is asymptotically homogeneous of degree γ ∈ R with respect to L if

c(aλ) = aγc(λ) + o(L(λ)) as λ → 0+ (resp. λ →∞ ), for each a > 0.

(ii) c is associate asymptotically homogeneous of degree 0 with respect to L
if there exists v ∈ E such that

c(aλ) = c(λ) + L(λ) log a v + o(L(λ)) as λ → 0+ (resp. λ →∞ ),

for each a > 0.
(iii) c is asymptotically homogeneously bounded of degree γ ∈ R with respect
to L if

c(aλ) = aγc(λ) + O(L(λ)) as λ → 0+ (resp. λ →∞ ), for each a > 0.

3. The Main Results: Quasiasymptotic Properties of
Regularizations

The following two theorems completely describe the asymptotic proper-
ties of arbitrary regularizations when the distribution to be regularized has
prescribed quasiasymptotic properties. We only state the tempered case,
but the results are also valid if we replace everywhere below S by D (cf.
Remark 1). In their proofs, we make use of three auxiliary lemmas which
are postponed for Section 4.

Theorem 3.1. Let L be slowly varying at the origin (resp. at infinity) and
let f0 ∈ S0′(Rn, E) have the quasiasymptotic behavior

(3) f0 (λx) = λαL(λ)g0(x) + o(λαL(λ)) in S0′(Rn, E)

as λ → 0+ (resp. λ → ∞). Suppose that f ∈ S ′(Rn, E) is a regularization
of f0. Then:
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(i) If α /∈ −n−N and g is the homogeneous regularization of g0, there exist
d ∈ N and wm ∈ E, |m| ≤ d, such that

(4) f (λx) = λαL(λ)g(x) +
∑
|m|≤d

δ(m)(x)
λn+|m| wm + o(λαL(λ)) in S ′(Rn, E).

(ii) If α = −n−p, p ∈ N, and g is a regularization of g0 satisfying (2), there
exist d ∈ N, wm ∈ E, |m| ≤ d, and associate asymptotically homogeneous
E-valued functions cm, |m| = p, satisfying

(5) cm(aλ) = cm(λ) + L(λ) log a vm + o(L(λ)),

such that
(6)

f (λx) =
L(λ)
λn+p

g(x)+
∑

|m|≤d,|m|6=p

δ(m)(x)
λn+|m| wm+

∑
|m|=p

δ(m)(x)
λn+p

cm(λ)+o

(
L(λ)
λn+p

)
in the space S ′(Rn, E).

Proof. The hypothesis (3) and Lemma 4.1 imply the existence of d ∈ N such
that for any ρ ∈ S(Rn) satisfying ρ(m)(0) = 0, |m| ≤ d,

〈f(λx), ρ(x)〉 = λαL(λ) 〈g(x), ρ(x)〉+ o (λαL(λ)) .

Let η be a fixed test function such that η(x) = 1 on a neighborhood of
the origin and supp η ⊂ B(0, 1), the ball of radius 1 centered at the origin.
Given ϕ ∈ S(Rn), an arbitrary test function, we set

Tϕ(x) =
∑
|m|≤d

ϕ(m)(0)
m!

xm,

its Taylor polynomial of order d. So, if we write ρ(x) := ϕ(x)− η(x)Tϕ(x),
then we obtain

〈f(λx), ϕ(x)〉 = λαL(λ) 〈g(x), ρ(x)〉+ 〈f(λx), η(x)Tϕ(x)〉+ o (λαL(λ))

= λαL(λ) 〈g(x), ϕ(x)〉+
∑
|m|≤d

ϕ(m)(0)
〈
f(λx)− λαL(λ)g(x),

xm

m!
η(x)

〉
+ o (λαL(λ)) .

Thus, if set cm(λ) = (−1)|m| 〈λ−αf(λx)− L(λ)g(x), xmη(x)/m!〉, we obtain
the asymptotic formula

(7) f(λx) = λαL(λ)g(x) +
∑
|m|≤d

δ(m)(x)λαcm(λ) + o (λαL(λ)) ,

valid now in S ′(Rn, E). We study now the asymptotic properties of the E-
valued functions cm. For each |m| ≤ d, we fix a test function ϕm such that
ϕ

(m)
m (0) = (−1)|m| but ϕ

(j)
m (0) = 0 for j 6= m, |j| ≤ d. At this point we split

the proof into the cases (i) and (ii).
Case (i): α /∈ −n− N.
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If we evaluate f(aλx) at ϕm(x), a > 0, use the homogeneity of g, the
slowly varying property of L, and apply (7), we obtain

aαλαL(λ) 〈g(x), ϕm(x)〉+ aαλαcm(aλ) + o (λαL(λ))

= 〈f(aλx), ϕm(x)〉 =
〈
f(λx),

1
an

ϕm

(x

a

)〉
= λαL(λ)

〈
g(x),

1
an

ϕm

(x

a

)〉
+ a−n−|m|λαcm(λ) + o (λαL(λ))

= aαλαL(λ) 〈g(x), ϕm (x)〉+ a−n−|m|λαcm(λ) + o (λαL(λ)) .

Hence, for each |m| ≤ d, the E-valued function cm satisfies (i) in Definition
2.2 with γ = −α−n−|m|, and so, Lemma 4.3 gives the existence of wm ∈ E
(some of them may be 0), for each |m| ≤ d, such that

(8) cm(λ) = λ−α−n−|m|wm + o (L(λ)) .

Inserting (8) into (7), one gets (4). This completes the proof of the first
case.

Case (ii): α = −n− p.
Observed that (2) shows that g is homogeneous when acting on test func-

tions such that ϕ(j)(0) = 0 for |j| = p. Thus, if d < p the proceeding
argument shows that f satisfies indeed (6) with wm as before and cm identi-
cally 0. We suppose now that p ≤ d; if |m| 6= p, then the preceding argument
applies also to show the existence of wm such the cm satisfy (8), which in
turn implies
(9)

f(λx) =
L(λ)
λn+p

g(x)+
∑

|m|≤d, |m|6=p

δ(m)(x)
λn+|m| wm+

∑
|m|=p

δ(m)(x)
λn+p

cm(λ)+o

(
L(λ)
λn+p

)
in S ′(Rn, E). We now analyze the behavior of cm when |m| = p, it remains
to establish (5). Evaluating (9) at ϕm (defined as before) and using (2), we
have

L(λ)
(aλ)n+p

〈g(x), ϕm(x)〉+ (aλ)−n−pcm(aλ) + o

(
L(λ)
λn+p

)
= 〈f(aλx), ϕm(x)〉 =

〈
f(λx),

1
an

ϕm

(x

a

)〉
=

L(λ)
λn+p

〈g(ax), ϕm (x)〉+ (aλ)−n−pcm(λ) + o

(
L(λ)
λn+p

)
=

L(λ)
(aλ)n+p

〈g(x), ϕm (x)〉+
L(λ) log a

(aλ)n+p
vm + (aλ)−n−pcm(λ) + o

(
L(λ)
λn+p

)
;

consequently, they satisfy the requirements. �

We now consider quasiasymptotic boundedness.
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Theorem 3.2. Let L be slowly varying at the origin (resp. at infinity)
and let f0 ∈ S0′(Rn, E) be quasiasymptotically bounded of degree α at the
origin (resp. at infinity) with respect to L in S0′(Rn, E). Suppose that
f ∈ S ′(Rn, E) is a regularization of f0. Then:
(i) If α /∈ −n− N, there exist d ∈ N and wm ∈ E, |m| ≤ d, such that

f (λx) =
∑
|m|≤d

δ(m)(x)
λn+|m| wm + O(λαL(λ)) in S ′(Rn, E).

(ii) If α = −n − p, p ∈ N, there exist d ∈ N, wm ∈ E, |m| ≤ d, and
asymptotically homogeneously bounded E-valued functions cm, |m| = p, with
respect to L such that

f (λx) =
∑

|m|≤d,|m|6=p

δ(m)(x)
λn+|m| wm +

∑
|m|=p

δ(m)(x)
λn+p

cm(λ) + O

(
L(λ)
λn+p

)
in the space S ′(Rn, E).

Proof. It is enough to set g = 0 and replace o by O in the arguments given
in the proof of Theorem 3.1. We leave the details of such modifications to
the reader. �

Remark 1. Theorems 3.1 and 3.2 still hold if we replace S by D everywhere
in the statements. Indeed, the proofs of these assertions are identically the
same as the ones for the tempered case, but now making use of Lemma 4.2
instead of Lemma 4.1.

4. Auxiliary Lemmas

We show in this section three lemmas which were used in Section 3.
The following lemma is due to Drozhzhinov and Zavialov in the scalar-

valued case [5, Lem. 2.1]; actually, a similar proof applies to the E-valued
case. Denote by Sd(Rn), d ∈ N, the closed subspace of S(Rn) consisting of
functions such that all their derivatives up to order d vanish at the origin;
they are provided with the relative topology inhered from S(Rn).

Lemma 4.1. Let f ∈ S ′(Rn, E) and let L be slowly varying at the origin
(resp. at infinity).
(i) Let g ∈ S ′(Rn, E). Suppose that the restrictions of f and g to S0(Rn)
satisfy

f(λx) ∼ λαL(λ)g(x) in S0′(Rn, E).
Then, there exists d ∈ N (large enough) such that the restriction of f to
Sd(Rn) has the same quasiasymptotic behavior in the space S ′d(Rn, E).
(ii) Suppose that the restriction of f to S0(Rn) is quasiasymptotically boun-
ded at the origin (resp. infinity) with respect to L in the space S0′(Rn, E),
then there exists d ∈ N (large enough) such that the restriction of f to
Sd(Rn) is equally quasiasymptotically bounded with respect to L (with the
same degree) in the space S ′d(Rn, E).
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Proof. For each l ∈ N, define the norms

(10) ‖ρ‖l = max
|m|≤l

sup
x∈Rn

(
1
|x|2

+ |x|2
)l ∣∣∣ρ(m)(x)

∣∣∣ ,
for ρ ∈ S0(Rn). Obviously, these norms induce on S0(Rn) the same topol-
ogy as the one inhered from S(Rn). For each l fixed, denote by Xl the
completion of S0(Rn) with respect to the norm ‖ · ‖l; then, S0(Rn) =

⋂
Xl,

the intersection having also topological meaning as a projective limit. The
Banach-Steinhaus theorem implies that f has the same quasiasymptotic be-
havior (resp. is equally quasiasymptotically bounded) over some Xl0 . But,
clearly, if d is large enough Sd(Rn) ⊂ Xl0 . This shows the lemma. �

We have a similar assertion for the non-tempered case. Denote now
Dd(Rn) = D(Rn) ∩ Sp(Rn), provided with the relative topology inhered
from D(Rn).

Lemma 4.2. Let f ,g ∈ D′(Rn, E) and let L be slowly varying at the origin
(resp. at infinity).
(i) Suppose that the restrictions of f and g to D0(Rn) satisfy

f(λx) ∼ λαL(λ)g(x) in D0′(Rn, E).

Then, there exists d ∈ N (large enough) such that the restriction of f to
Dd(Rn) has the same quasiasymptotic behavior in the space D′d(Rn, E).
(ii) Suppose that the restriction of f to D0(Rn) is quasiasymptotically boun-
ded at the origin (resp. infinity) with respect to L in the space D0′(Rn, E),
then there exists d ∈ N (large enough) such that the restriction of f to
Dd(Rn) is equally quasiasymptotically bounded with respect to L (with the
same degree) in the space D′d(Rn, E).

Proof. Let D(B(0, 1)) ⊂ D(Rn) the subspace consisting of test functions
supported by the closed ball of radius 1 with center at the origin. Denote
Dd(B(0, 1)) = Dd(Rn) ∩ D(B(0, 1)), d ∈ N. Since any ϕ ∈ Dd(Rn) can be
written as ϕ = ϕd + ϕ0, with ϕd ∈ Dd(B(0, 1)) and ϕ0 ∈ D0(Rn), it is
enough to show that the conclusions of the lemma are valid in one of the
spaces D′d(B(0, 1), E) for the restriction of f to Dd(B(0, 1)). For each l, let
Yl be the completion of D0(B(0, 1)) with respect to the norm (10); then,
D0(B(0, 1)) =

⋂
Vl, as a projective limit. As in Lemma 4.1, we conclude

the existence of l0 such that f has the same quasiasymptotic behavior (resp.
is equally quasiasymptotically bounded) over Yl0 . Taking d large enough
Dd(B(0, 1)) ⊂ Yl0 , which yields the result. �

One can obtain the precise asymptotic behavior of asymptotically ho-
mogeneous and homogeneously bounded functions of non-zero degree. The
proof of the following lemma can be given exactly as in the scalar-valued
case [18] (see also comments in [20, 21]), we choose to omit it and refer the
reader to the cited papers for a proof.
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Lemma 4.3. Let L be slowly varying at the origin (resp. at infinity). (i)
Assume that c is asymptotically homogeneous at the origin (resp. at infinity)
of degree γ with respect to L.

(i.1) If γ > 0 (resp. γ < 0), then c(λ) = o(L(λ)).
(i.2) If γ < 0 (resp. γ > 0), then c(λ) = λγw+o(L(λ)), for some w ∈ E.

(ii) Assume c is asymptotically homogeneously bounded at the origin (resp.
at infinity) of degree γ with respect to L.

(ii.1) If γ > 0 (resp. γ < 0), then c(λ) = O(L(λ)).
(ii.2) If γ < 0 (resp. γ > 0), then c(λ) = λγw+O(L(λ)), for some w ∈ E.
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[21] J. Vindas, S. Pilipović, Structural theorems for quasiasymptotics of distributions at
the origin, Math. Nachr. 282 (2009), 1584–1599.
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