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An open question concerning the quasiasymptotic behavior of distributions at the origin is solved. The question
is the following: Suppose that a tempered distribution has quasiasymptotic at the origin in S ′(R), then the
tempered distribution has quasiasymptotic in D′(R), does the converse implication hold? The second purpose
of this article is to give complete structural theorems for quasiasymptotics at the origin. For this purpose,
asymptotically homogeneous functions with respect to slowly varying functions are introduced and analyzed.
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1 Introduction and Preliminaries.

The purpose of this introductory section is to fix the notation and state the problems to be considered in this
article.

The Schwartz spaces of test functions and distributions on the real line R are denoted by D and D′, respec-
tively; the spaces of rapidly decreasing functions and its dual, the space of tempered distributions, are denoted
by S and S ′. We refer the reader to [9] for the properties of these spaces. A real-valued measurable function
L defined in some interval of the form (0, A), A > 0, is said to be slowly varying function at the origin if L is
positive near 0 and

lim
x→0+

L(ax)
L(x)

= 1, (1)

for any a > 0. In the same way one defines slowly varying functions at infinity. Since we will only be dealing
with slowly varying functions at the origin, we shall refer to them just as slowly varying functions, suppressing
the indication that it is at the origin. We refer to [10] and [1] for properties of such functions.

The main subject of this article are the so-called quasiasymptotic behaviors of distributions at the origin [7,
8, 13, 2, 3, 5]. Let L be slowly varying. We say that f ∈ D′ has quasiasymptotic behavior at the origin (has
quasiasymptotic at 0) in D′ with respect to εαL(ε), α ∈ R, if for some g ∈ D′ and every φ ∈ D,

lim
ε→0+

〈
f(εx)
εαL(ε)

, φ(x)
〉

= 〈g(x), φ(x)〉 . (2)

If (2) holds, we also say that f has quasiasymptotic of order α at the origin with respect to the slowly varying
function L. In [2] such generalized functions are called asymptotically homogeneous generalized functions. Note
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that in the usual definition is assumed g 6= 0, but we extend the definition by allowing g to be 0. This is because
all the results of this article are applicable to this situation as well.

We also express (2) by using the notation

f(εx) = εαL(ε)g(x) + o(εαL(ε)), ε → 0+ in D′, (3)

which should always be interpreted in the weak topology of D′, i.e, in the sense of (2). If (3) holds for f ∈ D′
and f = h in a neighborhood of 0, h ∈ D′, then (3) holds for h as well. This means that the distribution f in (3)
may be defined only in a neighborhood of zero and therefore the quasiasymptotic is a local property.

It is easy to prove [5, p. 161] that (3) forces g to be homogeneous with the degree of homogeneity α. Let H
be the Heaviside function, i.e, the characteristic function of the interval (0,∞). Since we know explicitly all the
homogeneous distributions on the real line [5, p. 72], either g has the form

g(x) = C−xα
− + C+xα

+, if α /∈ {−1,−2,−3, . . . } , (4)

for some constants C− and C+, or

g(x) = γδ(k−1)(x) + βx−k, if α = −k ∈ {−1,−2,−3, . . . } , (5)

for some constants γ and β. It is well-known that the distributions on the right hand side of (4) are defined for
α ∈ C \ {−1,−2,−3, . . . }, as well. In fact, xα

+ = xαH(x) and xα
− = |x|α H(−x) if <α > −1. For the other

values they are defined by analytic continuation and they have simple poles at the negative integers [5, p. 65].
The first term on the right hand side of (5) is the (k − 1)-derivative of the well-known delta distribution. The
second term is defined as the value of xα

− + xα
+ at α = −k if k is even, and as the value of xα

+ − xα
− at α = −k

if k is odd. These choices are well defined since they eliminate the corresponding poles [5, p. 66].
Suppose now that f ∈ S ′. If we replace the space D by S in (2), then we say that f has quasiasymptotic at

0 with respect to εαL(ε) in S ′. It is obvious that if a tempered distribution has quasiasymptotic at 0 in S ′, then
it will have it in D′. It was shown by one of the authors in [8] that if L is bounded near the origin and α < 0,
α /∈ {−1,−2,−3, . . . }, then the converse is true. In the same article (see Remark 2 in [8]), the author proposed
an open question: does the converse hold without these restrictions on L and α? The main scope of this article
is to give a positive answer to this question in the general case. We should mention that, besides the case already
cited from [8], a positive answer to this question is known for Łojasiewicz point values, for instance a proof can
be found in [4].

If α = 0, L = 1 and g is a constant distribution, then (3) reduces to the well-known notion of distributional
point values due to Łojasiewicz [6]. If g(x) is a linear combination of H(x) and H(−x), then the notion corre-
sponds to that of distributional jump behavior [11, 4]. It was shown by Łojasiewicz that the existence of the point
value at 0 is equivalent to the existence of constants γ ∈ R, m ∈ N and a continuous function in a neighborhood
U ⊂ R of 0, F , such that

F (m) = f in U and F (x) = γxm + o(xm), x → 0.

Such types of characterizations are called structural theorems. A structural theorem for quasiasymptotics of order
α > −1 at the origin has been given in [8, Theorem 1] under the assumption that L is bounded. The second goal
of this article is to give structural theorems for quasiasymptotics of all orders. It is remarked that these structural
theorems hold without any restriction on L.

The key points for our structural theorems are the notions of asymptotically and associate asymptotically
homogeneous functions. Our analysis of such functions is interesting in itself as a contribution to the asymptotic
analysis, in general.

The plan for this article is as follows. In Section 2, we make some technical remarks about slowly varying
functions while in Section 3 we introduce and study a new class of functions having interesting asymptotic prop-
erties. We call these functions asymptotically homogeneous functions with respect to a slowly varying function;
they are the main tool in our analysis. In Section 4, we give structural theorems for quasiasymptotics where the
order is not a negative integer. We also reduce the study of quasiasymptotics with negative integer orders to the
case of order −1. Section 5 is dedicated to the structural theorem for the negative integer case. Finally, we show
in Section 6 that if a tempered distribution has quasiasymptotic at 0 in D′, then it will have quasiasymptotic at 0
in S ′, solving the open question posted in [8].
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2 Remarks on Slowly varying functions

Along the proofs in the next sections, there are some arguments about slowly varying functions which repeat over
and over again, so in order to avoid repetitions, we choose to have them here. Throughout this section L will be
slowly varying. Our first obvious observation is that only the behavior of L near 0 plays a role in (2), and so we
may put to L any behavior we want in intervals of the form [A,∞). Moreover, if L̃ is any measurable function
which satisfies

lim
x→0+

L̃(x)
L(x)

= 1,

we may replace L by L̃ in any statement about quasiasymptotics without losing generality in the statement. One
of the basic results in the theory of slowly varying functions is a representation formula (see first two pages of
[10]). Furthermore, the representation formula completely characterizes all the slowly varying functions; L is
slowly varying at the origin if and only if there exist measurable functions u and w defined on some interval
(0, B], u being bounded and having a finite limit at 0 and w being continuous in [0, B] with w(0) = 0, such that

L(x) = exp

(
u(x) +

∫ B

x

w(t)
t

dt

)
, x ∈ (0, B].

This formula is important because it enables us to obtain some estimates on L. Since we are looking for suitable
modifications of L, our first observation is that we can always assume that L is defined in the whole (0,∞) and
L is always positive. This is shown by extending u and w to (0,∞) in any way we want. Moreover, given any
fixed σ > 0, by reducing B and then modifying u and w, we can assume, when it is convenient, that B = 1, u is
bounded in (0,∞) and |w(x)| < σ, x ∈ (0,∞). In particular this implies

M̃ min
{
x−σ, xσ

}
<

L(εx)
L(ε)

< M max
{
x−σ, xσ

}
, x, ε ∈ (0,∞),

for some positive constants M and M̃ . Under the assumption of the last estimate we can use Lebesgue’s domi-
nated convergence theorem in∫ ∞

0

(
L (εx)
L(ε)

− 1
)

φ(x)dx,

for φ ∈ S, to deduce that

L(εx)H(x) = L(ε)H(x) + o (L(ε)) , ε → 0+, in S ′. (6)

The reader should keep in mind (6) since from now on it will be implicitly used without any further reference,
specially for differentiating asymptotic expressions in the future sections. We may also impose more conditions
on w to obtain more reasonable assumptions on L. For example, the assumption t−1w(t) ∈ L1[1,∞) implies

M̃ < L(x) < M, x > 1,

for some positive constants M̃ and M . We finally comment a well-known fact [10], [1]: As soon as (1) holds for
each a > 0, it automatically holds uniformly for a in compact subsets of (0,∞) .

3 Asymptotically Homogeneous Function

In this section the concept of asymptotically homogeneous functions with respect to a slowly varying function is
introduced and studied.

Our analysis in the next sections is based on the properties of the parametric coefficients resulting after per-
forming several integrations of the quasiasymptotic. Here we take a comprehensive approach, we single out the
defining asymptotic properties of such coefficients and proceed to obtain their behaviors at 0. This idea has been
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previously applied in [5, p. 365] in the context of summability of Fourier series of distributions; more recently, in
[11] and [12] to obtain interesting relations between Łojasiewicz point values and quasiasymptotics of order -1
at ∞, where a structural theorem is obtained by means of a pointwise Fourier inversion formula for Łojasiewicz
point values. It is remarkable that such results strongly depend on asymptotic properties of functions which are
called asymptotically homogeneous functions of degree 0 at ∞ [5]. They arise as the main coefficient of integra-
tion of the quasiasymptotic of order -1 with respect to L = 1. We will generalize these ideas by extending the
concept of asymptotically homogeneous functions. Our main motivation is given in the following proposition.

Proposition 3.1 Let f ∈ D′ have quasiasymptotic behavior at the origin

f (εx) = L(ε)g(εx) + o (εαL(ε)) , ε → 0+, in D′, (7)

where L is a slowly varying function and g is a homogeneous distribution of order α ∈ R. Let k ∈ N. Suppose
that g admits a primitive of order k, Gk ∈ D′, G

(k)
k = g, which is homogeneous of degree k + α . Then, for any

given Fk, a k-primitive of f in D′, i.e, F
(k)
k = f , there exist functions c0, . . . , ck−1, continuous in (0,∞) such

that

Fk (εx) = L(ε)Gk(εx) +
k−1∑
j=0

cj(ε)
(εx)k−1−j

(k − 1− j)!
+ o

(
εα+kL(ε)

)
, ε → 0+, in D′. (8)

Furthermore, for each a > 0, they satisfy the following asymptotic property, j ∈ {0, . . . , k − 1},

cj(aε) = cj(ε) + o
(
εα+j+1L(ε)

)
, ε → 0+. (9)

P r o o f. Recall, any φ ∈ D is of the form

φ = Cφφ0 + θ′, where Cφ =
∫ ∞

−∞
φ(t)dt, θ ∈ D (10)

and φ0 ∈ D is chosen so that
∫∞
−∞ φ0(t)dt = 1.

The evaluations of primitives F1 of f and G1 of g on φ are given by

〈F1, φ〉 = Cφ〈F1, φ0〉 − 〈f, θ〉 and 〈G1, φ〉 = Cφ〈G1, φ0〉 − 〈g, θ〉.

This implies〈
F1(εx)

εα+1L(ε)
, φ(x)

〉
= Cφ

〈
F1(εx)

εα+1L(ε)
, φ0(x)

〉
−
〈

f(εx)
εαL(ε)

, θ(x)
〉

, (11)

and 〈
G1(εx)

εα+1L(ε)
, φ(x)

〉
= Cφ

〈
G1(εx)

εα+1L(ε)
, φ0(x)

〉
−
〈

g(εx)
εαL(ε)

, θ(x)
〉

. (12)

With c0(ε) = 〈(F1 −G1)(εx), φ0(x)〉, ε ∈ (0,∞), from (7), it follows

F1 (εx) = L(ε)G1(εx) + c0(ε) + o
(
εα+1L(ε)

)
, ε → 0+, in D′. (13)

So relation (8) follows from (13) and (7), by induction.
Thus we shall concentrate in showing (9). We set Fm = F

(k−m)
k and Gm = G

(k−m)
k ,m ∈ {1, . . . , k}. By

differentiating relation (8) (k −m)-times, it follows

Fm(εx) = L(ε)Gm(εx) +
m−1∑
j=0

cj(ε)
(εx)m−1−j

(m− 1− j)!
+ o

(
εα+mL(ε)

)
, ε → 0+, in D′. (14)
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Choose φ ∈ D such that
∫∞
−∞ φ(x)xjdx = 0 for j = 1, . . . ,m − 1, and

∫∞
−∞ φ(x)dx = 1, then evaluating (14)

at φ, it follows

cm−1(aε) + L(aε) 〈Gm(aεx), φ(x)〉+ o
(
εα+mL(ε)

)
= 〈Fm(aεx), φ(x)〉 =

1
a

〈
Fm(εx), φ

(x

a

)〉
= cm−1(ε) + L(ε) 〈Gm(aεx), φ(x)〉+ o

(
εα+mL(ε)

)
, ε → 0+

and so, with j = m− 1 ∈ {0, . . . , k − 1}, for each a > 0,

cj(aε) = cj(ε) + o
(
εα+j+1L(ε)

)
, ε → 0+.

Remark 3.2 If supp f ⊂ [0,∞), then we can choose φ0 in (10) to be supported by (−∞, 0] and take in (11)
and (12) 〈F1, φ0〉 = 0 and 〈G1, φ0〉 = 0. We have supp F1 ⊂ [0,∞) and supp G1 ⊂ [0,∞). So we can prove by
induction that cj = 0, j = 0, ..., k − 1 in (9) and that Fk and Gk are supported by [0,∞). We will come back to
this in Remark 5.5.

In the rest of this section, we study continuous functions having the same asymptotic properties at the origin
as the coefficients of integration of (7), i.e., functions defined in some interval of the form (0, A), 0 < A, having
the behavior

c(ax) = c(x) + o (xαL(x)) , x → 0+,

for each a > 0. Consider b(x) = c(x)x−α, x ∈ (0, A). Then, for each a > 0,

b(ax) = a−αb(x) + o(L(x)), x → 0+.

Definition 3.3 A function b is said to be asymptotically homogeneous of degree α at 0 with respect to the
slowly varying function L, if it is continuous and defined in some interval (0, A), A > 0, and for each a > 0,

b(ax) = aαb(x) + o(L(x)), x → 0+.

We shall study these functions in details. We first study asymptotically homogeneous functions of positive
degree.

Theorem 3.4 Suppose that b is asymptotically homogeneous of degree α > 0 with respect to the slowly
varying function L. Then

b(x) = o(L(x)), x → 0+.

P r o o f. Let 0 < η. We keep η < 2α − 1. Let x0 > 0 such that∣∣∣b(x

2

)
− 2−αb(x)

∣∣∣ ≤ ηL(x) and |L(2x)− L(x)| ≤ ηL(x), 0 < x < x0. (15)

Let M = max
{
|b(x)|
L(x) : 1

2x0 ≤ x ≤ x0

}
and x ∈ [x0/2, x0]. From (15) it follows

∣∣∣∣ b(x/2n)
L(x/2n)

∣∣∣∣ ≤ 2−αn |b(x)|
L(x/2n)

+ η
n−1∑
j=0

2−α(n−1−j) L(x/2j)
L(x/2n)

.

Thus, with t = x/2n, and t ∈ [x0/2n+1, x0/2n],

∣∣∣∣ b(t)L(t)

∣∣∣∣ ≤ 2−nαM
L(2nt)
L(t)

+ η
n−1∑
j=0

2−jα L(2j+1t)
L(t)

.
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By this and
L(2j+1t)/L(2jt) ≤ (1 + η), j = 0, . . . , n− 1,

we have that if t ∈
[
2−(n+1)x0, 2−nx0

]
, then∣∣∣∣ b(t)L(t)

∣∣∣∣ ≤ M

(
1 + η

2α

)n

+ η(1 + η)
∞∑

j=0

(
1 + η

2α

)j

= M

(
1 + η

2α

)n

+ η(1 + η)
2α

2α − 1− η
.

Let us prove that for every ε > 0 there exists a positive δ such that |b(t)/L(t)| < ε, t ∈ (0, δ). First, we have to
take so small η such that

η(1 + η)
2α

2α − 1− η
<

ε

2

and n0 ∈ N such that

M

(
1 + η

2α

)n

<
ε

2
, n ≥ n0.

This implies that we have to take δ = x0/2n0 . This completes the proof.

In order to obtain further progress, we need the following lemma.

Lemma 3.5 Let b be an asymptotically homogeneous function of degree α at the origin with respect to L
defined in (0, A). Then, the relation

b(ax) = aαb(x) + o(L(x)), x → 0+,

holds uniformly for a in compact subsets of (0, A).

P r o o f. We rather work with f(x) = eαxb (e−x) and g(x) = L (e−x), we may assume that A = 1 and hence
that f and g are defined in [0,∞). By using a linear transformation between an arbitrary compact subinterval of
[0,∞) and [0, 1], it is enough to show that

f(h + x)− f(x) = o(eαxg(x)), x →∞, (16)

uniformly for h ∈ [0, 1]. Suppose that (16) is false. Then, there exist 0 < ε < 1, a sequence {hm}∞m=1 ∈ [0, 1]N

and an increasing sequence of real numbers {xm}∞m=1, xm →∞, m →∞, such that

|f (hm + xm)− f (xm)| ≥ εeαxmg (xm) , m ∈ N. (17)

Define, for n ∈ N,

An =
{

h ∈ [0, 2] : |f (h + xm)− f (xm)| < ε

3
eαxmg (xm) ,m ≥ n

}
,

Bn =
{

h ∈ [0, 2] : |f (h + xm + hm)− f (hm + xm)| < ε

3
eαxmg (xm + hm) ,m ≥ n

}
.

Note that
[0, 2] =

⋃
n∈N

An =
⋃
n∈N

Bn,

so we can select N such that µ(An), µ(Bn) > 3
2 (here µ(·) stands for Lebesgue measure), for all n ≥ N . For

each n ∈ N, put Cn = {hn} + Bn. Then, we have µ(Cn) > 3
2 , n ≥ N , and Cn, An ⊆ [0, 3]. It follows that

An

⋂
Cn 6= ∅, n > N . For each n ≥ N , select un ∈ An

⋂
Cn. In particular, we have un−hn ∈ Bn, and hence,

|f (un + xn)− f (xn)| < ε

3
eαxng (xn) ,
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|f (un + xn)− f (xn + hn)| < ε

3
eαxng (xn + hn)

which implies that for all n ≥ N,

|f (xn + hn)− f (xn)| < ε

3
eαxn (g (xn) + g (xn + hn)) .

Using that g(x + h)− g(x) = o(g(x)), x →∞, uniformly for h on compact subsets of (0,∞), we have that for
all n sufficiently large, g (xn + hn) ≤ 2g (xn), which implies that for n big enough

|f (xn + hn)− f (xn)| < εeαxng (xn) ,

in contradiction to (17), Therefore, (16) must hold uniformly for h ∈ [0, 1].

The next theorem explores the asymptotic behavior of asymptotically homogeneous functions of negative
degree.

Theorem 3.6 Suppose that b is asymptotically homogeneous of degree −α < 0 at 0 with respect to the slowly
varying function L. Then, there exists a number γ such that,

b(x) =
γ

xα
+ o (L(x)) , x → 0+. (18)

In particular, we have that for each σ > 0,

b(x) =
γ

xα
+ o

(
1
xσ

)
, x → 0+.

P r o o f. Again, we rather work with f(x) = e−αxb(e−x) and g(x) = L(e−x). Then f satisfies

f(h + x)− f(x) = o
(
e−αxg(x)

)
, x →∞,

uniformly for h ∈ [0, 1]. Given ε > 0, we can find x0 > 0 such that for all x > x0 and h ∈ [0, 1],

|f(x + h)− f(x)| ≤ εe−αxg(x) and |g(h + x)− g(x)| ≤
(
e

α
2 − 1

)
g(x).

So we have that

|f(h + n + x)− f(x)|

≤ |f(h + n + x)− f(n + x)|+ |f(n + x)− f(x)|

≤ εe−α(n+x)g(n + x) +
n−1∑
j=0

|f(j + 1 + x)− f(j + x)|

≤ εe−αx
n∑

j=0

e−αjg(j + x)

≤ εe−αxg(x)
e

α
2

e
α
2 − 1

,

where the last estimate follows from g(x + j) ≤ g(x)eαj/2. Since g(x) = o (eαx) as x →∞, it shows that there
exists γ ∈ R such that

lim
x→∞

f(x) = γ.

Moreover, the estimate shows that

f(x) = γ + o
(
e−αxg(x)

)
, x →∞,

thus, changing the variables back, we have obtained,

b(x) =
γ

xα
+ o (L(x)) , x → 0+.
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We remark that (18) trivially implies that b is asymptotically homogeneous of degree −α with respect to L.
We now focus our attention to asymptotically homogeneous function of degree 0. Using the properties of

slowly varying functions we can roughly estimate their growth at approaching 0. For instance, we easily obtain
the following estimate.

Proposition 3.7 Let b be asymptotically homogeneous of degree 0 at the origin with respect to the slowly
varying function L. If σ > 0 then,

b(x) = o

(
1
xσ

)
, x → 0+.

In particular, b(x) (L(x))−1 is integrable near the origin.

P r o o f. We know that L(x) = o (x−σ), x → 0+. Then for each a > 0, b(ax) = b(x) + o (x−σ), x → 0+

and this implies that xσb(x) is asymptotically homogeneous of degree σ with respect to the constant function 1.
From Theorem 3.4, it follows that b(x) = o (x−σ), x → 0+.

The next theorem will be very important in the next section.
Theorem 3.8 Let b be asymptotically homogeneous of degree zero at the origin with respect to the slowly

varying function L. Suppose that b is defined in (0, A]. Then

b(εx)H(x) = b(ε)H(x) + o(L(ε)) as ε → 0+, in D′, (19)

where H is the Heaviside function.

P r o o f. Since for any φ ∈ D there exists εφ < 1 such that

〈b(εx), φ(x)〉 =
∫ 1

ε

0

b(εx)φ(x)dx, ε < εφ,

we can assume that A = 1. Our aim is to show that for some ε0 < 1,

b(εx)− b(ε)
L(ε)

, x ∈ (0,∞), ε < ε0

is dominated by an integrable function in (0, 1) for the use of the Lebesgue theorem. For this goal, we assume
that L satisfies the following estimate,

L(εx)
L(ε)

≤ M max
{

x−
1
2 , x

1
2

}
, x, ε ∈ (0,∞). (20)

By Lemma 3.5, there exists 0 < ε0 < 1 such that

|b(εx)− b(ε)| < L(ε), x ∈ [1/2, 2], ε < ε0.

We keep ε < ε0 and x ∈
[
2−n−1, 2−n

]
. Then

|b(εx)− b(ε)| ≤ |b(2εx)− b((2xε)/2)|+ |b(2εx)− b(ε)|

≤ L(2εx) + |b(2εx)− b(ε)| ≤
n∑

i=1

L
(
2iεx

)
+ L(ε)

≤
n∑

i=1

(2ix)−1/2L(ε) + L(ε).

It follows from (20) that if ε < ε0 and x ≤ 1, then∣∣∣∣b(εx)− b(ε)
L(ε)

∣∣∣∣ ≤ M1x
− 1

2 + 1,
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where M1 = M(
√

2 + 1). Similarly, one gets the estimate, for ε < ε0 and x ≥ 1,∣∣∣∣b(εx)− b(ε)
L(ε)

∣∣∣∣ ≤ M1x
1
2 + 1,

Therefore we can apply Lebesgue’s dominated convergence theorem to deduce (19).

Remark 3.9 We want to remark that in Definition 3.3 we may replace the word continuous by measurable
and Theorem 3.4, Lemma 3.5, Theorem 3.6 and Proposition 3.7 would be still true. Indeed, the only place where
we used the continuity was in the proof of Theorem 3.4 to deduce that the function was locally bounded in some
smaller interval of the form (0, B], however, Lemma 3.5 implies that if one only assumes measurability, then
the function satisfies this condition. Note that Theorem 3.8 is also true if we replace the continuity of b by the
hypothesis locally bounded in (0, A].

4 Structural Theorems for some cases

In this section we apply the results of Section 3 to obtain the structural theorems for the quasiasymptotics in
several cases. We begin with the following proposition.

Proposition 4.1 Let f ∈ D′ and let L be a slowly varying function. Suppose that

f(εx) = C−L(ε)
(εx)α

−
Γ(α + 1)

+ C+L(ε)
(εx)α

+

Γ(α + 1)
+ o (εαL(ε)) , ε → 0+, in D′,

where α /∈ {−1,−2, . . . } . Given k ∈ N and Fk, a k-primitive of f , there exist γ0, . . . , γk−1 such that in the
sense of convergence in D′,

Fk(εx) =
k−1∑
j=0

γj
(εx)j

j!
+ C−L(ε)

(εx)α+k
−

Γ(α + k + 1)
+ C+L(ε)

(εx)α+k
+

Γ(α + k + 1)
+ o

(
εα+kL(ε)

)
(21)

as ε → 0+.

P r o o f. Proposition 3.1 implies that there are continuous functions on (0,∞), c0, . . . , ck−1, such that

Fk(εx) = C−L(ε)
(εx)α+k

−
Γ(α + k + 1)

+ C+L(ε)
(εx)α+k

+

Γ(α + k + 1)
+

k−1∑
j=0

ck−1−j(ε)
(εx)j

j!
+ o

(
εα+kL(ε)

)
as ε → 0+, in D′, and for each a > 0,

ck−1−j(aε) = ck−1−j(ε) + o
(
εk−j+αL(ε)

)
, ε → 0+.

For those j’s such that k + α < j, we can apply Theorem 3.4 to εj−k−αck−1−j(ε), to obtain that

εjck−1−j(ε) = o
(
εα+kL(ε)

)
, ε → 0+.

So we set γj = 0 for k + α < j. For the rest of j’s, j < k + α, we apply Theorem 3.6 to find γj such that
ck−1−j(ε) = γj + o(εk−j+αL(ε)) as ε → 0+.

Proposition 4.1 enables us to characterize the quasiasymptotics in the cases where the order is not a negative
integer.

Theorem 4.2 Let f ∈ D′ have quasiasymptotic behavior at 0 in D′,

f(εx) = C−L(ε)
(εx)α

−
Γ(α + 1)

+ C+L(ε)
(εx)α

+

Γ(α + 1)
+ o (εαL(ε)) , ε → 0+. (22)
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If α /∈ {−1,−2, . . . } , then there exist an integer m, a m-primitive F of f , i.e. F (m) = f , such that F is
continuous in [−1, 1] and

lim
x→±0

Γ(α + m + 1)F (x)
|x|α+m

L (|x|)
= C±. (23)

Conversely, if these conditions hold, then (by differentiation) (22) follows.

P r o o f. It follows from the definition of convergence in D′ that there is m ∈ N such that any m-primitive of
f is continuous in [−1, 1] and (21) holds uniformly for x ∈ [−1, 1]. Pick a specific m-primitive of f , Fm, then
from Proposition 4.1, and the argument just discussed, there is a polynomial p of degree at most m− 1, such that

Fm(εx) = p(εx) + C−L(ε)
(εx)α+m

−
Γ(α + m + 1)

+ C+L(ε)
(εx)α+m

+

Γ(α + m + 1)
+ o

(
εα+mL(ε)

)
as ε → 0+, uniformly for x ∈ [−1, 1]. Then setting F = Fm − p, x = 1,−1 and replacing ε by x, relation (23)
follows at once.

We now turn our attention to the case α ∈ {−1,−2, . . . } . Since εpk−1(εx)/L(ε) → 0, ε → 0+, we have the
following proposition.

Proposition 4.3 Let f ∈ D′ have quasiasymptotic behavior at 0,

f(εx) = L(ε)g(εx) + o
(
ε−kL(ε)

)
, ε → 0+, in D′, (24)

where k ∈ {−2,−3, . . . } and g be a homogeneous distribution of degree −k. Let G be a homogeneous distribu-
tion of degree −1 such that G(k−1) = g. Then for any (k − 1)-primitive of f , Fk−1, we have that

Fk−1(εx) = L(ε)G(εx) + o
(
ε−1L(ε)

)
, ε → 0+, in D′. (25)

Conversely, relation (25) implies (24).

P r o o f. It follows directly from Proposition 3.1 and Theorem 3.4.

Proposition 4.3 reduces our study to the case of quasiasymptotics of order −1 for which we shall proceed to
study a particular case; we postpone the general case until the next section.

Proposition 4.4 Let f ∈ D′ have quasiasymptotic behavior at 0 in D′,

f(εx) = γL(ε)δ(εx) + o
(
ε−1L(ε)

)
, ε → 0+. (26)

For each k ∈ N, let Fk be a k-primitive of f . Then, there exists c, an asymptotically homogeneous function of
degree 0 with respect to L, such that for each k, there is a polynomial pk−1 of degree at most k − 1 such that

Fk+1(εx) = pk−1(εx) + γL(ε)
(εx)k

2k!
sgnx + c(ε)

(εx)k

k!
+ o

(
εkL(ε)

)
, ε → 0+, in D′. (27)

Moreover, there exists n0 ∈ N such that for k ≥ n0, any Fk+1 is continuous in [−1, 1] and (27) holds uniformly
for x ∈ [−1, 1]. In particular, by taking x = 1,−1, one has for k ≥ n0

Fk+1(x) = pk−1(x) + γL(|x|) xk

2k!
sgnx + c (|x|) xk

k!
+ o

(
|x|k L(|x|)

)
, x → 0. (28)

Conversely, if (28) holds, then (27) is satisfied in D′, and (by differentiation) the behavior (26) follows.

P r o o f. Relation (27) follows from Proposition 3.1 and Theorem 3.6. The existence of n0 follows from the
definition of convergence in D′. The converse is shown by applying Theorem 3.8 and differentiating (k + 1)-
times.

Proposition 4.4 can be considered as a structural theorem. We shall give the general version in the next section,
we shall present an alternative reformulation as well.

Copyright line will be provided by the publisher



mn header will be provided by the publisher 11

5 Quasiasymptotic of negative integer order.

The first part of this section will be dedicated to the quasiasymptotic

f(εx) = γε−1L(ε)δ(x) + βε−1L(ε)x−1 + o
(
ε−1L(ε)

)
, ε → 0+, in D′. (29)

For each k ∈ N, select a k-primitive of f , say Fk, such that F ′
k = Fk−1. We shall study, as we have been doing,

the coefficients of the integration of (29). We should introduce some notation that will be needed. In the following
for all k ∈ N we denote by lk the primitive of log |x| with the property that lk(0) = 0 and l′k = lk−1. We have an
explicit formula for them:

lk(x) =
xk

k!
log |x| − xk

k!

k∑
j=1

1
j
, x ∈ R,

which can be easily verified by direct differentiation. They satisfy

lk(ax) = aklk(x) +
(ax)k

k!
log a, a > 0. (30)

We now proceed to integrate (29) once, so we obtain

F1(εx) = c0(ε) +
γ

2
L(ε)sgnx + βL(ε) log |x|+ o(L(ε)), ε → 0+, in D′. (31)

Now, using the standard trick of evaluating in φ ∈ D with the property
∫∞
−∞ φ(x)dx = 1, we obtain that

c0(εa) +
γ

2
L(ε)

∫ ∞

−∞
sgnxφ(x)dx + βL(εa)

∫ ∞

−∞
log |x|φ(x)dx + o(L(ε))

= 〈F1(εax), φ(x)〉 =
1
a

〈
F1(εx), φ

(x

a

)〉
= c0(ε) +

γ

2
L(ε)

∫ ∞

−∞
sgnxφ(x)dx + βL(ε)

∫ ∞

−∞
log |ax|φ(x)dx + o(L(ε)), ε → 0+,

for each a > 0. So, we see that c0 satisfies that for each a > 0,

c0(εa) = c0(ε) + β log aL(ε) + o(L(ε)), ε → 0+. (32)

We call a continuous function defined in some interval of the form (0, A), A > 0, and satisfying (32), for
some β, associate asymptotically homogeneous of degree 0 with respect to L. Using the same method of Lemma
3.5 and Theorem 3.8, one shows the following important lemma.

Lemma 5.1 Assume that b is a continuous function defined in an interval of the form (0, A] and that it satisfies
(32). Then (32) holds uniformly on compact subsets of (0, A]. Additionally, we have

b(|εx|) = b(ε) + βL(ε) log |x|+ o(L(ε)), ε → 0+, in D′.

Further integration of (31) gives,

Fk+1(εx) =
k∑

j=0

cj(ε)
(εx)k−j

(k − j)!
+ γL(ε)sgnx

(εx)k

2k!
+ βL(ε)εklk(x) + o

(
εkL(ε)

)
as ε → 0+, in D′; where the cj’s, for j > 0, satisfy to be continuous on (0,∞) and for each a > 0,

cj(aε) = cj(ε) + o
(
εjL(ε)

)
, ε → 0+. (33)

The proof of this assertion can be given as in Proposition 3.1. We have to choose φ ∈ D so that,
∫∞
−∞ φ(x)xjdx =

0 for j = 1, . . . , k and
∫∞
−∞ φ(x)dx = 1, then to evaluate Fk+1(aεx) at φ taking into account (30). With this,

one obtains (33).
So using the results of Section 3 and Lemma 5.1, one obtains the structural theorem for quasiasymptotics of

order −1.
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Theorem 5.2 Let f ∈ D′ have quasiasymptotic at 0 of the form (29). For each k ∈ N, choose an arbitrary
k-primitive Fk of f . Then there exists an associate asymptotically homogeneous function, c, satisfying (32) such
that for any k, there is a polynomial pk−1 of degree at most k − 1 for which Fk+1 satisfies,

Fk+1(εx) = pk−1(εx) + c(ε)
(εx)k

k!
+ γL(ε)

(εx)k

2k!
sgnx + βL(ε)εklk(x) + o

(
εkL(ε)

)
(34)

as ε → 0+, in the sense of convergence in D′. Moreover, there exists n0 ∈ N, such that for all k ≥ n0, Fk+1 is
continuous in [−1, 1] and (34) holds uniformly for x ∈ [−1, 1]. In particular for k ≥ n0, one has,

Fk+1(x) = pk−1(x) + c (|x|) xk

k!
+ γ

xk

2k!
L (|x|) sgnx− βL (|x|) xk

k!

k∑
j=1

1
j

+ o
(
|x|k L (|x|)

)
(35)

as x → 0, in the ordinary sense. Conversely, it follows from Lemma 5.1 that relation (35) implies (34), and (by
differentiation) (29) follows.

Theorem 5.2 is a structural theorem, but we shall give a version free of c.

Theorem 5.3 Let f ∈ D′. Then f has quasiasymptotic at 0 of the form (29) if and only if there exists a
(k + 1)-primitive F of f , continuous on [−1, 1], such that for each a > 0,

lim
x→0+

k!
(
a−kF (ax)− (−1)kF (−x)

)
xkL(x)

= γ + β log a. (36)

P r o o f. The limit (36) follows from (34) and (35) by direct computation. For the converse, rewrite (36) as

a−kF (ax)− (−1)kF (−x) = (γ + β log a)
xk

k!
L(x) + o

(
xkL(x)

)
, x → 0+,

for each a > 0. Set

c(x) = k!x−kF (x)−

γ

2
− β

k∑
j=1

1
j

L(x), x ∈ (0, 1).

By setting a = 1 in (36), one sees that for x < 0,

F (x) = c (|x|) xk

k!
+ γL (|x|) xk

2k!
sgnx− βL (|x|) xk

k!

k∑
j=1

1
j

+ o
(
|x|k L (|x|)

)
, x → 0.

Since

a−kF (ax)− F (x) = β log a
xk

k!
L(x) + o

(
xkL(x)

)
, x → 0+,

it is clear that for each a > 0,

c(ax) = c(x) + β log aL(x) + o(L(x)), x → 0+.

It is remarkable that, initially, no uniform condition on a is assumed in (36). However, the proof of Theorem
5.3 forces this relation to hold uniformly for a in compact subsets.

We are now ready to state the structural theorem for negative integer orders which now follows trivially from
Proposition 4.3, Theorem 5.2 and Theorem 5.3.
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Theorem 5.4 Let f ∈ D′ and k be a positive integer. Then f has the quasiasymptotic behavior at the origin,

f(εx) = γε−kL(ε)δ(k−1)(x) + (−1)k−1(k − 1)!βε−kL(ε)x−k + o
(
ε−kL(ε)

)
, ε → 0+, in D′,

if and only if there exists m ∈ N, m ≥ k, a function c defined on (0,∞), such that it is an associate asymptotically
homogeneous function of degree 0 at the origin with respect to L, satisfying

c(aε) = c(ε) + β log aL(ε) + o(L(ε)), ε → 0+,

for each a > 0, and a m-primitive of f , F , which is continuous in [−1, 1] and satisfies

F (x) = c (|x|) xm−k

(m− k)!
+γL (|x|) xm−k

2(m− k)!
sgnx−βL (|x|) xm−k

(m− k)!

m−k∑
j=1

1
j

+o
(
|x|m−k

L (|x|)
)

as x → 0, in the ordinary sense. The last property is equivalent to

lim
x→0+

(m− k)!
(
ak−mF (ax)− (−1)m−kF (−x)

)
xm−kL(x)

= γ + β log a,

for each a > 0.

We end this section with the following two remarks, they deal with the simplest case of quasiasymptotic
behavior at the origin.

Remark 5.5 In this remark, we analyze the case when supp f ⊆ [0,∞). The reader should compare this
remark with Theorem 2 in [13], Chapter 1, Section 3.4. In such case if f has quasiasymptotic at the origin of
order α ∈ R, then by considerations on the support, one easily sees that it should be of the form

f(εx) = CεαL(ε)
xα

+

Γ(α + 1)
+ o (εαL(ε)) as ε → 0+ in D′. (37)

Moreover, again by considerations on the supports, see Remark 3.2, or simply by working in D′[0,∞) as it is
done in [13] for the case of quasiasymptotics at ∞ in S ′+, the structural theorem can be stated in a very simple
form, even in the case α ∈ {−1,−2, . . . }. We have that f satisfies (37) if and only if there is n ∈ N, n > −α,
such that the n-primitive of f with support in [0,∞), denoted by f (−n), is continuous in a neighborhood of the
origin and satisfies

lim
x→0+

Γ(α + n + 1)f (−n)(x)
xα+nL(x)

= C. (38)

Remark 5.6 In analogy with the case of quasiasymptotics at ∞, we have that if supp f, supp g ⊆ [0,∞),
and f and g have quasiasymptotic at the origin with respect to εαL1(ε) and ενL2(ε), respectively, then f ∗ g has
quasiasymptotic at the origin with respect to εα+ν+1L1(ε)L2(ε). In [13], this assertion at ∞ is shown by means
of their Tauberian theorem; see Lemma 1, Chapter 4, Section 11.1 in [13]. We give an argument for proving this
claim at the origin based on Remark 5.5. The proof is very simple. Consider f ⊗ g ∈ D′(R2). Then by (38) there
exist n > −α, m > −ν, C1 and C2 such

lim
x→0+

Γ(α + n + 1)f (−n)(x)
xα+nL1(x)

= C1

and

lim
y→0+

Γ(ν + m + 1)g(−m)(y)
yν+mL2(y)

= C2,

hence for each φ ∈ D(R2),

〈f ⊗ g(εx, εy), φ(x, y)〉
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=
(−1)n+m

εn+m

∫ ∫
f (−n)(εx)g(−m)(εy)

∂n+mφ

∂xn∂ym
(x, y)dxdy

= εα+νL1(ε)L2(ε)
〈

C1x
α
+

Γ(α + 1)
⊗

C2y
α
+

Γ(ν + 1)
, φ(x, y)

〉
+ o(εα+νL1 (ε)L2(ε)) , ε → 0+.

It follows then from the definition of convolution and the last relation that

f ∗ g(εx) = C1C2L1(ε)L2(ε)
(εx)α+ν+1

+

Γ(α + ν + 2)
+ o(εα+ν+1L1(ε)L2(ε)), ε → 0+, in D′.

6 Quasiasymptotics at the origin of Tempered Distributions.

We conclude this article by solving the open problem concerning quasiasymptotics of tempered distributions
indicated in the introduction. The solution is the content of Theorem 6.1. The proof adapts to our context some
arguments of R. Estrada given in [4] (see proofs of Theorem 1 and Theorem 2 there).

Theorem 6.1 Let f ∈ S ′. If f has quasiasymptotic at 0 in D′, then f has quasiasymptotic at 0 in S ′.

P r o o f. Let α be the order of the quasiasymptotic. We shall divide the proof into three cases:
α /∈ {−1,−2,−3, . . . },
α = −1,
α = −2,−3, . . . .
Suppose its order is α /∈ {−1,−2,−3, . . . } and

f(εx) = C−L(ε)
(εx)α

−
Γ(α + 1)

+ C+L(ε)
(εx)α

+

Γ(α + 1)
+ o (εαL(ε)) , ε → 0+, in D′.

Then, there are real numbers m and λ such that m ∈ N, m > −α, λ > m + α, and a continuous m-primitive F
of f such that

F (x) =
|x|m+α

Γ(m + α + 1)
L (|x|) (C−H(−x) + C+H(x)) + o

(
|x|m+α

L (|x|)
)

, x → 0,

and

F (x) = O
(
|x|λ

)
, |x| → ∞. (39)

We make the usual assumptions over L. Assume that L is positive, defined in (0,∞) and there exists M1 > 0
such that

L(εx)
L(ε)

≤ M1 max
{

x−
1
2 , x

1
2

}
, ε, x ∈ (0,∞). (40)

Let φ ∈ S, then we can decompose φ = φ1 + φ2 + φ3, where supp φ1 ⊆ (−∞, 1], supp φ2 is compact and
supp φ3 ⊆ [1,∞). Observe that since φ2 ∈ D we have that

〈f(εx), φ2(x)〉 = C−εαL(ε)
〈

xα
−

Γ(α + 1)
, φ2(x)

〉
(41)

+C+εαL(ε)
〈

xα
+

Γ(α + 1)
, φ2(x)

〉
+ o (εαL(ε)) , ε → 0+.

If we want to show (41) for φ, it is enough to show it for φ3 placed instead of φ2 in the relation because by
symmetry it would follow for φ1 and hence for φ. Set

G(x) =
F (x)

xα+mL(x)
, x > 0.
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Then

lim
x→0+

G(x) =
C+

Γ(α + m + 1)
, (42)

On combining (39), (40) and (42), we find a constant M2 > 0 such that

|G(x)| < M2(1 + xλ+ 1
2−m−α), x > 0. (43)

Relation (43) together with (40) show that for ε ≤ 1,∣∣∣∣G(εx)
L(εx)
L(ε)

xα+mφ
(m)
3 (x)

∣∣∣∣ ≤ 2M1M2x
λ+1

∣∣∣φ(m)
3 (x)

∣∣∣H(x− 1).

The right hand side of the last estimate belongs to L1(R) and thus we can use the Lebesgue dominated conver-
gence theorem to obtain,

lim
ε→0+

1
εαL(ε)

〈f(εx), φ3(x)〉

= lim
ε→0+

(−1)m

∫ ∞

0

G(εx)
L(εx)
L(ε)

xα+mφ
(m)
3 (x)dx

= (−1)m C+

Γ(α + m + 1)

∫ ∞

0

xα+mφ
(m)
3 (x)dx

= C+

〈
xα

+

Γ(α + 1)
, φ3(x)

〉
.

This shows the result in the case α /∈ {−1,−2,−3, . . . } .

We now aboard the case α = −1. Assume that

f(εx) = γε−1L(ε)δ(x) + βε−1L(ε)x−1 + o
(
ε−1L(ε)

)
, ε → 0+, in D′.

As in the last case, it suffices to assume that φ ∈ S , supp φ ⊆ [1,∞) and show that

lim
ε→0+

ε

L(ε)
〈f(εx), φ(x)〉 = β

∫ ∞

1

φ(x)
x

dx.

We may proceed as in the previous case to apply the structural theorem, but we rather reduce it to the previous
situation. So, set g(x) = xf(x), then

g(εx) = βL(ε) + o(L(ε)), ε → 0+, in D′. (44)

But g ∈ S ′, then since the order of the quasiasymptotic is 0, first case implies that (44) is valid in S ′. Therefore

lim
ε→0+

ε

L(ε)
〈f(εx), φ(x)〉 = lim

ε→0+

1
L(ε)

〈
g(εx),

φ(x)
x

〉
= β

∫ ∞

1

φ(x)
x

dx.

This shows the case α = −1.
It remains to show the theorem when α ∈ {−2,−3, . . . }. Suppose the order is −k, k ∈ {2, 3, . . . }. It is easy

to see that any primitive of order (k − 1) of f has quasiasymptotic of order -1 at the origin with respect to L
(in fact this is the content of Proposition 4.3). The (k − 1)-primitives of f are in S ′, so we can apply the case
α = −1 to them, and then by differentiation it follows that f has quasiasymptotic at the origin in S ′.

This completes the proof of Theorem 6.1.
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