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Sato’s hyperfunctions

A useful idea in analysis is to study functions of a real variable
via analytic functions. One looks for representations

f (x) = F (x + i0)−F (x − i0) := lim
y→0+

F (x + iy)−F (x − iy), (1)

with suitable interpretation of the limit.
Let O(Ω) be the space of analytic functions on Ω ⊆ C. In 1959
Sato introduced the so-called space of hyperfunctions

B = B(R) := O(C \ R)/O(C) .

So B contains all objects “of the form”

f (x) = F (x + i0)− F (x − i0).

Most spaces occurring in functional analysis are embedded into
the space of Sato hyperfunctions.
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Analytic representation of distributions

Starting with the work of Köthe, many authors investigated the
problem of representing distributions via analytic functions
(Tillmann, Silva, ...). One has:

Theorem
Every distribution admits the representation

f (x) = lim
y→0+

F (x + iy)− F (x − iy) , in D′, (2)

where F is analytic except on R and satisfies: for every
compact [a,b] there are constants K , k > 0 such that

|F (x + iy)| ≤ K
|y |k

, x ∈ [a,b],0 < |y | < 1 . (3)

Conversely, if F ∈ O(C \ R) satisfies (3), then (2) exists.
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Constructing analytic representations: Cauchy
transform

Denoting as OD′(C) the space of analytic functions on C \ R
satisfying the bounds

|F (x + iy)| ≤ K
|y |k

, x ∈ [a,b],0 < |y | < 1 .

we obtain D′ ∼= OD′(C \ R)/O(C).

How to find F? The simplest way is via the Cauchy transform:

F (z) =
1

2πi

〈
f (t),

1
t − z

〉
, =m z 6= 0 .

The Cauchy transform is well-defined in various distribution
spaces, e.g. if f ∈ E ′, namely a compactly supported
distribution. Recall f ∈ E ′ is the dual of E = C∞.

Jasson Vindas Analytic representations and applications



Analytic representations
The prime number theorem for Beurling’s numbers

Distributions
Ultradistributions

Constructing analytic representations: Cauchy
transform

Denoting as OD′(C) the space of analytic functions on C \ R
satisfying the bounds

|F (x + iy)| ≤ K
|y |k

, x ∈ [a,b],0 < |y | < 1 .

we obtain D′ ∼= OD′(C \ R)/O(C).

How to find F? The simplest way is via the Cauchy transform:

F (z) =
1

2πi

〈
f (t),

1
t − z

〉
, =m z 6= 0 .

The Cauchy transform is well-defined in various distribution
spaces, e.g. if f ∈ E ′, namely a compactly supported
distribution. Recall f ∈ E ′ is the dual of E = C∞.

Jasson Vindas Analytic representations and applications



Analytic representations
The prime number theorem for Beurling’s numbers

Distributions
Ultradistributions

Constructing analytic representations: Fourier-Laplace
transform

If f ∈ S ′, we can use the Fourier-Laplace transform representation.
Decompose the Fourier transform f̂ = f̂− + f̂+, where f̂− and f̂− have
supports in (−∞,0] and [0,∞). Then

F (z) =

{
1

2π 〈f̂+(u),eizu〉 if =m z > 0 ,
− 1

2π 〈f̂−(u),eizu〉 if =m z < 0 .

In this case F satisfies the global bound

|F (x + iy)| ≤ K (1 + |x |+ |y |)m

|y |k
, y 6= 0 . (4)

Defining OS′(C \ R), one can show that

S ′ ∼= OS′(C \ R)/P(C),

where P(C) is the space of polynomials
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Hardy spaces

The classical Hardy space Hp, 1 ≤ p ≤ ∞, is defined as the
space of analytic functions on =m z > 0 such that

sup
0<y≤1

||F ( · + iy)||p <∞. (5)

A classical result tells us that for every F ∈ Hp,

f (x) := lim
y→0+

F (x + iy)

exists a.e. and the limit relation also holds in Lp-norm (in the
weak∗ sense for p =∞). For p <∞, the norm ||f ||p coincides
with (5).
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The space D′Lp

DLp = {φ ∈ E : φ(n) ∈ Lp, ∀n}.
D′Lp is the dual of DLq where 1/p + 1/q = 1 (with a technical variant
when p = 1).

The space D′L2 is easy to understand: f ∈ D′L2 iff ∃k such that∫ ∞
−∞
|̂f (u)|2(1 + |u|)k <∞ .

Theorem

A function F (z), analytic in =m z > 0, has boundary values

f (x) = lim
y→0+

F (x + iy) in D′Lp

if there are K , k such that

||F ( · + iy)||p ≤
K
y k , 0 < y ≤ 1 .
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Boundary values: Summary

Let F (z) be analytic on the half-plane =m z > 0. Then

|F (x + iy)| ≤ K
yk (locally) =⇒ F (x + i0) ∈ D′ .

|F (x + iy)| ≤ K (1 + |x |+ y)m

yk =⇒ F (x + i0) ∈ S ′ .

||F ( · + iy)||p ≤
K
yk =⇒ F (x + i0) ∈ D′Lp .
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The class of real analytic functions over R is characterized by

sup
x∈[a,b]

|f (p)(x)| ≤ hpp!, for some h = ha,b .

Replace p! by a sequence {Mp}∞p=0 satisfying (convexity):
M2

p ≤ Mp−1Mp+1. Define E{Mp} ⊂ E(= C∞) as those functions such
that

sup
x∈[a,b]

|f (p)(x)| ≤ hpMp, for some h = ha,b .

Example. Mp = (p!)s gives rise to the Gevrey classes.

Hadamard problem (1912): The class is called quasi-analytic if
E{Mp} ∩ D = {0}. Find conditions over Mp for quasi-analyticity.

Theorem (Denjoy-Carleman, 1921, 1926)

The class E{Mp} is quasi-analytic iff

∞∑
p=1

Mp−1

Mp
=∞.
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The sequence

We will work with the following conditions on {Mp}∞p=0:
(M.1) M2

p ≤ Mp−1Mp+1 (logarithmic convexity)
(M.2) Mp ≤ AHpMqMp−q for 0 ≤ q ≤ p (stability under

ultradifferential operators)
(M.3’)

∑∞
p=1

Mp−1
Mp

<∞ (non-quasianalyticity)
The following two functions are useful:

M(ρ) = sup
p∈N

log
(
ρpM0

Mp

)
(the associated function).

M∗(ρ) = sup
p∈N

log
(
ρpM0p!

Mp

)
.

The nonquasi-analyticity condition (M.3′) is equivalent to:∫ ∞
1

M(x)

x2 dx <∞ .
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Ultradistribution spaces

SMp
h =

{
φ ∈ S : sup

x,α,β

(1 + |x |)α|φ(β)(x)|
hα+βMαMβ

<∞

}
,

DMp
h,Lq =

{
φ ∈ DLq : sup

α

||φ(α)||q
hαMα

<∞
}
,

DMp
h,A =

{
φ ∈ D : sup

x∈[−A,A],α

|φ(α)(x)|
hαMα

<∞

}
.

Beurling-type spaces:

S(Mp) =
⋂
h>0

S(Mp)
h , D(Mp)

Lq =
⋂
h>0

D(Mp)
h

D(Mp) = ind lim
A→∞

D(Mp)
A D(Mp)

A =
⋂
h>0

D(Mp)
h,A

Roumieu-type spaces: Replace intersections by unions, resulting
spaces: S{Mp}, D{Mp}

Lq , D{Mp}.
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Boundary values in ultradistribution spaces

Let F (z) be analytic on =m z > 0. Assume (M.1), (M.2), (M.3).

Beurling case:

(∀A > 0)(∃λ)(∃K )

(
|F (x + iy)| ≤ KeM∗

(
λ
y

)
, y < 1, |x | ≤ A

)
=⇒ F (x+i0) ∈ D′(Mp) .

(∃λ)(∃K )

(
|F (x + iy)| ≤ KeM∗

(
λ
y

)
eM(λ(|x|+y))

)
=⇒ F (x + i0) ∈ S ′(Mp) .

(∃λ)(∃K )

(
||F ( · + iy)||q ≤ KeM∗

(
λ
y

)
, 0 < y < 1

)
=⇒ F (x + i0) ∈ D′ (Mp)

Lq .

Roumieu case: If one replaces (∃λ) by (∀λ), one obtains boundary
values in the ultradistribution spaces D′{Mp}, S ′{Mp}, and D′{Mp}

Lq .
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Distributions
Ultradistributions

Boundary values in ultradistribution spaces
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(∀A > 0)(∃λ)(∃K )
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λ
y

)
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λ
y
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The prime number theorem

The prime number theorem (PNT) states that

π(x) ∼ x
log x

, x →∞ ,

where
π(x) =

∑
p≤x

1

p prime

.

We will consider generalizations of the PNT for Beurling’s
generalized numbers
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Beurling’s problem

In 1937, Beurling raised and studied the following question.
Let 1 < p1 ≤ p2, . . . be a non-decreasing sequence
tending to infinity (generalized primes).
Arrange all possible products of the pj in a non-decreasing
sequence 1 < n1 ≤ n2, . . . , where every nk is repeated as
many times as represented by pα1

ν1 pα2
ν2 . . . p

αm
νm with νj < νj+1

(generalized numbers).
Denote N(x) =

∑
nk≤x 1 and π(x) =

∑
pk≤x 1.

Beurling’s problem: Find conditions over N which ensure the
validity of the PNT, i.e.,

π(x) ∼ x
log x

.
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Beurling’s PNT

Beurling studied the problem in connection with the asymptotics

N(x) ∼ ax .

Conditions on the reminder in N(x) = ax + R(x) are needed.

Theorem (Beurling, 1937)

if
N(x) = ax + O

(
x

logγ x

)
,

where a > 0 and γ > 3/2, then the PNT holds.

Theorem (Diamond, 1970)
Beurling’s condition is sharp, namely, the PNT does not
necessarily hold if γ = 3/2.
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The L2-conjecture: Kahane’s PNT

In 1969, Bateman and Diamond conjectured that∫ ∞
1

∣∣∣∣(N(x)− ax) log x
x

∣∣∣∣2 dx
x
<∞

would suffice for the PNT. The above L2-condition extends that
of Beurling.

Theorem (Kahane’s 1997, extending Beurling)

The L2-hypothesis ensures the validity of the PNT.
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An average condition for the PNT

Schlage-Puchta and I recently showed.

Theorem (2012, extending Beurling)

Suppose there exist constants a > 0 and γ > 3/2 such that

N(x) = ax + O
(

x
logγ x

)
(C) , x →∞ ,

Then the prime number theorem still holds.

The hypothesis means that there exists some m ∈ N such that:∫ x

0

N(t)− at
t

(
1− t

x

)m

dt = O
(

x
logγ x

)
.

Technique: Distributional methods in the analysis of boundary
behavior of zeta functions.
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Comparison of conditions for the PNT

The three conditions

N(x) = ax + O
(

x
logγ x

)
∫ ∞

1

∣∣∣∣ (N(x)− ax) log x
x

∣∣∣∣2 dx
x
<∞

N(x) = ax + O
(

x
logγ x

)
(C)

can be better understood if one looks at

E(u) =
(N(eu)− aeu)u

eu .
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Comparison of conditions for the PNT

The three conditions

N(x) = ax + O
(

x
logγ x

)
=⇒ E(u) = O(u−(γ−1))

∫ ∞
1

∣∣∣∣ (N(x)− ax) log x
x

∣∣∣∣2 dx
x
<∞ =⇒ E ∈ L2

N(x) = ax + O
(

x
logγ x

)
(C) =⇒ (E ∗ φ)(u) = O(u−(γ−1)), ∀φ ∈ S

where
E(u) =

(N(eu)− aeu)u
eu .

In all three cases, this error function satisfies the membership
condition:

E ∈ D′L2 .
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The newest general PNT

Theorem (2013, extending all earlier results)

Suppose that E ∈ D′ (Mp)

L2 , where the sequence satisfies (M.1)
and (M.2) and the associated function M satisfies:∫ ∞

1

M(x)

x3 dx <∞ . (6)

Then the prime number theorem holds.

Example. If Mp = (p!)s with 1/2 < s, then (6) holds because

Ax1/s ≤ M(x) ≤ Bx1/s.

Remark. The condition (6) implies the bound

M(x) = o(x2/ log x).

Is this growth condition sharp for the PNT? I conjecture so ...
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