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The prime number theorem

The aim of this talk is to give a purely distributional proof of the
Prime Number Theorem (PNT), that is,

π(x) ∼ x
log x

, x →∞ ,

where
π(x) =

∑
p prime, p<x

1 .

The word distributional refers to Schwartz distributions.
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The tecniques

The proof is based on:
Chebyshev elementary estimate
The non-vanishing of the Riemann zeta function on
<e z = 1
Arguments from generalized asymptotics

S−asymptotics
Quasiasymptotics

J.Vindas and R.Estrada A quick distributional way to the prime number theorem



Introduction
Preliminaries

Special functions and distributions related to prime numbers
Proof

The prime number theorem
The tecniques

The tecniques

The proof is based on:
Chebyshev elementary estimate
The non-vanishing of the Riemann zeta function on
<e z = 1
Arguments from generalized asymptotics

S−asymptotics
Quasiasymptotics

J.Vindas and R.Estrada A quick distributional way to the prime number theorem



Introduction
Preliminaries

Special functions and distributions related to prime numbers
Proof

The prime number theorem
The tecniques

Outline

1 Preliminaries
Notation
Generalized asymptotics
Riemann zeta function

2 Special functions and distributions related to prime numbers
Chebyshev function
A special distribution
Properties of v(x)

3 Proof
Steps
Step 1
Step 2
Final Step

J.Vindas and R.Estrada A quick distributional way to the prime number theorem



Introduction
Preliminaries

Special functions and distributions related to prime numbers
Proof

Notation
Generalized asymptotics
Riemann zeta function

Notation
from distribution theory

D(R) and S(R) denote the spaces of smooth compactly
supported functions and smooth rapidly decreasing
functions
D′(R) and S ′(R) the spaces of distributions and tempered
distributions
The Fourier transform in S(R) is defined as

φ̂(x) =

∫ ∞

−∞
eixtφ(t)dt

The evaluation of f at a test function φ is denoted by

〈f (x), φ(x)〉
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Quasiasymptotics
Generalized asymptotics

The idea is to study the weak asymptotic behavior of the dilates
of f . So we look for asymptotic representations

f (λx) ∼ ρ(λ)g(x) .

Definition
We say that f ∈ D′(R) has quasiasymptotic behavior at ∞ in
D′(R) with respect to ρ if for some g ∈ D′(R) and each
φ ∈ D(R),

lim
λ→∞

〈
f (λx)

ρ(λ)
, φ(x)

〉
= 〈g(x), φ(x)〉 .
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Quasiasymptotics
Generalized asymptotics

We will study in connection to the PNT a particular case of
quasiasymptotics, namely, a limit of the form

lim
λ→∞

f (λx) = βH(x) , in D′(R) , (1)

where H(x) is the Heaviside function.

(1) should be always interpreted in the weak topology of
D′(R), i.e.,

lim
λ→∞

〈f (λx), φ(x)〉 = β

∫ ∞

0
φ(x)dx , ∀ φ ∈ D(R) . (2)

We may also talk about (1) in other spaces of distributions;
for instance in D′(0,∞)
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S−asymptotics
Generalized asymptotics

Let f ∈ D′(R) and β ∈ R a relation of the form

lim
h→∞

f (x + h) = β , in D′(R) ,

means that the limit is taken in the weak topology of D′(R), that
is, for each φ ∈ D(R) the following limit holds,

lim
h→∞

〈f (x + h), φ(x)〉 = β

∫ ∞

−∞
φ(x)dx . (3)

The above relation is an example of the so-called
S−asymptotics of generalized functions, i.e.,

f (x + h) ∼ ρ(h)g(x) , in D′(R) .

limh→∞ f (x + h) = β in S ′(R) means that f ∈ S ′(R) and φ
can be taken from S(R) in (3)
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Riemann zeta function
Properties

Consider the Riemann zeta function

ζ(z) =
∞∑

n=1

1
nz , <e z > 1 .

Properties

ζ(z)− 1
z − 1

admits an analytic continuation to a

neighborhood of <e z = 1
ζ(1 + ix), x 6= 0, is free of zeros
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Chebyshev function

We denote by Λ the von Mangoldt function defined on the
natural numbers as

Λ(n) =


0 , if n = 1 ,
log p , if n = pm with p prime and m > 0 ,
0 , otherwise .

and by ψ the Chebyshev function

ψ(x) =
∑

pm<x

log p =
∑
n<x

Λ(n) .
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Chebyshev’s elementary estimate

It is very well known since the time of Chebyshev that

The PNT is equivalent to the statement

ψ(x) ∼ x (4)

Chebyshev’s elementary estimate: ∃M > 0 such that
ψ(x) < Mx

Our approach to the PNT will be to show (4). The proof is
based on finding the (quasi-) asymptotic behavior of ψ′(x);
observe that

ψ′(x) =
∞∑

n=1

Λ(n) δ(x − n) .
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The distribution v(x)

We shall study the (S-)asymptotic properties of the distribution

v(x) =
∞∑

n=1

Λ(n)

n
δ(x − log n) .

clearly v ∈ S ′(R). Let us take the Fourier-Laplace transform of
v , that is, for =m z > 0

v̂(z) =
〈

v(t),eizt
〉

=
∞∑

n=1

Λ(n)

n1−iz = −ζ
′(1− iz)

ζ(1− iz)
,

a formula that Riemann obtained by logarithmic differentiation
of the Euler product ζ(z) =

∏
p

1/(1− p−z). Then,

v̂(x) = −ζ
′(1− ix)

ζ(1− ix)
.
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Properties of v(x) to be used

It follows from the properties of ζ that the distributional

boundary value of v̂(z)− i
z

is a function, i.e.,

v̂(x)− i
(x + i0)

∈ L1
loc(R)

In addition, we will make use of Chebyshev’s estimate:
ψ(x) < Mx
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The plan
Steps

1 To show that

lim
h→∞

v(x + h) = 1 , in S ′(R)

2 To show that

lim
λ→∞

ψ′(λx) = lim
λ→∞

∞∑
n=1

Λ(n)δ(λx −n) = H(x) , in D′(0,∞)

3 Final step, Step 2 is used to conclude

ψ(x) ∼ x
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limh→∞ v(x + h) = 1 in S ′(R)
Step 1

First, v(x + h) = O(1) in S ′(R), as h →∞

Proof.
Set g(x) = e−xψ(ex), by Chebyshev estimate g(x + h) = O(1)
in S ′(R). Next, g′(x + h) = O(1), but
g′(x) = −g(x) + e−x ∑Λ(n)δ(x − log n) = −g(x) + v(x).

Second, lim
h→∞

〈v(x + h), φ(x)〉 =

∫ ∞

−∞
φ(x)dx , for φ in a

dense subspace of S(R)
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limh→∞ v(x + h) = 1 in S ′(R)
Step 1 (continuation)

Proof.

Let φ = φ̂1 with suppφ1 compact.

〈v(x + h), φ(x)〉 =

∫ ∞

−h
φ(x)dx +

〈
v(x + h)− H(x + h) , φ̂1(x)

〉
=

∫ ∞

−h
φ(x)dx +

〈
v̂(x)− i

(x + i0)
,e−ihxφ1(x)

〉
=

∫ ∞

−∞
φ(x)dx + o(1), h →∞

Banach-Steinhaus theorem immediately gives the result
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Final Step

limλ→∞ ψ
′(λx) = H(x) , in D′(0,∞)

Step 2

Proof.

Step 2 implies that ex+hv(x + h) ∼ ex+h, in D′(R), explicitely,

∞∑
n=1

Λ(n)φ(log n − h) ∼ eh
∫ ∞

−∞
exφ(x)dx , ∀φ ∈ D(R)

Changing variable in the last integral and writing λ = eh,

〈
ψ′(λx), φ1(x)

〉
=

1
λ

∞∑
n=1

Λ(n)φ1

(n
λ

)
∼
∫ ∞

0
φ1(x)dx , (5)

where φ1(x) = φ(log x). Thus, (5) holds ∀φ1 ∈ D(0,∞).
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Step 2 implies that ex+hv(x + h) ∼ ex+h, in D′(R), explicitely,

∞∑
n=1

Λ(n)φ(log n − h) ∼ eh
∫ ∞

−∞
exφ(x)dx , ∀φ ∈ D(R)

Changing variable in the last integral and writing λ = eh,

〈
ψ′(λx), φ1(x)

〉
=

1
λ

∞∑
n=1

Λ(n)φ1

(n
λ

)
∼
∫ ∞

0
φ1(x)dx , (5)

where φ1(x) = φ(log x). Thus, (5) holds ∀φ1 ∈ D(0,∞).
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Proof

Steps
Step 1
Step 2
Final Step

Final Step: ψ(x) ∼ x
Proof

Formally,
1
λ

∑
n<λ

Λ(n) =
〈
ψ′(λx), χ[0,1)(x)

〉
.

We approximate χ[0,1) by elements of D(0,∞).

Let ε be an arbitrary small positive number
Choose φ1 and φ2 with the properties:

0 ≤ φ1, φ2 ≤ 1
suppφ1 ⊆ (0,1], φ1(x) = 1 on [ε,1− ε]
suppφ2 ⊆ (0,1 + ε], and φ2(x) = 1 on [ε,1]

J.Vindas and R.Estrada A quick distributional way to the prime number theorem



Introduction
Preliminaries

Special functions and distributions related to prime numbers
Proof

Steps
Step 1
Step 2
Final Step

Final Step: ψ(x) ∼ x
Proof

Formally,
1
λ

∑
n<λ

Λ(n) =
〈
ψ′(λx), χ[0,1)(x)

〉
.

We approximate χ[0,1) by elements of D(0,∞).

Let ε be an arbitrary small positive number
Choose φ1 and φ2 with the properties:

0 ≤ φ1, φ2 ≤ 1
suppφ1 ⊆ (0,1], φ1(x) = 1 on [ε,1− ε]
suppφ2 ⊆ (0,1 + ε], and φ2(x) = 1 on [ε,1]

J.Vindas and R.Estrada A quick distributional way to the prime number theorem



Introduction
Preliminaries

Special functions and distributions related to prime numbers
Proof

Steps
Step 1
Step 2
Final Step

Final Step: ψ(x) ∼ x
Proof

Formally,
1
λ

∑
n<λ

Λ(n) =
〈
ψ′(λx), χ[0,1)(x)

〉
.

We approximate χ[0,1) by elements of D(0,∞).

Let ε be an arbitrary small positive number
Choose φ1 and φ2 with the properties:

0 ≤ φ1, φ2 ≤ 1
suppφ1 ⊆ (0,1], φ1(x) = 1 on [ε,1− ε]
suppφ2 ⊆ (0,1 + ε], and φ2(x) = 1 on [ε,1]

J.Vindas and R.Estrada A quick distributional way to the prime number theorem



Introduction
Preliminaries

Special functions and distributions related to prime numbers
Proof

Steps
Step 1
Step 2
Final Step

Final Step: ψ(x) ∼ x
Proof

Formally,
1
λ

∑
n<λ

Λ(n) =
〈
ψ′(λx), χ[0,1)(x)

〉
.

We approximate χ[0,1) by elements of D(0,∞).

Let ε be an arbitrary small positive number
Choose φ1 and φ2 with the properties:

0 ≤ φ1, φ2 ≤ 1
suppφ1 ⊆ (0,1], φ1(x) = 1 on [ε,1− ε]
suppφ2 ⊆ (0,1 + ε], and φ2(x) = 1 on [ε,1]

J.Vindas and R.Estrada A quick distributional way to the prime number theorem



Introduction
Preliminaries

Special functions and distributions related to prime numbers
Proof

Steps
Step 1
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Final Step

Final Step: ψ(x) ∼ x
Proof (continuation)

Evaluating at φ2 and using Chebyshev’s estimate:

lim sup
λ→∞

1
λ

∑
n<λ

Λ(n) ≤ lim sup
λ→∞

(
1
λ

∑
n<ελ

Λ(n) +
1
λ

∞∑
n=1

Λ(n)φ2

(n
λ

))
≤ Mε+ lim

λ→∞

〈
ψ′(λx), φ2(x)

〉
= Mε+

∫ 1+ε

0
φ2(x)dx ≤ 1 + ε(M + 1)

Likewise, 1− 2ε ≤ lim inf
λ→∞

1
λ

∑
n<λ

Λ(n)

Therefore, ψ(λ) =
∑

n<λ Λ(n) ∼ λ
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