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We will consider various applications of the φ−transform of
tempered distributions, defined as

Fφf (x , y) = 〈f (x + yt), φ(t)〉 , (x , y) ∈ Hn+1,

where f ∈ S ′(Rn), φ ∈ S(Rn), and Hn+1 = Rn × R+.
The essential assumption will be∫

Rn
φ(t)dt = 1.
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Weak-asymptotics (by dilation)

In the next definitions L is a Karamata slowly varying function.

Definition

Let f ∈ S ′(Rn).

It has weak-asymptotic behavior at 0 (resp. at infinity) if
∃g ∈ S ′(Rn) such that

lim
ε→0+

f (εt)
εαL(ε)

= g(t)
(

resp. lim
λ→∞

f (λt)
λαL(λ)

= g(t)
)

in S ′(Rn).

It is weak-asymptotically bounded at 0 (resp. at infinity) if the net{
f (εt)
εαL(ε)

}
0<ε<1

(
resp.

{
f (λt)
λαL(λ)

}
1<λ<∞

)
is weakly bounded in S ′(Rn).
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Weak-asymptotics
Notation

We write:
For weak-asymptotic behavior

f (εt) ∼ εαL(ε)g(t) in S ′(Rn) as ε→ 0+

f (λt) ∼ λαL(λ)g(t) in S ′(Rn) as λ→∞

For weak-asymptotic boundedness

f (εt) = O(εαL(ε)) in S ′(Rn) as ε→ 0+

f (λt) = O(λαL(λ)) in S ′(Rn) as λ→∞
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Tauberian theorems for the φ−transform
Weak-asymptotic behavior

Theorem
f has weak-asymptotic behavior if and only if

lim
ε→0+

1
εαL(ε)

Fφf (εx , εy) = Fx,y , for each |x |2 + y2 = 1, y > 0, (1)

(resp. lim
λ→∞

1
λαL(λ)

Fφf (λx , λy) = Fx,y )

lim sup
ε→0+

sup
|x|2+y2=1, y>0

yk

εαL(ε)
|Fφf (εx , εy)| <∞, for some k ∈ N, (2)

(resp. lim sup
λ→∞

sup
|x|2+y2=1, y>0

yk

λαL(λ)
|Fφf (λx , λy)| <∞).

In such a case, g is completely determined by Fφg(x , y) = Fx,y .
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Tauberian theorems for the φ−transform
Weak-asymptotic boundedness

Theorem
The estimate

lim sup
ε→0+

sup
|x|2+y2=1, y>0

yk

εαL(ε)
|Fφf (εx , εy)| <∞, for some k ∈ N,

(
resp. lim sup

λ→∞
sup

|x|2+y2=1, y>0

yk

λαL(λ)
|Fφf (λx , λy)| <∞

)
is necessary and sufficient for f to be weak-asymptotically bounded,
namely, as ε→ 0+ (resp. λ→∞)

f (εt) = O(εαL(ε)) (resp. f (λt) = O(λαL(λ)) ) in S ′(Rn).
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Summability of series

Let
∑∞

n=0 cn be a numerical series. We are interested in
divergent series. Let ρ be a function. We write

∞∑
n=0

cn = β (ρ)

if
∑∞

n=0 cn ρ(εn) is convergent for small ε and

lim
ε→0+

∞∑
n=0

cn ρ(εn) = β.

In such a case we say that the series is ρ-summable.
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Examples of summability methods
Cesàro summability if ρ(u) = (1− u)kχ[0,1](u). Notation:

∞∑
n=0

cn = β (C, k).

Connected with Fourier series.

If ρ(u) = e−u, we obtain Abel summability. Notation:
∞∑

n=0

cn = β (A).

Related to radial behavior of analytic functions.

If ρ(u) = u
eu−1 , we obtain Lambert summability. One writes:

∞∑
n=0

cn = β (L).

Important in combinatorics and prime number theory.

Jasson Vindas Applications of the φ-transform



Summability of numerical series and Tauberian theorems
Boundary behavior of holomorphic functions

Stabilization in time for Cauchy problems

The role of distributional point values
Connection with the φ−transform
Littlewood’s Tauberian theorem

Examples of summability methods
Cesàro summability if ρ(u) = (1− u)kχ[0,1](u). Notation:

∞∑
n=0

cn = β (C, k).

Connected with Fourier series.

If ρ(u) = e−u, we obtain Abel summability. Notation:
∞∑

n=0

cn = β (A).

Related to radial behavior of analytic functions.

If ρ(u) = u
eu−1 , we obtain Lambert summability. One writes:

∞∑
n=0

cn = β (L).

Important in combinatorics and prime number theory.

Jasson Vindas Applications of the φ-transform



Summability of numerical series and Tauberian theorems
Boundary behavior of holomorphic functions

Stabilization in time for Cauchy problems

The role of distributional point values
Connection with the φ−transform
Littlewood’s Tauberian theorem

Examples of summability methods
Cesàro summability if ρ(u) = (1− u)kχ[0,1](u). Notation:

∞∑
n=0

cn = β (C, k).

Connected with Fourier series.

If ρ(u) = e−u, we obtain Abel summability. Notation:
∞∑

n=0

cn = β (A).

Related to radial behavior of analytic functions.

If ρ(u) = u
eu−1 , we obtain Lambert summability. One writes:

∞∑
n=0

cn = β (L).

Important in combinatorics and prime number theory.

Jasson Vindas Applications of the φ-transform



Summability of numerical series and Tauberian theorems
Boundary behavior of holomorphic functions

Stabilization in time for Cauchy problems

The role of distributional point values
Connection with the φ−transform
Littlewood’s Tauberian theorem

Examples of summability methods
Cesàro summability if ρ(u) = (1− u)kχ[0,1](u). Notation:

∞∑
n=0

cn = β (C, k).

Connected with Fourier series.

If ρ(u) = e−u, we obtain Abel summability. Notation:
∞∑

n=0

cn = β (A).

Related to radial behavior of analytic functions.

If ρ(u) = u
eu−1 , we obtain Lambert summability. One writes:

∞∑
n=0

cn = β (L).

Important in combinatorics and prime number theory.

Jasson Vindas Applications of the φ-transform



Summability of numerical series and Tauberian theorems
Boundary behavior of holomorphic functions

Stabilization in time for Cauchy problems

The role of distributional point values
Connection with the φ−transform
Littlewood’s Tauberian theorem

A typical Tauberian question

Our setting will be:
ρ ∈ S(R), many important kernels are of this form
{cn}∞n=0 has at most polynomial growth
Observe

∑∞
n=0 cn = β ⇒ ρ-summability (Abelian theorem)

Tauberian question: Is it possible to go back to
convergence under an additional hypothesis?

A Tauberian theorem for series looks like

ρ-summability & Tauberian hypothesis⇒
∞∑

n=0

cn = β

A typical Tauberian hypothesis is cn = O(1/n).
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The role of distributional point values

Point values of distributions were defined in Pilipović’s lecture.
We set f (x) =

∑∞
n=0 cneinx .

Lemma
f (0) = β, distributionally, if and only if

∑∞
n=0 cn is ρ-summable to

βρ(0), ∀ρ ∈ S(R).

Proof: Set ϕ = 1
2π ρ̂ ∈ S(R), namely, ρ(u) =

∫ ∞
−∞

ϕ(t)eiut dt . Then,

∞∑
n=0

cnρ(εn) =
∞∑

n=0

cn

∫ ∞
−∞

ϕ(t)eiεnt dt = 〈f (εt), ϕ(t)〉

Jasson Vindas Applications of the φ-transform



Summability of numerical series and Tauberian theorems
Boundary behavior of holomorphic functions

Stabilization in time for Cauchy problems

The role of distributional point values
Connection with the φ−transform
Littlewood’s Tauberian theorem

The role of distributional point values

Point values of distributions were defined in Pilipović’s lecture.
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The role of point values for convergence

Theorem
Suppose f (0) = β, distributionally. Then, the Tauberian
condition cn = O(1/n) implies that

∑∞
n=0 cn = β.

Proof: From the last lemma limε→0+

∑∞
n=0 cnρ(εn) = β, if ρ(0) = 1.

If we were able to replace ρ(u) = χ[0,1](u), we would have

lim
ε→0+

∑
0≤n≤ 1

ε

cn = β.

Fix arbitrary σ > 1. Choose 0 ≤ ρ < 1 such that supp ρ ⊆ [0, σ] and
ρ(u) = 1 for u ∈ [0,1]. Then

lim sup
ε→0+

∣∣∣∣∣∣
∑

0≤n≤ 1
ε

cn − β

∣∣∣∣∣∣ ≤ lim sup
ε→0+

∣∣∣∣∣∣
∑

1<εn≤σ

cnρ(εn)

∣∣∣∣∣∣ < (σ − 1)O(1).

Since σ was arbitrary, we conclude the convergence of the series.
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The connection with the φ−transform

Suppose that

lim
ε→0+

∞∑
n=0

cnρ(εn) = β

Set ϕ = 1
2π ρ̂ ∈ S(R)

Then,
∞∑

n=0

cnρ(εn) = 〈f (εt), φ(t)〉 = Fφf (0, ε)

Therefore, ρ-summability is equivalent to the boundary limit

lim
ε→0+

Fφf (0, ε) = β.

Jasson Vindas Applications of the φ-transform



Summability of numerical series and Tauberian theorems
Boundary behavior of holomorphic functions

Stabilization in time for Cauchy problems

The role of distributional point values
Connection with the φ−transform
Littlewood’s Tauberian theorem

The connection with the φ−transform

Suppose that

lim
ε→0+

∞∑
n=0

cnρ(εn) = β

Set ϕ = 1
2π ρ̂ ∈ S(R)

Then,
∞∑

n=0

cnρ(εn) = 〈f (εt), φ(t)〉 = Fφf (0, ε)

Therefore, ρ-summability is equivalent to the boundary limit

lim
ε→0+

Fφf (0, ε) = β.

Jasson Vindas Applications of the φ-transform



Summability of numerical series and Tauberian theorems
Boundary behavior of holomorphic functions

Stabilization in time for Cauchy problems

The role of distributional point values
Connection with the φ−transform
Littlewood’s Tauberian theorem

The connection with the φ−transform

Suppose that

lim
ε→0+

∞∑
n=0

cnρ(εn) = β

Set ϕ = 1
2π ρ̂ ∈ S(R)

Then,
∞∑

n=0

cnρ(εn) = 〈f (εt), φ(t)〉 = Fφf (0, ε)

Therefore, ρ-summability is equivalent to the boundary limit

lim
ε→0+

Fφf (0, ε) = β.

Jasson Vindas Applications of the φ-transform



Summability of numerical series and Tauberian theorems
Boundary behavior of holomorphic functions

Stabilization in time for Cauchy problems

The role of distributional point values
Connection with the φ−transform
Littlewood’s Tauberian theorem

Tauberian theorem for distributional point values

Theorem
f (0) = β, distributionally, if and only if

1 there exist k ∈ N and M > 0 such that

|Fφf (εx , εy)| ≤ M
yk , |x |

2 + y2 = 1, 0 < ε < 1.

2 and, for each |x |2 + y2 = 1,

lim
ε→0+

Fφf (εx , εy) = β.
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Application: Littlewood’s Tauberian theorem

Theorem (Littlewood, 1912)
Suppose that

lim
ε→0+

∞∑
n=0

cne−εn = β.

The Tauberian condition cn = O(1/n) implies
∑∞

n=0 cn = β.

Proof: Choose φ in such a way

F (z) :=
∞∑

n=0

cne−yn+ix = Fφf (x , y) =, z = x + iy , y > 0.

We check the conditions of the previous theorem, i.e.,
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Proof of Littlewood’s theorem (continuation):
We check the two conditions of the previous theorem, i.e.,

The estimate: for |x |2 + y2 = 1, and 0 < ε ≤ 1:

|F (εx + iεy)| < |F (εx + iεy)− F (iεy)|+ F (iεy) ≤ O(1) +

∣∣∣∣∣
∞∑

n=0

cne−εyneiεxn

∣∣∣∣∣
≤ O(1) + O(1)

∞∑
n=0

e−εyn

n

∣∣∣eiεxn − 1
∣∣∣ < O(1) + O(1)ε

∞∑
n=0

e−εyn

=
O(1)

y

Since F is analytic, bounded on cones with vertex at the origin, and has
a radial limit, we must have that it has β as non-tangential boundary
value, namely, for each z ∈ H2,

lim
ε→0+

F (εz) = β.
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Laplace transform

Let Γ be a closed convex acute cone with vertex at the origin.
Acute means that the conjugate cone

Γ∗ = {ξ ∈ Rn : ξ · u ≥ 0,∀u ∈ Γ} has non-empty interior.

Set
S ′Γ =

{
h ∈ S ′(Rn) : supp h ⊆ Γ

}
CΓ = int Γ∗ and T CΓ = Rn + iCΓ.

Given h ∈ S ′Γ, its Laplace transform is defined as

L{h; z} =
〈

h(u),eiz·u
〉
, z ∈ T CΓ ;

it is a holomorphic function on the tube domain T CΓ .
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Laplace transforms as φ−transforms

We may express the Laplace transform as a φ−transform if we
fix a direction in CΓ.

Fix ω ∈ CΓ

Choose ηω ∈ S(Rn) such that ηω(u) = e−ω·u, ∀u ∈ Γ

Set
φω = 1/(2π)nη̂ω and f̂ = (2π)nh

Then,

L{h; x + iσω} = Fφω f (x , σ), x ∈ Rn, σ ∈ R+.
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Tauberian theorem for Laplace Transforms

Corollary

Let h ∈ S ′Γ. Then, an estimate (for some ω ∈ CΓ, k ∈ N)

lim sup
ε→0+

sup
|x|2+σ2=1

σkεn+α

L(1/ε)
|L {h; ε (x + iσω)}| <∞, (3)

and the existence of an open subcone C′ ⊂ CΓ such that

lim
ε→0+

εα+n

L(1/ε)
L{h; iεξ} = G(iξ), for each ξ ∈ C′, (4)

are necessary and sufficient for

h(λu) ∼ λαL(λ)g(u) as λ→∞ in S ′(Rn), for some g ∈ S ′Γ.

In such a case G(z) = L{g; z}, z ∈ T CΓ .
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Boundary behavior of holomorphic functions

The last corollary may be reformulated in terms of boundary
behavior of holomorphic functions.

Let F (z) be holomorphic on the tube domain T CΓ

Suppose F admits a boundary distribution

f (x) = F (x + i0+) ∈ S ′(Rn)

Assume F satisfies a "tempered growth condition" (i.e., it
belogs to the Vladimirov algebra).

Then f has weak-asymptotic behavior at 0 if and only if
F (iεξ) has the same kind of asymptotics for ξ ∈ C′ ⊆ CΓ

There is a direction ω ∈ CΓ such that F (εx + iεσω) satisfies
a certain estimate (in fact, the same as in the Tauberians
for the φ−transform!)
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A Generalized Cauchy problem

We will consider the Cauchy problem

∂

∂t
U(x , t) = P

(
∂

∂x

)
U(x , t),

lim
t→0+

U(x , t) = f (x) in S ′(Rn).

Γ ⊆ Rn is a closed convex cone with vertex at the origin.
Possible situation: Γ = Rn.
P is a homogeneous polynomial of degree d . Assume:

<e P(iu) < 0, u ∈ Γ, u 6= 0.

f ∈ S ′(Rn). Assume supp f̂ ⊆ Γ.
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Asymptotic stabilization in time for solutions

We ask for conditions which ensure the existence of a function
T : (A,∞)→ R+ such that the following limit exists

lim
t→∞

U(x , t)
T (t)

= `,

uniformly for x in compacts of Rn.
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Generalized Cauchy problem
Solution

If U is required to have slow growth over Hn+1, i.e.,

sup
(x ,t)∈Hn+1

|U(x , t)|
(

t +
1
t

)−k1

(1 + |x |)−k2 <∞, for some k1, k2 ∈ N,

then the Cauchy problem has a unique solution. Moreover,

U(x , t) =
1

(2π)n

〈
f (u),eix ·ueP(it1/d u)

〉
.
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Relation with the φ−transform

Choose a test function η ∈ S(Rn) with the property

η(u) = eP(iu), for u ∈ Γ;

setting φ(ξ) = (2π)−nη̂(ξ), we express U as a φ−transform,

U(x , t) =

〈
f (ξ),

1
tn/d φ

(
ξ − x
t1/d

)〉
= Fφf (x , y), with y = t1/d ,
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Stabilization along d-curves

We say U stabilizes along d-curves (at infinity), relative to
λαL(λ), if the following two conditions hold:

1 there exist the limits

lim
λ→∞

U(λx , λd t)
λαL(λ)

= U0(x , t), (x , t) ∈ Hn+1;

2 there are constants C ∈ R+ and k ∈ N such that∣∣∣∣U(λx , λd t)
λαL(λ)

∣∣∣∣ ≤ M
tk , |x |

2 + t2, t > 0.
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Stabilization in time for Cauchy problems

Theorem
The solution U to the Cauchy problem stabilizes along d-curves
if and only if f has weak-asymptotic behavior at infinity, relative
to λαL(λ).

Corollary

If U stabilizes along d-curves, relative to λαL(λ), then U
stabilizes in time with respect to T (t) = tα/dL(t1/d ). That is,
there is a constant ` such that

lim
t→∞

U(x , t)
T (t)

= `,

uniformly for x in compacts of Rn.
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Example: The heat equation

We immediately recover a result of Drozhzhinov and Zavialov
for the heat equation.
Let U be the solution to the Cauchy problem (here actually
Γ = Rn)

∂

∂t
U = ∆xU,

lim
t→0+

U(x , t) = f (x) in S ′(Rn).

If U stabilizes along parabolas (i.e., d=2), then it stabilizes in
time.
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