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Summary

The aim of this talk is to communicate new structural theorems
for quasiasymptotics of Schwartz distributions.

• Review of the definition of quasiasymptotics at infinity and
at the origin and the known properties.

• Integration of the quasiasymptotic and relationship with
asymptotically and associate asymptotically homogeneous
functions.

• Structural Theorems for quasiasymptotics at infinity and at
the origin.

• Particular case: the quasiasymptotic of order -1 at infinity.
• Consequence : Characterization of jump behavior of

Fourier series in terms of Cesaro summability.
• Evaluation of distributions in the e.v. Cesaro sense.
• Consequence : Pointwise Fourier inversion formula.
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Notation

• D and D′ denote the Schwartz spaces of test functions and
distributions.

• S and S ′ are the spaces of rapidly decreasing functions and
the space of tempered distributions.

• All of our functions and distributions are over the real line.
• The Fourier transform in S is defined as

φ̂(x) =

∫ ∞

−∞

φ(t)eixtdt.
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Slowly Varying Functions

Recall that real-valued measurable function defined in some
interval of the form [A,∞), A > 0, is called slowly varying
function at infinity if L is positive for large arguments and

lim
x→∞

L(ax)

L(x)
= 1,

for each a > 0.
Similarly one defines slowly varying functions at the origin.
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Quasiasymptotic at infinity

Let L be slowly varying. We say that f ∈ D′ has quasiasymptotic
behavior at infinity in D′ with respect to λαL(λ), α ∈ R, if for
some g ∈ D′ and every φ ∈ D,

lim
λ→∞

〈

f(λx)

λαL(λ)
, φ(x)

〉

= 〈g(x), φ(x)〉 .

We also say that f has quasiasymptotic of order α at infinity with
respect to L.
We also express this by

f(λx) = λαL(λ)g(x) + o(λαL(λ)), λ → ∞ in D′.

We may also have

f(λx) = λαL(λ)g(x) + o(λαL(λ)), λ → ∞ in S ′.
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Quasiasymptotic at the Origin

Similarly, one defines the quasiasymptotic in D′ and S ′ at the
origin.

• By shifting, one can define the quasiasymptotic of
distributions at any point.

• For example, Łojasiewicz defined the value of a distribution
f ∈ D′ at the point x0 as the limit

f(x0) = lim
ε→0

f(x0 + εx) ,

if the limit exists in D′.
• Notation: If f ∈ D′ has a value γ at x0, we say that

f(x0) = γ in D′. The meaning of f(x0) = γ in S ′, ..., must be
clear.
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Previous known properties at infinity

• If f ∈ D′ has quasiasymptotic at infinity in D′. Then, f ∈ S ′.

• Structural theorems when the order of the quasiasymptotic
α /∈ −N.

• If f has quasiasymptotic in D′ whose order is not a negative
integer, then f has the same quasiasymptotic in S ′. For
α ∈ −N the result was known only under the assumption L
bounded.
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Previous known properties at the origin

• Structural Theorem for α > 0.
• Structural Theorem for α ∈ (−1, 0] under the assumption L

bounded.
• If f ∈ S ′ has quasiasymptotic at the origin in D′, then it has

the same quasiasymptotic in S ′ in the following two cases,
◦ α ≤ 0 and α /∈ −N.
◦ α > 0 and L bounded.
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Integration of the Quasiasymptotic

Suppose

f (λx) = L(λ)g(λx) + o (λαL(λ)) , in D′,

(here λ → ∞ or 0). Suppose that g admits a primitive Gk of order
k which is homogeneous of degree k + α . Then, for any given
k-primitive Fk of f , there exist functions b0, . . . , bk−1, such that

Fk (λx) = L(λ)Gk(λx)+

k−1
∑

j=0

λα+kbj(λ)
xk−1−j

(k − 1 − j)!
+o

(

λα+kL(λ)
)

, in D′,
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Integration of the Quasiasymptotic

Suppose

f (λx) = L(λ)g(λx) + o (λαL(λ)) , in D′,

(here λ → ∞ or 0). Suppose that g admits a primitive Gk of order
k which is homogeneous of degree k + α . Then, for any given
k-primitive Fk of f , there exist functions b0, . . . , bk−1, such that

Fk (λx) = L(λ)Gk(λx)+

k−1
∑

j=0

λα+kbj(λ)
xk−1−j

(k − 1 − j)!
+o

(

λα+kL(λ)
)

, in D′,

where
bj(aλ) = a−α−j−1bj(λ) + o(L(λ)).
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Asymptotically Homogeneous Functions

Definition A function b is called asymptotically homogeneous
of degree α at infinity (resp. at 0) if

b(ax) = aαb(x) + o(L(x)).

Properties
• In the case at infinity when α < 0, or at 0 when α > 0,

b(x) = o(L(x)).

• In the case at infinity when α > 0, or at 0 when α < 0,

b(x) = βxα + o(L(x)).
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Structural Theorem for Some Cases

Theorem 1 Let f ∈ D′ have quasiasymptotic behavior at infinity
(resp. at the origin) in D′,

f(λx) = C−L(λ)
(λx)α−

Γ(α + 1)
+ C+L(λ)

(λx)α+
Γ(α + 1)

+ o (λαL(λ)) .(1)

If α /∈ {−1,−2, . . .} , then there exist a positive integer m, a
m-primitive F of f such that F is continuous (resp. continuous in
[-1,1]) and

lim
Γ(α + m + 1)F (x)

|x|α+m L (|x|)
= C ± .(2)

Conversely, if these conditions hold, then (by differentiation) (1)
follows.
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Associate Asymptotically Homogeneous Functions

In the case of negative integer order, the main coefficient of
integration of the quasiasymptotic satisfies the following
definition.
Definition A function b is called associate asymptotically
homogeneous of degree 0 at infinity (resp. at 0) with respect
to L if

b(ax) = b(x) + βL(x) log a + o(L(x)).
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Structural Theorem for the Other Cases

Theorem 2 f has the quasiasymptotic behavior in D′ at infinity
(resp. at the origin),

f(λx) = γλ−kL(λ)δ(k)(x)+
(−1)k−1β

(k − 1)!
λ−kL(λ)Pf

(

1

xk

)

+o
(

λ−kL(λ)
)

,

if and only if there exist m ∈ N,m ≥ k, a function b satisfying
b(aλ) = b(λ) + β log aL(λ) + o(L(λ)) and a m-primitive F , which
is continuous (resp. continuous in [−1, 1]) such that

F (x) = b (|x|)
xm−k

(m − k)!
+ γL (|x|)

xm−k

2(m − k)!
sgnx

−βL (|x|)
xm−k

(m − k)!

m−k
∑

j=1

1

j
+ o

(

|x|m−k L (|x|)
)
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Second version of the Structural Theorem

This is a version free of b

Theorem 3 Let f ∈ D′. Then f has quasiasymptotic at infinity
(resp. at the origin) of order −k, k ∈ {1, 2, ...} if and only if there
exists a continuous m-primitive F of f (resp. continuous in
[-1,1]), m > k, such that for each a > 0,

lim
x→∞

(m − k)!
(

ak−mF (ax) − (−1)m−kF (−x)
)

xm−kL(x)
= I(a).(3)

In such case I has the form I(a) = γ + β log a.
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A Particular Case

Recall the definition of Cesaro limits of distributions. Let g ∈ D′,

lim
x→∞

g(x) = η (C, k),

if there exists a k-primitive G of g, being a regular distribution,
such that G(x) = ηxk/k! + o(xk), as x → ∞. Then the structural
theorem for the quasiasymptotic of order -1 is the following:

f(λx) = γδ(λx) + βPf

(

1

λx

)

+ o

(

1

λ

)

as λ → ∞

if and only there is k ∈ N such that for all 1-primitive F of f and
a > 0

lim
x→∞

F (ax) − F (−x) = γ + β log a (C, k).
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First Consequence: Local behavior of Fourier Series

f is said to have a jump behavior at x0 if

f(x0 + ǫx) = γ−H(−x) + γ+H(x) + o(1) in D′ as ǫ → 0+.

Suppose that f(x) =
∑∞

n=−∞ aneinx, then it has this jump
behavior at x0 if and only if there exists k ∈ N such that for each
a > 0

lim
N→∞

∑

−N≤n≤aN

aneinx0 =
γ+ + γ−

2
+

i

2π
(γ+ − γ−) log a (C, k).
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e.v Cesaro evaluations

Definition 1 Let g ∈ D′, and k ∈ N. We say that the evaluation
〈g (x) , φ (x)〉 exists in the e.v. Cesàro sense, and write

e.v. 〈g (x) , φ (x)〉 = γ (C, k) ,(4)

if for some primitive G of gφ and ∀a > 0 we have

lim
x→∞

(G(ax) − G(−x)) = γ (C, k) .

If g is locally integrable then we write (4) as

e.v.

∫ ∞

−∞

g (x) φ (x) dx = γ (C, k) .

Remark: In this definition the evaluation of g at φ does not have
to be defined, we only require that gφ is well defined.
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Pointwise Fourier Inversion Formula

Now, we characterize the point values of a distribution in S ′ by
using Fourier transforms.

Theorem 4 Let f ∈ S ′. We have f(x0) = γ in S ′ if and only if
there exists a k ∈ N such that

1

2π
e.v.

〈

f̂ (t) , e−ix0t
〉

= γ (C, k) ,

which in case f̂ is locally integrable means that

1

2π
e.v.

∫ ∞

−∞

f̂(t)e−ix0tdt = γ (C, k) .
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